
Ryan, P. J.
Osaka J.Math.
8 (1971), 251-259

HYPERSURFACES W I T H PARALLEL RICCI TENSOR
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0. Introduction

The purpose of this paper is to classify those Riemannian manifolds with
parallel Ricci tensor which arise as hypersurfaces in real space forms. H. B.
Lawson, Jr. [1] performed this classification under the assumption of constant
mean curvature. Lawson's result may be divided into two parts-determination
of the local geometry on the hypersurface, and a rigidity theorem.

In the following, we prove that no assumption on the mean curvature is neces-
sary unless the dimension is 2 or the hypersurface and the ambient space have the
same constant curvature. See Theorem 10.

l The standard examples

We consider first some special complete hypersurfaces which will serve as
models in our discussion. M is the ambient space, M is the hypersurface and /:
M—>Mis an isometric immersion. In each of the examples, M is a submanifold
of M and / is the inclusion mapping.

For M=En+1

y we have as our model hypersurfaces, hyperplanes, spheres, and
cylinders over spheres.

For M=Sn+1(c), we have great spheres, small spheres, and products of
spheres. The latter may also be thought of as the intersection of two cylinders
over spheres in En+2.

All of the above are explicitly written out in [2] together with their second
fundamental forms. We consider the real hyperbolic space of curvature c<0
(which we denote by Hn+1(c)) in more detail here since the analogous facts are
omitted from [2].

For vectors X and Y in Rn+\ we setg(X, Y)= Σ χiγi-X»+*γn+\ For
1 1=sl

given c<0, we define R= ,—= . Then
V — c

Hn+\c) = {x<=Rn+2\g(x9 x) = -R2 and * Λ + 2 >0}

*5 This work has been supported in part by the National Science Foundation under
Grant GP-7403.
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Hn+1(c) is connected, simply-connected submanifold of Rn+2 and it is not too
hard to show that the restriction of g to tangent vectors yields a (positive-definite)
Riemannian metric for Hn+\c). Furthermore, Hn+1(c) is complete and has
constant curvature c in this metric. We thus have a model for real hyperbolic
space.

We will be interested in the following hypersurfaces of Hn+1(c).
(i) M={x\x1=0}. In this case, the second fundamental form A is zero,

M is totally goedesic and is in fact just Hn(c).

(ii) M={x\x1=r>0}y A=\fc~^c I where c<c<0 and c=-—. Mis
r2

isometric to Hn(c).
(iii) M= {x\xn+2=xn+1 + R}, A=\/ — c I, M is isometric to E".
(iv) M={x\x1

2+x2

2+^xl+1=r2}y A^Vc^d I and c=\>0. M is

isometric to Sn (c).
(v) M={x\x1

2+xi*+-+x*k+1=τ*, x2

k+2+~ —x2

n+2=-(r2+#2)}. Thinking
of Rn+2 as Rk+1xRn~k+1 we see that M is a subset of Hn+1(c) for any r > 0 and
the inclusion mapping is the product of the imbeddings S^cJ-^R^1 and

H»-*(c2)^R«-k+\ Here * , = ! and c 2= - — | - ^ .

The second fundamental form may be calculated easily and it is given by

A=Xlk(BμIn~k where \=Vc1 — c and μ=Vc2—c. This may be simplified to

rR ' μ R(r2+R2)

Note that Xμ+c=0.
The eigenvalues λ and μ may also be expressed in terms of c1 and c2 as

follows

We note that in all of the above cases, either of the following is true:
(i) M is umbilic in M, that is, A is a constant multiple λ of the identity

/, and M is of constant curvature c=X2-\-c.

(ii) A has exactly two distinct eigenvalues \>μ at each point and they
are constant over M. M is the Riemannian product of spaces of constant curvature

C\ = λ2+£> c2 = μ2-\-c where \μ-\-c = 0 .

The converse of the above remarks also holds in the following sense.

Theorem 1. Suppose M is a real space form and M a hyper surf ace in M.
Suppose the principal curvatures are constant and at most two are distinct. Then M
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is congruent to an open subset of one of the standard examples.

Proof. Theorem 2.5 of [2] followed by the arguments of Lemma 2 of [1]
give the desired result.

2. The curvature operator

In [2] we considered the action of the derivation R(Xy Y) on the algebra of
tensor fields of a Riemannian manifold. We recall that if T is a tensor field of type
(r,s), and X and Y are vector fields,

R(x, y). r = vxvγT -vFvxr -v [ X t Y Λ τ .

For brevity of notation, we denote by RT the tensor of type (r, s-\-2) defined by

(RT)(Xly X29~; X,, X, Y) = (R(X, Y) T)(X19 X2y - , Xs).

Concerning hypersurfaces which satisfy RA=0 where A is the second
fundamental form, we have

Proposition 2. Let M be a hypersurface in a space of constant curvature c.
IfRA=O,then

(λ,λy+2)(λ,-λy) = 0

for all i andj, where {λt }?=1 are the eigenvalues of A.

Proof. Let x G M b e arbitrary and let {̂  }?=i be an orthonormal basis for
TX(M) such that Ae~Xfr. For each λ, let Γ λ = {X \ AX= XX}.

Since A is symmetric, TxC^Tμ.-1 whenever λΦμ. Since RA=0, we have
that R(X, Y) and A commute for all X and Y. In particular,

XjR(eky βj)ej = AR(eiy e>)ej

Thus, R(eiy e/jβj is a member of TλJ, and hence <R(eiy e^)ejy £, > = 0
whenever λ, Φλy. Here <, > denotes the Riemannian metric of M. On the
other hand, the Gauss equation

shows that

<R{eiy ej)ejy e£y = XiXj+c .

This completes the proof.

Corollary 3. A has at most two distinct eigenvalues at each point.
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Corollary 4. If RA==0 is replaced by the stronger condition, VA=0, the
eigenvalues of A are constant on M.

Proof. Suppose \>μ are eigenvalues of A at x. Let y be any point of M.
Join x to y by a smooth curve 7 and let E{ be the vector field along 7 obtained
by parallel translation of es. We compare AE£ and λtJ?f- along 7. They agree
at x and if X is the tangent vector to 7, we have

VX(AE<) = (VxΛ)tf,+,4(Vχ£,) = 0
and

VxftΆ) = λ#Vx£, = 0 .

By the uniqueness of parallel translation, AEi=XiEi at y. Thus, A has
the same eigenvalues at y as it has at x.

Lawson's classification now follows directly from the following proposition
which may be found in [1].

Proposition 5. Suppose the Ricci tensor S is parallel (VS=0) and trace A
is constant on M. Then VA=0 on M.

3. The condition RS=0

In order to avoid any assumption about the mean curvature, we first examine
hypersurfaces satisfying RS=0. We will show that when £Φθ, such hyper-
surfaces must also satisfy RR=0. Since this condition has been examined in [2],
we make use of results from this source. Since we are ultimately interested in the
condition ViS=0, we may make use of the constancy of the scalar curvature s to
take care of troublesome cases.

Proposition 6. Let M be a hypersurface in a space of constant curvature c.
Then RS=0 if and only if at each point of M,

_ χ . _ χ y ) = 0

for

Proof. Let S denote the tensor field of type (1,1) satisfying (SX, Y>=
S(Xy Y). Clearly RS=0 if and only if RS=0.

Now SX=(n- ϊ)cX + (trace A)AX -A2Xy and thus, Se~({n- VjC+mXj-
λ/)£ y. Assuming that RS=0, we have R(ei9 e/) commutes with S. (Here m
is, by definition, equal to trace A.)

Now
= S(\i\J+c)ei
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But R(eif eβej = ((if-l)*+fiiλy-λ/)Λ(*,, efa

= ((n-l)c+mXJ-X/)(XiXJ+d)ei

The two quantities are equal if and only if

(\i\j+e)(m{Xi-\J)-(\i

9-\/)) = 0

i.e. (λίλy+^Kλί-λyXjff-λί-λy) = 0 .

Furthermore, if this condition is satisfied, R(e{, e/) commutes with S and this
implies RS=0. We denote this condition by **.

Proposition 7. // c φ 0, RR=0 if and only if RS=0.

Proof. We recall from [2] that RR=0 if and only if condition * (λ, —λy)
(λ,λy+?)λ*=0 is satisfied for distinct i9j, k. Now we assume RS=0 and work
at a particular point x. Choose / Φ j .

Assume for the moment that λ, = 0 , λ y φ 0 . Then λ y =trace A. We
conclude that all non-zero eigenvalues have the same value, trace A. Thus, there
can be only one of them. But rank A^l implies *.

We must now consider the case rank A=n. First, we claim it is impossible
for three eigenvalues of A to be distinct. For consider the equations:

(X-μ)(Xμ+c) (trace A-X-μ) = 0

(μ-v)(μv+c) (traceA-μ-v) = 0

(y - X)(vX+c) (trace A - v - X) = 0

In order for these to be satisfied, two factors of the same type must vanish.
But this gives a contradiction -e.g., Xμ+c=μv+c=Q implies λ=ϊ>. Thus, there
are at most 2 distinct eigenvalues, say X^μ at each point. Assuming for the
moment that (λ — μ,)(λμ-|-c)Φθ at x, we letp and q be the multiplicities of X and
μ respectively at x. Then, as in [2], the same conditions hold in a neighborhood
of x. Furthermore, in this neighborhood, trace A=X + μ. This means that
(p-l)\+(q-l)μ=0.

But neither λ nor μ is zero and hence p and q are greater than 1. The stan-
dard arguments of [2] {pp. 372-373) now apply, showing that λ and μ are con-
stants near x and hence, that Xμ+c=0. This again implies * and completes the
proof.

Proposition 8. Ifc=0 and s is constant, RR=0 and RS=0 are equivalent.

Proof. Our conditions RR=0 and RS=0 reduce respectively to

**λ lλy(λ, — λy) (trace A — λ, — Xj) = 0.
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Assuming **, let λ and μ be distinct non-zero principal curvatures at x. If v is
a principal curvature distinct from λ and μ, we have

v(trace A — \ — v) = 0

z>(trace A — μ — v) = 0 .

Since λ Φ μ we must conclude that v=0. But if this is true, then trace A = \-\-μ.
On the other hand, trace A=p\-{-qμy where p and q are the appropriate multi-
plicities. Thus, (p— l)λ+(#— l)μ,=0 and hence p and q are greater than 1.
Unless, of course, p=q=\ in which case * is automatically satisfied.

Iϊp-\-q=n>2, the standard argument of [2] shows that λ and μ are constant
near x. Thus, λμ,+c=0 which implies that \μ=0, a contradiction. Thus, at
most 2 principal curvatures are distinct and * holds.

If p-\-q<n, it is not clear that * is satisfied. However, computing the scalar
curvature and using the fact that

we have

s = c+ —-—-((trace A)2-trace A2)
n{n-\)

(2Xμ-(P-\)X2-{q-\)μ2)

Thus μ is constant and so is λ. But a theorem of E. Cartan ([2], Theorem 2.6)
says that at most two principal curvatures can be distinct. This is a contradiction.
We must conclude that p-\-q=n and the proof is complete.

Note that even if s is not assumed to be constant, we must have s<0.
Thus we have also proved the following proposition, which has been proved by
S. Tanno [3] under the assumption of positive scalar curvature.

Proposition 9. For hyper surfaces in En+1 with non-negative scalar curvature,
the conditions RR=0 and RS=0 are equivalent.

As a prelude to the next theorem, we note that when V»S=0, we have also
VS=0, and hence, V(trace S)=trace(VS)=O. Hence, the scalar curvature s will
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be constant.

4. The main theorem

Theorem 10. Let M be a hyper surface of dimension > 2 in a real space form

of constant curvature c. If M is not of constant curvature c and ifVS=0 on M, then

M is an open subset of one of the standard examples or c=0 and A=2 on M.

Proof. We suppose first that M is simply-connected. Then, a unit normal
can be chosen consistently on M and the principal curvatures λ 1 ^ λ 2 ^ ^λ M

are continuous functions. When c=0> RR=0 by Proposition 7. The proof of
Proposition 4.3 of [2], gives rank A=n=dim M. Now we know that at most
two principal curvatures are distinct. Denote the larger one by λ and the
other by μ so that \^μ. If λ>μ, at some point, then that condition holds
locally and λ and μ have the same multiplicities p and n—p nearby. If
1 <p<n—ly the standard argument of [2] shows that λ and μ are locally con-
stant. On the other hand, if p—ί or n— 1, the equation

shows that λ and hence μ are locally constant. On the other hand {x\ \=X0 and
μ=μ0} is closed. If λ o >μ o , we have just shown it is also open.

The alternative to this is that \=μ at all points and M is umbilic.
Now, we consider the case c=0. Again RR=0 by proposition 8. As before,

λ and μ (where μ=0) have respective multiplicities p and n — p. We allow
p=0y 1, 2, •••, n. If 2<ρ^n, λ is locally constant since

Thus, a fixed value for λ and for p holds on M. If p ^ 1 for all points of M, then
M has constant curvature 0. If p=2 somewhere, then p=2 everywhere.

We now see that the hypothesis of our theorem implies trace A=constant
on M. Thus, VA=0 and we are finished.

If now M is not simply-connected, let M be the simply connected Rieman-
nian covering of M with projection π which is a local isometry. If/: M-^M is
the immersion defining the hypersurface,/oτr is an isometric immersion of M into
M. By the above, f(π(M)) is just an open subset of one of the standard
examples. But π(M)=M. This completes the proof.

REMARK. It is possible in this proof to avoid the use of proposition 5 and
substitute more delicate topological arguments. However, the proof of proposition
5 is straight-forward and, its use seems the most efficient way of proving the more
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general result.

UNIVERSITY OF NOTRE DAME

Bibliography

[1] H. B. Lawson, Jr.: Local rigidity theorems for minimal hyper surf aces, Ann. of Math.

89 (1969), 187-197.

[2] P. J. Ryan: Homogeneity and some curvature conditions for Hyper surfaces, Tόhoku

Math. J. 21 (1969), 363-388.

[3] S. Tanno: Hyper surfaces satisfying a certain condition on the Ricci tensor, Tόhoku

Math. J. 21 (1969), 297-303.

Appendix-Proof of Proposition 5

The Case of Constant Mean Curvature

Proposition 5. Suppose trace A is constant and VS—0 (S is the Ricci ten-
sor). ThenVA=0.

Proof. We recall that

S(X, Y) = (n-l)c<X, Y>+<AX, y> trace A-<AX, AY> .

Let S be the tensor field of type (1,1) related to S by the formula

Then VS=0 if and only if VS=0. Thus, we may consider

S=(n-l)dI+mA-A2.

Since VS=0, we have V(mA-A2)=0. Now

(VXA')Y = VX(A*Y)-A%VXY)

= (VXA)AY+AVX(AY)-A*VXY

= (VXA)AY+A(VXA)Y

That is,

VXA* = (VXA)A+A(VXA).

Thus, (VxA)A+A(VxA)-mVxA=0.
Suppose now that AX= XX, A Y= μ Y. Then

(VxA)μY+A(VxA)Y-m(VxA)Y = 0 .
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That is, (VxA)Y^Tm_μ.
Similarly, (VYA)X <EΞ Tm_λ.

But Codazzi's equation says precisely that

(VXA)Y=(VYA)X.

Now if λ Φ μ,, both of these vectors are zero. If λ = μ , we still have that

(VxA)Y<=Tm.μ

so that

Thus, if μ Φ - , (VxA)2Y=0. Since VXA is symmetric, we must have (VXA) Y

Finally, if μ— — , we construct the geodesic 7 through x with initial

tangent vector X and we extend Y by parallel translation along 7. Now,

VX(A2 Y -mAY) = (A2 - mA)Vx Y.

But VxY=0 along 7. We conclude that A2Y — mAY is parallel along γ. The

value of this vector at x is—Y- m(-)γ=- — Y. But the vector - ^ Y
4 V2/ 4 4

is also parallel along γ. Hence A2Y — mAY= — — Y all along 7. This means

that

( ) 2 = 0 along 7.

Again, since ί̂ 4 — —I) is symmetric, we have that AY=— Y along 7.

Hence, along γ,

{VXA)Y=VX{AY)-AVXY

= 0 .

We have shown that (VxA)Y=0 for any pair of principal vectors X and
Y at any point x^M. Since the principal vectors span the tangent space, we have
shown that VA—0.






