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Introduction

Conner-Floyd proved in their book [1] the following theorem which is a
generalization of the classical Borsuk-Ulam theorem: Let f: S”"—M be a
continuous map of the n-sphere to a differentiable manifold of dimension m, and
T be a fixed point free differentiable involution on S”. Assume that m <z and
f«: H(S"; Z,)— H,(M; Z,)is trivial. 'Then the covering dimension of A(f)=
{yeS*| f(y)=f(Ty)} is at least n-—m.

In response to the questions asked in [1, p. 89], Munkholm [4] showed that
in the above theorem all differentiability hypotheses can be eliminated if M is
assumed to be compact. Furthermore he showed in [5] that S” can be replaced
by a closed manifold which is a mod 2 homology z-sphere if M is the Euclidean
space. In the present paper, we shall show the following theorem which is
more general.

Main Theorem. Let N be a closed topological manifold which is a mod 2
homology n-sphere, and T be a fixed point free involution on N. Let f: N—M be
a continuous map of N to a compact topological m-manifold M (with or without
boundary). Assume that n=m and fy: H,(N; Z,)—H,(M; Z,) is trivial. Then
the covering dimension of A(f)={yeN|f(y)=ATy)} is at least n—m.

Let = denote the cyclic group of order 2 generated by 7. Denote by N,
the orbit space of N, and by N X M? the orbit space of N X M* on which = acts by

T(y, x, «)=(Ty, &, x) (yeN, x, ¥=M). Then N>1§M2 and N,XxXM are
topological manifolds, and N, X M is embedded in N X M? by the diagonal map
d: M—M?* Assuming M is a closed manifold, let 6°EHM(N>,§ M?; Z,) denote
the Poincaré dual of *(w), where we H,,,,(N X M; Z,) is the fundamental class
and 7: N, X MCN?!< M?. Define s: N,,—»N?f M by s(y)=(, (), f(Ty)) (yEN).
Then Conner-Floyd [1] and Munkholm [4] proved their theorems by showing
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s*%(0,) = 0. We also follow this principle (see Lemma 6). However our
method of proving s*(8,)%0 is different from theirs, and is purely homological.

Let N be a sufficiently large dimensional sphere, and T: N—N be the
antipodal map. Assume that M is triangulable. Then Haefliger [2] proved a
formula giving 6, in terms of cohomology classes of M. We shall show that
the formula still holds for our N, T and M, and we shall use the formula to
prove s*(6,)=0.

The method can be also applied to obtain the Borsuk-Ulam type theorem for
a fixed point free homeomorphism of period p on a mod p homology sphere
(p: odd prime), and a theorem including the result in [5] will be proved (see
Theorem 8 in §9).

1. Generalization of Eilenberg-Zilber theorem

Throughout §1-§3, a principal ideal domain R is fixed, and chain complexes
over R are conisdered. Thus, the singular complex of a topological space X
with coefficients in R is denoted by simply S(X)={S,(X)}, and the tensor.
product @ is denoted by simply ®.

Let E be a Hausdorff space on which there is given a fixed point free

involution 7, and such that the reduced homology group H «(E) is trivial. Then
we have the following generalization of Eilenberg-Zilber theorem.

Theorem 1. There exist chain maps
p:S(ExX,xX,)— S(E)RS(X)QS(X,),
P S(E)YRQS(X)RS(X,) = S(Ex X, xX,),

defined for each pair (X,, X,) of topological spaces, and satisfying the following
conditions:
(1) p and p’ are functorial, i.e. for any continuous maps f,: X,—Y, and
f: X,—Y, we have
(1Qfu®fa)op = po(1XfiX fo)s
P o(1Q fu® fu) = (LXfiXfo)or .

(1i) p and p’ are equivariant in the sense that
(T:®@T)op = po(TXT),
P oA(T®T) = (TXT)op

where T: S(X,)QS(X,)—S(X,)RS(X,) is given by T(c,Qc,)=(—1)dtcrdeee;
,®¢,, and TXT: Ex X, X X,—»EXX,xX, by (T xXT)(e, %, x,)=(Te, x,, x,)
(e€E, v, X, x,€ X,).
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(iii) There exist a chain homotopy @ of p’op to the identity and a chain
homotopy @' of pop’ to the identity, which are defined for each pair of topological
spaces and which are functorial and equivariant in the same sense as in (i), (ii).

Proof. The proof is done by the method of acyclic models.

Define a homomorphism p,: Sy(EX X, X X,)— Sy(E)RS(X,)RS,(X,) by
pole, x,, x,)=eQx,Qx, (e E, x,€ X,, x,X,), and assume inductively that a
homomorphism p,: S,(E XX, X X,)—(S(E)RS(X,)®S(X,)), has been defined
for r<<m so that the conditions

l) 8r°pr = Pr—loar ’

i) po(IXfiXfo)e = (18 4@ fa)op, »

i) (Ty®T)op, = p,o(TXT)
are satisfied. Take a set {ei}acp of singular n-simplexes of E such that
{ex, Tyedrcn is a basis of the module S,(E). For each A& A, define a singular
n-simplex dy: A"—>EXA"XA" by d3(z)=(ex(2), 2, 2) (x€A"). It holds that
0n_1 Pr_104(d0)=0 (n>1) and €p,0,(d3)=0 (n=1) for the augmentation €. Since
the reduced complex of S(E)QS(A™)QS(A™) is acyclic, there exists an #-chain
pa(dy) of S(E)RS(A™)RS(A™) such that 0,0,(d}) = ps_10,(dy). The module
SH(Ex X, x X,) is a free module generated by elements of the form (1 X o,Xa,)d}
or (T'X o, X a,)dy, where o;: A"—X, (i=1, 2) is any continuous map. Define
a homomorphism p,: S,(EX X, X X,)—>S(E)QS(X,)®S(X,)). by

Pa((1X 01X 02)d}) = (1Q0uQ@aa)paldy) 5
Pa((TX 0, X 0,)yd3) = (TiQT)1Q 04 @ )pa(dy) -

Then it is easily checked that the conditions i)—iii) are satisfied for r=n. Thus
there exists a chain map p satisfying the conditions (i) and (ii).

Define a homomorphism pg: So(E) Q So(X;)RS(X,)—S(E X X, X X,) by
po(eQx,Qx,)=(e, x,, x,) (e€E, x,€X,, x,&X,), and assume inductively that a
homomorphism p/: (S(E)®RS(X,)QS(X,)), = S, (EX X, x X;) has been defined
for r<<m so that the conditions

i)’ 8,0p} = p}_,°0,,
i) (IXfiXfohepr = pro(1Qfu®fa),
iii)" (TX Thepr = pro(T3QT)

are satisfied. Let i¥< Sy(A*) denote the singular simplex given by the identity,
and consider QRIS (E)QS(A°)X S(AY) with r+4s+t=mn. It holds
that 9,_,p5_,0,(AQ°Q1*)=0 (n>1) and £pgd,(x®°R*)=0 (r=1). Since
the reduced complex of S(EXAXAf) is acyclic, there exists an #-chain
PR ° R 1F)E S,(E X A®* X A?) such that 0, pi(r@7° Q1 )= p;_,04(e; R * R 7¥).
The module (S(E)QRS(X,)®S(X,)). is a free module generated by elements
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of the form (1Q oy ® oyu)(er R ®1*) and (T} Q oy @ o)(er Qi° R 1), where
ot A*—> X, o,: A'> X, are continuous maps. Define a homomorphism py:
(S(EYRS(X))®S(X,))a—SH(EX X, X X,) by

Pi(1Q 03 R0 4)(er R Q1)
= (1 X 0, X 0, )pa(e2R7° X17") ,
P TR0y Ray) (1R Q1)
= (=T X T)(1 X 0, X 71)pu( 1R ° R7") .

Then it is easily checked that the conditions i)’—iii) are satisfied for r=n. Thus
there exists a chain map p’ satisfying the conditions (i) and (ii).

By the similar method we can construct chain homotopies @ and @’ in
(iif). This completes the proof of Theorem 1.

The following is obvious from the proof above.

Corollary. Let E' be a subspace of E which is invariant under T and such
that ﬁ,,(E’):O for g<n. Then p and p' can be taken in such a way that
Pa(S(E'X X, x X;)) CS(E)® S(X,) ® S(X,) and pi(S(E')® S(X,) ® S(X,))
CS(E'x X, X X)) for q=<n.

2. Algebraic lemmas

Given a chain complex C, the module Z(C) of cycles of C and the homology
module H(C) of C are regarded as chain complexes with trivial boundary operator.
Then the inclusion £: Z(C)—C and the projection 7: Z(C)—H(C) are chain
maps.

Let = be a cyclic group of order 2, and T its generator. Let W be a -
free acyclic complex, and define an action of z on the chain complex C*=CQC
by T(c,Qc,)=(—1)%€ 148, Q¢ ¢, c,=C). Consider the diagonal action of =
on WQC? and let W@C2 denote the quotient complex.

For the homomorphisms
Ex: HWQZ(CY) — HW®C?),
ne: HOWQZ(CY) — HOW @H(C))
induced by £ and », we have

Lemma 1. If Cis a free chain complex such that H(C) is free, then £y ong':
H(WQH(CY)—H(W QC?) is well defined and is an isomorphism.

Proof. There exist chain maps »": H(C)—Z(C) and {': C— H(C) such
that nop'=1, {'cf=%. Put {=Eon': H(C)—C. Then {4: H(C)—H(C) is the
identity, and hence { is a chain equivalence. Therefore, by a lemma due to
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Steenrod (see [8], p. 125), 1Q¢*: W(ﬂX)H(C)z—»W@C2 is a chain equivalence,
and we have
Ext H(W@H(C)Z) = HWQC?).

Since ¢4 is the inverse of {, it follows from {4o&«=ny that £,=C{xon4. Since
nxongk=1, 74 is surjective. Thus we have {,=E4onz' which completes the
proof.

Denote by C* the cochain complex dual to a chain complex C. We regard
the module Z(C*) of cocycles of C* and the cohomology module H(C¥*) as cochain
complexes with trivial coboundary operator.

Define an action of = on the cochain complex C*=C*® C* by
T(u,@u,)=(—1)& “1 d°€ 2y, Qu, (u,, u,& C*), and consider the cochain complex
Hom, (W, C*?) consisting of equivariant homomorphisms of W to C*?. The
inclusion £: Z(C*)—C* and the projection »: Z(C*)—H(C*) induces homomor-
phisms

&« HHom, (W, Z(C*)*) — H(Hom, (W, C*?)),
n4: H(Hom, (W, Z(C*)?)) — H(Hom, (W, H(C*)?).

Let p: C*¥—(C?* denote the canonical cochain map defined by
{p(u,@uy), ¢,Qc,> = u(c)u,c,)  (wy, u,=C*, ¢, c,C).
The cochain map dual to T': C*—C? defines an action of = on C**. Then y is
equivariant, and so it induces a homomorphism
ws: HHom, (W, C*?)) — H(Hom, (W, C**)).

Lemma 2. Let C be a free non-negative chain complex such that H(C) is of
finite type and is free. Then £y ony': H(Hom, (W, H(C*)?))—H(Hom,. (W, C*?))
is well defined, and both p* snd Eyong' are isomorphisms.

Proof. There is a free non-negative chain complex C’ of finite type such that
C and C’ are chain equivalent (see [7], p. 246). Let @: C—C’ be a chain
equivalence, and consider the following commutative diagram

H(Hom, (W, H(C"*))) —~ H(Hom, (W, H(C*)))

% %
H(Hon, (¥, Z(C"*))) ——> H(Hom, (T, 2(C*)
E* E*
H(Hom, (W, C'*%)) 2% H(Hom, (W, C*?))
Mok Mox

H(Hom, (W, C"*)) 2% H((Hom, (W, C*¥))
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Since C"* and H(C*’) are free, the argument similar to the proof of Lemma 1
shows that £40n5" in the left side is well defined and is an isomorphism. Since
C’ is of finite type and is free, u: C'**—>C'** is an isomorphism, and so is ux
in the left side. Since @ is a chain equivalence, it follows that gy in the 3-rd
and the 4-th rows are isomorphisms. Obviously @4 in the 1-st row is also an
isomorphism. Thus we obtain the desired result.

By the definitions, H(W Q H(C)?) is the homology group H(z; H(C)?) of
the group = with coefficients in the module H(C)? on which # acts by T(a®b)
=(—1)%82485hRQa (a, b= H(C)), and H(Hom, (W, H(C*)?) is the cohomology
group H(z; H(C*)*) of the group = with coefficients in the module H(C*)?
on which 7 acts by T(a@®RB)=(—1)¥e"*=f BRa (a, B H(C*)).

3. Homology and cohomology of E x X*

Given a topological space Y on which = acts, we denote by Y, the orbit
space. For a topological space X, consider the space EX X? on which = acts
by T(e, x, x')=(Te, x’, x) (e€E, x, x'€X). We write (EX XZ),,=EZ<X2.

For the singular homology group and the singular cohomology group of
E>'< X?, we have

Theorem 2. (i) There exists a functorial isomorphism
e: Hy(r; Hy(X)) ~ Hy(EXX?),
defined for each topological space X such that Hy(X) is free.
(ii) There exists a functorial isomorphism
k: H*(mw; H¥( X)) = H*(E>'<X2) ,
defined for each topological space X such that H.(X) is of finite type and is free.

Proof. (i) The action of z on E x X? makes the singular complex S(E X X?)
a m-complex. Let S(Ex X?/z denote the quotient complex. Since the
projection p: Ex X>>Ex X? is a fibering with discrete fiber, it follows that

P S(ExX?— S(E X X?) induces an isomorphism
S(EX X?)[z = S(EX X?).
Define an action of 7 on S(E)QS(X)? by T(cQ¢c,Qc,)=(—1)iE14E2Ty(c)®

Q¢ (ceS(E), ¢, ,£S(X)). Then it follows that p’ in Theorem 1 induces
a chain equivalence

S(EYRS(XY — S(EX X*)/ .

Therefore an isomorphism
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X: H(S(E)RS(X)) = Hy(Ex X?)

is induced by the chain map p,op’. Since p, and p’ are functorial, so is X.
Since S(E) is a =-free acyclic complex, by Lemma 1 we have

Exony's H(S(E)QH(XY) = H(S(E)®S(X)") .

Obviously &4 and 7, are functorial. Therefore the desired isomorphism « is
given by k=Xof ony'.

(ii) The cochain complex Hom, (S(E), S(X)*) is canonically isomorphic
with the cochain complex (S(E)® S(X)?)*, the above proof of (i) shows that an
isomorphism -

X': H(Hom, (S(E), S(X)*)) = H*(Ei< X?)
is induced by the chain map pyop’. On the other hand, by Lemma 2 we have
poExonzs H(Hom, (S(E), H*(X))) = H(Hom. (S(E), S(X)™)).

Therefore the desired isomorphism « is given by x=2XoEony! with X=X"ou,.
This completes the proof of Theorem 2.

Define a pairing of H*(X)? and H*(X)? to H*(X)? by
(a®B)-(v®8) = (—1)*EP*=Y(a—7)@(8~?9)
(a) 187 ry, 8EI{*(‘)()) M

Since this pairing is equivariant with respect to the action on H*(X)? it gives
rise to a cup product

i H¥(n; HY(X))QH*(w; H*(X)?) > H*(m; H*(X)?).
Similarly, an equivariant pairing of H*(X)? and Hy(X)’ to Hy(X)* defined by

(a®RB)- (aQb) = (—1)*s* st =P (a~a)Q(B~b)
(o, Be H*(X), a, be Hy(X))
gives rise to a cap product
~: H¥(zm; H¥(X))QHy(r; Hyo(X)?) = Hy(n; Ho(X)?) .

Theorem 3. The isomorphisms k in Theorem 2 preserve the cup products
and the cap products, i.e. the following diagrams are commutative.

H*(z; H¥(X))QH*(; H* (X)) —> H*(z; H¥(X)?)
QK K
H*EXX)QH*EX X — HXEXX?),
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H¥(z; H*(X)zi®H*(n; Hy(X)) -2 Hy(w; Hy(X))
kQx K
H*(E2<X2)®H*(EZ<X2) L>1’I,,<(E1>'<Xz).

Proof. For C=S(X) and Z(S(X)), a cup product
—: Hom, (S(E), C**)®@Hom, (S(E), C**) - Hom, (S(E), C**)
and a cap product

~: Hom, (S(E), C*)R(S(E)RC?) — S(E)RC*

are defined similarly to the above, by using of the cup product and the cap
product for cochains and chains. Then it is obvious that the homomorphisms
£« and 74 in the proof of Theorem 2 preserve the cup products and the cap
products. 'Therefore it suffices to prove that the homomorphisms X in the proof
of Theorem 2 preserve the cup products and the cap products.

For any topological space Y, let A: S(Y)—S(Y)* denote the diagonal
approximation (see [7], p. 250). Consider a diagram

ARA? T
S(E)R@S(X) ——> S(Ey®(S(X)")* — (S(E)® S(X)*)*
pl A p’2
S(Ex X?) el S(EX X7y
lPt A lP#Z
S(EXX?) =, S(EX XY,

where 7 is the appropriate chain map shuffling factors. Since A is functorial,
the lower rectangle is commutative. Regard S(E X X?)* and (S(E)QS(X)?)? as
m-complexes by the diagonal action of the actions of S(EX X?) and S(E)Q
S(X)? respectively. Then it follows that the maps in the 1-st and the 2-nd rows
arc equivariant. Furthermore the argument similar to the proof of Theorem 1
shows that there exists a chain homotopy of Acp’ to p?oTo(A®A*) which is
equivariant and functorial. Therefore we have a diagram
To(A®AY)
SEYRS(X) == (S(E)R S(X))
1Ps°P' A l(PPP')Z
S(Ex X?) — > S(Ex X?)

which is commutative up to chain homotopy.
Recall now the definition of cup product (cap product) in terms of A and

cross (slant) product. Then the above diagram yields the desired property.
This completes the proof of Theorem 3.
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4. Steenrod theorem

In §4-§8, we assume that the ground ring R is Z,, the field of integers
mod 2. We assume also that H,(X) is of finite type.

As is well known, a z-free acyclic complex W can be constructed as follows:
For each 1=0, W has one cell ¢; and its transform Te;, and 9(e;)=e;_,+ Te;_,
(:>0). Moreover there is a diagonal approximation dy: W—W QW which is
given by

[i/2]
dy(e;) = ,;0 (ezj®ei—2j+ezj+l® Tei—zj—l) .

Therefore we can determine the structure of Hy(z; Hy(X)?) and H*(n; H*(X)?),
and hence by Theorems 2 and 3 the structure of Hy(EX X?) and Hy(EX X?)

as soon as we know the structure of Hy(X). To state the result, we shall first
prepare some notations.

For an element ac Hy(X), let Q,(a)= Hy(r; Hx(X)?) (1=0) denote the
element represented by the cycle ¢,Qa®acs WQH(X)*. Given an element
as H*(X) a cocycle u,(a)= Hom, (W, H*(X)?) is defined by {u,(a), e p=aQa
(=j), =0 (i%j). Let O,(a)eH*(x; H*(X)?) denote the element respresented
by u(x).

For two elements a, be Hy(X), let O(a, b)e Hy(r; Hy(X)?) denote the
element represented by the cycle e,Qa®be W@H «(X)’. Given two elements

a, B Hy(X), acocycle u(a, 8)Hom, (W, H*(X)’) is defined by <u(a, B), e,>
=a®pB+BRa (j=0), =0 (j+0). Let O(a, B)e H*(x; H*(X)*) denote the
element represented by u(c, 3).

We shall put

Pa) = x(Qi(a)), P(a, b) = x(Q(a, b)),
Pla) = x(0ia)), Pla, B) = x(Q(a, B)).
Obviously we have P(a, b)= P(b, a), P(a, a)= Py(a), P(a, B)=P(B, a) and
P(a, a)=0.
The following theorem is proved easily.

Theorem 4. (i) If {a;|j= J} is an ordered basis of the module H.(X),
then {P(a,), P(a;, a); 120, j, kE J, j>k} is a basis of the module Hy(Ex X?).

Similarly, if {a;|j€ J} is an ordered basis of the module H*(X), then {P(a;),
P(a;, o) |20, j, ke ], j>k} is a basis of the module H*(Ex X?).

(1) For a, B, a’, B'eH*(X) and a, b= Hy(X), we have
P(a)y—PB) = P, (a~B);

Pla~a’, a~B") if i=0,
P~ VP I’ "N
(a)=Pe’s B) { 0 if i>0;
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P(a, By~P(a’, ') = P(a~a’, B~~B')+Pla—-p’, f~a’),
[ Pfama) iz

P~Pl={ | e

P(a, B)~Pya) = 0;

P(cx/\a, ar\b) 1f]=0,

0 if j>0;

P(a, B)~P(a, b) = P(a~a, B~b)+P(B~a, a~b),

P,(@)~P(a, =]

where it is to be understood that a ~a=0 if deg @ >dega.

(iii) If {a;} and {a;} are dual bases, then so are {P(a;), P(a;, a)} and
{Pda,), P(a;, ag)}-

Define a continuous map d: Ex X— EX X’ by d(y, x)=(y, %, x) (yEE,
xcX). Then d induces a homomorphism

d*: H¥Ex X?*) - H*(E,x X).
We have the following theorem due to Steenrod (see [8], p. 103).
Theorem 5. For a= HX) we have

d*Py(at) = § w* X Sq?~*at ,

where w*& H*(E,) is the generator, and Sq': H*(X)—H"(X) is the squaring
operation.

Proof. Let 1: S(E)®S(X)—S(X)? be a functorial equivariant chain map
defined for each topological space X, and ¢: S(EXX)— S(E)QS(X) be a
chain equivalence in the Eilenberg-Zilber theorem. Let u& S(X)* be a cocycle
representing . Then it follows from the definition of S¢’ that p*A*u(u@u)

e(S(E)® S(X))* is an equivariant cocycle representing é w* X S¢?*a e
k=0

H*(E, x X), where u: S(X)**—S(X)** is the canonical cochain map. Consider
the composition of chain maps

/ d,
S(E)RS(X) 2 S(Ex X) — S(Ex X?)
P E®1
— S(E)YRS(X) — S(X)’,
where @’ is an inverse of @ and € is the augmentation. Since each map is
functorial and equivariant, we can take the composition as A. It is easily
seen that pHE® 1)y (v X u)e S(E X X*)* is an equivariant cocycle representing
Py(a). Therefore we have the desired result.
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Corollary. For ac H%X) we have

d*Pa) = ﬁ okt X Sq? k.

k=0

Proof. Since P,a)=P,(1)~Py(a) by Theorem 4, we have d*P;(a)=
d*Py(1)—d*P(a). Let P be a single point, and consider the commutative
diagram

d*
H*(z; H¥(PY) ——> H¥EX P?) ——> H*(E, x P)

*

H*(w; H¥(X)) ——> H¥(EX X?) ——> H*(E.x X),

where the vertical maps are induced by the map X—P. Then it follows that
d*P(1)=w*X1. Therefore the corollary follows from the theorem.

5. Homology of N XxX?

Let Y be a topological space, and consider the suspension SY of Y. We
regard SY as the quotient space of Y X [0, 1], and identify Y with the subspace
Y x1/2 of SY. If T is an involution on Y, it is extended to an involution 7"
on SY by putting

T'(y,9)= (Y(9), 1-5)  (y€Y,0=s=1).

If T has no fixed point, so does T".

Let N be a compact Hausdorff space having the mod 2 homology of the 7-
sphere, and suppose that there is given on /V an involution without fixed points.
Define now, for each integer i =0, a compact Hausdorff space N* by

N°=N, N‘=SN* (i=1),

and let N= denote the inductive limit of the sequence NCN'C---CNiC-....
Then, by the fact stated above, there exists an involution 7': N*—N~ without
fixed points such that T(N*)=N? (=0) and T | N is the given involution. More-
over, since qu(N‘)zﬁq_i(N)zo (i>q—n), we have ﬁq(N‘”)zlim ﬁq(N"):0
for any g. Thus N has the properties assumed for E. -

Assuming next that X is an arcwise connected topological space, we shall
consider the space N N1>1<X ? and its subspace N X X2

Theorem 6. The homomorphism iy: H(N X X*)—H(N~xX?) induced
by the inclusion is an isomorphism if k<n. -

Proof. The projection N= X X*->N to the first factor defines a fibration
p: N> x X*—>N7 with fiber X?, and we have p™'(IN.)=N*xX? for each i.
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Consider the Serre spectral sequence E for the relative fibration p: (IV ”i<X 2
Nx X*—>(Ny, N;). Then we have
Ejq = HyN3, No; {Hy(X7)),
and E* is the graded module associated to some filtration of Hy(N ""1>!<X Y X X3).
By the properties of homology, it holds that
H (N, N5 {H((X?)}) == H,(CN™, N¥7%, Hy(X7))
= H, (N7 H(X?)) = H,_(N)QH (X"
{ H, (X?) if p—i=n,
~lo if p—i%n,

where i=1 and CN*™" denote the cone over N*™*. Therefore the homomorphism
H (N Ny {Hy(X?)})—=H p(NE, Ny {Hy(X?)}) is injective if p—i=4=n—1, and is
surjective if p—i=+n. Hence H,(N{, N.; {H,(X?)})=H N7, No; {H (X?)})
if p—i<n—1. In particular, H,(N,, No; {H(X})—HNZ, Na; {H(X?)})
is surjective if p=<n, and so we have
E2,—0  (p=n)

The usual technique in spectral sequence proves now that H (N~ X X? N X X?)
=0 for k<n. Thus iy: H(NXX*)—H/(N~x X?) is bijective if k<n—1, and
is surjective if k=n. - *

We shall next prove that iy: H,(NXX?*)—H,(N=xX?) is injective.

Since H,,,(N.)=0, the homomorphism H,  (NJ)—>H,. (N, N,) is
injective. On the other hand, Z,~H,, (Ni, N.)—H,., (N3, N.) is surjective.
Therefore we have H,, ,(N7)=H, (N7, N,).

Consider the Serre spectral sequence 'E of the fibration p: N* X X*—>N7.

Then we have 'E2 ;=H ,(N7; {H,(X?)}), and 'E> is the graded module associated
with some filtration of Hy(N=x X?). Since Hy (N~ X X?)=Hy(N7; {H«(X?)})

by Theorem 2, the usual technique in spectral sequence proves that 'EZ .="E.
Consider now the commutative diagram
Hyy (N7 X X7) > "B 0=H,(N7)

=

Hﬂ+1(Nmi<X2’ NX‘XZ)ZEVZHLOZHnH(N:r N,).

Then it follows that the map in the left is surjective. Therefore iy: H, (N X X?)
—H,(N=x X?) is injective. 'This completes the proof of Theorem 6. "

Lemma 3. Let i<n and ac Hy(X). Then Pya) is in the image of the
homomorphism iy: Hy (N X X*)—H (N> x X?).
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Proof. Since i<n, we have H(N?7, N,; {H«(X?*)})=0. Hence the homo-
morphism H(N.; {H«(X?)})—>H(Nz; {H«(X?}) is surjective. This shows
that Q,(a) is represented by a cycle of S(N)®S(X)%. Since H,(N)=0 (i<n)
and T(N)=N, it follows from Corollary to Theorem 1 that P,(a) is represented
by a cycle of S(NxX?). Therefore we get the desired result.

6. The element 4

Let N be a closed topological manifold having the mod 2 homology of the
n-sphere, and let M be a connected closed topological manifold of dimension
m. Suppose that there is given on N an involution without fixed points. Then
N i(M ? is a connected closed topological manifold of dimension n+2m. Let

€H, (M) and e H,,, (N X M?) denote the mod 2 fundamental class of M
and N X M? respectively.
By Lemma 3, P,(u)E H, 1 2,(N ™ X M?) is in the image of the homomorphism

Ty Hypo(IN X M*N—H, (N~ X M?). Therefore we have

P,(p)=ix(N\) .

Define a continuous map d,: NXM— N X M? by d(y, x)=(y, %, x)(yEN,
x€M). Then d, induces a homomorphism dy: Hy(N X M)— Hy(N X M?).
Define )

0, H™(N x M?)
to be the Poincaré dual of dyy(v,X p), where v, H,(N,) is the generator.
We have
Go~\ = dose(va X 1) .

Assume now that m<n. Since i*: H¥N =X M*)=~H*N x M?) for k<n

by Theorem 6, there exists a unique element 6 H™(N~ X M?) such that
*0)=106,.

For the homomorphism dy: Hy (N X M)—Hy(N = x M?) induced by the
‘diagonal’ map, we have "

dx(tx(va) X 1) = O~Py(p) -

In fact,

d*(l*(ll,,) X [L) = d*i*(ll” X [1/)
= 4ok (Va X p) = i5(6o~N)
= 1, (1¥(0)~N) = 0~ix(N)
— 0~Py(u).
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Let U;e H{(M) denote the Wu class, i.e. the element defined by
UiNp = S¢*(u) s
where S¢'*: H,(M)—H,,_ (M) is the transpose of S¢': H™ *(M)—H™(M).
Theorem 7. If m=n, we have

[m/2]

0= ;0 Pm—2i(U¢')+8 ’
where 8 is a linear combination of elements of the type P(a, B).
Proof. For any e« H M) with 2g=m=>=gq, we have
<Pn+m—zq(a): d*(z*(”n) X ,u)>
= Ppim_2(); O~Py(p)>
= <Pn+m—2q(a)v0y Pn(l‘f)>

= <9; Pn+m—7q(a)APn(PJ)>
=0, Py_(d~p) (by (ii) of Theorem 4).

We have also

CPrimza(@); Ai(ix(va) X )
= {d*Pypy_sq(@), P*(vu) X 1
= (B ™ X g (@), i) X )

- (by Corollary of Theorem 5)

= (" X 8¢" ), tx(va) X p)
= {8¢" " (a), wy =<a, Up_g~w
= Up-o a~p
— {ﬁ’Pm_Zi(Ui), Pom(@~n)>  (by (ii) of Theorem 4).

Therefore we get the desired result by (iii) of Theorem 4.

7. Proof of the main theorem

In this section we shall prove the main theorem.
For a continuous map f: N— M, a continuous s: N,—N X M? can be
defined by b

()=, [ f(Ty)  (yEN).
For the homomorphism s*: H™(N x M?*)—H™(N,), we have

Lemmad. If m=<n and fy: H(N)—>H,M) is trivial, it holds that
§*%(6,) 0.
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Proof. We have a commutative diagram

ok

H™(N*x M?*) —— H™(N x M?)

loxry . |
H™(N"x N*) —— H"(N,),

where k: N,—->N=~xXN? is given by k(y)=(y, y, Ty) (yEN).

Theorem 7 we have

$*(0) = s*1%(0) = k*(1Xf*)*(6)
[m/2]
= K (IX )2 P Ui)+3) -
From this and the assumption it follows that
$%(00) = k*(Pu(1)) -
If P is a single point and g: N—P is the map, the diagram

*
He(N7) Lo BN P

LS

H™(N,) <—— H™(N=xN?

is commutative. Therefore we have
k*(Pn(1)) = k¥ p*(0™) = 1*(™)#0,

which completes the proof of Lemma 4.
For a continuous map f: N—M, put

A(f) ={yeNIf(y) =ATy)} .
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Therefore, by

Lemma 5. If s%(0,)=0, then the covering dimension of A(f) is at least

n—m.

Proof. By the Thom isomorphism, we have

HO(N X M?) == H**(N X M?)?, (N X M*P—A(N x M?)

where A: N X M*—(N x M?)*is the diagonal map. Let yeH""**((N x M?)?,

(N X M?y—A(N x M?)) be the generator, and put

71=71(N§M2)2,

¥y = 7| d(N.x MY (N x M?, N x M*—d,(N,x M)).
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Write B(f) for the image of A(f) under the projection N—N,. Then the
following commutative diagram holds:

H,..(d(N.x M) LN H,, (N X M)
2 . j\vl
H™(N x M, N x M*~d(N, X M) L H(N x M)
s* - s*
H™(N, N.—B(f)) BEAEN H™(N,),

where j are the inclusion maps, and \ denotes the slant product (see [7], p. 351).
Since \v, is the inverse of the Poincaré duality isomorphism, the image of
the generator of H,,,,(dy(N.X M)) under the composition of jx and \v, is
0,. Therefore Lemma 4 implies H"‘(N,,, N.—B(f))+0. Since this shows

H, (N, N.—B(f))=*0, it follows that the Cech cohomology group H"™ "(B(f))
is not zero (see Theorem 17 in p. 296, Corollary 8 in p. 334 and Corollary 9 in
p- 341 of [7]). Therefore dim (B(f))=n—m, and hence dim (4(f))=n—m.
This complestes the proof of Lemma 5.

We are now ready for proving the main theorem.

Proof of Main Theorem. By Lemma 4 and Lemma 5, we have the main
theorem for a connected closed topological manifold M. From this the result
for any compact manifold M is obtained easily (see [4]).

8. Corollaries of the main theorem
The following corollary is obtained immediately from the main theorem.

Corollary 1. Let N, T and M be the same as in the main theorem, and T'
be a fixed point free involution on M.

(1) If n>m, there exists no continuous map f: N—M equivariant with T
and T'.

(i) If n=m and f: N—M is a continuous map equivariant with T and T,
then fy: H,(N)—H,(M) is not trivial.

The following corollaries are obtained by the same way as in [1], p. 89.

Corollary 2. Let N be a closed topological manifold which is a mod 2 homology
n-sphere. Then any pair of fixed point free involution T, and T, on N have a
co-incidence.

Corollary 3. If G is a group acting freely on a closed topological manifold
N having the mod 2 homology of the n-sphere. Then any element of G order 2
lies in the center of G.
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RemMaRk. This corollary was first proved by Milnor [3] in a different
method.

9. The corresponding theorem for Z,-actions

The main theorem has the following corresponding result for Z,-actions
on mod p homology spheres, where p is an odd prime.

Theorem 8. Let N be a closed topological manifold which is a mod p homology
n-sphere, and T: N— N be a continuous map of period p without fixed points,
where p is an odd prime. Let f: N— M be a continuous map of N to a compact
orientable topological manifold of dimension m, where n=>(p—1)m. Then the
covering dimension of

A(f) = {yEN () =f(Ty) = - = [T*7y)}
is at least n—(p— 1)m.

ReMARK. Munkholm [5] proved this theorem under a hypotheses that f is
a ‘nice’ map.

Theorem 8 is proved in the similar way to the proof of the main theorem.
We shall give outlines of the proof in the following and leave details to the
reader. '

Let E be a Hausdorff space such that ﬁ*(E)=0, and T: E—E be a con-
tinuous map of period p without fixed points. Let = denote the cyclic group
of order p whose generator is 7. Then there exist functorial isomorphisms

r: Hy(w; H(X)?) = Hy(EX X?),

k: H¥(z; H¥(X)?) = H¥(Ex X?),
defined for each topological space X such that Hy(X) is free and of finite type
(see Theorem 2), and « preserve the cup products and the cap products (see

Theorem 3). In virtue of these results, the elements P,(a), P(a,, -, a,)E
H(ExX?; Z,) can be defined for a, a,, -+, a,€ Hy(X; Z,), and the elements

Pa), P(a,, -, aa)eH*(E X X?; Z,) can be defined for a, a,, -, a,€

H*(X; Z,). As for these, the theorem similar to Theorem 4 holds. Let
wte H¥E,; Z,) be the canonical generator, and d*: H¥(ExX?; Z,)—

H*(E,xX; Z,) denote the homomorphism induced by the ‘diagonal’ map
d: ExX—ExX?. Then, forae HX; Z,) we have

d*PO(a) = ¢, Z (__ 1)i(w(p-1)(q-2i) X (Pi(a)_w(ﬁ—l)(q—zi)—l Xﬁd)l(a)) ,

where (¢ is the p-th reduced power, @ is the Bockstein homomorphism, and
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cq=(—1)"* or (— 1)@ /% (p—1)/2)! according as ¢ is even or odd (see Theorem
5).

Put N°=N, and define N* (i=1, 2, ---) inductively to be the join of N*~*
and S'={z&C||z|=1}. We define also N*7* (=1, 2, ---) to be a subspace
of N consisting of all sy (1—s)e**¥=/#, where 0<s=<1and k=0, 1, ---,p—1.
Let N~ be the limit space of the sequence NCN'C N*cC . There exists
a continuous map T: N*—N= of period p without fixed points such that
T(N‘)c N, (1=0,1,2,..-) and T|N is the given map T: N—N. In fact, such
a map T is defined by

T (sy@(1—5)e 1) = §(T,_,3)@(1—s)ere V=it

where T=T|N% and s, t<[0, 1]. It follows that N~ has the properties assumed
for E, and that 7,: H(NX X?; ZP)—>H,,(N°°1<XP; Z,) 1s an isomorphism if
k=n (see Theorem 6).

Let dox: Hpipy(NeXM; Z)—H,,(NXM?; Z,) be the homomorphism
induced by the ‘diagonal’ map, and , H* “™(N X M?*; Z,) be the Poincaré¢
dual of dyx(\), where n&H,,, (N.XxM; Z,) is the fundamental class. If
(p—1)m=mn, there exists a unique c H* """ (N X M?; Z,) such that | N X M #
=6,. Similarly to Theorem 7, we have b

0 = (2 (=Y Pesiim-2sn(U)) 8

where & is a linear combination of elements of the type P(a,, :--, a,), and
U,csH*%?*>(M; Z,) is the “Wu class’ defined in terms of /.
Consider now a continuous map s: N,—>NXM? defined by s(y)=(y, f(¥),

A(Ty), -, f(T?7'y)) (y=N), and proceed as in §7. Then we see that s*(6,)=0
and hence dim A(f)=Zn—(p—1)m.
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