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HOLDER CONDITIONS FOR CONTINUOUS
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In this paper we sharpen previous results of the author [4] concerning
local Holder conditions for Gaussian processes with stationary increments. Of
particular interest is the form of these results which suggests how they may be
extended to processes which we have not considered.

Let X(i) be a separable, real valued continuous Gaussian process with
stationary increments. For our purposes, it is sufficient to describe these
processes by their incremental variance i.e.

E{(X(t)-X(s))2} = σ\ I t-s I), (where σ\h) -> 0 as h — 0).

We are concerned with rinding those processes and the corresponding functions
φ(h) for which the following inequalities will be satisfied with probability 1:

( 1 )
fφ(h)

where the constants ^<C^<Cx<oo can vary for the different processes. (Also
note that the function φ(h) depends on cr\h).)

A major role in this paper is played by the function defined below,

In the various cases considered some or all of the following conditions will also
be used :
A.) f(s) is increasing as s-+oo ($=log \jh)
B.) f(2s)<2f(s)
C.) log s<f(s)<ks, for some constant k.
The processes for which we can obtain expressions of the form of (1) are given
in Theorem 3.

Theorem 3. Let X(t) be a separable, real valued, mean continuous Gaussian
process with stationary increments for which σ\h) is concave for λe[0, δ] for
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some δ>0. Let the function f (log I/A) satifsy conditions A)> B) and C) given
above. Then zυith probability 1

where 0<C 0 <C 1 <oo.

We prove this Theorem first by studying lower bounds for the ratio in (1).
These results are given in Theorem 1. The function/(s), appearing above, need
only satisfy condition A.) and the upper inequality in C.) in this theorem. Next
the upper bounds are studied and the results given in Theorem 2. The function
ψ is introduced which is assumed to be monotonically increasing and is such
that

E{\X(t)-X(s)\*}<ψχ\ts\);

and also a new class of functions

A.(log I/A) = \ d u ,
ψ(n) Jo u

obviously similar to the function defined in (2). Analagous to the discussion
following (2) we will occassionally impose conditions A.), B.) and C.) on pΛ(s).
The results of Theorem 2 are

limcup W+h)-X(t)\

where for α < 2 , pa must satisfy only conditions A.) and the lower inequality
in C). When a=2, pΛ must satisfy A.), B.) and C). Note that ψ is not re-
quired to be concave. Theorem 3 is obtained by combining Theorems 1 and 2
and including all the conditions necessary for each one.

Theorem 3 extends the results in [4]. In that paper results of this kind were
obtained only when the derivative of <τ2(h) had certain regularity properties,
here the conditions are on σ\h) and the integral expression. This significantly
extends the processes for which expressions like (1) are obtained. This point

S h
σ\u)ju du is also of

0

interest. It is monotonically increasing for all σ2(A), concave when σ\h) is
concave, and we wonder if it might not provide insight into obtaining Holder
conditions for those processes which we have not been able to handle.

1. Lower bounds

We prove the following Theorem related to the lower bound of the ratio
given in (1). For what follows the function/is the one defined in (2).
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Theorem 1. Let X(t) be a separable, real valued, mean continuous Gaussian
process with stationary increments for which σ\h) is concave for h^ [0, δ] for
some δ>0. Then, with probability 1,

( K T
where C>0 and f(s) satisfies condition A.) and the upper inequality in C).

Proof. This proof follows the proof of Theorem 1 in [4]. Some details
contained in the earlier paper will not be repeated here.

The sequence tk is defined as follows:

ί A ={minί:/(logl/ί) =

Consider the random variables

γ _ X(tk)-X(tk+ι)
Y k -

where k0 is chosen so that tko<S. Because of the concavity of σ2(h), E[YkYJ)<0,
j^k. From this it follows that P{Yk>C, Yj>C}<P{Yk>C}P{Y;>C},
j^k. Thus by the Chung-Erdos Lemma [1], [4], P{Yk>C infinitely often} = l
if and only if ΣP{ Yk > C) = c>o. The same result can be obtained using Slepian's
[7] relationship between the elements of the covariance matrix of a Gaussian
process and the bounds for the random variables of the joint distributions.

We have

Let us write σ\h)=e-2ea°sl'h\ Since σ\h) is concave, σ'(h) will be defined
everywhere by its right hand derivative. Thus f'(s) is everywhere defined
and f'(s)=2g'(s)f(s)-\. Then

. , = exp \ 2g (s)ds)
σ\t,

= exp
ΐs) f{s)

/(log l/ίft+log—*-±—)

The concavity of σ\h) implies that 2g'(s)<\. Hence f'(s)<f(s). By the
argument used in [4] this implies that
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log

for any fi>0 as long as k is sufficiently large. We may as well assume that
k0 is chosen so that k>k0 is large enough. Sincef(s) is monotonic increasing the
exponential term in (5) is bounded above by e1+*i. Therefore

log l/fc+log—&
r tσ \lk—ΐk+1)

^e> + f./(logl/ί*+(l+ε,)logA)

*))

and

- τ-i const.

xexp {-α/(log l/fc
C 2

where α ^ = — — - . The terms of this series are positive and monotonically

decreasing thus its divergence is equivalent to the divergence of the following
integral in which tk is replaced by t(x); where t(x)={min t: /(log l/ί)=log x}.

f°° const.

X exp {-α/(log 1/*(*)+(1+fO/Oog l/ί(*))}ώf. ( 6 )

Making the substitution s=e/σ°gl/tm:> the integral in (6) becomes

T72 exp {-af(f-\lo

Note that

ί
/"1(loβ*)+ci+« ,)logs

/ ( M μ M . ( 8 )
/ J(logs)

Recall that f(s)<ks. This implies that there exists a sequence x Λ ^oo for which

/'(u)

Set ίΛ=^/c^»); from (8) we obtain

Returning to equation (7) we see that the integrand is monotonically decreasing
and when s=sn it exceeds
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c o n s t . 1

If α(l + (l+£!)&)< 1 then for sufficiently large N this integral exceeds ί/sn

along the sequence sn, n>N. Thus the integrand is a monotonic function

h(x) for which lim sup xh(x) > 1. The integral of such an integrand diverges.

Thus P{Yk>C}= oo which is what we set out to prove. The transition from

this fact to the statement of the theorem is simple; the details are given in [4].

Hence the theorem is proved. 0

If we add the condition that f(2s) < 2f(s) then the proof is considerably

simplified since in this case

/(log
<r2(tk-tk+1) ~ /(log l/ί4)

For f(s)<ks> this is bounded and the proof follows easily. The significance of

this condition will be discussed in Section 3.

2. Upper bounds

The upper bounds for the Holder condition in (1) are expressed in terms

of a function ψ which dominates the incremental variance of the process, i.e.

E{(X(t)—X(s))2}<ψ2(\t—s\) where ψ is considered to be continuous and

monotonically increasing. Let ψ(h)=e~ga°el/h^; the following functions will

appear in the sequel:

( 9 )

(10)

ί
ψ (h) Jo u

where

and

p&) = ag'(s)pa(s)-l . (11)

(Note pΛ\s) is everywhere defined by our previous remark.) Furthermore we

assume that the following conditions are satisfied by pΛ(s), for s sufficiently

large:

2-A) pΛ(s) is increasing in s and pa(s) >log s.

2-B) pa(2s)<2pΛ(s).

In proving Theorem 2 we use a version of Fernique's lemma due to the

author [6]. This is

Lemma 1. Let X(t) be a real valued, separable Gaussian process on [0, 1].
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Suppose E((X(t)-X(s))2)<yJr2(\t-s\) and [°°ψ(e-χ2)dx<o°. Let n(p) denote

n2p

y n an integer greater than 1. Then

<4«2 Γ e-a2'2du (12)
Jc^ l o g n

where \\X\\* is the maximum of \X{f)\ on [0,1] and Γ is the maximum of
E{X(t)X(sj}, t, SEΞ[0, 1].

We proceed to Theorem 2.

Theorem 2. Let X(t) be a real valued separable Gaussian Process. Let
ψ and pa be defined as above. Assume \Jr(t)>t1+η for some y>0 and t^ [0, 8] for
some δ>0. Then

flimsup W+»)-*(0l < C , U l
(r{h)pa{log

(where Cx is a positive constant) with the following additional restrictions:

1.) When \<a<2 condition 2-A) holds.
2.) When a=2 conations 2-A) and 2-B) hold.

The constant CΊ can depend on ψ.

Proof. Lemma 1 relates to the maximum of the process on the unit interval.
In order to change the scale we define

Yk(t) = X(ttk+t0)-X(t0) 0<t<L

Then

E{Y(t)Y(s)} <ψ(ttk)ψ(stk) <ψ\th) 0<s,t<l.

From (12) we obtain

(13)

Starting with some positive, small t0 we define the sequence tk by the
equation Ί H ^ ^ Ψ ^ - I ) * where θ<\. For a fixed value of tk we choose the
integer n as follows:
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(where [x] denotes the integral part of x). Obviously n also depends on a. Let
us assume that it is fixed; we can do the problem separately for each a. We
have

Since tk

1+1)<Y(tk)<0k\!r(to) and

log n~pa(log l/tk)>log2 l/tk>(l-6) log k

for some £>0 and k sufficiently large, we see that for an appropriate constant
C the right side of (13) is a term of a convergent series. If we show that

1 fj ψίJ*_W< M (15)

(i.e. that the series is uniformly bounded for all tk) we can use the Borel-Cantelli
lemma to show that

Pflimsup I *(«»+*)-*«.) I < c o n s t , | = 1 .

It is a simple step to pass from here to the desired result (see [4]). Thus our
problem is reduced to showing that (15) is uniformly bounded in the tks. We
write (15) as follows:

0 0 ( flog l//.+2^ log« 1

Σexp - \ g'{s)ds\2><*

where we have made use of (11). Since pa(s) is increasing this sum is dominated
by

V^xoί
log«)J F\ a pa{2"log«+log l/ί*

e χ D ί _ 1
F l α

(using (14)). The sum in (17) is of the form fj 2^V/Λ exp {-2**/α}. The

maximum value of each summand occurs for z=\βp\ substituting into (16)
we obtain

which converges for a<2. When a=2 the situation is not so simple.
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Returning to equation (16) we wish to show the uniform boundedness of
this sum when a=2. For simplicity we denote p2{log 1/ί̂ ) by >̂(log \jtk).
Replacing log n by >̂(log \jtk) increases the sum in (16). Also we replace
log l/ΐk by s. We show that with the additional condition 2-B)

(19)

converges uniformly in s. Equation (19) is bounded above by

1

-1/2Σ — . (20)

For fixed sy let p0 denote the integer for which

(If there is no p0 for which this is true ignore the following step.) We need
only be concerned with s large. By 2-B) p(2s)<2p(s); therefore

2"p{s)
>

2p(2"p(s)+s)-2p(2s)
Thus the sum of (20) from p=l to />=/>0 is dominated by

Σ (2*-2)1/2

For simplicity assume now that po>4 . The sum of (20) from po-\-\ to oo is
bounded above by

Σ p v η < 1 10 N λ 1

(22)

where we have again used (21). Since for j>p0

equation (22) is dominated by

Σ exp {- Σ V-z-(p-pQ-2)2»«-2}
p=>pQ+1 y = i

oo

< Σ
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Thus the series is uniformly bounded in s this completes the proof of the theorem.

It is of interest to note that this theorem could also have been proved in the

a=2 case under the weaker condition that f(2s) <kf(s) for any k as long as f(s)

< Const, s.

3. Discussion of results

Theorem 3, which is stated in the Introduction follows immediately from

Theorems 1 and 2 since it includes as hypotheses the conditions necessary for

each of them. We shall not bother to restate it here.

There are a number of points relating to the results in Theorems 1 and 2

that are worth mentioning. Our goal in studying these results is to hopefully

gain insight into the form that the function φ(h) in equation (1) should take in

order to provide a solution to our problem for all separable, mean continuous,

Gaussian processes with stationary increments. One might conjecture that when

\hσMdu>σ\h)\og2\lh,
Jo u

α h 2/ \ \l/2
—±-J du) . This is probably incorrect since it appears that φ(h)

° u /

will have to be smoother than this function. We shall proceed to attempt to

justify this opinion and at the same time examine the relationship between the

different bounds that appear in the theorems and in [4].

Note that the functions pJXogλjh) l < α < 2 can be written in terms of

^2(log I/A), since

= Λ(log l/A)+(2=«) (A(log
α / J o ψ (h)

^ ^ ' du exists.
o U

We can obtain from (23) that it is possible for lim sup pjpz= °°, α < 2 . Let
Λ-M)

us now assume that ψ2(\t-s\)=E{(X(t)-X(s))2}=σ\\ t-s\). Note that only

σ(e~χ2)dx<ooi i.e. only for α=2

ί
h σ

2 ( u )
— ^ du converge for all those processes that Fernique has

o U

shown to be continuous.

In [4] the lower bound for equation (1) was given as l/^^log I/A), (recall

that σ2(h) = e~2gσ°8l/h:> and we are considering concave σ\h)). The functions

^>Λ(log I/A) are smoothings of this function since
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)ouσ'(u) σ«Qi)

and l/g' (log l/tι)= σ ^ . The best result in [4] relating to the problem con-
uσr(u)

sidered here is that φ(h)=(σ2(h) IIg'(log 1/A))1/2 where l/g'($) is a regularly

varying function with exponent less than 1. When this is the case lim g'(s)pΛ(s)
= l/α, so we can replace for llg'(s) any of the functions pΛ(s).

We see from (11) and the above remarks that l/g'fs) regularly varying

implies that/>Λ'($)->(). However p2(s) can be regularly varying and monotonic

without p2\s) converging to 0 and Theorem 3 holds for regularly varying p2(s)

(exponent less than 1). In fact the conditions f(2s)<2f(s) and/(s) monotone is

equivalent to f(s) being of dominated variation [2], a more relaxed condition than

regular variation. In comparing this paper to [4] we see that both the lower

bound and the upper bound have been smoothed and this is the direction that

improvements should take. Returning to the question of whether I Z\Λ du
Jo u

is the appropriate Holder condition in general (assuming that it is greater than
σ2(h) log2 ί/h). My guess is that it is still not smooth enough.

In Theorem 3 it is required that p2(s)<ks for some constant k. However,
it is possible for pJs) to take on larger values; (the fact that I — — must

J P2(u)

diverge shows what values p2(s) can take.) Note that no upper bounds are
placed on^>α(log I/A), 1 < α < 2 ; therefore we can take for φ(h) in (1) the function
(σ\h)pj}og\jh))iμ, a<2. However, when pΛ(s)>logs a better choice for
φ(h) is given in [4] namely

f*__?ί»L_Λ. (24)
Jo U\/\θg \JU

Nevertheless, ( * - ' - ^ ώ ) is less than (24); in fact it converges for more
VJo u I

processes than does \ σ(e~χ2)dx. (Equation (24) is I σ(e~χ2)dx under
J J ^logl/h

a change of variables.)

As for the smoothness of \ °-^-du itself, the hypothesis that p2(s)>\o%s
Jo U

implies that this function is slowly varying and the hypothesis that σ2(u) is
concave 0<u<h implies that this function is concave. Thus for those pro-
cesses for which (1) is actually obtained, the Hϋlder condition is both concave and
slowly varying.

Our major concern in this paper has been processes for which log s<f2(s)
<ks. In those cases studied in [4] for which fz(s)< log s we obtained
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and in some of these cases C0=C1=y
Another interesting question is the following: Suppose λ/σ2(λ)-»0, is it

true that if σι{h)r^σ2{h) then the two processes have the same Holder condition ?
From Theorem 2 we see that the upper bounds are the same in this case, the
problem for the lower bounds is not clear. The question is answered
affirmatively for the processes considered in Theorem 6 in [4] and one would
also expect it to be true when the uniform Holder condition is being considered.
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