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In [1] we defined a A-modified differential Hopf algebra A (or simply a (d,
2 )-Hopf algebra) and introduced the derived Hopf algebra ®,(4)=%,(4), maps
&Ex, M, €tc., in order to characterize coprimitivity and primitivity of 4. In this
note we study some properties of the derived Hopf algebra. Definitions and
notations are referred to [1] in the present work.

1. Throughout the present work we understand that K is a field of
characteristic p#+0, AeK and all modules are G,-modules over K unless
otherwise stated.

Let M be a differential G,-module. Suppose p is odd.

For each (j, k), 1=<j, k< p, consider the map

1+d,d, : M®* — Mo?

where 1 is the identity map of M®?*=MQ---QM (p times) and d; is the i-th
partial differential of M®? for 1<i<m, [1], (2.2). Since the partial differential
are anti-commutative we see immediately

(1.1) i) (14nd,d)(14-nd;dp)=(1+2d;d,)(14-1d d,),
i) (14-2dd)(14-Ndd )=1,
iii) 14-N\d;d; is an automorphism of a differential G,-module,
iv) 14-\dd, is natural, i.e.,

(14-nd ,;d,)f®? = f®?(14+-\d ;ds)
for any map f : M— N of differential G,-modules.
We define a natural automorphism
B, : M® — M®*
by
(1.2) B,a=Ilisj.ks pk- jzcpron(1+2d d)
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as the composition of maps 1++Ad d,.
By (1.1) ii) B, _, is the inverse morphism of B, ,.

Let C, : M®—M®? be the cyclic permutation and C, , : M®*—M®? be
the A-modified cyclic permutation, [1], 3.3.. As is easily seen we have

(13) dC,=C,d,, d;.,C,=C,d, for 1<i<p—1 and C,,=(1+21dd)C,.
Then we obtain

(1.4) Lemma. The following relation
CpaBpr=B,,C,
holds.  In particular, B, \(x®?) is C , \-fixed for any xs A.
Proof. Making use of (1.1), (1.2) and (1.3) we get
Cp,)\Bp,)\ = (1+7\‘d1d)CpH1§ F<k< p,k—jz(p+1)/z(1+)\»djdk)
= H2§ jé(p+1)/2(1 +7\'d1dj)H(p+a)/2§k§ p(l +7\»d1dk)

Hzé i<ks p,k-jg<p+1)/2(1 +7\djdk)Hz§ j§(p+1)/2(1 +7\'djd1)cp
= H1§ j<k§p,k—jg(p+))/2(1+7\‘djdk)cp = Bp,ACp . q'e'd'

RemARK. In [1], (5.10) we proved that there exists an element b, ,(x)
such that x®?4b,,(x) is C,-fixed. Putting B, ,(x®?)=x®?+4b,,(x), the
above lemma describes b, ,(x) explicitly.

Put
A, =1-C, A =1-C,,, A=1-C,QC,,
S, = S¥iCh S, =3%iCl, and 3, = SRIICIQC}.
For a differential G,-module M we put
®(M) = Ker A/Im =, D,(M) = Ker A\/Im =, ,
Y,(M)= Ker Z/Im A, and W,(M)= Ker 3,/Im A,.
By (1.4) the map B, , induces natural isomorphisms
(L5) @(Bp,) : (M) — ®\(M) and V(B,),): ¥V (M)— V(M)

of G,-modules.
A permutation U, : (M Q M)®?—M®*@Q M®? and a A-modified permutation
Upr : (MQM)®?—M®*Q M®? are defined by
Up = TP(TP—lTp+1)"'(TzT4"'sz-z)
and
UP,A = TP.A(TP-l,ATpﬂ,A)'"(Tz,x 4,A“'T2p—2,>\)
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where T, is the i-th partial switching map and T, is the i-th partial A -modified
switching map for 1<:<2p—1, i.e., T; \=(1+Nd d;,)) T}, [1], (2.16).

Since T.d;=d,,,T;, T;d; ,=d,T;and T,d,=d,T; for j+i, i+1 we have the
following relation

(16) Up,)\= H1§j<k§p(1 +7\'dkdp+j)Uﬁ .

2. Let p be a prime number and S, be the set of k-tuples of integers
defined by

S = {(tp -y 2); 054, <<, < p—1}, 1Zk<p.
Elements (z,, -+, 7,) and (¢{, -, i}) of S, are said to be related provided
oty oy Bp—iy) = (o —8f, oy Eh—1], pHif—1], -, ptif_,—if)
for some j.

(2.1) This relation is an equivalence relation.

Proof. Denote by (i, -+ i,,)~(i{, ey t0) if (G—1y, oory G—1)=(2) 41— 1}, -+,
1y—1f, pHi{—1f, -, p+i}_ l—z,) for some j. Then we see 1mmed1ately that
(@ - ,z,,)l(zl, ey tg), (B e zk)j(zl, -+, 1;) implies (f, - ,z,,) (z,, ey )
and (i Qs o) and (i ey i, ) Sply G o)y
@’y ooy 8). q.e.d.

Let S, be the quotient set of S, defined by the above equivalence relation
and 7 : S,—S, be the natural projection.

(2.2) Lemma. Ifz(i, -+, i)==(0, s, -+, $) for 1 <k<p, then there exists
a unique integer j, 1 < j<k, such that
(82, ) Sk):(ijﬂ‘_ijv ) ik—‘ij,P+i1_ij1 R p+ij—1_ij) .

Proof. By definition there exists a required integer j, 1<j<k. We shall
show that such an integer j is unique when 1<k<p. Suppose that (s,, -, s;)
=10 oy P —1 )= ys1—2,, o, pF+iy_—iy). Then we have

2;=‘2st=(j_1)P+2:=1it_k'ij=(j/_1)P+2?=1it__k'ijl .
Hence (j—j")p=k(i;—1 ) and j=j'. q.e.d.

We may choose elements of form (0,s,, -+, s,) as representatives of the
above equivalence classes in S, because =(i,, -+, 5)=n(0, i,—2,, -+, —1,).
We identify this set of representatives with S,. Using (2.2) we have the
correspondence 7, between S, and S, x Z,, 1 <k<p, defined by
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(2'3) 7l¢(in R ilc)=«0! S35 ***y sk)r ij)

where (0, s,, -+, 5) is the representative of =(z,, -+, %) and (s, -++, 8¢) = (£;4,—2,

sy Gyl Pi— i, o P — ).
(24) Lemma. T, isa one to one correspondence.

Proof. Suppose that 74(z,, -+, 4)="T4(#, -+, 14), i.e., (i, -+, ) =m(21, -+, 2})
and i;=2ys. Then

(ijﬂ’ s by Py, oy P+ij—1)=(i;'+n “ey Uy P, ey PN L),
hence (2, -+, %)=, --*, 7;). And also
T,,(sj+,+i—p, vy SpHi—p, 1, S, oo, §;+2)=((0, s, -+, 5%)s 7)
for p—s,.,<i<p—s;. Therefore 7, is one to one. q.e.d.

(2.4) means that a equivalence class in S,, 1<k<p, is a subset which
consists of just p elements.

Let M be a differential G,-module over K, char K=p and ¢ : M—M be a
map of period p, i.e., t?=1. Put A=1—tand S=>%-3#. We consider maps
x; : M—M, 1<i< p, such that

(2.5) xt=tx,, x;rt=tx; for 1=i<p—1 and x;x ;=% x; for 1=1, j<p.
If 74(2,, -+, 2)=((0, $,, -+, 5), %) it follows immediately from (2.5) that
tijx1xs2+1"‘xsh+1tﬁ_ij=xi1+1'"xik+1 .

Denote by o, the k-th elementary symmetric polynomial of p variables. Since
T4 is one to one by (2.4) we can express o(x,, -+, ¥,) as

a(Xyy oy Xp) =D 0,55, 55, 20 =0 LXHgy 1o+ Kp i 8P F
for 1<k<p. Asis easily seen we have
2o XX, Ky P i(Ker A)cIm 3
and
Poo XX, Xt Ti(Ker 2)cIm A .
Hence
a(®y -y %) (Ker A)CIm S and  oy(x,, -+, x,)(Ker Z)cIm A

for 1<k<p. Thus we obtain
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(2.6) Lemma.

(1+=x,)---(1+x,) | Ker A=1+x,---x, mod ImX
and

(I+x,)---(1+=x,) | Ker Z=1+x,---x, mod Im A .

For 0<s=<p, define maps
D:, :M® — M® and Dj,: M®*QM®? — Me*QM®*
by
(2.7) D;x= Ilsjsp-s(1+0d;d,, Yisass (1212, s14ds)
and
pa = Il jsp-s(1+0d;d 1 o4 Yisas (1D, s 48 514)

respectively. Putting

x;=Nd;d;, ;, X =N\dd, . ; for ISj<p—s
and

Xy ke =Ny o4y Xy sip =Ny o 4d, i for 1SR<s,
by (1.3) we have
(2.8) %C,=Cux, %(C,QC,) = (C,QC,Z%,

%;,,Cp = Cpx;, X, (C,QC,) = (C,QC )%, for 1=<i<p—1.
and
XX, = x%;, XX, =X X, for 1<i,j<p.
By an easy calculation we see
(29) %px,=0 and %%, = (—1)?*"V"\?d,--d,, .
Remark that

(2.10) Djy= (I4x)-(I+x,) and Dj,=(1+5)(1+%,).
Then, by (2.6), (2.8) and (2.9) we have

D; ,|Ker Ay=1 mod Im3,, D;,|KerZ,=1 modImA,
5 Al Ker B, =14+(—1)?®"02\%d,...d,, mod Im 3,
and

D; \|Ker S,=14(—1)2*"22\2d,...d,, mod Im X, .
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More generally we obtain by an induction on 7 that

(2.11)  TI,<e<Dyi | Ker A,=1 mod Im 3,
i<i<aD;i | Ker =,=1 mod Im A,

and
(2.12) TlsesaDyty| Ker By =14-(—1)2 0Ppntd, .- d,,= D} ,n| Ker &,
mod Im io ,
I.<i<aDpy | Ker iozng |Ker 3, mod Im A, .

3. 'Throughout this section we suppose p is odd. For AeK we define
another element y=u(\)e K by

p=p\)=2nr[2.

Let A be a differential algebra (or coalgebra). We define another structure
of differential algebra (or coalgebra) on 4 by endowing with multiplication
wp=@(14pudo®d) (or comultiplication ,Yr=(1—pdo@d)yr) where o is the
canonical involution [1], (1.1). Denote this by 4. Then we have

(3.1) Lemma. i) A is associative or A-commutative if and only if pA is
associative or commutative,

i) upn”= ¢:)”H1§j<k§n+1(1 + :u'djdk) (or pr" = H1§j<k§n+1(1—#djdk)‘l’zm)
for each w, e W,, the set (1.7) of [1],

iii) F*ud) = F"(A4) (or G*(uA) = G*(A)) foralln=1.

Proof. First we prove ii) by an induction on #n. In case n=1 it is the
definition that ,p=¢@(1+udd,) (or Wr=(1—pud.d,)¥). Asin [1], (1.18) we can
express as w,—(1, w,, s+1+w,_,_,) for some s, 0<s<<un. Then

wWn—g —1)

wPn” = wP(uPs* Qupnsl
=<P(1+Md1dz)(¢?s®¢fffifl)H1§j<k§s+z(1+.U«djdk)H1§i<h§n_s(1+Mds+i+1ds+h+1)
=@n " [lisrssir,1stsn-s(ltpd,dos )]s j<rss(1+nd di)
H1§i<h§n—s(l+I"ds+i+1ds+h+1)=¢zmnlg j<k§n+1(1+/-"djdk)
(or w¥n" = Ilis j<esne(l—pd,;d)¥n"),
where we apply induction hypotheses to s and n—s—1.

It follows immediately from ii) and [1], (1.8) (or (1.8%)) that F*(pnA)C F*(A)
(or G*(A)c G*(pA4)). On the other hand,

P = F-¢:I”H1§j<k§n+1(l_/-l‘djdk) (or Y™ = H1§j<k§n+1(1+y‘djdk)ﬂ'\p::’n) ’
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hence F*(A)c F*(uA) (or G*(pA)c G*(4)). Thus
F*(d) = F*(ud) (or G*(4) = G"(u4) .
i) is obvious by ii) and [1], (3.3). q.e.d.

@,(A4) and ©(uA) (or ¥,(4) and ¥ (uAd)) become differential algebras
(or coalgebras) which have multiplications ®,(¢) and ®,(.¢) (or comultiplications
W,(¥) and W) induced by gr=g® U;} and up® Uyt (or Yry=U, 1
and U ,.\®?) respectively. Remark that differentials of them are trivial,
[1], (5.12).

Here we obtain the following relationship between ®,(4) and @ (nA)
(or ,(4) and ¥(uA)).

(3.2) Proposition. The map B, , induces a natural isomorphism
D(B, 1) : Boud) = PN(A) (or W(B,,) : To(ud) — ¥r(4))
of differential algebras (or coalgebras).
The above proposition follows immediately from the following
(3.3) Lemma.

P®2?U, (B, @B, 2| Ker A @Ker A,=B, ,,p®?U, " | Ker A QKer A,
mod Im 3,
(or (Bpa®B, U ,u¥®?|Ker 2, =U , \¢®? B, y| Ker %,
mod (4%?),QIm Ay+1Im A\Q(A%?),).

Proof. 'The case of algebras: Using (1.1), (1.2) and (1.6) we compute

P®?U, 5 (Bpa®B,,)
=¢®pU;1(Hk—j§(p—1)/2(1 —Xdkdﬁj)
e jzcpron(l=Adid, )14+ Nd;d)(14-0d . jd 511)
=@®PU k- jscp-vr(l—Ndid 1 ;)
M- jzcpror(1+-Md+-d s ;) dit-d o) (1—2d jd 411))
=B, \p®? U T s_ j<cp-vrell—Nd4d oo )iz jzcprnrs(1—0d jd 41 )

where [] runs over 1<j<k<p. By (2.7) we note that

H1§ i<k= p(Hk—jg(pﬂ)/z(l _)‘djdp-i—k)Hk—jé(p— 1‘)/2(1_7\'dkdp+j))
= Hxésé(g—l)/z(nlgjss(l*dedzp—s+j)n1§j§p—s(l _xds+idp+j))

— -3
- H1§s§(p—1)/2D:.—}\ .
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Consequently we obtain
P®?U (B, a®B, ) = B, ap® Uy s sscp-vDE7 -
On the other hand we obtain
wP®U; = g9 U sy (14-ndd 1 )= U5 DS
Hence, by making use of (1.4) and (2.12) we have
(p@pUx:}(Bp,A@Bp,A) | Ker A,@Ker A,
=Bp.?\¢®ﬁ U;1H1§s§(p-1)/zﬁz.~—fh | Ker Ao® Ker A,
-=—Bp,/\¢®pU;1D:,-((p-1)/z)xI Ker Ao® KCI’ A0
=B, up®? U, | Ker A\QKer A, mod Im 3,
because Ker A,Q Ker A,CKer A,.
In case of coalgebras, by the same argument as above we obtain
Up,x‘lf®pBg,)\= (BP,A®BI;,A)H1§ sS(p- 1)/2Dz’;:;\' Uﬁ‘l’@p
and
Up#‘l’&a = D:.—nUp‘l"gﬁ .
Here, from (1.4) and (2.12) follows the conclusion immediately. q.e.d.

Finally we discuss (d, A)-Hopf algebras. Let A be a quasi (d, A)-Hopf
algebra. We can identify ®,(A4) with ¥,(A4) by the canonical isomorphism «,
[1], (5.11). Then &®,(4)="\(4) becomes a quasi Hopf algebra, called the
derived quasi Hopf algebra of A, which has multiplication ®,() and
comultiplication W,(+), [1], (5.16). On the other hand, we introduce another
structure of differential quasi Hopf algebra on A, denoted by upA, which
has multiplication ,p=¢p(1+4pdo®d) and comultiplication p\r=(1—pudoQd).
Identifying ®,(uA) with ¥,(uA) by the canonical isomorphism, ®y(pA)=Y,(zA4)
gains a structure of quasi Hopf algebra with multiplication ®(.p) and
comultiplication W(.\r).

Applying (3.2) to a quasi (d, A)-Hopf algebra A, we obtain

(3.4) Proposition. The map B, , induces a natural isomorphism
D(B, ) : Py(pA) — D\(4)
of quasi derived Hopf algebras.

4. Let L be an extension field of K. We regard L as a G,-module over
Kby Ly=L and L,={0}. Let 4 be a differential algebra (or coalgebra). We
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can regard LQ A as a differential algebra (or coalgebra) over L equipped with
K

multiplication

1
LRARILRA=LADA) 1%, L®A

(or comultiplication

1
Lo4 2% Le4®4)~(Lo )L A)).
K - K K K L K
(41) Lemma. LQF"A=FYLA) for all n20
K
(or LRG"A=G*LR®A) for all n=0).
K K

The proof is obvious in case of algebras, and can be given by a choice of
homogeneous bases of L and 4 as modules in case of coalgebras.

(4.2) Lemma. O"(LRA)=LRQ"A for all n=0
K K

(or PYLRA)=LQP*A for all n=0).
K K

Proof. L@ is an exact functor. Therefore the lemma follows from (4.1).
K

(4.3) Proposition. A is semi-connected if and only if LQA is so.
K

Proof. The case of algebras: First suppose that LQ A4 is semi-connected,
K

ie, Nu2FY(LRA)={0} [1], 1.8.. Take any x& N ,»,F"4, then (4.1) implies
K
1IQxe N ”E,F”(LgA) .

Hence 4 is semi-connected.
Conversely, suppose that A is semi-connected. Take any ye N, ™"
(L®A4). Choosing a homogeneous basis T={x,},c; of 4, we may put y=
K

s j<al;Qx; where l;€L and x,&T. Since 4 is semi-connected there exists
an integer m>0 such that

K{x, -, x,} NF”A={0}

where K {x,, -+, x,} denotes the submodule of A4 generated by x, -, x,.
Moreover this means by (4.1) that

L§K {xv ) xn} n F"’(L@A)=L§(K{x" T xn} nFmA)= {0}

for some m>0. However
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yeL%Z)K{xl, e X, N F"‘(L(?A), hencey = 0.
Therefore L& A is semi-connected.
The cas: of coalgebras can be proved by a routine discussion. q.e.d.
Let A be a quasi (d, \)-Hopf algebra. Then L®A becomes a quasi
(d, \)-Hopf algebra over L where A=AQ1 eL=K§L. :
(44) Proposition. A is coprimitive (or primitive) if and only if L;@A s s0.
Proof. From (4.1) and (4.2) it follows that
P_(L(?A) N F%L(%A) = L%(P(A) NF?4)
and
P(L?A)—}—FZ(L?A) = L%(P(A)—{—EZA) .
These prove the proposition.

5. Let K? be the subfield of K generated by elements &?, k = K and
0k : K— K be the monomorphism defined by Ox(k)=Fk?. Ox(K)=K?. Let M
and N be modules. We say that a map 0 : M—N is 0 -linear if

O(kx) = 6x(R)O(x) and  O(x-+y) = O(x)+6(y)

for all x, yeM and all ke K. If § : M—N is Ox-linear, then §(M) is a module

over K?. In particular we say that a f-linear map 6 : M—N is a @ x-isomorphism

if 0 is injective and N=K®H§(M). Remark that a @x-isomorphism 0 is
K?

bijective if K is a perfect field.
Let A be a differential algebra (or coalgebra).
Define a map &, : A®”—A4®" by
(=) '%,®- - Qx,, p=3 mod 4

8 oo =]
(%176 {x1®---®xm others

where n=3,<;<;<,,0(x;)o(x;) and o is the canonical involution [1], (1.1). By
an induction on 7 we have the following relation
(5.1) (@PE)m™ = Pm™E i1 (OF (E)m™ = EppirPrm™ for each w,eW,.

The diagonal map A : A—A4%?, A(x)=x®? for a homogeneous element
xe 4, induces a map

(5.2) 0, : A — O(A)(or Wi(A)).
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(5.3) Lemma. The above map 0, satisfies the following properties :
i) 0,15 a Ox-isomorphism,
i)  “multiplicative up to signs”, i.e.,

0,90 "En 11 = Po@)n"03" " for each w,e W,
(or ii)* “comultiplicative up to signs”, i.e.,

05" 1 " = Wo(Yr)n"0,, for each w, e W,,),
iill) compatible with 7 and &, i.e.,

O, =70k and &0,= 0xE and
iv) mnatural, i.e.,
0,f = @(f)0, (or ¥o(f)0,)

for any morphism f : A— B of algebras (or coalgebras).

Proof. @, is Ox-linear because (kx)®?=k?x®? and (x+y)®? =x®?4-y®? mod

Im =,. Choosing a homogeneous basis 7= {x,},.; of 4, we see by [1], 5.3.

that ®,(4)=W¥,(A4) is generated by {x®? ; x, T}. Hence 6, is injective and

K@iOP(A)z(I)O(A) (or ¥(A)). Thus 0, is a @x-isomorphism. Since iii) and
K

iv) are obvious by the definition of ¢, it remains to prove ii) and ii)*.
Remark that U ,(x®y)®?=¢,(x®?®y®?). 'Then we obtain

PO U (x®PQy®?) = (p€(xQY))®?
and

U p®2(x®?) = U y(222,Q%7)% = U (32 (%, Q%7)%%) = 20, E,(xPPQxi®7)
mod Im 3, ,

where Jr(x)=>Y,x;Qx}, and
Im 3,C Im A,Q(A4%?)+(A49#)QIm A, .
Thus
@,(0)0,®0,=0,(9E) and W), = 0,00,
Using an induction on # we can easily verify that
D(P)a"03""" = 0,(p€)n" and W (Y)u"0, = 03" (Ex)n"

for all w,e W,. Now by (5.1) we obtain ii) and ii)*. q.e.d.
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Since 6, is multiplicative (or comultiplicative) up to signs g,(4) becomes
an algebra (or coalgebra) over K? with multiplication (or comultiplication)
induced by that of ®,(A4) (or ¥ (A4)). We see by (5.3) that

(5.4) O0,(F"A)=F*0,(4) (or 0,(G"A)= G"0,(A4)) for alln=0.

6. Here we consider a similar map to (5.2) when p=2 and A30. Suppose
p=2and A+0. The diagonal map A : Z(4)—Z(A)QRZ(A) given by A(x)=
xQx, induces a map
(6.1) 0, : H(A) — D,(4) (or ¥,(4)).

(6.2) Lemma. The above map 0, , satisfies the following properties :
1) @, s a Ox-isomorphism,
i)  “multiplicative’”, i.e.,

0, \H(p)n" = Dp(@)n 05
(or i1)* “‘comultiplicative”, i.e.,
OFN T H(Y)a™ = WA(Y)a"0,) »
iii) compatible with 7 and &, i.e.,
0, m =70 and &6,, = 04E and
iv) mnatural, i.e.,
0:aH(f) = DA(f)b2n (or ¥a(f)0,2)
for any morphism f : A— B of differential algebras (or coalgebras).

Proof. Choose a d-stable homogeneous basis {x,, dx,, ¥.}.cr «c; Of 4
where dy,=0. Then ®,(4)=W¥,(4) is generated by {y®},c;, [1], (5.8) and
(5.9.2). Hence proofs are easy except ii)*.

As is well known

(6.3) Y(Z(A4))cZ(A)RZ(A)+d(ARA) .
Put
Y(x)=22,2:Q 2+ 2 W(du, Qui+u, R dus)
for xe Z(A4) where z;, z;€ Z(A). Routine computations show :
(1T\® 1)(2;,13;‘@2:@3,-@35)Eziz?2®zf®2 ’
(1IRT\® 1)(2:‘,k(zi®zi@“k@‘h‘i‘f‘uk@dai@zi@zf)) =0,

(IQ T\ ®1) (X #(2: Q2 Q@ du,Qui~+-du, QuiR 2,®27)) =0,
(1 QT\® 1)(Ek,,(u,,@)dui@u,®du{+duk®u;®du,®u{))
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=S (uf* @ (duf)® + (dup)*@ui)
(1QT\Q 1)(2#,1(“;;@ du, @ du, @ui+du,QuiQu, @du})) =0
mod (4%*),@Im Ay+Im AR(A®), .

Therefore we obtain that

(6.4) (1Q TA@1)Yr(x)®* =332 Q@ 2%+ 2 u((du) > Qui®*+uf* @ (du’)®)
mod (4%%),QIm A,+Im A, (4%, .

Thus we have

\P}\(‘l’)ez,k = (02A®92A)H(‘!’) .
General case is obtained immediately by an induction on 7. q.e.d.

(6.2) means that 6,, : H(A)—>®,(A4) (or ¥\(4)) is a @x-isomorphism of
algebras (or coalgebras). Hence 6, ,(H(A)) is an algebra (or coalgebra) over K*
with multiplication (or comultiplication) induced by that of ®,(4)(or Wy(4)).
And we see by (6.2) that

(6.5) 6, (F*H(A)) = F*(0, (H(A))) for all n=0
(or  0,,(G*H(A)) = G0, (H(A)) for all n=0).

7. Now we study properties of ®,(4) (or ¥,(4)) making use of maps
0,and 6, ,.
First we examine semi-connectedness of an algebra @®,(4) (or coalgebra

W,(A4)). Putting (3.2), (4.3), (5.3) and (6.2) together we have

(7.1) Theorem. Let A be a differential algebra (or coalgebra) over a field K of
characteristic p+=0 and LK.

i) When p is odd or p=2 and Nd=0, A is semi-connected if and only if D\(4)
(or wy(A4)) s so.

il) When p=2 and N0, H(A) is semi-connected if and only if ®,(A) (or ¥,\(4))
is so.

Proof. First we shall prove the theorem in case Ad=0. Remark that
D,(A)=Dy(A4) (or ¥\(A)=T(A4)) in case Ad=0. By (5.4) and the injectivity
of 8,, A is semi-connected if and only if 6,(4) is so. Since multiplication (or
comultiplication) of ®,(A4) (or ¥,(4)) induces that of 8 ,(A4), K 1@0 »(A) coincides

with @y(4) as an algebra (or coalgebra). Now (4.3) proves the theorem in case
Ad=0.

Similarly (4.3), (6.2) and (6.5) prove that the theorem is true in case p=2
and A =0.

In case p odd we prove the theorem, combining the theorem in case A=0
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with (3.1) and (3.2). qe.d.

Next we examine coprimitivity and primitivity of the derived Hopf algebra
(I)A(A)Z‘I,A(A).

(7.2) Theorem. Let A be a quasi (d, \)-Hopf algebra over a field K of
characteristic p=+0.

i) When p is odd or p=2 and Nd=0, A is coprimitive (or primitive) if and only
if ©\(A)=T\(A) is so.

il) When p=2 and =0, H(A) is coprimitive (or primitive) if and only if ®,(A)
=W,(4) s so.

Proof. Making use of (3.4), (4.4), (5.3), (5.4), (6.2) and (6.5) the theorem
is proved in a parallel way to (7.1).

8. Let 4 be a differential algebra (or coalgebra) which is associative and
A-commutative. Suppose p is odd and pu=n/2€K. By (3.1) i) pd is
associative and commutative. Therefore we can consider maps

E i d(A) > A and £, : 0yud) > pd
(or

nid—->T,(4) and 7,:4 - Y (ud))

induced by ¢, , and ., , (or ¥,_, and u\r,_,) respectively [1], 6.3.. &, and
&, (or 7, and 7,) become morphisms of differential algebras (or coalgebras) by
the A-commutativity of 4 and the commutativity of up4.

(8.1) Proposition. The following diagram

@y A) R pA (or pd——swy(ud)
®(B,,)| | | |,
D,(4)— 4 A— v, (A4) )
A /N

is commutative.

Proof. The case of algebras: It is sufficient to show that
PpBor|Ker Ay =@, 1< j<k§p(1+/l'djdk) | Ker A,
because ., =@, I1< j<es (14 1d,d:) by (3.1). Using (1.1), (1.2) and (2.7)

we compute
(8.2) Bp,_)\].—.[l§ j<k§p(1+/"d.id”)
= Ilis j<ks - jzcpron(1—2pd jd0) i< j<as p(1+1d ;dy)



A-Mobiriep DIFFERENTIAL HOPF ALGEBRAS 127

= H:é i<ks p(Hk_,-g(p—l)/z(l+Mdjdk)nk-jgcp+1)/z(1—Mdjdk))
= H1§s§(p-1)/z(H1§j§ p—s(1+ﬂdjds+j)H1§j§s(1 +lu’dp—8+.idi))

= Hlésé(p-l)/ZD;’,”‘ .
Making use of (1.4) and (2.11) it follows that
¢p—1(H1§j<k§ p(]- ‘I‘Ibdjdk)_Bp,A)(Ker Ay)
=<pp—pr,)\(Bp,—)\H1§ j<k§p(l +Ilfdjdk)_ 1)(Ker A))

=¢p—1Bp,A(H1§s§(p—1)/2D;7,l"_ 1)(Ker Ao)
Cp, B, (Im3) =0.

The case of coalgebras: Since
H1§j<k§p(1_l~“djdk)Bp,A = ngsé(p—D/zD;,—n
by (8.2) and
Bi,,m‘lfp-n—‘lfp—l = Bp,)\(]]léj<k§p(1_/“djdk)Bp,K'— I)Bp,-x‘lfp-x

by (3.1), we see by (1.4) and (2.11) that

Im(Bp,A u-'\l"p—x_\{’p—l) CBp,}\(Hlésé(p— 1)/2D;,—V-_ 1)(Ker Z0)

CB,(ImA)cImA,.
Thus

Bty =V, mod Im A, .

Hence the proof is complete.

Finally we discuss Im £,. Let 4 be a quasi (d, »)-Hopf algebra whose
multiplication ¢ is associative and A-commutative.
Define a map

E,:A— A

by & ,(x)=x? [2], 4.19., and by A, (or 4,) we denote the submodule of 4 of
even (or odd) type.

First suppose p is odd and u=x/2 K. We have

(8.3) Lemma. The map £, satisfies the following properties:
i) £,14,1s Og-linear,
i) & (xy) = E(%)E )(y) for x, ye A,, and
iii) for x€ A, putting (x)=21,y,Qyi+2.,;2,82}, y;, yicd, and z;, i€ 4,,
we obtain

WE (%) = £,Q8 (Z:3:Qyi+p2; dz,Qdz)) .
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Proof. By [1],(6.10) we can easily verify i) and ii).

iii) is proved as follows. By (3.1) i) a differential quasi Hopf algebra pA4
has associative and commutative multiplication .. Hence, as in classical case,
we obtain

Ml"ﬂ-¢p—1(x®ﬁ) = #¢p—1®#¢p—1(2i(y?P®y $®p+/‘p(dz J‘)&a@(dz;)@p))
because we can express as
(%) = 25y, Qyi—u(dy;:®@dy))+21,(3,;@35+ m(dz;Qdz))) -
By (3.1) and (8.1) we have

B4) 2p-Bpaw) =, o) = 7 L
because by A-commutativity of ¢
(dw)’ =0 forwesAd, and .p(wRw)=0 forwed,
[1], (6.9). Therefore we have
(@) = (14 udo @Sy 1@yiP-+ w3 (d2,)P @ (d=1))
= 2IQyi*+p2 (dz,)* @ (dz))?
using the fact d(y?)=0 for ye 4,, [1], (6.9). q.e.d.
The above lemma says that
85) K E(%)E »(A,) becomes a quasi sub Hopf algebra of A when p is odd.
Next suppose p=2. Then we have

(8.6) Lemma. The map &, satisfies the following properties:
1) E&,|Ker \d is Ox-linear,

i)  E(xy) = E,(x)E(p) for x, y=Ker \d, and
iii) for xcKer A\d, putting y(x)=>); y;Qy: mod Im \d, y; yicKer \d, we
obtain

‘zb'gz(x) =£,8 Ez(zsy;®y;) .

Proof. 1) and ii) is obvious by [1], (6.10).
By (6.3) we may put

Yr(x) = D32, Q21+ D W(dupQui+u,Qdus) with z;, 2 Z(A) .

Then by (6.4) we get
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Y(@) = 23,2iQ2+ 2u(dusf @uit+ui@(duly’) .

When A=0 this completes the proof of iii). When A+0 remark that (du)’=0
by [1], (6.9), hence also the proof is complete.

The above lemma says that

(8.7) KQE,(Ker \d) becomes a quasi sub Hopf algebra of A when p=2.
K2

On the other hand we know that Im &, is a quasi sub Hopf algebra of 4
because &, : @\(4)=WT\(4)— A4 is a morphism of quasi (d, A)-Hopf algebras
and ®,(4)=W,(4) has a trivial differential, [1], (6.5).

Here we have

(8.8) Proposition. i) When p=2, Im §A=K®2§2(Ker Ad) and it is a quasi
sub Hopf algebra of A.
il) When p is odd, Im £,=K Q £ (A,) and it is a quasi sub Hopf algebra of A.

K

Proof. When p is odd, we consider the following composition map

0 B
£ A= pd—2> d(pd) =25 @,(4) 5,4
where p=\/2€ K. By (3.4) and (5.3) i) we see that Im §A=K®;§,{,(A). Since
K
(8.4) is equivalent to say that
ElAdy=E,1A, and £5|4,=0.

we get the proposition in case p odd.
Next suppose p=2. We see easily that

E,=E\0, whennd=0,
and
Eleer Ad = Ekaz,)\” When A F 0

where » : Z(A)—H(A) is the natural projection. Therefore it follows from (5.3)
i) and (6.2) i) that

Im &, = KQE,(Ker Ad) .
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