ON CATEGORIES OF INDECOMPOSABLE MODULES II

Manabu HARADA

(Received October 20, 1970)

We have studied the Krull-Remak-Schmidt-Azumaya's theorem from point of view of categories in [4], §3. In this note, we shall study further properties of those categories.

We have defined an additive category \mathfrak{A} induced from a family of completely indecomposable modules $\left\{M_{a}\right\}$, namely whose objects consist of directsums of M_{∞} and studied the quotient category $\mathfrak{A} / \mathfrak{F}$ with respect to the ideal \mathfrak{F} in \mathfrak{A} in [4].

In the first section, we characterize submodules M_{0} in an object M in \mathfrak{A}, which is in \mathfrak{A} and $M_{0} \equiv M(\bmod \mathfrak{F})$, and show that every such M_{0} coincides with M if and only if \mathfrak{J} is the Jacobson radical of \mathfrak{U}, (see [7] for the radical).

In the second section, we consider Conditions II and III defined in [4], which are related with exchange property defined in [1]. We change slightly the definition of exchange property in this note and show that every direct summand of objects M in \mathfrak{A} has the exchange property in M if and only if \mathfrak{F} is the Jacobson radical of \mathfrak{A}.

In the final section, we restrict ourselves to a case where M_{a} 's are projective. We shall show, in this case, that objects in \mathfrak{A} are closely related to semi-perfect modules defined in [9]. Especially we show that an object $P=\sum_{I} \oplus P_{a}$ in \mathfrak{A} is perfect if and only if $\left\{P_{a}\right\}$ is an elementwise T-nilpotent system defined in [4] and P is semi-perfect if and only if $\left\{P_{a}\right\}$ is an elementwise semi- T-nilpotent system.

Let R be a ring with unit element and all modules in this note be unitary right R-modules. An R-module M is called completely indecomposable if $\operatorname{End}_{R}(M)$ $=S_{M}$ is a (non-commutative) local ring. We assume here that indecomposable modules mean completely indecomposable.

1. Dense submodules

Let M_{0} be an R-module and assume $M_{0}=\sum_{I} \oplus M_{a}$, where M_{a} 's are indecomposable modules. We have defined an additive category \mathfrak{X} in [4] from the above decomposition as follows: The objects of \mathfrak{A} consist of some directsums of M_{a} 's and the morphisms of \mathfrak{A} consist of all R-homomorphisms. We denote
those morphisms by $\left[M, N^{\prime}\right]_{R}$ and we call \mathfrak{N} is induced from a family $\left\{M_{a}\right\}$. Furthermore, we have defined an ideal \mathfrak{F} in $\mathfrak{A l}$ in [4] as follows: Let $N=\Sigma \oplus M_{B}^{\prime}$, $N^{\prime}=\sum \oplus M_{\beta^{\prime}}^{\prime}$ be in \mathfrak{U}. \Im consists of all morphisms f in $\left[N, N^{\prime}\right]_{R}$ such that $p_{\beta^{\prime}} f_{\beta} \in\left[M_{\beta}, M_{\beta^{\prime}}^{\prime}\right]_{R}$ is not isomorphic for any β and β^{\prime}, where $i_{\beta}, p_{\beta^{\prime}}$ are injection and projection, respectively and N, N^{\prime} run through all objects in \mathfrak{A}. We know from Theorem 7 in [4], that \mathfrak{F} defines an ideal in \mathfrak{A} and $\mathfrak{U} / \mathfrak{F}$ is a C_{3}-completely reducible abelian category, (see [2] for the definition of ideals).

When we consider object N and morphism f in \mathfrak{U} / \Im, we denote them by \bar{N} and \bar{f}. Furthermore, if N is in \mathfrak{A} and $N=N_{1} \oplus N_{2}$ as R-modules, then \bar{N}_{i} means $\operatorname{Im} \bar{e}_{i}$, where e_{i} is a projection of N to N_{i}. Let S be a ring. By $J(S)$ we denote the Jacobson radical of S and by \Im_{M} we denote $\mathfrak{J} \cap \operatorname{End}_{R}(M)$ for an R-module M.

Let $M \supseteq N$ be objects in \mathfrak{A} and i the inclusion of N to M. If i is isomorphic modulo \mathfrak{F}, i.e. $\bar{M}=\bar{N}$, then we call N a dense submodule in M.

Proposition 1. Every dense submodule of M is R-isomorphic to M.
Proof. Since $\bar{M}=\bar{N}, M$ and N have isomorphic direct summands by [4], Corollary 1 to Theorem 7.

Let $\left\{M_{a}\right\}$ be a family of completely indecomposable modules and $\left\{f_{\alpha_{i}}\right\}_{i=1}^{\infty}$ any sequence of non isomorphic R-homomorphisms of $M_{a i}$ to $M_{a_{i+1}}$ in $\left\{M_{a}\right\}$ ($M_{\omega_{i+1}}$ may be equal to $M_{\alpha_{i}}$). If there exists n, which depends on the above sequence and for any element m in $M_{a_{1}}$, such that $f_{\alpha_{n}} f_{\alpha_{n-1}} \cdots f_{\alpha_{1}}(m)=0$, then we call $\left\{M_{\alpha}\right\}$ a (elementwise) T-nilpotent system (cf. [4]). If the above condition is satistied for any sequence $\left\{f_{a_{i} i}\right\}$ such that $M_{a_{i}} \neq M_{a_{j}}$ if $i \neq i$, then we call $\left\{M_{a j}\right\}$ a (elementwise) semi-T-nilpotent system. In general, a semi-T-nilpotent system is not T-nilpotent.

Let $M=\sum_{I} \oplus M_{a}$ and J a subset of I, then we denote a submodule $\sum_{J} \oplus M_{a^{\prime}}$ by M_{J}.

Proposition 2. Let M and P be in \mathfrak{A} and $\bar{M} \supseteq \bar{P}$. Then there exists a submodule P_{0} in M satisfying the following conditions.
$1 P_{0}$ is an object in $\mathfrak{A} ; P_{0}=\sum_{I} \oplus M_{a}$.
$2 P_{0 J}$ is a direct summand of M for any finite subset J of $I,\left(\right.$ if $\left\{M_{a^{\prime}}\right\}_{J^{\prime}}$ is T nilpotent system, J^{\prime} need not be finite).
$3 \bar{P}_{0}=\bar{P}$.
Furthermore, if $\bar{P}=\operatorname{Im} \bar{e}$ and e is an idempotent in $S_{M}=\operatorname{End}_{R}(M)$, then we can choose P_{0} in $\operatorname{Im} e$.

Proof. Let $P=\sum_{I} \oplus M_{\lambda}$. Since $\bar{M} \supseteq \bar{P}$ and $\mathfrak{A} / \mathfrak{F}$ is completely reducible, there exist $i \in[P, M]_{R}$ and $p \in[M, P]_{R}$ such that $p i \equiv 1_{P}(\bmod \mathfrak{F}) . \quad$ Let J be a subset of I and i_{J}, p_{J} be inclusion and projection, respectively. Since $p_{J} p i i_{J}$ is
isomorphic, $p_{J} p i i_{J}$ is R-isomorphic by [4], Lemma 8 and Theorem 8 if J is finite or $\left\{M_{\lambda}\right\}_{J}$ is a T-nilpotent system. Hence, $\alpha_{J}=i i_{J}$ splits, namely $\operatorname{Im} \alpha_{J}$ is a direct summand of M. Therefore, i is R-monomorphic. We put $P_{0}=\operatorname{Im} i$ as R-module, then P_{0} satisfies $1 \sim 3$. If $P=\operatorname{Im} e$, we have a relation $p e i \equiv p i \equiv 1_{P}$ $(\bmod \mathfrak{J})$. Hence, if we take $\alpha_{J}=e i i_{J}$, we know that $\operatorname{Im} e i=P_{0} \subseteq e M$.

The following theorem gives a special answer for Condition III in [4].
Theorem 1. Let M be in \mathfrak{A} and $M=\sum_{K} \oplus N_{\gamma}$ as R-module. Then each N_{γ} contains a submodule P_{γ} such that P_{γ} is in $\mathfrak{\vartheta}$ and $\sum \oplus P_{\gamma}$ is a dense submodule of M.

Proof. Let π_{γ} be a projection of M to N_{γ}. Then from Proposition 2 we have P_{γ} in \mathfrak{A} such that $\bar{P}_{\gamma}=\operatorname{Im} \bar{\pi}_{\gamma}=\bar{N}_{\gamma}$. We shall show $\bar{M}=\sum_{K} \oplus \bar{P}_{\gamma}$. Let $i_{\gamma}, i_{\gamma}{ }^{\prime}$ and $i_{\gamma}{ }^{\prime \prime}$ be inculsions of P_{γ} to M, of P_{γ} to N_{γ} and of N_{γ} to M such that $i_{\gamma}=i_{\gamma}{ }^{\prime}{ }^{\prime}{ }_{\gamma}{ }^{\prime}$, respectively. Since $\bar{P}_{\gamma}=\operatorname{Im} \bar{\pi}_{\gamma}$, there exists an R-homomorphism p_{γ} of M to P_{γ} such that $i_{\gamma} p_{\gamma}=\pi_{\gamma}(\bmod \mathfrak{F})$. Let $\left\{f_{\gamma}\right\}$ be an element in $\prod_{\gamma}\left[P_{\gamma}, N\right] \mathfrak{A} / \mathfrak{F}$, where N is an object in \mathfrak{Q} and $f_{\gamma} \in\left[P_{\gamma}, N\right]_{R}$. We put $f_{\gamma}{ }^{\prime \prime}=f_{\gamma} p_{\gamma} i_{\gamma}{ }^{\prime \prime} \in\left[N_{\gamma}, N\right]_{R}$ and $f=\prod_{K} f_{\gamma}{ }^{\prime} \in[M, N]_{R}$. Then we have $f_{\gamma}=f_{\gamma}{ }^{\prime \prime} i^{\prime}{ }^{\prime}=f_{\gamma}{ }^{\prime \prime} i_{\gamma}{ }^{\prime}=f_{\gamma} p_{\gamma} i_{\gamma}$. Hence, $f_{\gamma} \equiv f_{\gamma}(\bmod \mathfrak{J})$. We shall show that \bar{f} does not depend on a choice of representative f_{γ}. It is sufficient to show that if $f \mid P_{\gamma}=f_{\gamma}$ is in \mathfrak{Y} for all γ, then f is in \mathfrak{F} for any f in $[M, N]_{R}$. Let $N=\sum_{L} \oplus M_{\delta} ; M_{\delta}$'s are indecomposable. If f is not in \mathfrak{J}, there exists an idecomposable direct summand T of M such that $p_{\delta}{ }^{\prime} f_{T}$ is isomorphic, where $i_{T}: T \rightarrow M, p_{\delta}{ }^{\prime}: N \rightarrow N_{\delta}$ are inclusion and projection, respectively. Since $\left\{\pi_{\gamma}\right\}_{K}$ is summable, $1_{M}=\sum_{K} \pi_{\gamma}$ and $f=\sum_{K} f_{\pi_{\gamma}}$. Furthermore, since $\left\{p_{\gamma}{ }^{\prime} f \pi_{\gamma} i_{T}\right\}_{K}$ is summable and $p_{\delta}{ }^{\prime} f_{T}=\sum p_{\delta}{ }^{\prime} f \pi_{\gamma} i_{T}$, there exists a finite subset K^{\prime} in K such that $\sum_{K_{K} K^{\prime}} p_{\delta}{ }^{\prime} f \pi_{\gamma^{\prime}} i_{T}$ is not isomorphic, and $\sum_{K^{\prime}} p_{\delta}^{\prime} f \pi_{\gamma} i_{T}$ is isomorphic. Therefore, there exists γ in K^{\prime} such that $p_{\delta}{ }^{\prime} f \pi_{\gamma} i_{T}$ is isomorphic. On the other hand $p_{\delta}^{\prime} f_{\gamma} i_{T} \equiv p_{\delta}^{\prime} f_{\gamma} f_{\gamma} i_{T} \equiv 0(\bmod \mathfrak{F})$, which is a contradiction. Conversely, we take a morphism $f \in[M, N] \mathscr{H} / \mathscr{S}$ and $f \in[M, N]_{R}$. Put $f_{\gamma}=f_{\gamma}$, then f_{γ} does not depend on a choice of f by Proposition 2 and [4], Lemma 5. Thus, we have shown that $[M, N]_{\mathfrak{R} / \mathfrak{\Im}=}=\Pi\left[P_{\gamma}, N\right]_{\mathfrak{R}} / \mathfrak{\mathfrak { S }}$.

We call such P_{γ} a dense submodule of N_{γ}.
Theorem 2. Let M be in \mathfrak{A} induced from a family $\left\{M_{a}\right\}$ of completely indecomposable modules M_{a}, and $N=\sum_{I} \oplus M_{\rho}{ }^{\prime}$ in \mathfrak{A} be a submodule of M. Then the following statements are equivalent.
$1 N$ is a dense submodule of M.
2 There exists a finite subset J of I, for any direct summand P of M, such that either $P \cap N_{J} \neq 0$ or $P \oplus N_{J}$ is not a direct summand of M.
$3 N$ contains Im $(1-f)$ for some element f in \Im_{M} and i_{N} is monomorphic.
In those cases $N_{J^{\prime}}$ is a direct summand of M for any finite subset J^{\prime} of I. Furthermore, Im $(1-f)$ is always a dense submodule of M.

Proof. $\quad 1 \rightarrow 2$ Since every direct summand of M contains an indecomposable module by [4], Corollary 1 to Theorem 7, we may assume so is P. Since \bar{P} is a minimal object, \bar{P} is small (cf.[5], Theorem 1.4). Hence, $\bar{P} \subseteq \sum_{J} \oplus \bar{M}_{\alpha_{i}}$ for some finite set J. We assume that $P \cap N_{J}=0$ and $P \oplus N_{J}$ is a direct summand of M. Let e, f and E be projections of M to P, N_{J} and $P \oplus N_{J}$, respectively. We may assume $E=e+f$ and $e f=f e=0$. We denote the inclusion of submodules to M by i. Since $\bar{P} \subseteq \bar{N}_{J}$, there exists α in $\left[P, N_{J}\right]_{R}$ such that $i_{J} \alpha \equiv i_{P}(\bmod \mathfrak{Y})$. Since $\overline{1}_{P}=\bar{e} \bar{i}_{P}$ and $\bar{f} \bar{e}=0, \overline{1}_{P}=\bar{e} \bar{i}_{J} \bar{\alpha}=\overline{0}$. Hence, $P=0$, which is a contradiction.
$2 \rightarrow 1$ If $\bar{M} \neq \bar{N}$, there exists an indecomposable module P such that $\bar{P} \oplus \bar{N}_{J}$ is a direct summand of \bar{M} for any finite subset J of I. Since $\bar{P} \oplus \bar{N}_{J}$ is a directsum of finite many of minimal objects, there exists a direct summand P_{0} of M such that $P_{0} \cap N_{J}=0$ and $P_{0} \oplus N_{J}$ is a direct summand of M (see the proof of Proposition 2).
$1 \rightarrow 3$ Let i be an inclusion of N to M. Since \bar{i} is isomorphic, there exists j in $[M, N]_{R}$ such that $i \bar{j}=\overline{1}_{M}$. Put $f=1-i j$, then $f \in \Im_{M}$ and $1-f=i j$. Since i is monomorphic, $N \supseteq \operatorname{Im}(1-f)$.
$3 \rightarrow 1$ First we shall show that $N^{\prime}=\operatorname{Im}(1-f)$ is a dense submodule of M. We know from the proof of Proposition 10 in [4] that $1-f$ is monomorphic and hence, N^{\prime} is in \mathfrak{A}. Let i be an inclusion of N^{\prime} to M and $1-f=i(1-f)^{\prime} ;(1-f)^{\prime}$ $\in\left[M, N^{\prime}\right]_{R}$. Since $1 \equiv 1-f \equiv i(1-f)^{\prime}$ and $(1-f)^{\prime}$ is isomorphic, so is i. Therefore, N^{\prime} is a dense submodule. Hence, $M \supseteq N \supseteq \operatorname{Im}(1-f)$ implies that \bar{i}_{N} is epimorphic. In order to get the last part we put $\bar{M}=\bar{N}=\bar{P}$ in Proposition 2, then $N_{J^{\prime}}$, is a direct summand of M.

Corollary 1. Let M be an object in \mathfrak{A} and P a dense submodule of M. If for a direct summand $N=\Sigma \sum_{J} \oplus M_{\infty}{ }^{\prime}$ of M in \mathfrak{A}, J is finite or $\left\{M_{n^{\prime}}\right\}$ is a T-nilpotent system, there exists an automorphism σ of M such that $\sigma(N)$ is a direct summand of P.

Proof. P contains a submodule N_{1}^{\prime} which is isomorphic to N_{1} and is a direct summand of M by Proposition 2; say $M=N_{1}{ }^{\prime} \oplus N_{2}{ }^{\prime}=N_{1} \oplus N_{2}$. Since $N_{2}{ }^{\prime} \approx N_{2}$, we obtain the corollary.

Corollary 2. Let $\left\{M_{x}\right\}$ be a family of completely indecomposable modules and $\mathfrak{\vartheta}$ the induced additive category from $\left\{M_{a}\right\}$. Then the following conditions are equivalent.
$1\left\{M_{a}\right\}$ is an elementwise T-nilpotent system.
$2 \mathfrak{F}$ is the Jacobson radical of \mathfrak{A}.
3 Every dense submodule of any M in \mathfrak{A} coincides with M.

Proof. $\quad 1 \leftrightarrow 2$ is obtained in [4], Theorem 8.
$1 \rightarrow 3$ Let N be a dense submodule of M. We know from 1 and Proposition 2 that N is a direct summand of M. Hence, $N=M$ by Theorem 2 .
$3 \rightarrow 2$ Let f be in \Im_{M} and $N=\operatorname{Im}(1-f) . \quad$ Since N is a dense submodule by Theorem 2, $N=M$. Therefore, $1-f$ is isomorphic, which implies \mathfrak{Y}_{M} is equal to $J\left(S_{M}\right)$.

Remark. Let $M=\sum_{i=1}^{\infty} \oplus M_{i}$ as in Theorem 2. We assume that there exists a sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of monomorphisms but not epimorphisms f_{i} of M_{i} to M_{i+1}. Then for any finite set J of I there exists a dense submodule N in M such that $N \cap M_{J}=(0)$. Because, we make use of matrix representation of $[M, M]_{R}$ and by $\left\{e_{i m}\right\}$ we denote a system of matrix unites. Put $f=\sum_{i} \sum_{k=1}^{J} f_{i+k-1}$ $f_{i+k-2} \cdots f_{i} e_{i+k i}$, then f is in \Im. Hence, $P=\operatorname{Im}(1-f)$ is a dense submodule and $P \cap M_{J}=(0)$.

If we use the same argument for any set I, we can give an example in which for some subset J with $|J| \leqslant|I|$ there exists a dense submodule P in M such that $P \cap M_{J}=(0)$. Furthermore, we can give an example in which there exists a dense submodule P in $M=\sum_{i=1}^{\infty} \oplus M_{i}$ such that $P \cap M_{i} \neq(0)$ for all i and $P \neq M$.

In the above corollary, we have a situation $\Im_{M}=J\left(S_{M}\right)$. In this case we obtain a further result.

Lemma 1. Let M be in \mathfrak{A} and $\Im_{M}=J\left(S_{M}\right)$. Then for every direct summand N of M we have $\mathfrak{J}_{N}=J\left(S_{N}\right)$.

Proof. Since $\Im_{M}=J\left(S_{M}\right), N$ is in \mathfrak{A} by [4], Corollary 2 to Theorem 7. Put $N=e M$ for some idempotent e in S_{M}. Then it is clear that $e \Im_{M} e=\Im_{N}$, since \mathfrak{J} does not depend on decompositions of M by [4], Lemma 5. Furthermore, $J\left(S_{N}\right)=e J\left(S_{M}\right) e$. Hence, $J\left(S_{N}\right)=\Im_{M}$.

Theorem 3. Let P be in \mathfrak{A} and $\Im_{P}=J\left(S_{P}\right)$. Then every idempotent a in $S / J(S)$ is lifted to S.

Proof. Let a be idempotent modulo \Im_{P}. Then there exist a module P_{0} in \mathfrak{A} and $a^{\prime} \in\left[P, P_{0}\right]_{R}, b^{\prime} \in\left[P_{0}, P\right]_{R}$ such that $b^{\prime} a^{\prime} \equiv a$ and $a^{\prime} b^{\prime} \equiv 1_{P}(\bmod \mathfrak{F})$. Since P_{0} is isomorphic to a direct summand of P by [4], Theorem $7, \Im_{P}=J\left(S_{P}\right)$ by Lemma 1. Hence b^{\prime} is R-monomorphic and $\varepsilon^{\prime}=a^{\prime} b^{\prime}$ is R-isomorphic on P_{0}. We may regard P_{0} as a direct summand of P via $b^{\prime} ; P=\operatorname{Im} b^{\prime} \oplus Q$. We put $\varepsilon=b^{\prime} \varepsilon^{\prime-1} b^{\prime-1}+1_{Q}$, then $\varepsilon \equiv 1(\bmod \Im)$. Put $e=\varepsilon b^{\prime} a^{\prime}$, then $e \mid P_{0}=1_{P}$ and Im $e=P_{0} . \quad$ Hence, e is idempotent in S_{P} and $e=\varepsilon b^{\prime} a^{\prime} \equiv b^{\prime} a^{\prime} \equiv a(\bmod \Im)$.

Corollary. Let R be a (non-commutative) local ring such that $J(R)$ is T-nil-
potent. Let S be the ring of column finite matrices over R with any degree. Then every idempotent in $S / J(S)$ is lifted to S.

Proof. Put $M=\sum_{I \ni \infty} \oplus R_{\alpha} ; R_{\infty} \approx R$. Then $S=S_{M}$ and $J\left(S_{M}\right)=\Im_{M}$ by [4], Lemma 10.

2 Exchange property

We shall recall Condition II in [4]. Let $M=\sum_{I} \oplus M_{a}=\sum_{I} \oplus N_{\beta}$ be decompositions of M with indecomposable modules M_{a}, N_{β}, Condition II in [4] says that for any subset J of I, there exists a subset J^{\prime} of I such that $M=\sum_{J^{\prime}} M_{\infty}$ $\oplus \sum_{J} \oplus N_{\beta}$. However, this is a special case of exchange property defined in [1]. Furthermore, this property induces Condition III in [4], namely every direct summand of M is in \mathfrak{U}. Therefore, we shall define a weaker exchange property than one in [1]. Let M be as above (in \mathfrak{X}), and $M=\sum_{I \ni i} \oplus P_{i}$ be any direct decomposition as R-modules. We call a direct summand N of M has the $|I|$ exchange property in M if $M=N \oplus \sum_{I \ni i} \oplus P_{i}{ }^{\prime}$ and $P_{i}{ }^{\prime} \subset P_{i}$ for any decomposition $M=\sum_{I \ni i} \oplus P_{i}$ with $|I|$-factors. If N has the $|I|$-exchange property in M for any cardinal $|I|$, we call N has the exchange property in M. It is clear that if N has the exchange property in M, then N is an object of $\mathfrak{\vartheta} . \quad$ P. Crawley and B. Jónsson have shown in [1], Theorem 7.1 (and [10], Theorem 1) that if M is countably generated for all α in I, then Condition III is satisfied.

In the following we always assume that $M=\sum \underset{I}{\oplus} M_{\infty}=N_{1} \oplus N_{2}$ with indecomposable modules M_{a}.

Lemma 2. If either N_{1} is finitely generated or a dense submodule of N_{1} is a T-nilpotent system, then N_{i} is in $\mathfrak{A},(i=1,2)$.

Proof. If N_{1} is finitely generated, then N_{1} is a direct summand of M_{J} for some finite subset J of I. Hence, $N_{1} \approx M_{J^{\prime}}$ for some $J^{\prime} \subset J$ by Krull-RemakSchmidt's theorem. Therefore, $M=N_{1} \oplus \sum \oplus M_{\varphi(\alpha)}$ by [4], Corollary 1 to Theorem 7 (Azumaya's theorem), and hence $N_{2} \approx \sum \oplus M_{\varphi(v)}$ is in \mathfrak{N}. Next, we assume that a dense submodule N_{0} of N_{1} is a T-nilpotent system. Then $N_{0}=N_{1}$ by Proposition 2. Hence N_{1} is in \mathfrak{A}. Since $\mathfrak{N} / \mathfrak{Y}$ is completely reducible, $\bar{M}={ }_{1}$ $\oplus \sum_{K \ni \beta} \bar{M}_{\beta}=\sum_{I-K} \bar{M}_{\infty} \oplus \sum_{K} \bar{M}_{\beta}$ for some K in I. Let p be a projection of M to $\sum_{I-K} M_{\infty}$. Since $\bar{p} \mid \bar{N}_{1}$ is isomorphic and $\left\{M_{\alpha}\right\}_{I-K}$ is a T-nilpotent system, $p \mid N_{1}$ is an R-isomorphism of N_{1} to $\sum_{I-K} \oplus M_{\alpha}$. Therefore, $M=N_{1} \oplus \operatorname{Ker} p=N_{1} \oplus \sum_{K} M_{\beta}$ $=N_{1} \oplus N_{2}$. Hence, $N_{2} \approx \sum \oplus M_{\beta}$.

The following lemma is a special case of [1], Lemma 3.10 and [10], Proposition 1, however we shall give a proof from point of view of our categories.

Lemma 3. Let M and N_{i} be as above. If $N_{1}=\sum_{i=1}^{n} \oplus M_{i}^{\prime}$ and $M_{i}{ }^{\prime} \approx M_{\alpha i}$ for all i, then N_{1} has the exchange property in M.

Proof. We assume that $M=N_{1} \oplus N_{2}=\sum_{I^{\prime}} \oplus Q_{\infty}$ as R-modules. Then $M=\bar{N}_{1} \oplus \bar{N}_{2}=\sum_{I^{\prime}} \oplus \bar{P}_{\alpha}$, where $P_{\infty}=\sum_{J_{\alpha}} \oplus P_{\alpha j}$ is a dense submodule of Q_{∞} and $P_{a j}$'s are indecomposable. Since $\bar{N}_{1}=\sum_{i=1}^{n} \oplus \bar{M}_{i}^{\prime}$ is a small object in \mathfrak{Y} / \Im, there exist a finite subset $I^{\prime \prime}$ of I and a finite subset J_{i}^{\prime} of J_{i} for $i \in I^{\prime \prime}$ such that $\bar{N}_{1} \subseteq \sum_{I^{\prime \prime \exists}{ }^{\prime}} \sum_{J_{i} \exists j} \oplus \bar{P}_{i j} . \quad$ We know from Froposition 2, 2) that $\sum_{i} \sum_{j} \oplus P_{i j}=P$ is a direct summand of M. Since $I^{\prime \prime}$ and J_{i}^{\prime} are finite, $\mathfrak{S}_{P}=J\left(S_{P}\right)$ by [4], Lemma 8. Hence, P contains a direct summand $N_{1}{ }^{\prime}$ such that $\bar{N}_{1}^{\prime}=\bar{N}_{1},\left(P=N_{1} \oplus P^{\prime}\right)$. $M=N_{1}{ }^{\prime} \oplus P^{\prime} \oplus \sum_{I^{\prime \prime}} \oplus Q_{i}{ }^{\prime} \oplus \sum_{I-1^{\prime \prime}} \oplus Q_{a}$, where $Q_{i}=Q_{i}{ }^{\prime} \oplus_{J_{i}-J_{i^{\prime}}} \sum_{N_{i}}$. Let $P_{N^{\prime}{ }_{1}}$ be a projection of M to $N_{1}{ }^{\prime}$ in this decomposition. Since $\bar{N}_{1}=\bar{N}_{1}{ }^{\prime}$ and $\bar{N}_{1} \cap\left(\bar{P}^{\prime} \oplus\right.$ $\left.\sum_{I^{\prime \prime}} \oplus \bar{Q}_{i}{ }^{\prime} \oplus \sum_{I_{-1}^{\prime \prime \prime}} \oplus \bar{Q}_{a}\right)=\overline{0}$, (see the proof of Theorem 1), $\bar{P}_{N^{\prime}{ }_{1}} \mid \bar{N}_{1}$ is isomorphic. Therefore, $p_{N_{1}^{\prime}} \mid N_{1}$ is isomorphic as an R-module. Thus, we obtain that $M=N_{1} \oplus P^{\prime} \oplus \sum_{I^{\prime \prime}} \oplus Q_{1}^{\prime} \oplus \sum_{I-I^{\prime \prime}} \oplus Q_{a}$.

Theorem 4. Let $M=\sum_{I} \oplus M_{\infty}$ with M_{∞} completely indecomposable, and $N_{1}=\sum_{I^{\prime}} \oplus M_{\beta}{ }^{\prime}$ be a direct summand of $M ; M=N_{1} \oplus N_{2}$. If I^{\prime} is finite or $\left\{M_{\beta^{\prime}}\right\}$ is a T-nilpotent system, then N_{i} has the exchange property in M for $i=1,2$.

Proof. We know from the assumption and [4], Theorem 8 that $\Im_{N_{1}}$ $=J\left(S_{N_{1}}\right)$. Let $M=N_{1} \oplus N_{2}=\sum_{J} \oplus Q_{\alpha} . \quad$ Then $\bar{M}=\bar{N}_{1} \oplus \bar{N}_{2}=\Sigma \oplus \bar{P}_{\alpha}$, where P_{α} is a dense submodule of Q_{α}. We put $P_{\alpha}=\sum_{J_{\alpha} \ni i} \oplus P_{\alpha i}(\in \mathfrak{H})$. Since $\mathfrak{A} / \mathfrak{Y}$ is completely reducible, $\bar{M}=\bar{N}_{2} \oplus \sum_{J} \sum_{J_{\alpha^{\prime}}} \oplus \bar{P}_{\alpha_{i}}$, where $J_{\alpha^{\prime}}$ is a subset of J_{α}. The fact $\bar{N}_{1} \approx \bar{P}=\sum_{J} \sum_{J_{\alpha^{\prime}}} \oplus \bar{P}_{\alpha_{i}}$ implies $\mathfrak{Y}_{P}=J\left(S_{P}\right)$. Let $p_{N_{1}}$ be a projection of M to N_{1} with $\operatorname{Ker} p_{N_{1}}=N_{2}$. Then $\bar{p}_{N_{1}} \mid \bar{P}$ is isomorphic, and hence $p_{N_{1}} \mid P$ is isomorphic as an R-module. Therefore, $M=P \oplus N_{2}$ and $\sum_{T^{\prime} \alpha} \oplus P_{a_{i}} \subseteq Q_{\alpha}$. We have shown that N_{2} has the exchange property. If I^{\prime} is finite, then N_{2} has the exchange property from Lemma 3. Thus, we may assume that $\left\{M^{\prime}{ }_{\beta}\right\}$ is a T-nilpotent system. Noting that N_{2} is an object of \mathfrak{Z} by Lemma 2, first we assume $N_{1}=\sum_{K} \oplus T_{a}, N_{2}=\sum_{K^{\prime}} \oplus T_{\beta}^{\prime}$ and $T_{a} \neq T_{\beta}^{\prime}$ for any α, β, where T_{a} and T_{β}^{\prime} are indecomposable. We make use of the same notation as above. Then $\bar{M}=\bar{N}_{2} \oplus$ $\sum_{J} \oplus \bar{P}^{\prime}{ }_{\infty}$ and $P^{\prime}{ }_{\omega} \oplus P^{\prime \prime}{ }_{\sigma}=P_{\alpha}$. Since $\sum \oplus P^{\prime}{ }_{\infty} \approx N_{1}, \sum \oplus P^{\prime}{ }_{\infty}$ is a direct sum-
mand of M by Proposition 2, say $M=\sum\left(P_{a}{ }^{\prime} \oplus P^{\prime \prime \prime}{ }_{a}\right)$ and $Q_{a}=P_{a}{ }^{\prime} \oplus P_{a}{ }^{\prime \prime \prime}$. Then $\sum_{J} \oplus P^{\prime \prime \prime}{ }_{\infty}$ is an object in \mathfrak{A} by Lemma 2. Let p be a projection of M to $\sum_{J} \oplus P^{\prime}{ }_{\omega}$ with $\operatorname{Ker} p=\sum_{J} \oplus P^{\prime \prime \prime}{ }_{\omega}$. Then $\bar{p} \mid \bar{N}_{2}$ is isomorphic, since $\bar{N}_{1} \cap \sum \oplus \bar{P}^{\prime \prime \prime}{ }_{\omega}$ $=\overline{0}$ and $\bar{p}\left(\bar{N}_{2}\right)=\overline{0}$ by the assumption. Hence, $p \mid N_{1}$ is isomorphic as an R-module, which implies $M=N_{1} \oplus \operatorname{Ker} p=N_{1} \oplus \sum P^{\prime \prime \prime}{ }_{a}$. Hence, N_{1} has the exchange property in M. In general case, we choose all direct components $T_{\beta^{\prime}}^{\prime}$ in N_{2}, which is isomorphic to some T_{a} in N_{1} and put $N_{2}{ }^{\prime}=\sum \oplus T_{\beta^{\prime}}^{\prime} ; N_{2}=N_{2}{ }^{\prime} \oplus N_{2}{ }^{\prime \prime}$. Then, $N_{1}{ }^{\prime}=N_{1} \oplus N_{2}{ }^{\prime}$ satisfies the assumption in the first case. Therefore, $M=N_{1} \oplus \sum_{J} \oplus P^{\prime \prime \prime}{ }_{\omega}$ and $Q_{\infty}=P_{a}{ }^{\prime} \oplus P^{\prime \prime \prime}{ }_{a} . \quad$ Then $\quad M=N_{2} \oplus N_{1} \oplus \sum_{J} \oplus P^{\prime \prime \prime}{ }_{\sigma}$. Since $N_{2}{ }^{\prime}$ satisfies the assumption in the theorem, $N_{1} \oplus \sum \oplus P^{\prime \prime \prime}{ }_{\text {ob }}$ has the exchange property from the beginning case. Therefore, $M=N_{1} \oplus \sum_{J} \oplus P^{\prime \prime \prime}{ }_{a} \oplus$ $\sum_{J} \oplus P^{\mathrm{iv}}{ }_{\omega}$, and $Q_{\infty} \supseteq P^{\mathrm{iv}}{ }_{\alpha}$. Thus, we have proved that N_{1} has the exchange property in M.

Corollary. Let \mathfrak{A} be as above. Then the following statements are equivalent.
1 Every direct summand of object M in \mathfrak{H} has the \aleph_{0}-exchange property in M.
2 Every direct summand of object M in \mathfrak{Y} has the exchange property in M.
$3\left\{M_{a}\right\}$ is an elementwise T-nilpotent system.
Proof. $\quad 1 \rightarrow 3$ Let $M=\sum_{I} \oplus M_{a}=\sum_{I^{\prime}} \oplus M_{\beta^{\prime}}^{\prime} \oplus \sum_{I^{\prime \prime}} \oplus M_{\gamma^{\prime}}^{\prime}$ be a direct decompositions with $\left|I^{\prime}\right| \leqslant \boldsymbol{\aleph}_{0}$. Since every direct summand of $\sum_{I^{\prime}} \oplus M_{\beta^{\prime}}^{\prime}$ has the $\boldsymbol{\aleph}_{0}$-exchange property in M, it has the $\boldsymbol{\aleph}_{0}$-exchange property in $\sum_{I^{\prime}} \oplus M_{\beta^{\prime}}$. Therefore, Condition II is satisfied for $\sum_{I^{\prime}} \oplus M_{\beta^{\prime}}^{\prime}$, which implies 3 by [4], Lamma 9 .
$3 \rightarrow 2$ It is clear from the theorem and Proposition 2.
$2 \rightarrow 1$ It is clear.
Proposition 3 ([1], [3], [6] and [10]). Let M be in \mathfrak{A} and $M=N_{1} \oplus N_{2}$. If N_{1} is countably generated, then N_{1} is in \mathfrak{A}. If every M_{a} is countably generated, then every direct summand of M is in \mathfrak{A}.

Proof. We make use the argument of the proof of [1], Theorem 7.1. First, we note that for any element x in N_{1} there exists a direct summand N_{0} of N_{1} such that $x \in N_{0}$ and N_{0} is in \mathfrak{A}. Because, there exists a finite set J such that M_{J} contains x. From Theorem 4 we have $M=M_{J} \oplus N_{1}{ }^{\prime} \oplus N_{2}{ }^{\prime}, N_{1}=N_{1}{ }^{\prime} \oplus N_{1}{ }^{\prime \prime}$ and $N_{2}=N_{2}{ }^{\prime} \oplus N_{2}{ }^{\prime \prime}$, where $N_{1}{ }^{\prime \prime}=\left(M_{J} \oplus N_{2}{ }^{\prime}\right) \cap N_{1}$ and $N_{2}{ }^{\prime \prime}=\left(M_{J} \oplus N_{1}{ }^{\prime}\right) \cap N_{2}$, and $x \in N_{1}{ }^{\prime \prime}$. If we use the same argument in [6], then we obtain the proposition.

3 Semi-perfect modules

We shall study further properties of \mathfrak{Y} in a case of semi-perfect modules defined by E. Mares in [9]. She has shown that every semi-perfect module is a direct sum of completely indecomposable semi-perfect modules ([9], Corollary 4.4). Let P be an R-module and $J(P)$ the radical of P. If P is semi-perfect, then $J(P)$ is small in $P,[P / J(P), P / J(P)]_{R / J(R)} \approx S_{P} / J\left(S_{P}\right)$ and $J(P)=P J(R)$, (see [9], §§ 2-5).

Theorem 5. Let P be a directly indecomposable projective module. Then P is completely indecomposable if and only if P is semi-perfect, (cf. [5], the proof of Theorem 2.8).

Proof. If P is semi-perfect, then P is completely indecomposable by [9], Corollary 4.4. Conversely, we assume that so is P. Since $P / J(P)$ is $R / J(R)$ projective, $J([P / J(P), P / J(P)])=0$. From an exact sequence $0 \rightarrow[P, J(P)]_{R} \rightarrow$ $S_{P} \rightarrow[P / J(P), P / J(P)]_{R / J(R)} \rightarrow 0$ we have $[P, J(P)] \supset J\left(S_{P}\right)$. On the other hand, $J\left(S_{P}\right)$ is a unique maximal ideal in S_{P} and $[P, J(P)] \neq S_{P}$. Hence, $\Im_{P}=J\left(S_{P}\right)$ $=[P, J(P)]_{R}$. Next, we shall show that $J(P)$ is small in P. Let N be a submodule of P such that $P=J(P)+N$. From the following row exact sequence

we have $f: P \rightarrow N$, which commutes the above diagram. If $N \neq P, f \in \mathfrak{Y}_{P}$. Hence, $\operatorname{Im} f \subset N \cap J(P)$, which is a contradiction. Finally, we show that $J(P)$ is a unique maximal submodule in P. Put $\bar{P}=P / J(P), \bar{R}=R / J(R)$ and $\bar{S}=S_{P} / \Im_{P}$. We define $\mu: \bar{P} \otimes_{\overline{\bar{R}}}[\bar{P}, \bar{R}]_{\bar{R}} \rightarrow \bar{S}$ by setting $\mu(p \otimes f)\left(p^{\prime}\right)=p f\left(p^{\prime}\right)$. Since $\bar{P} \neq 0$ and \bar{R}-projective, $\mu \neq 0$. Furthermore, \bar{S} is a division ring, and hence, μ is isomorphic. $\bar{P} \tau(P)=\bar{P}$ implies that there exists p in \bar{P} such that $\mu(p \otimes[\bar{P}, \bar{R}]) \neq 0$, where τ is the trace map of \bar{P}. Hence, $\mu(p \otimes f) \bar{S}=\bar{S}$ for some f in $[\bar{P}, \bar{R}]$. Therefore, $\bar{P}=\bar{S} \bar{P}=\mu(p \otimes f) \bar{S} \bar{P} \subset p f(\bar{P}) \subset p \bar{R} \subset \bar{P}$. Hence, $\bar{P}=p \bar{R} \approx \bar{e} \bar{R}$ for some idempotent \bar{e} in \bar{R}. Since $\bar{e} \bar{R} \bar{e}$ is a division ring and \bar{R} is semi-simple, \bar{P} is \bar{R}-irreducible by [8], Proposition 1 in p. 65 . Hence, $J(P)$ is unique maximal, since $J(P)$ is the radical of P. Thus we have proved that P is semi-perfect by [9], Theorem 5.1.

Now let $\left\{P_{a}\right\}$ be a family of completely indecomposable projective modules, and \mathfrak{A} the induced additive category from $\left\{P_{a}\right\}$. Let $P=\Sigma \oplus P_{a}$ and $P^{\prime}=\sum \oplus P^{\prime}{ }^{\prime}$ be in \mathfrak{A} and f in $\left[P, P^{\prime}\right]_{R}$. If $f_{\alpha \beta}=p_{\alpha} f_{\beta}$ is epimorphic, then $f_{\alpha \beta}$ splits and hence $f_{\alpha \beta}$ is isomorphic. Since $J\left(P_{a}{ }^{\prime}\right)$ is unique maximal, $\operatorname{Im} f_{a \beta}$
$\subseteq J\left(P_{\alpha^{\prime}}\right)$ is $f_{\alpha \beta}$ is not isomorphic. Hence, if f is in \mathfrak{Y}, then $\operatorname{Im} f \subseteq \sum \oplus J\left(P_{\beta}{ }^{\prime}\right)$
$=J\left(P^{\prime}\right)$. Conversely, if $\operatorname{Im} f \subseteq J\left(P^{\prime}\right)$, then f is in \mathfrak{Y}. Therefore, $\left[P, P^{\prime}\right]_{R} \cap \Im$ $=\left[P, J\left(P^{\prime}\right)\right]_{R}$. Furthermore, $0 \rightarrow\left[P, J\left(P^{\prime}\right)\right]_{R} \rightarrow\left[P, P^{\prime}\right]_{R} \rightarrow\left[P / J(P), P^{\prime} / J\left(P^{\prime}\right)\right]_{R / J(R)}$ $\rightarrow 0$ is exact. Thus, for any object P in \mathfrak{A}, many arguments in $\mathfrak{A} / \mathfrak{F}$ concerned with \bar{P} coincide with those as $R / J(R)$-modules. From this reason, we make use of terminologies in \mathfrak{Y} / \Im, instead of ones as $R / J(R)$-modules, if there are no confusions.

Theorem 6. Let \mathfrak{Y} be an induced category from a family of completely indecomposable projective modules $\left\{P_{\alpha}\right\}$. Then an object $P=\sum_{I} \oplus P_{\gamma}$ in \mathfrak{A} is perfect if and only if $\left\{P_{\gamma}\right\}_{I}$ is an elementwise T-nilpotent system.

Proof. Let \mathfrak{J}^{\prime} be a full subcategory in \Im which is induced from $\left\{P_{\gamma}\right\}_{I}$. If P is perfect, then every object in \mathfrak{Y}^{\prime} is semi-perfect. Hence, \mathfrak{J}^{\prime} is equal to the Jacobson radical in $\mathfrak{V ^ { \prime }}$ by the above remark and [9], Theorem 2.4. Therefore, $\left\{P_{\gamma}\right\}_{I}$ is a T-nilpotent system by [4], Theorem 8 . Conversely, we assume that $\left\{P_{\gamma}\right\}_{I}$ is a T-nilpotent system. Then $\Im_{P}=J\left(S_{P}\right)$ for every object P in \mathfrak{A}^{\prime}. We shall show that $J(P)$ is small in P for every object P in \mathfrak{X}^{\prime}. Let $P=Q+J(P)$ for some submodule Q and p_{1} a projection of P to P_{1}, where $P=\sum_{I^{\prime}} \oplus P_{\gamma}$. Since $p_{1}(J(P))$ $\subset J\left(P_{1}\right)$ and $J\left(P_{1}\right)$ is small by Theorem $5, p_{1}(Q)=P_{1}$. Hence, there exists f in $\left[P_{1}, Q\right]_{R}$ such that $p_{1} f=1_{P_{1}}$. Therefore, Q contains an object in \mathfrak{X}^{\prime} which is a direct summand of P. Let T be the set of such objects in Q and define a pertially order in T by the inclusion. We take a totally ordered subset $Q_{1} \subset Q_{2} \subset \cdots$ in T. Put $Q_{0}=\cup Q_{i}$, then $Q_{0}=\sum \oplus N_{\beta} ; N_{\beta} \approx P_{\pi(\beta)}$ by Lemma 2. Furthermore, the inclusion $i_{\beta}: N_{\beta} \rightarrow P$ is not zero modulo \mathfrak{F}, since Q_{j} is a direct summand of P. Hence, Q_{0} is a direct summand of P by the proof of Proposition 2,2. Thus, we have a maximal element P_{0} in $T . \quad P=P_{0} \oplus U$ and $Q=P_{0}$ $\oplus Q \cap U$. Since $P=O+J(P)$ and $J(P)=J\left(P_{0}\right) \oplus J(U), U=J(U)+U \cap Q . \quad U$ is also in \mathfrak{X}^{\prime} by Lemma 2. If $U \neq 0, U \cap Q$ contains an object in \mathfrak{X}^{\prime} which is a direct summand of U and hence of P. Which contradicts to the maximality of P_{0}. Therefore, $P=P_{0}=Q$. Thus, every object in \mathfrak{Q}^{\prime} is semi-perfect by Theorem 5 and [9], Theorem 5.2.

In the above argument, we have used only facts that P_{i} are semi-perfect and $\mathfrak{J}_{P}=J\left(S_{P}\right)$. Hence, from Lemma 1, [4], Corollary 2 to Theorem 7 and [9], Theorem 2.3 we have

Proposition 4. Let $P=\Sigma \oplus P_{\infty}$ and P_{∞} semi-perfect. Then P is semiperfect if and only if $\Im_{P}=J\left(S_{P}\right)$.

Theorem 7. Let P be an object in \mathfrak{A} induced from projective, completely indecomposable modules P_{α}. Then we have the following equivalent conditions.
$1 P$ is semi-perfect.
$2 \Im_{P}=J\left(S_{P}\right)$.
3 Every dense submodule of P coincides with P.
$4 P=\sum_{I} \oplus P_{a}$ in \mathfrak{A}, then $\left\{P_{a}\right\}$ is a semi-T-nilpotent system.
$5 P$ satisfies the Condition II in [4].
Proof. $1 \leftrightarrow 2$ is proved in Proposition 4.
$1 \rightarrow 3$ Let N be a dense submodule of P. Then $N \supseteq \operatorname{Im}(1-f)$ for some $f \in \mathfrak{Y}_{P}$. Hence, $P \subseteq N+f(P) \subseteq N+J(P) \subseteq P$ by the remark before Theorem 6 . Therefore, $P=N+J(P)$ implies $P=N$, since $J(P)$ is small.
$3 \rightarrow 4$ Let $\left\{f_{i}\right\}$ be a family of non isomorphisms of $P_{a_{i}}$ to $P_{a_{i+1}}\left(P_{a_{i}} \neq P_{a_{i+1}}\right)$. Put $f=\sum\left(-e_{i+1 i} f_{i}\right)$, where $\left\{e_{i j}\right\}$ is a system of matrix units in S_{P}. Then $\operatorname{Im}(1-f)$ is a dense submodule of P. From the assumtion and the argument of Lemma 9 in [4], we know that $\left\{f_{i}\right\}$ is a T-nilpotent sequence.
$2 \rightarrow 5$ is proved in [4], Corollary 2 to Theorem 7.
$5 \rightarrow 4$ is proved in [4], Lemma 9 .
$4 \rightarrow 1$. Let

$$
P=\sum_{K \ni a} \sum_{I_{\alpha} \ni \beta} \oplus M_{\alpha \beta} \cdots(*),
$$

where $M_{\alpha \beta}$'s are indecomposable and $M_{\alpha \beta} \approx M_{\alpha \beta^{\prime}}, M_{\alpha \beta} \approx M_{\alpha^{\prime} \beta^{\prime}}$ if $\alpha \neq \alpha^{\prime}$. First we assume that the cardinal λ_{∞} of $\left|I_{\infty}\right|$ is finite for all α in K. We put $P_{\alpha(n) n}$ $=\sum_{\beta=1}^{n} \oplus M_{\alpha \beta}$, where $n=\lambda_{\alpha}$, and show that $J(P)$ is small in P. We assume $P=N+J(P)$ for some submodule N of P. Let $p_{a(n) n}$ be a projection of P to $P_{a(n) n}$. Since λ_{a} is finite, $J\left(P_{a(r) n}\right)$ is small in $P_{a(n) n}$. Hence, $p_{a(n) n} \mid N$ is epimorphic, and there exists $g \in\left[P_{a(n) n}, N\right]_{R}$ such that $\left(p_{a(n) n} \mid N\right) g=1_{P a(n) n}$. Put $P_{\alpha(n) n}^{\prime}=\operatorname{Im} g . \quad$ Since Ker $p_{\alpha(n) n}=\sum_{\alpha \neq \alpha(n)} \oplus P_{\alpha \beta}$,

$$
P=P_{\alpha(n) n}^{\prime} \oplus \oplus_{\alpha \neq \alpha(n)} \sum_{\alpha \beta} \oplus P_{\alpha \beta} \cdots(* *) .
$$

Now, we assume $N \nsubseteq M_{a(n) i_{1}}$ and $x_{1} \in M_{a(n) i_{1}}-N$. Then $x_{1}=x^{\prime}+\sum y_{i}$ from $(* *)$, where $x^{\prime} \in P_{\alpha(n) n}^{\prime}, y_{i} \in P_{\alpha \beta}$. From the assumption there exists some $y_{i} \notin N$, since $P_{a(n) n}^{\prime} \subset N$. Hence, there exists x_{2} in $M_{a_{i, i}}-N$ such that $y_{i}=x_{2}+\sum z_{j}, z_{j}$ $\in M_{\omega_{i} j}\left(j \neq i_{2}\right)$. If we replace ($*$) by ($* *$), we can find x_{3} in $M_{\omega_{j} k}-N$ and $P=P_{a(n) n}^{\prime} \oplus P_{a(m) m}^{\prime} \oplus \sum \oplus P_{\alpha \beta}$. Repeating this argument, we have a sequence $\left\{x_{j}\right\}$ so that $x_{i} \in M_{a_{i} k_{i}}-N$, and $f_{i}\left(x_{i}\right)=x_{i+1}$, where f_{i} is a projection of P to $M_{a_{i+1} k_{i+1}}$, which is a contradiction. Therefore, $J(P)$ is small. Finally, we shall consider a general case. Let $P=\sum_{\lambda_{\alpha}>\aleph_{0}} \sum_{\beta} \oplus M_{\alpha \beta} \oplus \sum_{\lambda_{\alpha}<\aleph_{0}} \sum_{i} \oplus M_{\alpha i}$ and put $P_{1}=\sum_{\lambda_{\alpha} \geqslant \aleph_{0}} \sum_{\beta} M_{a \beta}$ and $P_{2}=\sum_{\lambda_{\alpha}<N_{0}} \sum_{i} \oplus M_{a_{i}}$. We know from the first case P_{2} is semi-perfect. If $\lambda_{\infty} \geqslant \aleph_{0}$ for α, the fact that $\left\{M_{\alpha \beta}\right\}$ is semi- T-nilpotent implies from the definition that $\left\{M_{\alpha \beta}\right\}$ is a T-nilpotent system. Hence, P_{1} is perfect by Theorem 6. Therefore, P is semi-perfect from [9], Corollary 5.3 (see Proposition 6 below).

Corollary 1. Let P be projective and artinian, then P is perfect. Furthermore, if P^{\prime} is a directsum of artinian submodules and P^{\prime} is semi-perfect, then P^{\prime} is perfect.

Proof. If P is artinian and projective, then P is in \mathfrak{U} and \Im_{P} is nilpotent ideal by [5], Theorem 2.8. Hence, for any directsum M of any copies of P, we have $\mathfrak{J}_{M}=J\left(S_{M}\right)$, since \mathfrak{J}_{M} is nilpotent. Therefore, M is semi-perfect, and P is perfect. Let $P^{\prime}=\sum \oplus P_{i} ; P_{i}$'s are artinian and P^{\prime} be semi-perfect. Then $\left\{P_{i}\right\}$ is a semi-T-nilpotent system from Theorem 7. Furthermore, since $J_{P_{i}}$ is nilpotent, $\left\{P_{i}\right\}$ is a T-nilpotent system. Hence, P^{\prime} is perfect from Theorem 6.

Corollary 2. Let P be a semi-perfect module. Then there exists a maximal one among submodules which are perfect and direct summand of P. Those maximal perfect submodules are isomorphic each other.

Proof. Let $P=\sum_{\lambda_{\alpha}<\aleph_{0}} \sum \oplus M_{\alpha_{i}} \oplus \sum_{\lambda_{a}>\aleph_{0}} \sum M_{\alpha \beta}$ as in the above proof. If $\Im_{M_{\alpha i}}$ is elementwise T-nilpotent, then $\left\{M_{\alpha_{i}}, M_{\alpha \beta}\right\}$ is T-nilpotent, since it is semi- T-nilpotent. Hence, if we chooseevery $M_{\alpha_{i}}$ whose ideal $\Im_{M_{\alpha i}}$ is T-nilpotent, $P_{1}=\sum_{\lambda_{\alpha}<\mathbb{N}_{0}}^{\prime} \Sigma$ $\oplus M_{a_{i}} \oplus \sum_{\lambda_{\alpha} \geqslant \aleph_{0}} \sum \oplus M_{a \beta}$ is a direct summand of M and perfect, where Σ^{\prime} runs through all $M_{\alpha_{i}}$ in the above. Put $P=P_{1} \oplus P_{2}$. If $P=Q_{1} \oplus Q_{2}, Q_{1} \supseteq P_{1}$ and Q_{1} is perfect, then $P=Q_{1}{ }^{\prime} \oplus P_{1} \oplus Q_{2}$ and $Q_{2}=Q_{2}{ }^{\prime} \oplus P_{1}$. Since $P_{2} \approx Q_{1}{ }^{\prime} \oplus Q_{2}, Q_{1}{ }^{\prime}=(0)$ by the assumption. Hence, P_{1} is a desired perfect submodule. Let T_{1} be a maximal element as in Corollary 2; $P=T_{1} \oplus T_{2}$, then T_{2} is in \mathfrak{A}. It is clear that T_{1}, P_{1} and T_{2}, P_{2} have the isomorphic direct components, respectively. Hence, $P_{1} \approx T_{1}$.

Finally, we shall give some results concerned with ones obtained in [9].
First we shall give another proof of [9], Theorem 5.5.
Proposition 5 ([9]). Let \mathfrak{A} be as above and P a direct summand of an object M in \mathfrak{A}. If $J(P)$ is small in P, then P is in \mathfrak{A}.

Proof. Let $M=P \oplus P_{1}$ and $P=e M$ for some idempotent $e . P$ contains a dense submodule P_{0} with inclusion i such that if $\equiv e(\bmod \mathfrak{F})$ for some f in $\left[M, P_{0}\right]_{R}$. Put $e=i f+x, x \in \mathfrak{F}$. Then $P=P_{0}+x(P)$ and $x(P) \subset P \cap J(M)=J(P)$. Hence, $P=P_{0}$.

Proposition 6 ([9], Corollary 5.3). Let $\{P\}_{1}^{n}$ be a finite set of semi-perfect modules. Then $\sum_{1}^{n} \oplus P_{i}$ is semi-perfect.

Proof. Since $\Im_{P_{i}}=J\left(S_{P_{i}}\right)$ for every i, we can show $\mathfrak{\Im}_{P}=J\left(S_{P}\right)$ by using
fundamental transformations of matrices (see [4], Lemma 8). Hence, P is semiperfect from Propostion 4.

Proposition 7 ([9], Theorem 7.2). If $J(R)$ is right T-nilpotent, then every semi-perfect modules is perfect.

Proof. Let $P=\sum_{I} \oplus P_{\infty}$ be semi-perfect. Then $\Im_{P}=[P, J(P)]=[P, P J(R)]$. Hence, for any $f \in\left[P_{a}, P_{\beta}\right] \cap \Im$ and $x_{\alpha} \in P_{\alpha}, f\left(x_{\alpha}\right)=\sum x_{\beta_{i}} a_{\beta_{i}}, a_{\beta_{i}} \in J(R)$. Therefore, $\left\{P_{a}\right\}$ is T-nilpotent system by the assumption. Hence, P is perfect from Theorem 6.

Remark. [9], Theorem 5.1 is a special case of Theorem 3.
Osaka City University

References

[1] P. Crawley and B. Jónnson: Refinements for infinite direct decomposition of algebraic systems, Pacific J. Math. 14 (1964), 797-855.
[2] C. Ehresmann: Catégories et Structures, Dunod, Paris, 1965.
[3] S. Elliger: Zu dem Satz von Krull-Remak-Schmidt-Azumaya, Math. Z. 115 (1970), 227-230.
[4] M. Harada and Y. Sai: On categories of indecomposable moduls I, Osaka J. Math. 7 (1970), 323-344.
[5] M. Harada: On semi-simple categories, Osaka J. Math. 7 (1970), 89-95.
[6] I. Kaplansky: Projective modules, Ann. of Math. 68 (1958), 372-377.
[7] G.M. Kelly: On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299-307.
[8] N. Jacobson: Structure of Rings, Amer. Math. Soc., 1956.
[9] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
[10] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of moduels, Proc. Amer. Math. Soc. 22 (1969), 460-465.

