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One of the authors had defined a regular additive category and studied some
structures of it in [15]. We shall give, in this note, several applications of [15],
Theorem 2.

In the first section, we take an injective module M over a ring R and consider
the full sub-category C(M) of the category of right R-modules N, whose object
consists of all direct summands of any product of M. By ¥ we denote the
(Jacobson) radical of C(M), (see the definition in [15]). Then we shall show
in Theorem 1 that C(M)/J is a spectral C,-category with generator. In this
note we make great use of this theorem.

Especially, we study, in the section 2, the direct decomposition of
injective module in the category A=/, where A is the full sub-category of all
injective modules in M. Following to [11], we shall give a condition that U is
completely reducible, and give general type of decompositions of injective modules
(Theorem 6). Furthermore, we shall give a different proof of [4], Theorem 6.5
by making use of some structure of 2.

In the sections 3 and 4 we shall study the Krull-Remak-Schmidt-Azumaya’s
theorem for R-modules. In those sections, we take the full sub-category U’ of
M whose objects are coproducts of a given family {M,} of completely in-
decomposable modules. Let 3’ be the ideal of 21" whose morphisms are all roots-
elements, (see the definition in [1]), then we shall show in Theorem 7 that /Y
is a completely reducible C;-abelian category. We prove Azumaya’s theorem as
a collorary of Theorem 7. Furthermore, we shall give a condition that J is the
radical of ¥, from which we study further properties of direct decomposition of
modules in Theorem 9.

In the last section, we shall give some remarks to generalize the above results
to a case of a C;-abelian category with generator.

We always assume, in this paper, that a ring R has the identity element and all
R-modules are unitary (right) R-modules. We make use of terminologies con-
cerning with category in [12].

The authors would like to express their thanks to Prof. H. Tominaga to
communicate the paper of Patterson [14] to them.
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1. Categories of injective modules

First we recall the definitions given in [15]. Let 2 be an additive category.
A is called regular if the endomorphism ring [4, 4] of any object 4 in U is
regular in the sense of Von Neumann and U is called spectral if 2 is abelian
and every morphism splits.

In this paper, except the last section, we always consider a sub-category
A of the category My of right modules over a ring R and its quotient category
with respect to an ideal in 2, (see the definition of ideals of 2 in [15]).

Let R be a ring with identity and M an injective right R-module. By
C(M) we denote the full sub-category in M, whose object consists of all direct
summands of every product IIM of M. It is clear that C(M) is an additive
category with finite coproduct and every object in C(M) is an injective module in
Me. It is well known that there exists an injective cogenerator 4 in My, then
C(A) means the full sub-category of all injective modules in My, since every

injective module Q is a direct summand of II A, A~A. Furthermore,
fELQ, 4]

if we take a self-injective regular ring 7 instead of M, then C(T') coincides with
the spectral category in [7], Satz 2.2. We shall generalize this theorem as
the next theorem, which is a first application of [15], Theorem 2.

We shall make use of the notion of Jacobson radical in an additive category
A, defined in [15] and denote it by J or J(A). By E(K) we denote an injective
hull of a right R-module K and by [N, N']; we denote the set of R-homomrphisms
of N to N’ for any objects N, N’ in M.

Theorem 1. Let M be an injective right R-module and C(M) an additive
category defined above. Then the quotient category C(M)|I with respect to the
Jacobson radical  is a spectral C,-category with generator.”

Proof. Let N be an object in C(M), and Ry=[N, N]r with radical J.
Then it is known that Ry/Jy is a regular ring in the sense of Von Neumann
and every idempotent in R, /Jy is lifted to Ry (see [3], §5 or [16]). Hence,
C(M)/3 is a regular category with finite coproduct. Let & be an idempotent in
Ry/Jn, then we may assume that e is also idempotent in R,. Hence,
1y=e+(1—e)and e_| (1—e). Furthermore, eN is a direct summand of N and
hence, eN and (1—e)N are objects in C(M). Since 1y=&+(1—e) and
e (I—e) in Ry/JIy, (1—e) N is the kernel of 2. Hence, C(M)/ is a spectral
category from [15], Theorem 2. We shall show that C(M)/¥ has any coproduct.
Let {4,},c; be any family of objects in C(M). Then 4,<® ;I M and hence,
N O4<HD(BNM)C I M in M. Let BE ©A,)=E be an injective

I

1) Added in proof. It is obtained substantially in [19].
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hull of 3 P4, in II M. Then E is an object in C(M)/J. Let N be any object
I J

in C(M)/ and f; any morphism in [N, 4,] in C(M)/J, where f; is in [N, A4].
Then there exists a morphism f in My such that

A;—>Z} ?DA,» —Z—:E
N lr 7 (1)
N *,

is commutative. Since N is injective, there exists g&[E, N]p such that gi=f.
We shall show that g is unique in C(M)/J. We note that every morphisms in
the diagram (1) preserve the additiveness and that if g'i=f=gi for some
g'E[E, N]g, then (g—g’)i=0, and hence g—g'e J([E, N]z) since ker (g—g’)
231 P4, and > PA; is essential in E, (see [3], §5). Therefore, in order to
show the uniqueness of g, we may assume that all f; are in J([4;, N]z), which
means that ker f; is essential in 4;. Hence, >} @ Kerf; is also essential in
SYPA;. Since gi=f, ker g2>) P Kerf;. Therefore g=J([E, N]g). Conver-
sely, let g be in [E, N]g, then put f,=g|A4;. If g=0 in C(M)/J, then ker g
is essential in E and hence, ker f;=ker g A4; is essential in 4;. It is clear that
those f; induce g by the above method. Hence, E is a coproduct of {4,} in
C(M)[Y. Since C(M)/¥ is abelian, it is cocomplete. Furthermore, C(M)/J
is spectral and hence, every colimit is exact preserve, since every morphism
splits. Hence, C(M)/J is a C,-abelian category. Finally, we shall show that
C(M)/I has a generator. Let & be a right ideal in R and put Eg=E(R/R).
Let F be the sub-set of right ideals & such that Ege C(M)/J and U=E(X] PEg)
€ C(M)/J. Let T be a non zero object in C(M)/¥. then T2OtR=+0 for some
te T in Me. Since T is injective, there exists an R-monomorphism f’ of Eg to
T, where &=(0: £),. Hence, there exists f in [U, T'|p such that f|Eg=f".
Since f'&J,fEI([U, T1g). Therefore, U is a generator in C(M)/3J.

ReMARK 1. We note from the proof that the coproduct of {4;} in C(M)/Y
is equal to E(3) ©A4;).

Corollary 1. Let M be an injective right R-module with singular submodule
Z(M)=0. Then C(M) is a C,-spectral full sub-category in Wg. Furthermore,
M is a generator in C(M) and the kernel and image of every morphisms in C(M)
conicide with them in Mg,

Proof. Since Z(M)=0, Z(N)=0 for every object N in C(M). Hence,
the radical § of C(M) is equal ot zero, and C(M) is a C,-spectral category form
Theorem 1. It is clear that M is a cogenerator in C(M) and hence, M is a
generator, since C(M) is spectral. Let f be any R-homomorphism of N to N’
(N, N'eC(M)). Then there exists an idempotent ¢ in [N, N]g such that f=xe
and x€[N, N']z. We know from the proof of [15], Theorem 2 that ker f=eN
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in M. However eN is an object in C(M) and hence, ker f in My is equal to ker f
in C(M). Similary we have the same result for im f.

Especially, if we replace M in Corollary 1 by a self-injcetive regular ring
R, then Z(R)=0, and hence this corollary coincides with [7], Satz 2.2.

We shall give another application of Theorem 1 which gives a different
approach of [3], Corollary 9 in p. 62.

Corollary 2. Let N be a right R-module with Z(N)=0. Then for any
injective sub-modules Q,, Q, in N, O,NQ, and Q,+Q, are injective. Let f be an
R-homomorphism of Q, to an R-module such that Z(f(Q,))=0, then im f and ker f
are injective.

Proof. Put E=E(N) and E'=E(f(Q,)), then Z(E)=Z(E")=0. If we take
M=E®@E’, then Q,’s are objects in C(M). It is clear that O, N Q, and Q0,4 0,
are the kernel and image of some morphisms in C(M), respecitvely. Hence, they
are injective from Corollary 1. The last statement is also clear.

Lemma 1. Let A be a full sub-category of M. If A contains a generator
(resp. cogenerator) in WMy, then every monomorphism (resp. epimorphism) in A is
mono-(resp. epi-) morphic in M.

Proof. Let U be a generator in M contained in 2, and f: 4 — B mono-
morphic in A. We assume that ker f£0 in IMM;. Then there exists g40 in
[U, ker f]g and fig=0, where ¢ is the inclusion of ker f into A. However,
ige[U, Aly and hence, ig=0, which is a contradiction.

We note that if a ring R is quasi-Frobeniusean, then R is a self-injective,
generator and cogenerator (or see example 1 in [13]).

Theorem 2. Let M be an injective generator and cogenerator in Mg, Then
C(M) is an abelian category if and only if R is an artinian semi-simple ring.

Proof. We assume that C(M) is abelian. First, we shall show for any
morphism f: N—N' in C(M) that ker f in C(M) is equal to ker fin M. Let

f+N £ im f-> N’ be a decomosition in C(M) with f* epimorphic and 7 mono-
morphic. Since f’ (resp. 7) is epi-(resp. mono-) morhic in M, by Lemma 1,
f=if" is also a decomposition of fin M. Therefore, im fis also the image
of fin M. Itisclear that ker fin A is contained in ker fin Mp. Since every
object in C(M) is injective in M, N=Kker fON" in C(M) and M. Furthermore,
SfIN"is isomorphic to im f, hence ker fin C(M)=ker fin M. Since M is a coge-

nerator in My, we have an exact sequence 0 —>A4— I M LM for any 4
1 14

in Mg. Since fe, ker f=A4 is an object in C(M) and hence, 4 is injective.
Therefore, R is an artinian semi-simple ring. The converse is clear.
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2. Completely reducible category of injective modules

In this section we shall study a completely reducibility of C(M)/J for any
injective module M.

Lemma 2. Let B be a full sub-category of WMy. Then any finite coproduct
in BIJ is lifted from a coproduct in My, and every finite coproduct in M of objects
in B is reduced to a coproduct in B|J, where I is the radical of B.

Proof. If N=N,BN, in My, for objects in B, then 1,y=e,+}¢,, e=e; and
e, | e,, Hence, 1y=¢,+2, in B/F and NN, in B/F. Conversely, we
assume N=N,PN, in B/J. From the definition of B/F, there exist R-homo-
morphisms 7, p such that pi=1,, (mod Jy,) and ¢ is the inclusion of N, to N
and p is the projection of N to N,, where i€ [N,, N]r and p [N, N,]g. Since
I is the radical, pi=a« is isomorphic in Mz. Let N, be a sub-object of N
via ta”’, then N=N,Pker p in Mp. It is clear from the first argument that
N=N,P®N, in B/ is reduced from N=N,Pker p in My and ker p~N, in M.

Let T be an R-module. We call T a completely (directly) indecomposable
module if R;/J; is a division ring, where Rr=[T, T and J; is its radical,
(cf. the condition (*) in [1]). It is clear that T is directely indecomposable in
this case.

Proposition 3. Let M be an injective module in My. An object N in
C(M)[ is minimal if and only if N is completely indecomposable in MM .

Proof. Since N is injective, “‘only if”’ part is clear. The converse is also
clear from Lemma 2, since C(M)/J is spectral.

Proposition 4. Let R be a left perfect ring® Then C(M)|I is a com-
pletely reducible abelian C,-category for any injective module M.

Proof. Let N be any non-zero object in C(M)/F. Then N has the
non-zero socle S(N) by [2], Theorem P, say S(N)=>_ @l,, I,’s are minimal
modules. Since N is injective and R is left perfect, N=EX ®T,). Put
E,=E(l;), then E; is completely indecomposable. Hence, N is a coproduct
of minimal objects E; by Proposition 3 and Remark 1.

Next, we shall consider a condition under which A=/ is completely
reducible, where 9 is the full sub-category of all injective modules in M. The
essential part in the following argument is due to [11], Remark 2 in p. 516.
However, we shall give a proof for the sake of completeness.

DeriNiTION Let & be a right idealin R, R is called reducible it =R, N R,

2) See the definition in [2]



328 M. Harapa AND Y. Sar

for some right ideals R; in Rand R,;+ 8 (1=1, 2). If K is not reducible, then K is
called irreducible.

Lemma 3 [11]. Let N be as above. Then Eg is completely reducible in A
for every right ideal & if and only if

8 =R NR, and R, is irreducible and R,E=R ~ +++eevvevveeeee (%)

Proof. We assume that Eg is completely reducible and Eq=F ,DE, in ¥,
where E, is minimal in 9. Then we may assume from Lemma 2 that
Eq=E @E, in M. Since E, is directly indecomposable, E,;=FEg and R is
irreducible by [11], Theorem 2.4. Let p,, p, be projections of Eg to E, and E,,
respectively. We put ;=ker (p;|R/R). Then =& NK, and ®,’s are not
equal to R, since R/R is essential in Eg. Furthermore, R/®,~p,(R/R)<E, and
hence, &, is irreducible by [11], Theorem 2.4. If =&,, p, is monomor-
phic over R/R in M, and hence, p, is a monomorphism of Eg to Eg which is
a contradiction. Thus, we have the condition (¥). If the condition (*) is
satisfied, then Eg has a minimal direct summand by Proposition 3 and [11],
Theorems 2.3 and 2.4. Now let S(Eg) be the socle of Eg in %, (since A is a C,-
category, S(Eg) exists), then Eq=S(E,)@E’. It is clear that E’ contains some
Egq if E'+0. Hence, Eg=S(Eg).

Theorem 5. Let N be as in Lemma 3. Then N is completely reducible if and
only if the condition (%) is satisfied for every right ideal & in R.>
Proof. We know from the proof of Theorem 1 that U=3] @QEg is a

generator in . Hence, % is completely reducible if and only if every Eg is
completely reducible, since 2 is a C,-category,

Corollary 1. If N is completely reducible, then so is C(M)|J for every

injective module M.

Proof. Every direct summand in % of an object in C(M)/J is an object in
CM)/3-

Corollary 2 ([11]). Let R be a right noetherian, then every injective modules
1s a directsum of completely indecomposable modules.

Proof. It is clear that R satisfies the condition (*) if R is right noetherian.
Let O be an injective module, then Q is a coproduct of minimal object Q, in

C(Q)/¥. Hence QzE(2 ®0,)inA/I. Since Yis the radical, Q~E(X $0,)

in Mg. Furthermore, >} PQ, is injective, since R is right noetherian.

Therefore, O=>)@Q, and Q, is completely indecomposable from Pro-
position 3.

3) Added in proof. It is obtained in [19].
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ReEMARK 2. The category C(M)/J is a cocomplete C,-abelian category
with generator for any injective modules M by Theorem 1. If M is an essential
extension of a sub-module which is a directsum of indecomposable injective sub-
modules, M is completely reducible in C(M)/J by Proposition 3 and Remark 1.
In this case, since C(M)/ is locally small, we can apply results in completely
reducible modules in My to M in C(M)/J, which we shall use freely in the

following.

DrrFINITION. An R-module M is called wuniform if M,NM,+0 for any
non zero sub-modules M,, M, in M. We consider sub-modules N which is a

directsum of unifrom sub-modules M, over an index I; N=> M, We
178

define dim M=max card [ if it exists.
N

Theorem 6. Let E be an injective module in M. Then E has dim E and is
a directsum of sub-modules E, and E, such that E, is a minimal module with dim E
=dim E, and dim E,=0, Furthermore, this decomposition is unique up to iso-

morphism.

Proof. We note that an injective module Q is unifrom if and only if Q is
directly indecomposable. First we consider every modules in C(E)/J or in
A. It is clear that dim E=0 if and only if E contains no minimal objects in
C(E)[¥. Assume dim E=0, then E has the non zero socle S(E) in C(E)/J, say
S(E):E(E @E,) (=2PE, in C(E)/I). Hence, E=S(E)®E, and

dim E,=0. Let N be a submodule such that N= > @Ej. where Ej is

peT

directly indecomposable, then E(N) is contained in S(E) in C(M)/¥. Hence,
card J<card I. Therefore, dim S(E)=dim E. Next we assume E=E ,DE,
=E,®E,’ such that dim E,=dim E,'=dim E and dim E,=dim E,'=0. It is
clear that E,=FE,'=S(E) and E,~E," in C(M)/J and hence, E,~E," and
E,~E,’ in M.

Corollary 1. Let N be an R-module. Then N has the dimension and N is
an essential extension of N,@N,, where dim N,=0 and N, contains a sub-module
T such that T= Y\ PT,, T, is unifrom and card I=dim N. If N is a quasi-

a1

injective and N;'s are closed in N*, then this decomposition is unique up to isomorphism.

Proof. Put E=E(N). Then E=E DE, as in the theorem. We put
N;=E;NN. Itis clear that N is an essential extension of NN, and dim
N,=0. If E=EQX®E,), E,NN,=N,+0 and T= 3} §N, is essential in

acsr @

N, U T'=3&@N., N,s are unifrom, then E, contains an isomorphic
J

4) See the definition in [3], p. 15.
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image of E(T')=E(2;‘| @E(N?)). Hence, card J<card I. Therefore, dim N,

=dim N. We assume that N is quasi-injective and N,, N, and N,’, N,/ are
as in the corollary. Since N,’s are closed, N;=NNE(N;). Furthermore,
E(N,) and E(N}) are isomorphic each other by Theorem 6. There exists an R-
automorphism @ of E such that @(E,)=E/, where E;=E(N;) and E/=E(N,).
Hence, o(N;,)=@p(NNE;)=NNE;=N/} by [3], §5 or [9].

We shall give a slight generalization of [4], Theorem 6, 5. However, the
proof is much simpler than them. We shall study further the problem of this
type in the section 3.

Corollary 2 ([4]). Let Q be an R-module which is a directsum of directly
indecomposable injective modules Q,; O=>)PDQO,. Then we have
1. Sis a sub-module of Q such that S=3} @ Pg and P,’s are directly indecom-
J

posable, then card 1 >card J. Furthermore, if Q is injective then S is injective.
ii. If Q is quasi-injective and S is injective, then S=2>} P Pg.
J

Proof. We consider all objects in 9 ; category of injective modules modulo
3. Let E=E(Q) and F=E(S) (CE), then F is contained in the socle S(E) of
Ein A. Hence, card J<card I. Furthermore, every Py is isomorphic to some
Onp in A and hence in Mz, where 7 is a one-to-one mapping from Jto I. If O
is injective, then S is isomorphic to ﬁ; PQOnp in A and hence, in M.
Therefore, S is injective. ii. If S is injective, then F=S. S:E(B;J DPg)

O
and P, =~ Oxw- We define an R-monomorphism f of > PPy to ; DO
g

via pg. Then we have a diagram

f
2 @Q’tt(ﬂ) GBME}%) Qm:Q

Since Q is quasi-injective, we have an extension g [Q, O]z of f. Since >} PP;
is essential in S, g is monomorphic. Hence, >3 @ Qu is essential in g(S).
J

Therefore, g(S)= >3 ® O -

Finally, we shall give some remarks and examples concerned with the
category 2 of injective modules modulo J.

Let 2A; be a full sub-category of A whose object consists of all E; in
Theorem 6. Then 9, is a completely reducible C;-category and every
objects in 2, has zero-socle. Hence, A=, XA, (cf. [7]).) Furthermore, we
have another decomposition of 9. Let A¥ (resp. A¥) be the full sub-category
of A whose object consists of all 4 in ¥ such that 4=E(S(A4)) (resp. Sg(4)=0),
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where Sp(A4) is the socle of 4 in M. It is clear that we have for any object
N in A N=N,pN,, N;eW¥. For any fe[N,, N,]r we have ker f2S(N,)
and hence, feJ. Thus, we have A=AF X A¥F. It is clear that AFcA,.

ExampLE 1. We shall use the same example given in [13], p. 378. Let
Zp be the p-adic integers for some prime p and R=Z,, P Z - with multiplica-
tion (A, x)(u, ¥)=(\p, Ny—+ux), where Ay, E Z¢ 4, ¥, YEZpo. Then Eg=R or
Ocp: the quotient field of Z,,, where & is an ideal in R. Hence, 2 is completely
reducible in this case, however R is neither noetherian nor perfect. Furthermore,
A=A and A¥ is a category with generator R and AF with Q.. This fact
shows that Corollaty 1 is not true if Z(M)=0. Since U=R®PQ, is a samll
generator, 9 is equivalent to the category of (Z/pP Qs )-modules.

ExampLE 2. We shall give an example in which 2 is not completely
reducible.
Let J=[0, 1] be the close interval in the real numbers K. Let R be the
ring of continuous functions from J to K. By I: we denote ,ﬂ f7%0) for an
€r

ideal * in R. We assume that I; containes a closed interval I which is not
equal to a point. Let I=I,U1, and I,=1I, ;N I,=(x). We put t;={f|ER,
f1I5=0}, and r;=t+1,. Then r;2t and r=1,Nt,. Hence t is reducible. It
is clear that the zero ideal (0) is reducible. We assume (0)=tNt’ and 7t is
irreducible. There exists, for any f==0=t’, a not point colsed interval L
such that f(/)=0 for all leL. Hence, LNIyr=¢. If Ulr=], then DL,
which contradicts to the fact that r is irreducible. Hence, there exists a point
a not in IyUly. Then there exist f& It and g I such that f(a)=0, g(a)=+0.
On the other hand, fgerNt'=(0), which is a contradiction. Thus, the cate-
gory of injective R-modules modulo J is not completely reducible.

3. Krull-Remak-Schmidt-Azumaya’s theorem

We shall study the Krull-Remak-Schmidt-Azumaya’s theorem for R-
modules. Our proof will be somewhat different from ordinal ones. We shall
make use of the same argument in the previous sections, however our method will
be substantially analogous to that in [1].

Let M be a right R-module and we assume

M:dg éeM, (1) and Mzﬁg DNg (17,
where M ,’s and N,’s are completely indecomposable.
We consider the following statements.

I. card I = card J, and there exists a one-to-one mapping ¢ of I to J such
that M ,~N ., for all ac 1.
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II. For any sub-set I' in I (resp. J' in J) there exists a one-to one mapping
r of I' into ] (resp. J' into I) such that M ,~Ny,, for all a1’ (resp. Ng~ My,
for all B J') and

M=3®Ny.,»® X PMg(resp. M =3 DNeg® > DMpy)
wer’ per-r’ rer’ p'er-yah
111. Every direct summand of M 1is also a directsum of completely inde-
composable modules, which are isomorphic to some M .

It is well known as the Krull-Remak-Schmidt-Azumaya’s theorem that
IT and III for any finite set I’ and condition I for any set I and J are satisfied
for any decomposition (1) and (1), (cf. [1]). Corollary 2 is a special case for
the condition ITI. It is clear that if My’s and N,’s are all minimal modules,
then all conditions are satisfied, and we note that those arguments for completely
reducible modules are valid for a completely reducible object in a C,-abelian
locally small category.

Some parts in the following will overlap with results in [1], however, we
shall give prooves for the sake of completeness.

We assume a right R-module M has a decomposition as in (1) and (1°).
We take a set {a,.}, of R-homomorphisms a,, of M, to M,. We call {a,.},
summable if for any non-zero element m in M,, a,,(m)=0 for almost all . In
this case Z a,, is an R-homomorphism of M, to M. It is well known that

[M, M]f is isomorphic to the ring of matrices whose (o, T)-component consists
of all elements of [M,, M, ]r and every family of components in any column is
summable (we call it simply column summable).

Let M= ; ®M,and N = ; @N,asin (1). Then [M, N]g is isomorphic

to the module of matrices as above. By J® denote the sub-set of those
matrices whose each components are not isomorphic. It is clear that I is a
module since M,’s and N,’a are completely indecomposable and I may
depend on a decomposition (1)

The following lemma is well known

Lemma 4. Let M, (i=1, 2, 3) be completely indecomposable and o; (i=1, 2)
R-homomorphisms of M, to M,,,. If a,a, is isomorphic, then a, and «, are
isomorpthc.

Lemma 5. Let M=3>'PM,, N=3DN, and T= 3 PT, be as in

I J K

(1). Then [N, T]eS > CI*® and I “[M, N]r& I,

Proof. Let f=(a;,;) be in I ® and h=(b,,) in [N, T]g. Put hf=(x,,),
Xype= 2 byay,. If M AM,, then x,, is not isomorphic. We assume M,~M,

and a,(m)=0 for keJ—(k,---k,)=] and m+0=M,. Then we put
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”
Xpe= 2 byt + > byyay,.  Since byay,’s are not isomorphic from Lemma 4,
i=1 kT

%4 is not isomorphic from the assumtion of M,. Hence, Afe I *». The
last part is similar.

Corollary. J® does not depend on the decomposition (1). Furthermore,
if M=N, I ® is a two-sided ideal of [M, M]g, (cf. [1], Theorem 2.3).

Proof. Let M= 3 ®M, and N= 3N HN,= 3 PN’,s. We put N=T
= >IN’/ in Lemma 5. Foranyfin 3 * we have f=1,f= " ®. Hence,
JeHcIe -, Similarly I I ®.  The last part is clear.

We shall denote 3" by ¥'[M, N].

Let A (resp. A,) be the full sub-category of M, whose object consists of
all modules which are coproduct (resp. finite coproduct) of a given family {M .}
of completely indecomposable modules M,. We define a two-dised ideal I’ in 9
(resp. in A ) by setting: ' N[M, N]=J'[M, N] for every M, N in . It is
clear from Corollary to Lemma 5 that 3’ is an ideal in 9.

Theorem 7. Let U and U, be as above for a given family {M ,} of completely
indecomposable modules M,. Then A (resp. W, J’) is a C,-completely re-
ducible (resp. completely reducible) abelian category.

We need some well known results for the proof.

Lemma 6. Let R be a ring and e, f be idempotents such that eR~ fR and
(1—e)R~(1—f)R. Then there exists a regular element a in R such that f=a 'ea.

Proof. R=eR®(1—e)R=fRPB(1—f)R. Letp,, @,be given isomorphisms.
R=[R, R]p2p=p,+¢@, Hence, p=q, for some regular element a and a;e¢;
=f,a,.

Corollary. Let A be a division ring and P a right A-module. We put
R=[P, P], and P= 3} ®u,A. Let e be an idempotent in R. Then there eixst
I

a subset | of I and a regular element a in R such that e=a™'fa, where f is a
projection of P to > PugA.
T

Proof. P=eP@®(1—e)P as a A-module and eP= ; @PovgA. Then eR~ fR

and (1—e)R~(1—f)R. Hence, the corollary is true from Lemma 6.

Proof of Theorem 7. It is clear that /J’ (resp. A /I’) has any (resp. finite)
coproduct from Corollary to Lemma 5. We shall denote every morphisms in
A by column summable matrices. Let (a,,) be any morphism in [M, M]g.
Since a,,(m,)=0 for almost all ¢ and m,, a,,=eJ'[M,, M,] for alsmost all ¢.
Hence, [M, N]/Y'[M, M] is isomrphic to the ring of column finite matrices.
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Let M=) Y PM , ,and M ,,~M vy, M ;M if ad=a’. Then [M, M]u/s

@ PETqy

=I[>)PM,,, Z PM,.]Jo/s Furthermore, [ 2] GBM,,,,, Z DM,/ is iso-

@ pEly PETy

morphic to the rmg of column finite matrices over the d1v1s10n ring [M,,, M ]/
Y [M 4y M,]. Hence, A/Y is regular category defined in [15]. We denote
(M, DM,z and [ X DM ,,, 2 PM,]r by R, and R,, respec-
tively. Let & be an idempotent in [M, My . Then e= Il é,, where g,’s are

idempotents in R,. There exist an idempotent f, and a regular element @, in
R, such thatz,=a,” 'f.a, and f, is a projection of >} DM, to a direct summand

PETy

Zr] @®M,s by Corollary to Lemma 6. Hence, ker f, exists and is equal to
BET g

PM,y in A/I’. Therefore, ker IIf, exists and, since a=IIa, is
pEly-Tg

regular in II R,, =a '(I1f,)a has the kernel in /Y’. Thus, A/Y’ (resp. A/I)
is a C;-spectral (resp. spectral) abelian category by [15], Theorem 2. Since A/J’
is semi-simple and [M,,, M,,]9/3’ is a division ring, M,, is a minimal object by
[8], Lemma 1.3. 'Therefore, A/J’" and A /J" are completely reducible.

Lemma 7. Let M be an object in . Then J'[M, M] does not contain non
zero idempotents ([1], Theorem 3).

Proof. M= 3} @®M, and e, is the projection of M to M,. For an idem-
potent e we have e,=e,ee,+e,(1—e)e,. Hence, e, ee, or e,(1—e)e, is isomorphic.

If e=0, there exists a finite set {a;} such that eMN Zj;, PM,,;#+(0). Hence,
€s;0€5; 1s isomorphic for some 7, which implies eeEiis’H[M, M.

Lemma 8. The ideal J' in U, is the Jacobson radical of Uy

Proof. First, we assume that M= Z"] @DM,; and M;~M, for all i. Let

X=(x;;) be in J'=J'[M, M]. Then 1,,—x; is regular in [M;, M;]r. Hence,
by Lemma 4 and taking fundamental transformatlons, we know that there
exists regular matrices P and Q in [M, M]g such that P(I—X)0O=I. Hence,
X is quasi-regular, and Y’ is contained in the radical of [M, M],. Since A,/J
is semi-simple, X’ is the radical of [M, M]g. In general case, we can use the
same argument by Lemmas 4 and 5 and hence, ¥’ is the radical of ..

Corollary 1. (K-R-S-A Theorem) ([1], Theorem 1) Let M be a right
R-module which is a directsum of completely indecomposable modules M, and Ng
as in (1) and (1'). Then Condition 1 and Condition 11 for any finite sub-set I’
and ]’ are satisfied and for any direct summand M’ of M M’ is either isomorphic to

2 DM,, for some n or M’ contains a direct summand which is isomorphic to Z DM,,

=1

for any n.

i=1
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Proof. We take that {}M,, Ng} is a given family and consider the additive
category ¥ as before. Condition I is clear from Theorem 7 and Lemma 8. Put

M= Zi] @®M,; and p the projection of M to M’. Then M=ker pB(Nyw,

@D+ DNyca,») in A/J’, which means that p7 is isomorphic in [N, M']/J'[N’, M'],

where N'= 31 @ Ny, and 7 is the inclusion of N’ to M. Since M’ and N’

are in A, J'[N’, M'] is the radical of [N’, M'];. Hence, pi is isomorphic in

Mp. Therefore, M=N'Pker p=N'P > M, where I'={1,2,---,n}. Con-

-1

versely, we take a finite family {N.},c,,, then M=N"P > SMy in /Y,
Iy

where N"= 3PN, and": J'—>1. Letp’bea projection of Mto > P My (.

J’
Then it is clear that p| N” in A/Y’ is isomorphic. Hence, M=N"® >3 BMpy
T- (T ")

in M. Thus, we have proved Condition II for finite sub-set I’ and J'.

Finally, let M'=eM be a direct summand of M and e=e=0. Then eJ’ by

Lemma 7. Hence, ¢ has the imageeM= >} @M, in /. > PM,s contains
’ I/

a’er

a direct summand M"= i @M,. Letpandibe R-homomorphisms of M to
=]

M’ and M” to M such that p and 7 in 2/ are projection and injection, respec-
tively. 'Then pei is isomorphic in 9/J.”  Since M” is in 4, pei is isomorphic in
My by Lemma 8. Therefore, eM contains a direct summand which is isomor-
phicto M". IfeM=M"in A/, then eM=M"PM,. Hence, e=e"+-e,, "*=e"
and e§=e,. Furthermore, e=é&". Therefore, ,=0, which implies e=0 by
Lemma 7. It is clear that M, is isomorphic to some M,.

Corollary 2. Let M be anin (1). We assume that Y'[M M] is the radical
of [M, M]y, then Conditions 11 and 111 are satisfied for any sub-set I' and J'.

Proof. Let M’ be a direct summand of M. Then Ry/=[M', M']=eRye
for some idempotent e. If M'~ > PM, and M/M'~ ) PMgy, then
I//

a’er’
YRy =Ry NY =eXe. Hence, ¥R,y is the radical of R,. In this case we
can replace a finite subset I’ by any sub-set in [ in the proof of the corollary 1.
Hence, Condition II is satisfied for any sub-set in I and J. For Condition
III we consider M=M P M, in M. Thene,M= X3 &M, in A/J’ and hence,

I;€e;

eM~ 33 ©M,, by the above and the proof of the corollary 1.

I;€;

We shall give a converse of [15], Theorem 7.

Proposition 8. Let B be a full sub-category of M. Then B|I is an
artinian completely reducible category if and only if B=N, for some family {M}
of completely indecomposable modules M,, where I is the radical of *B.

Proof. ““If part” is clear from Lemma 8. We assume that B/J is artinian
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and completely reducible. Let M be an object in B. Then M= }n;‘, ®M,;

i=1

and M,s are minimal in B/F. We may assume M= SY@® M, in Mg by

i=1
Lemma 2. It is clear from the definition of ¥ that M,’s are completely
indecomposable.

We shall consider the converse of Corollary 2.

We take a decomposition (1) for an R-module M with infinit set I, and
consider a linear ordered sub-set I, with card I,=X, in I. Let f; be an R-
homomorphism of M; to M;,,, which is not isomorphic for any 7, i-+-11,. By
0(j, ©) we denote the composition of f;, f;_,, *+, firs, f; for j>1.

Lemma 9. Let M be as above and {f,} a family of non-isomorphisms of
M, to M, ,. If Condition 11 is satisfied for any sub-set I,, then for any i and any
element m; in M;, there exists j (j>1i) such that 0(j, ©)(m;)=0. Especially, in this
case there exist only finite many non-isomorphic monomorphisms f,.

Proof. First, we assume that all f; are monomorphic. We put 1,

1

={x+f.(x)|x M,} and M,= 3} PM,. Then it is clear that
I

M= M, ®M,;SM,DM, D BM, = M, SM, oM, SM,D--BM, -(2)

We apply Condition II for I'=(2,4, -, 2n, ---), then we have M=M1'€BM3'
B DBM, P (M,) P (M,)P -+, where +r,, are isomorphisms of M,, to some
direct summand of the left side in the above. From the assumption, any f,,_,
are not epimorphic and hence, >3 Vru(M,,)22) ®Mj.. It is clear that
(Z Von(Mn)) N Mo=(0). We assume yrpp(M,n)=M,;,, and "l"zn’(Mzn'):szﬂ
and j>7. In this case we have for x==0 in M,;.,

X = (x+f2i+1x)_(f2i+1x+f2i+2f2i+1x)+ o
+(0(2/—1, 2i+1)x+6(2], 2i+1)x) FO(2j, 2i+1)x
EMz;ﬂﬂM§;+1@M£;+z@'"@Méj@szﬂ (3)

This is a contradiction. Hence, we may assume that +r,,(M,,) is equal to
some M3, for all n>>some n,. Then if we consider a non-zero element in
M,,,, for some large n’ as the expression (3), we have that M DM, ,,, since
f/’s are monomorphic, which is a contradiction. Thus, we have proved the
last part. Therefore, there exists infinite many of non-monomorphisms {f;} in
{fe}. We put g,=0(i,,,—1, 7,), then any g, are not monomorphic. It is clear
that we may assume M, =M, in the lemma. We shall use the same argument
for the new non-monomorphism f;. Let x be a non-zero element in ker f,;.,,
then x& M, M};.,. Hence, we know that vr,,(M,,) is not equal to any
M., and ,,(M,,)=Mj,, for some m. Now we take any non-zero element x
in M, and consider an expression of x as in (3). Then we know that §(m, 1)
(x)=0 for some m.
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We call a family {f;} of R-homomorphisms an elementwise T-nilpotent
system (or left vanishing) if {f;} satisfies the consequence of Lemma 9.

Lemma 10. Let M be as in (1) and Y’ the ideal in Theorem 7. If any
family of components in ' is an elementwise T-nilpotent system, then Y is the
radical in U.

Proof. Let A be any element in ¥’ and m, any element in M,. Put
A=(a,,). Since A is column summable, there exists a finite set F, of indeces
7’ such that a151>a(m¢)=nzr51>:|:0 and a,,(m,)=0if e [—F,. Similarly we have
a finite set F, of 7 such that ar§z>rgx>(m,51>)=mrg,z>:i:0 and angn(mfgo)zo if
Ttel—F,forany 7" in F,. Repeating this argument, we have a family of finite
sub-set {F;}. Then A%(m,)= 3] acgrr-varn-vron----af o(m,), where 7 runs

through elements in ;. From the assumption there exists z, such that A" (m,)
=0 by the Konig Graph theorem, (cf. [11], p.42). Hence, if we put B= Zm] A",

then B is an element in [M, M]y since {4"} is a summable system. Further-
more, A(—B)—A=—B. Hence, 4 is quasi-regular in [M, M]g. There-
fore, ' is the radical in 9 by Theorem 7.

Theorem 9. Let M be a directsum of completely indecomposable sub-modules
M, and N as in (1) and (1'). Then the following three statements are equivalent.

i. Condition 11 is satisfied for any objects in N defined in Theorem 7 and

any sub-set 1' and J'

il. < defined in Theorem 7 is the radical in .

iti. Every family of non-isomorphic R-homomorphisms of M, to M, (not
necessarily o= ") is an elementwise T-nilpotent system.

Furthermore, the fact that Condition 111 is satisfied for any direct summand
of M is equivalent to

iv. Let e, f be idempotents in Ryy=[M, M]g. If eRy /I 0~ fRy [ then
eRy~ fRy,.
And i implies iv.

Proof. 1iimpliesiii by Lemma 9. iii implies ii by Lemma 10 and Theorem
7. ii implies i by Corollary 2 to Theorem 7. We assume Condition III.
Then M=eM@(1—e)M and eM and (1—e)M are objects in 2. Hence, eM is
equal to the the image € in /Y’ by Lemma 2. Ife~f in /Y. then im e=eM
is isomorphic to imf=fM in %/Y’. Since eM and fM are objects in A, eM~fM
in My by Condition I in Theorem 7. Therefore, eRy~fR). Next, we
assume iv. Let M’ be a direct summand of M, say M'=eM, e=e. Then we
know in the proof of Theorem 7 that there exists an idempotent f in R,, such
that eR,,~fR, and fM= ;‘, IZ} @®M,,. Since eRy~fR, by iv, eM~fM in

Myp. 'The last part is also clear from Corollary 2.
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Remark 3. If we replace i in Theorem 9 by i"; Condition 11 is satisfied
for M and any sub-set I' and J', then i’ does not imply ii and iii. For example,
let {p, p;} be a family of distinct primes and M=Z,D > BZ/p;D 3] DZ[p;

@---. Then M satisfies condition II for any sub-set I’ and J’, however, iii is
not satisfied. We shall show later that iv does not imply i.

We slightly generalize Carollary 2, ii to Theorem 6.

Proposition 10. Let M be an R-module as in (1). If M is a quasi-injective,
then X'[M, M| is the radical of Ry Hence, Conditions 11 and 111 are satisfied
for M.

Proof. The first half of the following is due to [1]. Theorem 2. Let e,
be a projection of M to M, and x be in J'[M, M]. Then e,=e,xe,+e,(1—x)e,
and e,xe, is not isomprphic by the definition of J’. Hence, e,(1—x)e, is iso-
morphic for all . If ker (1—x)=0, ker (1—x)N i M, =0 for some {a,} and

> e4;(1—x)e,; is an automorphism of Z M,, which is a contradiction.
i i=1
Therefore, 1 —x=a is monomorphic. Since M is quasi-injcetive, aM is a direct
summand; aM=elM, ¢=e. Hence, 0=(1—e¢)a=1—e(modJ’). Therefore,
e=1 by Lemma 7 and x is quasi-regular.

Corollary. Let {M,},; be a family of infinite many of injective indecompo-

sable R-modules. If 2\ @M, is injective, then any family {f,} of non-iso homo-
I
morphisms of M, to Mg (o= 3) is an elementwise T-nilpotent system. If Ris right

noetherian, then any family of R-non-iso homomorphisms of injective indecom-
posable modules is an elementwise T-nilpotent system.

Proof. It is clear from Proposition 10, Corollary 2 to Theorem 7 and
Lemma 9.
4. Special cases

In this section we shall consider special modules. Let R be a commutative
Dedekind domain, which is not local. Then a finitely generated and completely
indecomposable R-module is isomorphic to R/p" for some prime p (cf. [10],
Theorems 1 and 9).

Proposition 11. Let R be a not local Dedekind domain and R|[p"?+> be a
family of completely indecomposable modules. Then M= 3} DR[p,?= satisfies

Condition 11 for any sub-set I' and ]’ if and only if n(p,) is bounded for each p,.
In this case, Condition 111 is satisfied.

Proof. Itis clear that each R/p" has a composition series. If n(p,) is not
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bounded for some p. Then we have a family {f;} of non-iso monomorphisms
f: of R[p™ to R[p™i+1, which is not elementwise T-nilpotent. Hence, Condition
IT is not satistied. We assume that #(p,) is bounded for all p,. Since
[R/p", R|q™]r=0if p=q, [M, M]g= l;l [22 DR/p", 2] DR[p" k. The radical

of latter rings are nilpotent by the well known theorem (see Corollary to
Lemma 12 below). Hence, 3'[M, M]g is the radical of [M, M]g. Therefore,
we have the proposition by Corollary 2 to Theorem 7.

The following lemmas may be well known, however we shall give prooves
for the sake of completeness. By |[M| we denote the composition length of

R-module M.

Lemma 11. Let {M} be a family of indecomposable R-modules with | M|
=n<oo for all i. Let f; be a non-iso homomorphism of M, to M, (M;,, may
be equal to M,). Then |62, 1)(M,)| <n—m—1 for any m.

Proof. Since |M;|=n for all i, each f; is neither monomorphic nor
epimorphic. We shall prove it by the induction on m. 1) If m=0, |f,(M,)|
<n—1=n—0—1. 2) We assume |§(2", 1)(M,)| <n—m—1 and n—m—10.
3) It is clear that |9(2"", 1)(M,)| <m—m—1. If [6(2™", 1)(M,)|=n—m—1,
then [0(2”, 1)(M,)| =n—m—1. Hence, (6(2"*", 2" +1)| 6(2™, 1)(M,)) is mono-
morphic. Furthermore, we have |0(2"", 2"+ 1)(M,n,,)| <n—m—1 from
the assumption 2). Since |[§(2"", 274 1)(M,n.,)| > 160(2", 1)(M,)| =n—m
—1, 2™+, 2"+ 1) (M m,,)=0(2™"", 1)(M,). Hence, M, ,=06(2", 1)(M,)
@Dker (27", 2" +1) and 62", 1)(M,)+0, ker (2™, 2”+1)=40, which is a
contradiction. 'Therefore, |9(2"", 1)(M,)| <n—m—2.

Lemma 12. Let {M}, {f;} be as above with |M;| <n<<oo for all i.
Then O(n,, 1)=0 for some n,.

Proof. It is clear from the assumption that at least one f,, ; among f;.,
k=0, 1, ---,n is not monomorphic. Let f,, f,, -*- be not monomorphic, then
&,=0(,—1,1,), g,=0(i;—1, 1,), ... are not monomorphic. We take a family
{M,}. Since | M, | <n, there exist some r <z and an infinite sub-system {M,}
such that |M,|=r forall k. Weput hi=gs, 18k, o**"&k;» F=Eky—1"*"&s,» *** and
apply Lemma 11 for a system {k;}, then we have a fixed large %k, such that
O(n,, 1)=0. It is clear that we can find such #, independently on a choice of

M; and f;.
Corollary. Let {M,} be as above and M= 3\ ®M,. Then J[M, M]y is
1
nilpotent.

Proof. Since each M, is finitely generated R-module, [M, M]y is isomor-
phic to the ring of column finite matrices. Hence, J'[M, M]f is nilpotent.
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Finally we shall show that Condition III does not imply Condition II.

Proposition 12. Let {M,}5 be a family of finitely generated and completely
indecomposable R-modules such that [M ,, M) p=0 for a>B. Then M= i;‘ OM,
satisfies Condition 111.%

Corollary. Let A be a division ring and R be a ring of lower tri-angular matrices
over A with dimension X,. Let {e;;} be a system of matrix units in R. Then
M= ‘2 @De; ;R satisfies Condition 111, however some family of elements in

Y'[M, Mg is not T-nilpotent.

Proof. It is clear that {M;=e;R} satisfies the condition of the proposition
and that [M, M]g is isomorphic to the ring of column finite lower tri-angular
matrices over A with dimension X,. Then {¢;,,;} is not T-nilpotent. Hence,
Condition II is not satisfied by Lemma 9.

Proof of Proposition 12. We put R,,=[M,, M,]g. Then R,,=[M, M]g is
isomorphic to the ring of column finite lower tri-angular matrices whose com-
ponent consists of all elements in R,. Furthermore, Ry,=Ry/I' Ry
= EI (Ryo/J'R,,). Let E be an idempotent in R,,, then E= }'I é,,, where e,’s are

identities in R,. We put F=1IIe, and show that ERM%F'RM. Let o be an

integer and 4 in R,. We shall divide 4 into four parts:

A7) 0

A:

A("') A(C")

and A{Yis a (¢ X o)-matrix. Then E=(E{Y 0\, F=(F{Y 0 \and EYR,?
E(‘T) (cr) (0') F(‘T)

(G)SURM({?% F&R (c')/F(U) 'Ru? and (E(°‘> 2=F, (F(U) :=F% in R,%. If
1, EP=F (1’ and hence, there exists an Ry{P-isomorphism f® of F ‘DRM“’

to E(I’RM(“ We assume there exist Ry -isomorphisms f™ of F{?R,R? t
{TRuiY for all 7<<o such that fv|F{7Rpyi1P=f for all ‘r<’r 1). Let
<1<’1):(E11 0) where E{,=E{7P. Put f'=f“ ", Since (E{?)*=E{?, we have

x, 0
%, E{Y=x, and E‘l"l’RM(ﬁ’—{( 1%y, O)lx =R } On the other hand F{?
11 M

x21xll 0

5) Added in proof. This proposition is true without the assumption [M,, Mg]l=0 for
a>p by [18]. However, we can apply our proof to more general case under certain assump-
tions without finitely generatedness for any infinite family of M.
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=< 1 O) and Fﬁ’RM‘{?:< 1R M 0). We define f” by setting f“"((F{lxu O)

0 0 0 0 0 0

z(f'(Filx”) 0>, where f'(F{1x,)=FEfx1,. Since x,Ef;=x,,, f is well defined

X001 0
and [ is R§y-isomorphic. 2). Let Eﬁ’z(E{l 0 ), then E{PR§ =
X21 €5

{(Eilyu 0 ) and {TRMT= {(F hyn 0 >

XY +Vu €V Yar €52

quRfm V& Rcrcr} Yu

& Riy, yue R } It is clear that {x,y,,+y,} is equal to {y,} when y, runs
M> V22 oo
through all elements. We define f“° by setting f“”((F{ly11 eayzz))
Ya 0
= ( f(Fiiyn) e,yzz). Then f is RjP-isormorphic. In either case, it is clear
Va 0

that f|F{PRy"=f for all 7<o. Thus, we have defined a system {f*}.
Since Ry is column finite, each column of elements in FR,, is contained in
some F{PRy,{Y. Hence, we can define an Ry-isomorphism f of FR,, to ERy,
via {f?}. Therefore, M satisfies Condition III by iv in Theorem 9.

Finally, we shall consider a contrary case of Proposition 12.

Proposition 13. Let {M,}T be as above. We assume [M,, Mg]z=0if a<}.
Then M= ) ®M, satisfies Conditions 1, 11 and IILI.

Proof. In this case, [M, M]p is isomorphic to the ring of upper tri-angular
matrices with components in [M,, M,],. We shall show that J'[M, M]y is the
radical. Itis clear that if / is finite, then 3'[M, M]y is the radical. As before, we
divide matrices A into four parts; Az(Au Am). Let 4 be in Y'[M, M]g and

0 4,
assume A has the quasi-inverse B=(B,;). Then A4;; has the quasi-inverse B;;.
Conversely, if A;; has the quasi-inverse, then we put B,=—(1—4,)"
A,(1—B,,)"'. Hence, A has the quasi-inverse (B;;). From those facts and
the induction as in the proof of Proposition 12, we can prove A is quasi-
regular. Hence, the proposition is clear from Corollary 2 to Theorem 7.

5. In case of C,-abelian category

In this section we always assume € a C;-abelian category with generator
U. In this case € has any products by [6], and any object has an injective
envelope by [11], p. 87, Theorem 3.2. Let T=[U, ] be the functor of € to M,
and S a coadjoint for T, where R=[U, U]. Then T'M is injective if and only
if sois M in € by [17]. Furthermore, T(II M)=II (TM) and if TN=A,PA4,
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for Ne @, then STN=SA4,SA4,and STN w Nby[6]. TSTN=TSA,®TSA4,
and @ry: TN~TSTN; @,,: A;— TSA; are homomorphic. Therefore, @,
are isomorphic. Thus if we want to study the full sub-category C(M) in € as
in the section 1, then it is equivalent to study the full sub-category C(T'M) in
Mg. Therefore, we have the following from Theorem 1:

Theorem 1'. Let € be a C,-abelian category with generator and M an
injective object in €. Then C(M)[J is a spectral abelian category with generator.

Since € has an injective cogenerator by [12], p. 90, Corollary 3.4, we can
obtain the similar results as in the section 2.

Finally, we shall consider results in the section 3 for €. P. Gabriel has
already generalized Azumaya’s theorem to € in [5]. He proved it by replacing
Azumaya’s method by categorical terms. We shall make use of Gabriel’s
method.

We use the same definitions and notations in the section 3.
Lemma 5. Let M=) ®M,, N= 2 PNg and T= 3 P T, be copro-
I II I//

ducts of completely indecomposable objects. Let I®® be the sub-set of [M, N]
whose element consists of all f in [M, N] such that pg fi, is not isomorphic for all
and B. Then [N, TIJ®> I, JTPIM, NI and IP* is an abelian
group, where pg, i, mean projection to Ng and injection of M, respectively.

Proof. Itis clear from the definition that J®* is abelian. Let fe&J®®
and g [N, T]. Since € is a C,-category, there exists a finite set K such that

fMHN EZ‘_I,{NE,#: (0) if fiM,)+0. Hence, pygfis=pvg(lx+11_g)fia=p,g1xis
+pvgly_gfia. Since fA‘(ﬂ,‘:L;_KNﬂ/):l:(O), D481/ _kfis is not isomorphic and
Pv81kfis is not isomorphic by the assumption. Hence, gfe J®. Similarly,
we have J"P[M, N]C I,

If we put M=N=T in Lemma 5, we know that JE®=J>® and JE» jg
an ideal in €. We shall denote it by J'.

Lemma 13. Let M and ' be as above. Then [M, M] /Y’ is isomorphic to a
product of rings of linear transformations of vector spaces over division ring. Further-
more, we may regard [M, M][J’' as the ring of endomorphisms of M considering
M, minimal, (cf. [1], Theorem 3).

Proof. Put S=[M, M] and S=S/J. Since S= II[M,, M], we put

f=10f, for f€S and f,e[M,, M]. Let K={v} be a sub-set of I such that
Pvfa is isomorphic. If we put f/=f,—(1—1k,)fs and f'=TIf., then f'—f
=II(1—-1k,)fssY’. Hence, we can chose a representative f in f such that
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each pgfi, is isomorphic or zero. If f(M,)=(0) for «, then there exists a finite
set K in I such that f(M,)N 3 PMe+(0). Put f(2 BMg)=M,=+(0).
K K
Then p,fi,| M,=0 for all teI—K. Hence, p,fi,(M,)=(0) by the choice of f.
Therefore, f(M,)< > @M, From this fact we have an isomorphism of S
K

to the ring of column finite matrices with components pgfi,: M,— Mgs. Since
[My, M,/Y N[M,, M,]is adivision ring, we may regard M, as a minimal object
by the above isomorphism. Hence, we have the lemma.

From those lemmas and the proof of Theorem 7 we have

Theorem 7'. Let D and D, be the full sub-category in & whose object
consists of any (resp. finite) coproducts of a given family {M,} of completely in-
decomposable objects in €. Then DI’ (resp. D,JJ’) is a Cy-completely reducible
(resp. completely reducible) abelain category.

From this theorem we have the K-R-S-A theorem for a C;-abelian category
€ as in Corollary 1 to Theorem 7, (cf. [5]).

RemARk 4. We replace the argument in the proof of Lemma 9 by categorical
terms. The relation (2) is true, since they are images of automorphisms f; of
M such that
0

and we obtain M,N(M{OMiD--DM;)=ker (f,_,fu_.-:f,) by pullback.
Hence, if M satisfies Condition II then M,= {] ker O(m, n) for alln. However,

it may be necessary some assumption on M, to obtain Theorem 9.

OsakA City UNIVERSITY

References

[11 G.Azumaya: Correction and supplementaries to my paper concerning Krull-Remak-
Schmidt’s theorem, Nagoya Math. J. 1 (1950), 117-124.

[21 H. Bass: Finitistic dimension and a homological generalization of semi-primary
rings, Trans. Amer. Math. Soc. 95 (1960), 466—488.

[3]1 C. Faith: Lecturs on Injective Modules and Quotient Rings, Lecture Note in
Math. 49, Springer, Berlin, 1967.



344 M. HaraDA and Y. SaAl

[4] —— and E.A. Walker: Direct sum representations of injective modules, J. Algebra
5 (1967), 203-221.

[51 P. Gabriel: Objects injectifs dans les categories abeliennes, Seminarie Dubriel-Pisot
12, 1958-1959, Expose 17.

[6] and N. Popesco: Caracterisation des categories abeliennes avec generateures
et limites inductives exactas, C.R. Acad. Sci. Paris 258 (1964), 4188-4190.
[7] and U. Oberst: Spectralkategorien und reguldre Ringe in Von-Neumann-

schen Sinn, Math. Z. 92 (1966), 389-395.
[8] M. Harada: On semi-simple abelian categories, Osaka J. Math. 7 (1970), 89-95.
[91 R.E. Johnson and E.T. Wong: Quasi-injective modules and irreducible rings,
J. London Math. Soc. 36 (1961), 260-268.
[10] 1. Kaplansky: Modules over Dedekind rings and valuation rings, Trans. Amer.
Math. Soc. 72 (1952), 327-340.
[11] E. Matlis: Injective modules over noetherian rings, Pacific J. Math. 8 (1958),

511-528.

[12] B. Mitchell: Theory of Categories, Academic Press, New York and London,
1965.

[13] B. Osofisky: A generalization of quasi-Frobenius rings, J. Algebra, 3 (1966), 373—
386.

[14] E.M. Patterson: On the radical of rings of row-finite matrices, Proc. Royal Soc.
Edinburgh Sect. A, 66 (1962), 42—46.

[15] Y. Sai: On regular categories, Osaka J. Math. 7 (1970), 301-306.

[16] Y. Utumi: On continuous rings and self-injective rings, Trans. Amer. Math. Soc.
181 (1965), 158-173.

[17] C.L. Walker and E.A. Walker: Quotient categories of modules, Proc. Conf.
Categorical Algebra, 1965, 404—420.

Added in proof.

[18] R.B. Warfield, Jr.: A Krull-Remark-Schmidt theorem for infinite sums of
modules, Proc. Amer. Math, Soc. 22 (1969), 460—465.

[19] Decomposition of injective modules, Pacific. J. Math. 31 (1969), 263-276.






