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In [1] we defined a λ-modified differential Hopf algebra A (or simply a (d9

λ)-Hopf algebra) and introduced the derived Hopf algebra Φλ(^4)=Ψλ(^4), maps
ξ\> V\J etc., in order to characterize coprimitivity and primitivity of A. In this
note we study some properties of the derived Hopf algebra. Definitions and
notations are referred to [1] in the present work.

1. Throughout the present work we understand that K is a field of
characteristic />φθ, X^K and all modules are G2-modules over K unless
otherwise stated.

Let M be a differential G2-module. Suppose p is odd.
For each (j, k)> l^j\ k<ίp, consider the map

where 1 is the identity map of M®P=M®-- ®M (p times) and d£ is the ί-th
partial differential of M®p for l ^ i ^ n , [1], (2.2). Since the partial differential
are anti-commutative we see immediately

(l.i) i)
ii)
iii) \-\-\djdk is an automorphism of a differential G2-module,
iv) \-\-Xdjdk is natural, i.e.,

for any map f : M->N of differential G2-modules.

We define a natural automorphism

Bpλ

by
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as the composition of maps l-\-Xdjdk.

By (1.1) ii) Bp _λ is the inverse morphism of BpK.

Let Cp : M®p-+M®p be the cyclic permutation and CpΛ : M*P-*M®P be

the λ-modified cyclic permutation, [1], 3.3.. As is easily seen we have

(1.3) iλCp=Cpdp,di^Cp=Cpdifor\^i^p-\ and CPtX={\ + Xdxd)Cp.

Then we obtain

(1.4) Lemma. The following relation

Cpt\B p ,\=B p ,\ C p

holds. In particular, Bpλ(x®p) is Cpλ-fixed for any x^A.

Proof. Making use of (1.1), (1.2) and (1.3) we get

,k-

REMARK. In [1], (5.10) we proved that there exists an element bpλ(x)

such that x®p+bpλ(x) is C^-fixed. Putting Bpλ(x®p)=x®p+bPΛ(x), the

above lemma describes bp λ(x) explicitly.

Put

Δo = 1-CP, Δ λ = 1-C,,λ, K=l~Cp®Cp ,

C^ Σ λ = 25=JC,*λ and Σo =

For a differential G2-module M we put

Φ0(M) = Ker Δ0/Im Σo, Φλ(M) = Ker Δλ/Im Σ λ ,

Ψ0(M) = Ker Σo/Im Δo and Ψλ(M) = Ker Σλ/Im Δ λ .

By (1.4) the map Bpλ induces natural isomorphisms

(1.5) Φ(Bp,λ) : Φ0(M) - Φλ(M) and Ψ(BPtλ) : Ψ0(M) - Ψλ(M)

of G2-modules.

A permutation £7̂  : {M®M)®P->M®P®M®P and a λ-modified permutation

^ t λ : {M®M)®p->Mi*p®M®p are defined by

and

^ , λ = * pλ(Tp_1 λTp+1 λ)-"(T2 λT4 λ
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where T£ is the i-th. partial switching map and Tiλ is the i-th. partial λ-modified

switching map for l ^ i ^ 2 p — 1 , i.e., Titλ=(l+\dgdi+1) Tiy [1], (2.16).

Since Tid~di+1Tiy Γ^ .+^^T 1 , . and T^^άjTi for Φz, ί + 1 we have the

following relation

(1.6) UPtK=Jl^j<k^p{\+Xdkdp+J)Up.

2. Let p be a prime number and S^ be the set of ^-tuples of integers

defined by

Sk= {ft,-, ik)

Elements ft, •••, ik) and (/{, •••, i'k) of Sk are said to be related provided

ft—*Ί, - , 4 - ί i ) = W+i—*"ί> "'Jl—ijfP+iί—ijy —iP+ij-i—ty

for some j .

(2.1) ΓAw relation is an equivalence relation.

Proof. Denote by ft, —, iΛ)γ(iί, —, i'k) if ft—xΊ, —, ik—/1)=(iί+i—ij, —,

i'k—ijy p+iί—ij, '">p-\-ij-i~ij) f°r some j . Then we see immediately that

ft, — , 4)fft, — , 4), ft, •••, 4) γ(iί, — , i*) implies ftr, •••, ^ ' O ^ ^ f t , — > ύ)

and ft, •••, ί*)y(ίί, — , /J) and (iί, — , ί'O^ί', ' " , *V) imply ft, — , 4 ) ^ ^ ^

( ί Γ , - , ^ ) : q.e.d.

Let Ŝ  be the quotient set of S^ defined by the above equivalence relation

and π : Sk-^Sk be the natural projection.

(2.2) Lemma. 7/τrft, •••, ik)=π(0, s2y —, ^ ) / ^ l^k<p9 then there exists

a unique integer j , l<*j<^k, such that

Proof. By definition there exists a required integer j y l^j^k. We shall

show that such an integer j is unique when l^k<p. Suppose that (s2, * -,sk)

V-i^*V) - T h e n w e h a v e

Hence (j~J/)P==K^j'~^/) a n d i = 7 v q.e.d.

We may choose elements of form (0, s29 •••, ^ ) as representatives of the

above equivalence classes in 5^ because πft, •••, ίΛ)=τr(O, i2—i19 •••, 4—^i)

We identify this set of representatives with Sk Using (2.2) we have the

correspondence τk between Sk and SkχZpy l^k<p, defined by
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(2.3) rfc(i19 . - , 4 )=((0 , s2y - . , sfc), ij)

w h e r e ( 0 , s2, •••, sk) i s t h e r e p r e s e n t a t i v e of π(i19 •••, 4 ) a n d ( ί 2 , •••, sk) = (iJ+1—ij,

(2.4) L e m m a . τΛ £y # owe ίo one correspondence.

Proof. Suppose that τk(iiy . - , ik)=τk{i[,..., /Q, i.e., rfo, •••, ik)=π{i[y •••, tf)

and iy=ί j ' . Then

hence (*Ί, •••, ik)=(iί> •••> **)• An(* also

τk(Sj+i+i—p>'~,Sk+i—p>i>s2+h -~,Sj+i)=((0,s29 - ,ίA), ί)

for p—Sj+1^i<p—Sj. Therefore T^ is one to one. q.e.d.

(2.4) means that a equivalence class in S^, \<Lk<p, is a subset which

consists of just/) elements.

Let M be a differential G2-module over if, char ^ = / > and * : M-+M be a

map of period p, i.e., ί * = 1. Put Δ = 1 —t and Σ = Σ ? I o t*. We consider maps

Λ, : Λί->M, l ^ / ^ / > , such that

(2.5) Λ;1ί=ίΛ?/>, xi+1t=txt for 1 ̂ t^p— 1 #«</ xixJ=xJx£ for 15^', j</>.

If T*(*Ί> '•*> 4)—((0, 2̂> •••> ^)> ίy) it follows immediately from (2.5) that

t*JX1XS2+1"'Xsk+1t
 tj:=Xi1+i"'Xik+i '

Denote by σk the £-th elementary symmetric polynomial of p variables. Since

τk is one to one by (2.4) we can express σk(xiy •••, xp) as

k2-li0 iS2 + l"'XSk+J

for 1 <^k<p. As is easily seen we have

Σf-o1 ί ίΛΛ2 + 1-..«# i k + 1^-'(Ker Δ ) c l m Σ

and

Σ ϊ " ί ί ί V S 2 + r ^5 i f e +i^~ ί '(Ker 2 ) e l m Δ .

Hence

<Γk(xi> #*> Λ /̂r)(Ker Δ ) c I m Σ and σ ^ , , Λ^)(Ker Σ ) c I m Δ

for l^Λ</>. Thus we obtain
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(2.6) Lemma.

= l+x^"Xp modlmΣ

and

(l+x1)—(l+xp)\Keτl, = l+x1...χp modlmΔ.

For O^s^p, define maps

D°pλ : M®p -* M®p and D

by

(2.7) DpΛ = π

and

respectively. Putting

Xj = \djds+p Xj=\djdp+8+J for 1 ^j^p—s

and

Xp-s+k = ^dp-s+kdk, Zp-s+k = ^dp-s+kdp+k f

by (1.3) we have

(2.8) XlCp = C Λ , 3tλ{Cp® Cp) = (Cp® Cp)otp

xi+£p = C^,, Xi+1(Cp®Cp) = (Cp®Cp)Xjor ί^t^p-ί .

and

χ.χJ = χ.χ^ %$ . = %j%. for l<Liyj^p .

By an easy calculation we see

(2.9) xs-Xp = 0 and X^Xp = {-\)iκp-ι'/2Xpd1"'d2p .

Remark that

(2.10) £>*,Λ = ( 1 + O ( 1 + ^ ) and D;.χ = . ( l + * 1 ) - ( l + ^ )

Then, by (2.6), (2.8) and (2.9) we have

D°pλIKer Δ o = 1 mod ImΣ0, D°pλ\Ker Σo = 1 mod Im Δo

DPtK\Kex&Q=\+{-\)κp-W\pd^d2p mod ImΣo

and

-d2p mod ImA 0 .
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More generally we obtain by an induction on n that

(2.Π) Πis*s-θ;MKerΔ 0 =l m o d I m Σ 0 )

Π,s« . ί#Λ I Ker Σo= 1 mod Im Δo

and

(2.12) ^

mod Im Σ o ,

>ϊ.x I Ker Σ 0 Ξί) ; i Λ λ | Ker Σo mod Im Ao.

3. Throughout this section we supposep is odd. For λGίΓ we define

another element μ=μ(X)^K by

μ = μ(\) = λ/2 .

Let A be a differential algebra (or coalgebra). We define another structure

of differential algebra (or coalgebra) on A by endowing with multiplication

tίίφ=φ{\-\-μdσ®d) (or comultiplication ^={\—μdσ®d)ψ) where σ is the

canonical involution [1], (1.1). Denote this by μA. Then we have

(3.1) Lemma, i) A is associative or \-commutative if and only if μA is

associative or commutative,

ii) μφT = < P Γ I L ^ < ^ W + 1 ( 1 + μdjdk) (or ,ψΓ = π^j<^n+1(l-

for each wn<= Wny the set (1.7) of [1],

iii) Fn(μA) = Fn(A) (or Gn{μA) = Gn{Aj) foralln^l.

Proof. First we prove ii) by an induction on n. In case n= 1 it is the

definition that μ.φ=<p(l-{-μd1d2) (or μψ=(l—μd1d2)ψ). As in [1], (1.18) we can

express as wn—(ly wsy s-\-l-j-wn_s_1) for some s, 0<^s<n. Then

- ^

(Or μ ψ Γ =

where we apply induction hypotheses to s and n—s—1.

It follows immediately from ii) and [1], (1.8) (or (1.8*)) that Fn(μA)dFn(A)

(or Gn(A) c Gn(μA)). On the other hand,
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hence Fn(A) c Fn(μA) (or Gn(μA) c G\A)). Thus

Fn{A) = Fn(μA) (or Gn{A) = Gn{μA)\.

i) is obvious by ii) and [1], (3.3). q.e.d.

and Φ0(μA) (or Ψλ(A) and ΨQ(μA)) become differential algebras
(or coalgebras) which have multiplications Φλ(φ) and Φ0(μφ) (or comultiplications
Ψλ(ψ) andψo(μψ)) induced by φλ=φ*p U;\ and &** U~Ύ ( o r ψ λ = Up^

p

and Upμψ®p) respectively. Remark that differentials of them are trivial,
[1], (5.12).

Here we obtain the following relationship between Φλ(^4) and Φ0(μA)
(or Ψλ(A) and Ψ0(μA)).

(3.2) Proposition. The map BpK induces a natural isomorphism

Φ(BpΛ) : Φ0(μA) - Φλ(A) (or Ψ(Bp,x) : Ψ0(μA) - Ψλ(A))

of differential algebras (or coalgebras).

The above proposition follows immediately from the following

(3.3) Lemma.

p Λ p Δ0®Ker A^B^φ^U'1 \Ker Δ0®Ker Δo

mod Im Σ λ

(or (BPtλ®Bp>λ)Up,ψ®p I Ker Σ o= Up^
pBpλ \ Ker Σo

mod (A®p)λ®Im Δ λ +Im

Proof. The case of algebras: Using (1.1), (1.2) and (1.6) we compute

-Xdkdp+j){\+\djdk)(\+\dp+Jdp+k))

where Π runs over ί^j<ck^p. By (2.7) we note that
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Consequently we obtain

On the other hand we obtain

Hence, by making use of (1.4) and (2.12) we have

φ*pUϊl(BPtK®BPtλ) I Ker Δo® Ker Δo

s:Jk I Ker Δ0®Ker Δo

p K t r Δ0(8)Ker Δo

I Ker Δo® Ker Δo mod Im Σ λ

because Ker Δo® Ker Δo c Ker &0.

In case of coalgebras, by the same argument as above we obtain

and

Here, from (1.4) and (2.12) follows the conclusion immediately. q.e.d.

Finally we discuss (d, λ)-Hoρf algebras. Let 4 be a quasi (d9 λ)-Hopf
algebra. We can identify Φλ(^4) with Ψλ(A) by the canonical isomorphism K,
[1], (5.11). Then Φλ(A)=Ψλ(A) becomes a quasi Hopf algebra, called the
derived quasi Hopf algebra of A, which has multiplication Φ\(φ) and
comultiplication Ψλ(ψ)y [1], (5.16). On the other hand, we introduce another
structure of differential quasi Hopf algebra on A> denoted by μAy which
has multiplication μφ=φ(l-\-μdσ®d) and comultiplication μΛ/r=(l—μdσ®d)ψ.
Identifying Φ0{μA) with Ψ0(μA) by the canonical isomorphism, Φ0(μA)=Ψ0(μA)
gains a structure of quasi Hopf algebra with multiplication Φ0(μφ) and
comultiplication Ψ0(μψ).

Applying (3.2) to a quasi (d, λ)-Hopf algebra A, we obtain

(3.4) Proposition. The map Bpλ induces a natural isomorphism

Φ(Bp,λ):Φ(>(μA)-»Φλ(A)

of quasi derived Hopf algebras.

4. Let L be an extension field of K. We regard L as a G2-module over
K by L0=L and Lγ= {0}. Let A be a differential algebra (or coalgebra). We
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can regard L®A as a differential algebra (or coalgebra) over L equipped with
K

multiplication

(L®A)®(L®A)^L®(A®A) 5> L®A

(or comultiplication

L®(A®A)^(L®A)®(L®A)).

(4.1) Lemma. L®FnA=Fn(L®A) for all n^O
K K

{or L®GnA=Gn(L®A) foralln^O).

The proof is obvious in case of algebras, and can be given by a choice of
homogeneous bases of L and A as modules in case of coalgebras.

(4.2) Lemma. Qn(L®A)=L®QnA for all n^O

(or Pn{L®A)=L®PnA for all w^O).

Proof. L® is an exact functor. Therefore the lemma follows from (4.1).

(4.3) Proposition. A is semi-connected if and only if L®A is so.

Proof. The case of algebras: First suppose that L®A is semi-connected,

i.e., Π n^Fn(L®A)= {0} [1], 1.8.. Take any x<= Π n^FnAf then (4.1) implies

\®x<= nn>1

Hence A is semi-connected.
Conversely, suppose that A is semi-connected. Take any

(L®A). Choosing a homogeneous basis T={# t} t€Ξ / of A, we may put y=

Σ i ^ ^ Λ ® ^ ' where ijEϊL and XJ€ΞT. Since A is semi-connected there exists
an integer m>0 such that

K{Xl,-,xn}nF" A={0}

where K{xlf •••, xn} denotes the submodule of A generated by #„•••,#,,.

Moreover this means by (4.1) that

L®K {xl9 ..., xn} f]Fm(L®A)=L®(K{xiy ..., xn} Γ\FmA)={0}

for some m>0. However
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y^L®K{x11 —,xH} ΠFm(L®A), hence y = 0.
E E

Therefore L®^4 is semi-connected.
E

The case of coalgebras can be proved by a routine discussion. q.e.d.

Let A be a. quasi (d, λ)-Hopf algebra. Then L®A becomes a quasi

(d, λ)-Hopf algebra over L where X=X®\<=L=K®L.
E

(4.4) Proposition. 4̂ is coprίmίtive (or primitive) if and only if L®A is so.
E

Proof. From (4.1) and (4.2) it follows that

P(L®A) n F\L®A) = L®(P(A) n FM)

and

P(L®A)+F2(L®A) = L®(P(A)+F2A).
E E E

These prove the proposition.

5. Let Kp be the subfield of K generated by elements kp, k e K and

0J5-: K^K be the monomorphism defined by θκ(k)=kp. ΘK(K)=KP. Let M

and iV be modules. We say that a map θ : M-+N is θκ-lίnear if

0(fec) = θκ(k)θ(x) and (9(x+.y) = θ(x)+θ(y)

for all X J G M and all k<=K. lί θ : M-+N is ^-linear, then Θ(M) is a module

over Kp. In particular we say that a 0^-linear map θ : M->N is a θκ-isomorphisnι

if 0 is injective and N=K®Θ(M). Remark that a ^-isomorphism 0 is

bijective if If is a perfect field.

Let A be a differential algebra (or coalgebra).

Define a map £w : A®m^A®m by

>̂ = 3 mod 4

others

where w=Σi^»</^mσ(Λ?«)σ(#/) a n c ^ σ ιs> •t^ie canonical involution [1], (1.1). By
an induction on m we have the following relation

(5.1) (φ£2)T = φZm£m+1 (or (S2ψ)Zm = £m+1ψZm) for eachwn^Wn.

The diagonal map Δ : A->A®P, A(x)=x®p for a homogeneous element

XEΞA, induces a map

(5.2) ΘP:A^ Φ0(A)(oτ Ψ0(A)).
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(5.3) Lemma. The above map θp satisfies the following properties :
i) θp is a θκ-isomorphism,

ii) "multiplicative up to signs", i.e.,

θpφZnεn+x = Φ0{φ)Znθf "+ 1 for each wn(Ξ Wn

{or ii)* "comultiplicative up to signs", i.e.,

ΘTiλεn+1Vnn = Vo(ψXnθp for each wne Wn),

iii) compatible with η and 6, i.e.,

θpη = ηθκ and 8θp = θκ£, and

iv) natural, i.e.,

for any morphίsmf : A-+B of algebras (or coalgebras).

Proof. 0̂ , is (Vlinear because (kxf>p=kpx®p and (*+jy)®* = ***+/»* mod
ImΣ 0 . Choosing a homogeneous basis T={Λ: t} te/ of A, we see by [1], 5.3.
that Φ0(^4)^ψ0(^4) is generated by {xfp

 ^ G Ϊ 1 } . Hence θp is injective and

K®θp(A)=Φ0(A) (or Ψ0(A)). Thus 0̂ , is a (9^-isomorphism. Since iii) and
KP

iv) are obvious by the definition of θp it remains to prove ii) and ii)*.
Remark that Up(x®y)®p=ε2(xPp®yPp). Then we obtain

and

mod Im Xo,

where ψ(x)=^Σίixi®xf

t9 and

Im Σ o c l m Δ0®(A®p)+(A®p)®Im Δ o .

Thus

and

Using an induction on n we can easily verify that

Φo{φ)TθT+1 = θp{φ82)T and Ψ0(ψ)

for all wn^ Wn. Now by (5.1) we obtain ii) and ii)*. q.e.d.
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Since θp is multiplicative (or comultiplicative) up to signs θp(A) becomes
an algebra (or coalgebra) over Kp with multiplication (or comultiplication)
induced by that of Φ0(A) (or Ψ0(A)). We see by (5.3) that

(5.4) ΘP(F*A) = F»(ΘP(A)) (or θp(GnA) = G»(ΘP(A))) for all n^O .

6. Here we consider a similar map to (5.2) when p=2 and λφO. Suppose
^>=2andλΦθ. The diagonal map Δ : Z(A)->Z(A)®Z(A) given by A(x)=
x®x, induces a map

(6.1) Θ2Λ : H(A) -* ΦX{A) (or Ψλ(A)).

(6.2) Lemma. The above map θ2λ satisfies the following properties :
i) #2,λ is a θκ-isomorphism,

ii) "multiplicative", i.e.,

(or ii)* "comultiplicative", i.e.,

iii) compatible with η and S, i.e.,

Θ2,XV = vθκ and Sθ2fλ = ΘKS, and

iv) natural, i.e.,

02>λ//(/) = Φλ(/)^2,λ (or Ψλ(/)02)λ)

morphismf : A->B of differential algebras (or coalgebras).

Proof. Choose a rf-stable homogeneous basis {xt, dxL, yκ}ι(ΞltKej of A
where dyκ=0. Then Φλ(^4)=ψλ(^4) is generated by {yf2}κ^j, [1], (5.8) and
(5.9.2). Hence proofs are easy except ii)*.

As is well known

(6.3) ψ(Z(A))aZ(A)®Z(A)+d(A®A) .

Put

for x^Z(A) where z{, z'i^Z(A). Routine computations show :



^-MODIFIED DIFFERENTIAL HOPF ALGEBRAS 125

't® duι®u{+duh®u'k® u,® duΊ))=0

mod {A®\®lm Δ λ+Im

Therefore we obtain that

(6.4)

mod {A®\®lm Δ λ + I m

Thus we have

General case is obtained immediately by an induction on n. q.e.d.

(6.2) means that θ2λ : H(A)->Φλ(A) (or Ψχ.(A)) is a θκ-isomorphism of
algebras (or coalgebras). Hence θ2λ(H(A)) is an algebra (or coalgebra) over K2

with multiplication (or comultiplication) induced by that of Φλ(^4)(or
And we see by (6.2) that

(6.5) θ2tλ(F»H(A)) = F»(θ2,λ(H(A))) for all n^O

(or θ2fλ(G»H(A)) = Gn{θ2tX(H{A))) for all n^0).

7. Now we study properties of Φλ(^4) (or Ψλ(^4)) making use of maps
θp and θ2tλ.

First we examine semi-connectedness of an algebra Φχ(A) (or coalgebra
Putting (3.2), (4.3), (5.3) and (6.2) together we have

(7.1) Theorem. Let A be a differential algebra (or coalgebra) over afield K of
characteristicpΦ0 and λ G ί .

i) When p is odd or p=2 and Xd=0> A is semi-connected if and only if Φχ(A)
(or Ψλ(A)) is so.
ii) When p=2 and λ Φ 0, H(A) is semi-connected if and only if ΦK(A) (or Ψλ(A))

is so.

Proof. First we shall prove the theorem in case Xd=0. Remark that
φ λ(^4)=φ 0(^) (or Ψλ(^4)=Ψ0(^4)) in case \d=0. By (5.4) and the injectivity
of θp, A is semi-connected if and only if θp(A) is so. Since multiplication (or
comultiplication) of Φo(^4) (or Ψo(^)) induces that of θp(A), K®θp(A) coincides

with Φ0(A) as an algebra (or coalgebra). Now (4.3) proves the theorem in case
\d=0.

Similarly (4.3), (6.2) and (6.5) prove that the theorem is true in case p=2
and λφO.

In case/) odd we prove the theorem, combining the theorem in case λ = 0



126 Z. YOSIMURA

with (3.1) and (3.2). q.e.d.

Next we examine coprimitivity and primitivity of the derived Hopf algebra

Φλ(A)=Ψλ(A).

(7.2) Theorem. Let A be a quasi (d, X)-Hopf algebra over a field K of

characteristic p Φ 0.

i) When p is odd or p—2 and \d=0, A is copήmitive {or primitive) if and only

ifΦλ(A)=Ψλ(A)isso.

ii) When p=2 and λ Φ 0, H(A) is coprimitive (or primitive) if and only if Φλ(A)

=ψλ(A) is so.

Proof. Making use of (3.4), (4.4), (5.3), (5.4), (6.2) and (6.5) the theorem

is proved in a parallel way to (7.1).

8. Let A be a differential algebra (or coalgebra) which is associative and

λ-commutative. Suppose p is odd and μ=\β<=K. By (3.1) i) μA is

associative and commutative. Therefore we can consider maps

+A and ξ0 : Φ0(μA) -> μA

(or

Vx : A -> Ψλ(A) and v0 : A - Ψ0(μA))

induced by φp^1 and μφp_λ (or -^rp_1 and μ^p_^ respectively [1], 6.3.. £λ and

ζo ( 0 Γ λ̂ a n d ô) become morphisms of differential algebras (or coalgebras) by

the λ-commutativity of A and the commutativity of μA.

(8.1) Proposition. The following diagram

Φ0(μA) μA (or μA > Ψ0(μA)

[ I I II I I
Φλ(A) >A A >Ψλ(A)

ξ\ Vx

is commutative.

Proof. The case of algebras: It is sufficient to show that

Δ o = 9^>-i

because ^ . ^ ^ Π ^ y W 1 + / ^ A ) by (3.1). Using (1.1), (1.2) and (2.7)

we compute

(8.2) ^ , _ λ Π l
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Making use of (1.4) and (2.11) it follows that

Δo)

The case of coalgebras: Since

by (8.2) and

Bp^Ψp-i—ψp-i = BpΛϊl

by (3.1), we see by (1.4) and (2.11) that

I m ( β ί i λ μ ψ ^ 1 - ψ ί . O c ^ f λ (

c ΰ M ( I m Δ 0 ) c I m Δ λ .

Thus

Bp+μψp-! = ψp-! mod Im Δ λ .

Hence the proof is complete.

Finally we discuss Im £λ. Let i be a quasi (d, λ)-Hoρf algebra whose

multiplication φ is associative and λ-commutative.

Define a map

by ζp(x)=xp [2], 4.19., and by Ao (or Ax) we denote the submodule of A of

even (or odd) type.

First suppose/) is odd and μ=X/2^K. We have

(8.3) L e m m a . The map ζp satisfies the following properties:

i) ξP I A is θκ-linear,

ϋ) ξP{
χy) = ξP(

χ)ξp{y) for x>y<^ A, <™d

iii) for x<=AQy putting tyJr(x)=^iyi®yi+^jZj®zfj9 yiy y[<=A0 and zJ9 zr

5^A»

we obtain
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Proof. By [l],(6.10) we can easily verify i) and ii).
iii) is proved as follows. By (3.1) i) a differential quasi Hopf algebra μA

has associative and commutative multiplication μ.φ. Hence, as in classical case,
we obtain

because we can express as

By (3.1) and (8.1) we have

(Wp

Ίfw^A,{ wp if
0

because by λ-commutativity of φ

(dw)2 = 0 for w^A0 and μφ(w®w) = 0

[1], (6.9). Therefore we have

using the fact d(yp)=0 for y<=Aoy [1], (6.9). q.e.d.

The above lemma says that

(8.5) K®ξp(A0) becomes a quasi sub Hopf algebra of A when p is odd.

Next suppose p=2. Then we have

(8.6) Lemma. The map ξ2 satisfies the following properties:
i) ξ21 Ker Xd is θκ-linear,

ii) ξ2(xy) = ξ2(x)ξ2(y) for x, y e Ker Xd, and
iii) for x^Ker Xd, putting ψ(x)=*Σli yi®y't mod Im Xd, y{ j {eKer Xd, we
obtain

Proof, i) and ii) is obvious by [1], (6.10).
By (6.3) we may put

Ή*) = ΈiZi®z'i+Έk(duk®u'k+uk®du'k) with *„ z't(ΞZ(A)

Then by (6.4) we get
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When λ = 0 this completes the proof of iii). When λφO remark that (du)2=0
by [1], (6.9), hence also the proof is complete.

The above lemma says that

(8.7) K® £2(Ker Xd) becomes a quasi sub Hopf algebra of A when p=2.
K2

On the other hand we know that Im ξλ is a quasi sub Hopf algebra of A
because ξλ : Φλ(A) = Ψλ(A)->A is a morphism of quasi (d, λ)-Hopf algebras
and Φ λ(^)=ψ λ(^4) has a trivial differential, [1], (6.5).

Here we have

(8.8) Proposition, i) When p=2> Im ξλ=K®ξ2(Ktr Xd) and it is a quasi
K2

sub Hopf algebra of A.

ii) When p is odd, Im ξλ=K®ξJA0) and it is a quasi sub Hopf algebra of A.

Proof. When p is odd, we consider the following composition map

g/ : A = μA ^U Φ0(μA) ^ Φλ(A) J±> A

where μ=\/2<=K. By (3.4) and (5.3) i) we see that Im ξλ=K®ξ'p(A). Since

(8.4) is equivalent to say that

ξ'p\A0 = ξp\A0 and £ 1 ^ = 0.

we get the proposition in case p odd.
Next suppose p=2. We see easily that

ξt = ζχθ2 when λ d = 0 ,

and

ξ21 Ker Xd == ξκθ2>λπ when λ + 0

where π : Z(A)^>H(A) is the natural projection. Therefore it follows from (5.3)
i) and (6.2) i) that

Im ξλ = K®UKer Xd).
K2
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