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One of the authors had defined a regular additive category and studied some
structures of it in [15]. We shall give, in this note, several applications of [15],
Theorem 2.

In the first section, we take an injective module M over a ring R and consider
the full sub-category C(M) of the category of right /^-modules SJl̂ , whose object
consists of all direct summands of any product of M. By $ we denote the
(Jacobson) radical of C(M), (see the definition in [15]). Then we shall show
in Theorem 1 that C{M)j^ is a spectral C3-category with generator. In this
note we make great use of this theorem.

Especially, we study, in the section 2, the direct decomposition of
injective module in the category 21=51/$, where Si is the full sub-category of all
injective modules in W:R. Following to [11], we shall give a condition that 31 is
completely reducible, and give general type of decompositions of injective modules
(Theorem 6). Furthermore, we shall give a different proof of [4], Theorem 6.5
by making use of some structure of SI.

In the sections 3 and 4 we shall study the Krull-Remak-Schmidt-Azumaya's
theorem for i?-modules. In those sections, we take the full sub-category 3Γ of
SΰlR whose objects are coproducts of a given family {Ma} of completely in-
decomposable modules. Let $ ' be the ideal of W whose morphisms are all roots-
elements, (see the definition in [1]), then we shall show in Theorem 7 that 2Γ/3'
is a completely reducible C3-abelian category. We prove Azumaya's theorem as
a collorary of Theorem 7. Furthermore, we shall give a condition that $ ' is the
radical of W, from which we study further properties of direct decomposition of
modules in Theorem 9.

In the last section, we shall give some remarks to generalize the above results
to a case of a C3-abelian category with generator.

We always assume, in this paper, that a ring R has the identity element and all
i?-modules are unitary (right) i?-modules. We make use of terminologies con-
cerning with category in [12].

The authors would like to express their thanks to Prof. H. Tominaga to
communicate the paper of Patterson [14] to them.
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1. Categories of injective modules

First we recall the definitions given in [15]. Let 31 be an additive category.
31 is called regular if the endomorphism ring [Ay A] of any object A in 21 is
regular in the sense of Von Neumann and SI is called spectral if 31 is abelian
and every morphism splits.

In this paper, except the last section, we always consider a sub-category
SI of the category SJί̂  of right modules over a ring R and its quotient category
with respect to an ideal in 31, (see the definition of ideals of SI in [15]).

Let R be a ring with identity and M an injective right ϋ-module. By
C(M) we denote the full sub-category in SJΪ^ whose object consists of all direct
summands of every product ΠM of M. It is clear that C(M) is an additive
category with finite coproduct and every object in C(M) is an injective module in
SΰlR. It is well known that there exists an injective cogenerator A in ^SlRy then
C(A) means the full sub-category of all injective modules in 2JΪ/?, since every
injective module 0 is a direct summand of Π Af: Af*&A. Furthermore,

if we take a self-injective regular ring T instead of My then C(T) coincides with
the spectral category in [7], Satz 2.2. We shall generalize this theorem as
the next theorem, which is a first application of [15], Theorem 2.

We shall make use of the notion of Jacobson radical in an additive category
31, defined in [15] and denote it by 3f or 3ί(3t). By E(K) we denote an injective
hull of a right i?-module K and by [Ny N']R we denote the set of i?-homomrphisms
of N to N' for any objects N, N' in SQΐ̂ .

Theorem 1. Let M be an injective right R-module and C(M) an additive
category defined above. Then the quotient category C(M)ffi with respect to the
Jacobson radical 3> is a spectral C3-category with generator.^

Proof. Let N be an object in C(M), and RN=[Ny N]R with radical $N.
Then it is known that RN/^sN is a regular ring in the sense of Von Neumann
and every idempotent in RNffiN is lifted to RN (see [3], §5 or [16]). Hence,
C(M)ffi is a regular category with finite coproduct. Let e be an idempotent in
RNffiN, then we may assume that e is also idempotent in RN. Hence,
lN=e+(ί—e) and e±_(l—e). Furthermore, eN is a direct summand of iV and
hence, eN and (l-e)iV are objects in C(M). Since YΛΓ=g+(Γ==ί) and
eAJJ—e) m

 RNI$>N> {l—e)N is the kernel of e. Hence, C(M)ffi is a spectral
category from [15], Theorem 2. We shall show that C{M)j^ has any coproduct.
Let {Λ},e/ be any family of objects in C(M). Then A{<® Π M and hence,

Σ Θ Λ < Θ Σ ( θ Π M f ) c Π M in WlR. Let £ ( Σ ®A{)=Ebt an injective

1) Added in proof. It is obtained substantially in [19].
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hull of Σ ®At in Π M. Then E is an object in C(M)I$. Let N be any object

in C(M)I$ and/,- any morphism in [N, At] in C(Λf)/3f, where /• is in [iV, A].
Then there exists a morphism / in SJî  such that

( 1 )

is commutative. Since N is injective, there exists g^ [E, N]R such that gi=f.
We shall show that g is unique in C{M)j^s. We note that every morphisms in
the diagram (1) preserve the additiveness and that if g'i=f=gi for some
g'e[E,N]R9 then (g-g')i=0, and hence g-g'ζ=3([E, N]R) since ker (g-gf)
^ Σ Θ A a n d Σ Θ A ί s essential in E, (see [3], §5). Therefore, in order to
show the uniqueness of g, we may assume that all f. are in 3([Ai9 N]R), which
means that ker /• is essential in A{. Hence, Σ θ Ker/. is also essential in
Σ Θ 4 S i n c e ^ - / , k e r ^ 3 Σ θ Ker/t, Therefore^G3([ί, N]R). Conver-
sely, let £ be in [£, TV]*, then p u t / . = ^ | ^ t . U g=0 in C(M)/3, then ktr g
is essential in E and hence, ker/,.=ker£(Ί-4# is essential in A{. It is clear that
those fi induce g by the above method. Hence, E is a coproduct of {A{} in
C(M)/3f. Since C(M)/$ is abelian, it is cocomplete. Furthermore, C(M)/3f
is spectral and hence, every colimit is exact preserve, since every morphism
splits. Hence, C(M)ffi is a C3-abelian category. Finally, we shall show that
C(Λ/)/3f has a generator. Let fi be a right ideal in R and put E@=
Let F be the sub-set of right ideals fi such that E®<= C(Λf)/3f and U=E(Σ
GC(M)/3f. Let Γ be a non zero object in C(M)/$. then Γ ^ t R φ O for some
ί e Γ in 9Jϊκ. Since 71 is injective, there exists an jR-monomorphism / of E$ to
Γ, where fi=(0: t)r. Hence, there exists / in [£/, T]R such that
Since / φ ^ , / φ S ( [ ^ , 71]*). Therefore, U is a generator in C(Λf)/3f.

REMARK 1. We note from the proof that the coproduct of {A{} in

is equal to £ ( Σ Θ Λ )

Corollary 1. L^ί M be an injective right R-module with singular submodule

Z(M)=Q. Then C(M) is a C^-spectral full sub-category in %SlR. Furthermore,

M is a generator in C(M) and the kernel and image of every morphisms in C(M)

conicide with them in WlR.

Proof. Since Z(M)=0, Z(N)=0 for every object N in C(M). Hence,
the radical $ of C{M) is equal ot zero, and C(M) is a C3-sρectral category form
Theorem 1. It is clear that M is a cogenerator in C(M) and hence, M is a
generator, since C(M) is spectral. Let / be any i^-homomorphism of iV to N'
(N9 N'^: C(M)). Then there exists an idempotent e in [N, N]R such t h a t / = ^
and x<= [N, N']R. We know from the proof of [15], Theorem 2 that ker f=eN



326 M. HARADA AND Y. SAI

in 371 .̂ However eiV is an object in C(M) and hence, ker / in WlR is equal to ker/
in C(M). Similary we have the same result for im /.

Especially, if we replace M in Corollary 1 by a self-injcetive regular ring
R, then Z(R)=0, and hence this corollary coincides with [7], Satz 2.2.

We shall give another application of Theorem 1 which gives a different
approach of [3], Corollary 9 in p. 62.

Corollary 2. Let N be a right R-module with Z(iV)=0. Then for any
injective sub-modules Qu Q2 in N} Qx Π Q2 and Qi+Q2 are injective. Let f be an
R-homomorphism of Qx to an R-module such that Z(f(Q1))=0, then im f and kerf
are injective.

Proof. Put E=E(N) and Ef=E(f(Q1))) then Z(E)=Z(E')=0. If we take
M=EφE', then Q/s are objects in C(M). It is clear that Qλ Π Q2 and Q1+Q2

are the kernel and image of some morphisms in C(M)f respecitvely. Hence, they
are injective from Corollary 1. The last statement is also clear.

Lemma 1. Let 51 be a full sub-category of^3lR. 7/51 contains a generator
(resp. cogenerator) in sIft#, then every monomorphism (resp. epίmorphίsm) in 51 is
mono-(resp. epi-) morphic in ^ίlR.

Proof. Let U be a generator in yJlR contained in 51, and /: A->B mono-
morphic in 51. We assume that ker / φ θ in SDΐ̂ . Then there exists ^φO in
[[/, ker f]R and fig=0, where i is the inclusion of ker / into A. However,
ig<= [U, A\χ and hence, ig=0, which is a contradiction.

We note that if a ring R is quasi-Frobeniusean, then R is a self-injective,
generator and cogenerator (or see example 1 in [13]).

Theorem 2. Let M be an injective generator and cogenerator in 3JlR. Then
C(M) is an abelian category if and only if R is an artίnίan semi-simple ring.

Proof. We assume that C(M) is abelian. First, we shall show for any
morphism/: N^Nf in C(M) that ker / in C(M) is equal to ker/in 33?̂ . Let

f f . i
f: N -> im/-> iV; be a decomosition in C(M) with/' epimorphic and / mono-
morphic. Since/' (resp. i) is epi-(resp. mono-) morhic in 90^ by Lemma 1,

f=if is also a decomposition of / in W,R. Therefore, im/is also the image

of/ in SΰlR. It is clear that ker / in 51 is contained in ker / in MR. Since every

object in C(M) is injective in 2JiΛ, 7V=ker/0N" in C(M) and 2)1^. Furthermore,

/1N" is isomorphic to im/, hence ker/in C{M)=ker/ in %JlR. Since M is a coge-

nerator in yJlR, we have an exact sequence 0-+A->ΠM^>ΠM for anv A
I I '

in MR. Since /e5I, ker/=^4 is an object in C(M) and hence, A is injective.
Therefore, R is an artinian semi-simple ring. The converse is clear.
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2. Completely reducible category of injective modules

In this section we shall study a completely reducibility of C(Λ/)/$ for any
injective module M.

Lemma 2. Let 33 be a full sub-category ofSSStR. Then any finite coproduct
in 33/$ is lifted from a coproduct in 2Ji#, and every finite coproduct in SΰlR of objects
in 33 is reduced to a coproduct in 33/$, where $ is the radical o/33.

Proof. If N=N,®N2 in WlR for objects in 33, then lN=e1+e2, e\=e{ and
*i_lA Hence, \N=e,+e2 in 33/$ and NX®N2 in 33/$. Conversely, we
assume N=Nγ@N2 in 33/$. From the definition of 33/$, there exist i?-homo-
morphisms i> p such that pi=\Nl (mod $ i V l) and i is the inclusion of N1 to N
and p is the projection of N to N19 where z'e [N19 N]R and p^ [N> iVJ^. Since
$Λ Γ is the radical, pi=a is isomorphic in yJlR. Let Nx be a sub-object of JV
via ia'1, then iV^Λ^φker^ in SJΪ .̂ It is clear from the first argument that
N=N1®N2 in 33/$ is reduced from N=N1®kerp in 2flΛ and kerp^N2 in WlR.

Let 71 be an i?-module. We call T a completely [directly) indecomposable
module if i ? τ / $ τ is a division ring, where RT=[T, T]R and $ τ is its radical,
(cf. the condition (#) in [1]). It is clear that T is directely indecomposable in
this case.

Proposition 3. Let M be an injective module in WlR. An object N in
C(M)/$ is minimal if and only if N is completely indecomposable in WlR.

Proof. Since Λf is injective, "only if part is clear. The converse is also
clear from Lemma 2, since C{M)j^ is spectral.

Proposition 4. Let R be a left perfect ring.2^ Then C(M)/$ is a com-
pletely reducible abelian C^-category for any injective module M.

Proof. Let N be any non-zero object in C(M)/$. Then N has the
non-zero socle S(N) by [2], Theorem P, say 5(iV)=Σ Θ/Λ, 4 ' s are minimal
modules. Since N is injective and R is left perfect, J V = £ ( Σ θ Γ J . Put
Ei=E(Ii)y then E{ is completely indecomposable. Hence, TV is a coproduct
of minimal objects E{ by Proposition 3 and Remark 1.

Next, we shall consider a condition under which §l=Sl/$ is completely
reducible, where Si is the full sub-category of all injective modules in yJlR. The
essential part in the following argument is due to [11], Remark 2 in p. 516.
However, we shall give a proof for the sake of completeness.

DEFINITION Let S b e a right ideal in R. β is called reducible if $£=% Π 5R2

2) See the definition in [2]
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for some right ideals 31, in R and 3^Φ® (/= 1, 2). If £ is not reducible, then ® is

called irreducible.

Lemma 3 [11]. Let SI be as above. Then E® is completely reducible in 31

for every right ideal $ if and only if

β = 3^0 9*2 and% is irreducible and 3ΐ2Φ5ΐ ( * )

Proof. We assume that E@ is completely reducible and E$=E1(BE2 in SI,
where Eλ is minimal in SI. Then we may assume from Lemma 2 that
E$=EX®E2 in 501 .̂ Since E1 is directly indecomposable, E^E® and ® is
irreducible by [11], Theorem 2.4. L e t ^ , p2 be projections of E® to E1 and E2}

respectively. We put ® t=ker (p^Rffi). Then ®=5ϊ l ni ϊ 2 and ®/s a r e n o t

equal to R, since Rffi is essential in E$. Furthermore, Λ / ^ 1 ^ ^ ) 1 ( J R / ^ ) C £ ' 1 and
hence, $lx is irreducible by [11], Theorem 2.4. If $ = ® 2 , />2 is monomor-
phic over Rffi in 501̂  and hence, >̂2 is a monomorphism of 2?$ to E$ which is
a contradiction. Thus, we have the condition (*). If the condition (*) is
satisfied, then E® has a minimal direct summand by Proposition 3 and [11],
Theorems 2.3 and 2.4. Now let S(E@) be the socle of E% in SI, (since SI is a C3-
category, S(E$) exists), then E^=S(E1)®Ef. It is clear that E' contains some
JEjt if £"ΦO. Hence, EΛ=S(Est).

Theorem 5. Let SI be as in Lemma 3. Then SI is completely reducible if and
only if the condition (*) is satisfied for every right ideal St in i?.3)

Proof. We know from the proof of Theorem 1 that t / = Σ Θ£® is a
generator in SI. Hence, SI is completely reducible if and only if every E® is
completely reducible, since SI is a C3-category,

Corollary 1. If SI is completely reducible, then so is C(Λ/)/3f for every
injective module M.

Proof. Every direct summand in SI of an object in C(M)ffi is an object in

Corollary 2 ([11]). Let Rbe a right noetherian, then every injective modules
is a directsum of completely indecomposable modules.

Proof. It is clear that R satisfies the condition (*) if R is right noetherian.

Let Q be an injective module, then Q is a coproduct of minimal object QΛ in

C(Q)/$. Hence ρ ~ £ ( Σ ®Q«) in «/9ί. Since ξjf is the radical, ρ « E ( Σ ®Q«)

in SUlR. Furthermore, Σ φ g Λ is injective, since R is right noetherian.
Therefore, Q=*ΣΪ ®Q* a n d Qa is completely indecomposable from Pro-
position 3.

3) Added in proof. It is obtained in [19].
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REMARK 2. The category C(M)ffi is a cocomplete C3-abelian category
with generator for any injective modules M by Theorem 1. If M is an essential
extension of a sub-module which is a directsum of indecomposable injective sub-
modules, Mis completely reducible in C(M)ffi by Proposition 3 and Remark 1.
In this case, since C(M)ffi is locally small, we can apply results in completely
reducible modules in 3Ji^ to M in C(M)ffiy which we shall use freely in the
following.

DEFINITION. An i?-module M is called uniform if M j f W ^ O for any
non zero sub-modules M19 M2 in M. We consider sub-modules N which is a
directsum of unifrom sub-modules MΛ over an index /; JV= Σ ®MΛ. We

define dim Λf=max card / if it exists.
IT

Theorem 6. Let E be an injective module in SJί^. Then E has dim E and is
a directsum of sub-modules Ex and E2 such that Ex is a minimal module with dim E
=dimE1 and dim E2=0> Furthermore, this decomposition is unique up to iso-
morphism.

Proof. We note that an injective module Q is unifrom if and only if Q is
directly indecomposable. First we consider every modules in C(E)ffi or in
31. It is clear that dim E=0 if and only if E contains no minimal objects in
C(E)I$. Assume dim i?φθ, then E has the non zero socle S(E) in C(£)/$, say
S(E)=E( Σ ®EΛ) ( = Σ ®EΛ in C(E){%). Hence, E=S{E)®E2 and

dim 2?2=0. Let iV be a submodule such that N= Σ θ ^ β where EL is
β<EJ

directly indecomposable, then E(N) is contained in S(E) in C(M)ffi. Hence,
card y<card/. Therefore, dim ^ i ^ d i i n i ? . Next we assume E=EX@E2

=E1'(£)E2' such that dim£ 1 =dimE' 1

/ =dim£ l and dim 2?2=dim £,/=(). It is
clear that E1=Eί

f=S(E) and E2^E2 in C(M)/3f and hence, E^E^ and
E2**E2' in 2JlΛ.

Corollary 1. Let N be an R-module. Then N has the dimension and N is
an essential extension of iVΊφiV2, where dimN2=0 and Nτ contains a sub-module
T such that T= Σ ®TΛ> Ta is unifrom and card I=dimN. If N is a quasi-

injective and N/s are closed in iV4), then this decomposition is unique up to isomorphism.

Proof. Put E=E(N). Then E=E1φE2 as in the theorem. We put

Ni=Eif]N. It is clear that N is an essential extension of N^N2 and dim

N2=0. If E^EfΣ ®E«)> EaΓ\N1=NΛdF0 and Γ = Σ ®NΛ is essential in

If T'= Σ Θ^Λ> ^ * > s a r e unifrom, then E1 contains an isomorphic

4) See the definition in [3], p. 15.
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image of E(Tf)=E(Σ®E(N^)). Hence, card/<cardJ. Therefore, dimN,

=dimiV. We assume that N is quasi-injective and Nly N2 and iV/, N2' are
as in the corollary. Since N/s are closed, Ni=Nf]E(Ni). Furthermore,
E(Nj) and E{N't) are isomorphic each other by Theorem 6. There exists an R-
automorphism φ of E such that φ(Ei)=E/

i, where Ei=E(Ni) and E/=E(Ng).
Hence, φίN^φiNnE^NΓlE'^Ni by [3], §5 or [9].

We shall give a slight generalization of [4], Theorem 6, 5. However, the
proof is much simpler than them. We shall study further the problem of this
type in the section 3.

Corollary 2 ([4]). Let Q be an R-module which is a directsum of directly
indecomposable injectίve modules QΛ\ ζ ) = Σ ®QΛ- Then we have

i. S is a sub-module of O such that 5 = Σ ®Pβ and P/s are directly indecom-
J

posable, then card I > card J. Furthermore, if Q is injective then S is injective.
ii. If Q is quasi-injective and S is injectίve, then S=*

Proof. We consider all objects in 21; category of injective modules modulo
$. Let E=E(Q) and F=E(S) (dE)y then F is contained in the socle S(E) of
E in St. Hence, card/< card /. Furthermore, every Pβ is isomorphic to some
Qitcβ) in 2ί and hence in ΏJί̂ , where π is a one-to-one mapping from/ to /. If Q
is injective, then S is isomorphic to Σ ®Q«w in 2ί and hence, in SDΐ̂ .

Therefore, S is injective. ii. If S is injective, then F=S. S = £ ( Σ

and Pβ t& Q«cβ) We define an i?-monomorphism / of Σ ®Pβ to Σ

via pβ. Then we have a diagram

0->5

/

Σ

Since ^ is quasi-injective, we have an extension g^ [Q, Q]R of/. Since Σ
is essential in S, g is monomorphic. Hence, Σ θ Q«w ^s essential in g(S).

Therefore, g(S)= Σ ®Q«» .

Finally, we shall give some remarks and examples concerned with the
category 51 of injective modules modulo 3f.

Let 3Ϊ; be a full sub-category of 21 whose object consists of all E{ in
Theorem 6. Then Stx is a completely reducible C3-category and every
objects in 2l2 has zero-socle. Hence, 2I=2I1x2ί2 (cf. [7].) Furthermore, we
have another decomposition of 21. Let 3If (resp. 2If) be the full sub-category
of 21 whose object consists of all A in 21 such that A=E(SR(Aj) (resp. SR(A)=0)y
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where SR(A) is the socle of A in SJΪR. It is clear that we have for any object
N in 31 N=N1φN2J Λ^eSI?. For any f<=[N19 N2]R we have
and hence,/e^. Thus, we have 2t=§I?xSi2*. It is clear that Slfc

EXAMPLE 1. We shall use the same example given in [13], p. 378. Let

Zcp ) bethe^)-adic integers for some prime p and R=Zcp^(BZp<x> with multiplica-

tion (λ, x)(μ, y)=(λμ, \y+μx)y where λ/i,GZ(/)), x, y^Zpo*. Then E$=R or
Qap ): the quotient field of ZCp )9 where β is an ideal in R. Hence, SI is completely
reducible in this case, however R is neither noetherian nor perfect. Furthermore,
31]== SI and 31* is a category with generator R and 31* with QCp>. This fact
shows that Corollaty 1 is not true if Z(M)Φθ. Since U=R@Qcp^ is a samll
generator, 31 is equivalent to the category of (Z//>0£)c/o)-modules.

EXAMPLE 2. We shall give an example in which 31 is not completely
reducible.

L e t / = [ 0 , 1] be the close interval in the real numbers K. Let R be the
ring of continuous functions from / to K. By h we denote f| /^(O) for an

ideal t in R. We assume that Iχ containes a closed interval / which is not
equal to a point. Let I=Ix\jI2 and /,•=/,-, 7 i n/ 2 =(x). We put x{={/| ^R,
y|/j=O}, and r f .=r+i{. Then r f.St and r = r 1 Π t 2 . Hence r is reducible. It
is clear that the zero ideal (0) is reducible. We assume (0)=rf ! t ' and t is
irreducible. There exists, for any / Φ θ E t ' , a not point colsed interval L
such that/(Z)Φθ for all IEΞL. Hence, LΠ/r '=φ. If Ix\}h'=J, then 7 r ^L,
which contradicts to the fact that r is irreducible. Hence, there exists a point
a not in ΛUΛ'. Then there exist/e/ r and^e/r ' such that/(α)Φθ, g(a) + 0.
On the other hand, /^Gt n t ' = ( 0 ) , which is a contradiction. Thus, the cate-
gory of injective i?-modules modulo $ is not completely reducible.

3. Krull-Remak-Schmidt-Azumaya's theorem

We shall study the Krull-Remak-Schmidt-Azumaya's theorem for R-
modules. Our proof will be somewhat different from ordinal ones. We shall
make use of the same argument in the previous sections, however our method will
be substantially analogous to that in [1],

Let M be a right i?-module and we assume

M=Yi®M<A - ( 1 ) and M=Σ®Nβ - ( ! ' ) >

where MΛ

ys and Nβ's are completely indecomposable.
We consider the following statements.

I. c a r d / = card/, and there exists a one-to-one mapping ψ of 1 to]such
that Ma^Nφίώ)for all



332 M. HARADA AND Y. SAI

II. For any sub-set Γ in I (resp. J' in J) there exists a one-to one mapping

ψ of Γ into] (resp. J' into I) such that MΛ^Nφcώ>for all a<=Γ (resp. i\Γβ«Λfψq»

for all β<=J')and

Σ β ( p Σ )

III. Every direct summand of M is also a directsum of completely inde-
composable modules, which are isomorphic to some Ma.

It is well known as the Krull-Remak-Schmidt-Azumaya's theorem that
II and III for any finite set /' and condition I for any set / and / are satisfied
for any decomposition (1) and (1'), (cf. [1]). Corollary 2 is a special case for
the condition III. It is clear that if Mβ's and Nβ's are all minimal modules,
then all conditions are satisfied, and we note that those arguments for completely
reducible modules are valid for a completely reducible object in a C3-abelian
locally small category.

Some parts in the following will overlap with results in [1], however, we
shall give prooves for the sake of completeness.

We assume a right i?-module M has a decomposition as in (1) and (1').
We take a set {aστ}σ of i?-homomorphisms aστ of Mτ to Mσ. We call {<zστ}σ

summable if for any non-zero element m in Mτ, aσΊ(m)=0 for almost all σ. In
this case Σ aσr is an i?-homomorphism of MΊ to M. It is well known that

O"

[M, M]R is isomorphic to the ring of matrices whose (σ, τ)-component consists
of all elements of [MΎ, Mσ]R and every family of components in any column is
summable (we call it simply column summable).

Let M= Σ ΘΛί* and N = Σ ®NT as in (1). Then [M, N]R is isomorphic

to the module of matrices as above. By ^ C τ > σ ) denote the sub-set of those
matrices whose each components are not isomorphic. It is clear that $Cτ' ° is a
module since Mσ's and iVτ'a are completely indecomposable and $ C τ ' σ ) may
depend on a decomposition (1)

The following lemma is well known

Lemma 4. Let M{ (i—\, 2, 3) be completely indecomposable and a{ (i= 1, 2)
R-homomorphisms of M{ to Mi+1. If a2aλ is isomorphic, then ax and a2 are
isomorpihc.

Lemma 5. Let M= Σ ®Ma, N= Σ θΛΓσ and T = Σ 0 Γ p be as in
I J K

(1). Then [N, T]R&σ'"^&p>«> and &p'σ>[M, N]REΞ$CP>*\

Proof. Let/=(tfo.) be in 3 C Λ ' σ ) and h=(blk) in [N, T]R. Put hf=(xts\
xts— Σ btkaks. If Ms^ύMty then xts is not isomorphic. We assume Ms^Mf

and aks(m)=0 for k^J—(k1,-"kn)=Jf and mΦθGilί s. Then we put
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xts= Σ btkiak.s-\- Σ btkaks. Since btkiak.s

ys are not isomorphic from Lemma 4,

xts is not isomorphic from the assumtion of MΛ. Hence, hf^ϊ$CP'*y- The
last part is similar.

Corollary. $(*>*) does not depend on the decomposition (1). Furthermore,
ifM=N, 3T Λ ) is a two-sided ideal of [M, M]R, {cf [1], Theorem 2.3).

Proof. Let M= Σ ®MΛ and N= Σ ®Nσ= Σ ΘN'J. We put N=T
= Σ θW f f ' in Lemma 5. For any/ in 3C<Γ'Λ) we have/= 1^/e $c<r'' »\ Hence,
S c σ ' Λ ) CS c σ / ' Λ ) . Similarly ^ ' . ^ S ^ . The last part is clear.

We shall denote 3c<r'*> by ^ [ M , N].
Let §ϊ (resp. Sty) be the full sub-category of SJl̂  whose object consists of

all modules which are coproduct (resp. finite coproduct) of a given family {M^}
of completely indecomposable modules M^. We define a two-dised ideal £?' in 21
(resp. in 31^ by setting: S'Π [M, ΛΓ|=3ί/[Λf, iV] for every M, Λ̂  in 21. It is
clear from Corollary to Lemma 5 that ^ is an ideal in 21.

Theorem 7. Let 2X and 21/ δe as above for a given family {MJ of completely
indecomposable modules MΛ. Then 21/3̂  {resp. 2I//3ί/) is a C3-completely re-
ducible {resp. completely reducible) abelίan category.

We need some well known results for the proof.

Lemma 6. Let R be a ring and e> f be idempotents such that eR^fR and
{l—e)R^{l—f)R. Then there exists a regular element a in R such that f=a~ιea.

Proof. R=eR(B{l—e)R=fR(B{l—f)R. Let φu φ2 be given isomorphisms.
R=[R,R]R^φ=φ1-\-φ2. Hence, φ=aι for some regular element a and

Corollary. Let A be a division ring and P a right A-module. We put
R=[P, P] Δ and P= Σ Θ ^ Δ . Let e be an idempotent in R. Then there eixst

a subset J of I and a regular element a in R such that e=a~1fa, where f is a
projection of P to Σ 0wβΔ.

7

Proof. P=ePφ{ί—e)P as a Δ-module and eP= Σ Θ ^ Δ . Then eR^fR

and {l—e)R^{l—f)R. Hence, the corollary is true from Lemma 6.

Proof of Theorem 7. It is clear that 21/$' (resp. 2I//5O has any (resp. finite)
coproduct from Corollary to Lemma 5. We shall denote every morphisms in
21 by column summable matrices. Let {aσ7) be any morphism in [Λf, M]R.
Since aσr{mΎ)=0 for almost all σ and mτy β σ τ e ^ [ M τ , Mσ] for alsmost all σ.
Hence, [M, iV]/$'[M, M] is isomrphic to the ring of column finite matrices.
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Let M= Σ Σ ®MΛ9 and MαP«MΛP/, Maβ*MaV if a Φ α'. Then [M, M]a/S'

=Π [ Σ ΘMap, Σ 0M,,]a/S' Furthermore, [ Σ ®Mβt, Σ ΘMΛP]3i/s' is iso-
# pe/ Λ pe/flj Pe/αj pe/αs

morphic to the ring of column finite matrices over the division ring [MΛ1, MΛ1]I

Λ1, Mal], Hence, 31/$' is regular category defined in [15]. We denote

[ Σ ΘMΛ P, Σ ΘMΛP]«/3' and [ Σ 0Afep, Σ Θ M J Λ by RΛ and i?Λ, respec-

tively. Let e be an idempotent in [M, M]w/%'. Then £= Π eay where £Λ's are
Ob

idempotents in R^. There exist an idempotent fΛ and a regular element aΛ in
RΛ such that eΛ^=aoι~

1f(ύa(A and /Λ is a projection of Σ ΘMΛ P to a direct summand

Σ Θ^Λβ by Corollary to Lemma 6. Hence, ker fΛ exists and is equal to

Σ ΘM,«/ in 3t/3f'. Therefore, ker Π/Λ exists and, since ^ = Π aa is

regular in Π i?Λ, e=a-\UfΛ)a has the kernel in SI/3T. Thus, 51/^ (resp.
is a C3-spectral (resp. spectral) abelian category by [15], Theorem 2. Since Sl/Sί'
is semi-simple and [MΛ1, M^Jsi/s' is a division ring, MΛ 1 is a minimal object by
[8], Lemma 1.3. Therefore, §1/$' and S l ^ are completely reducible.

Lemma 7. Lei M ie an object in SI. ΓÂ w S'[M, M] Jo^ /zoί contain non
zero idempotents ([1], Theorem 3).

Proof. M = Σ Θ ^ Λ and eΛ is the projection of M to Mrt. For an idem-
potent e we have ea=e<ΛeeΛ+ea(ί—e) eΛ. Hence, eΛeeΛ or ejί—e)ea is isomorphic.

If <?Φθ, there exists a finite set {α, } such that eM(Ί Σ θMΛf=|=(0). Hence,

e(AieeΛi is isomorphic for some /, which implies e φ ^ f M , 7k?].

Lemma 8. TÂ  ideal ̂  in %f is the Jacobson radical of 31^

Proof. First, we assume that M= Σ θ ^ and Mi^M1 for all i. Let

X=(xu) be in 3ί/=3f/[M, M]. Then 1 M . — ^ is regular in [Mg, Mt]R. Hence,
by Lemma 4 and taking fundamental transformations, we know that there
exists regular matrices P and Q in [M, M]R such that P(I—X)Q=I. Hence,
X is quasi-regular, and v̂r is contained in the radical of [M, M]R. Since 51^/$
is semi-simple, .̂ f' is the radical of [M, M]R. In general case, we can use the
same argument by Lemmas 4 and 5 and hence, %$' is the radical of 31 f.

Corollary 1. (K-R-S-A Theorem) ([1], Theorem 1) Let M be a right
R-module which is a directsum of completely indecomposable modules Ma and Nβ

as in (1) and (V). Then Condition I and Condition II for any finite sub-set Γ
and J' are satisfied and for any direct summand M' of M M' is either isomorphic to

Σ @MΛ.for some n or M' contains a direct summand which is isomorphic to Σ ΘΛ/Λ>
1 = 1 1 = 1

for any n.
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Proof. We take that {Ma, Nβ} is a given family and consider the additive
category 21 as before. Condition I is clear from Theorem 7 and Lemma 8. Put

M'= Σ @MΛ. and p the projection of M to ΛΓ. Then Λf=ker/>®(ΛΓψCfl,l)

θ — θNφCΛH>) in 21/3', which means that pi is isomorphic in [N\ ΛΓ]/3'[iV', ΛΓ],
where N'= Σ 0iVψCα>.) and i is the inclusion of N' to M. Since ΛΓ and iV'
are in 31^ 3f[iV', ΛΓ] is the radical of [N\ M']R. Hence, pi is isomorphic in
3W*. Therefore, M=N'®ker p=N'® Σ M, where J '={1, 2, ••, n}. Con-

I-I'

versely, we take a finite family {iVf}fe7/, then Λf=iV"© Σ ®Λfβ/ in

where iV"= Σ Θ^V. and ψ': J'-+I. Letp' be a projection of M to Σ

Then it is clear that/) | TV" in 3U3»' is isomorphic. Hence, Λf=iV"® Σ

in SDΪ̂ . Thus, we have proved Condition II for finite sub-set /' and J'.
Finally, let M'^eM be a direct summand of M and e2 = e^0. Then ^ φ ^ by
Lemma 7. Hence, £ has the image eM= Σ ®M'a' in Sϊ/Sί7. Σ ® ^ r contains

t Λ'(ΞIr I'

a direct summand M / r = Σ θ ^ ^ Let p and i be i^-homomorphisms of M to

M' and M" to M such that/> and i in 21/.^ are projection and injection, respec-
tively. Then pet is isomorphic in 21/$/ Since M" is in 2Ir, />£/ is isomorphic in
SSΆR by Lemma 8. Therefore, eM contains a direct summand which is isomor-
phic to M". If eM=M" in 21/S', then eM=M"®M0. Hence, e W + e 0 , ^ / 2 = ^ r /

and ^o=^o Furthermore, e=e". Therefore, eo=0, which implies e=0 by
Lemma 7. It is clear that MΛ. is isomorphic to some Ma.

Corollary 2. Let Mbe anίn{\). We assume that %s'[M M] is the radical
of [Mf M]Ry then Conditions II and III are satisfied for any sub-set Γ and Jf.

Proof. Let ΛΓ be a direct summand of M. Then RMr=[M\ M']=eRMe
for some idempotent e. If ΛΓ« Σ ΘΛfy and MjM'^ Σ ΘMp/, then

3 ^ / 2 ^ = ^ 0 ^ = ^ ^ . Hence, 3 ' ^ / is the radical of RM'. In this case we
can replace a finite subset /' by any sub-set in / in the proof of the corollary 1.
Hence, Condition II is satisfied for any sub-set in / and /. For Condition
III we consider M = M 1 0 M 2 in WlR. Then ^M== Σ ΘM Λ . in 21/^ and hence,

e{M^ Σ ®MΛ. by the above and the proof of the corollary 1.

We shall give a converse of [15], Theorem 7.

Proposition 8. Let S3 be a full sub-category of SΰlR. Then 33/^ is an
artinian completely reducible category if and only if 33=21/ for some family {Ma}
of completely indecomposable modules Ma> where ̂  is the radical of 93.

Proof. "If part" is clear from Lemma 8. We assume that 33/̂ 5 is artinian
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and completely reducible. Let M be an object in 93. Then M= Σ 0 M f

and M/s are minimal in S3/3ί. We may assume M= Σ θ M4 in 501* by

Lemma 2. It is clear from the definition of $ that M/s are completely

indecomposable.
We shall consider the converse of Corollary 2.
We take a decomposition (1) for an i?-module M with infinit set 7, and

consider a linear ordered sub-set 70 with card I0=X0 in 7. Let /,- be an R-
homomorphism of M{ to Λfί+1, which is not isomorphic for any z, i + 1 e7 0 . By
#(/, /) we denote the composition of fJyfj_ly •••,/,•+!,/,• for j>i.

Lemma 9. Lei M δe a s flio^ «wrf {/J <z family of non-isomorphisms of
Mk to Mk+1. If Condition II is satisfied for any sub-set 70, then for any i and any

element m{ in Miy there exists j (j>i) such that θ{jy ί)(wf ) = 0 . Especially, in this

case there exist only finite many non-isomorphic monomorphisms fk.

Proof. First, we assume that all f{ are monomorphic. We put M'n
= {x+fn(x)\χ(=Mn} and Mo= Σ ®MΛ. Then it is clear that

τ~τo

M - M 1 φ M / e M 3 e M 4

/ φ . . e M 0 = M 1

/ e M 2 θ M 3 ' e M 4 e θ M 0 ..-(2)

We apply Condition II for 7'=(2, 4, —, 2w, •••), then we have Λf=M 1

/ φM 8

/

0 ΦM O ΦΛ/T 2 (M 2 )ΦΛ/Γ 4 (M 4 )Φ , where Λ/r2n are isomorphisms of M2n to some
direct summand of the left side in the above. From the assumption, any f2n_1

are not epimorphic and hence, Σ Ψ 2 n(^2»)^Σ @M'2n. It is clear that
(Σψ 2 Λ (M 2 r t ))nM 0 =(0). We assume ψ2n(M2n)=M2i+1 and ψ2niM2nή=M2j+1

andy>/. In this case we have for xφO in M2i+1

X = (X-Γj2i+lX) {j2i + lX~l~j2i + 2j2i + l X ) \ m "

j , 2i+l)x)Ψθ(2j9 2i+l)x

"'®M/

2jφM2J+1 ..-(3)

This is a contradiction. Hence, we may assume that ψ2n{M2rϊ) is equal to
some Mίm for all «>some n0. Then if we consider a non-zero element in
M2n'+1 for some large n' as the expression (3), we have that Άf φM 2 n/+ 1, since
//s are monomorphic, which is a contradiction. Thus, we have proved the
last part. Therefore, there exists infinite many of non-monomorphisms {fit} in
{fk}' We put gt=θ(it+1—ί9 it)y then any gt are not monomorphic. It is clear
that we may assume Mit=Mt in the lemma. We shall use the same argument
for the new non-monomorρhism/f . Let x be a non-zero element in ker /2 t + 1,
then «GAf2i+inilf2/+1. Hence, we know that ψ2Λ(M2Λ) is not equal to any
M2i+ι and ^}r2H(M2H)=Mim for some tn. Now we take any non-zero element x
in Mλ and consider an expression of x as in (3). Then we know that θ(m, 1)
(x)=0 for some m.
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We call a family {/,} of i?-homomorphisms an elementwίse T-nilpotent
system (or left vanishing) if {/J satisfies the consequence of Lemma 9.

Lemma 10. Let M be as in (1) and ^ ' the ideal in Theorem 7. If any
family of components in S' is an elementwise T-nilpotent system, then 3f' is the
radical in 51.

Proof. Let A be any element in $ ' and mσ any element in Mσ. Put
A—-{aσΊ). Since A is column summable, there exists a finite set Fx of indeces
τ\l) such that Λτci)σ(/«<r)=wΓci)φ0 and arσ.(mσ)=0 if r^I—F^ Similarly we have

a finite set F2 of τ^2) such that 0Γc2)Γci)(mΓci))=mΓς2)=j=O and αΓτci)(mrα))=0 if

T G / - F 2 for any τ(

j

1> in ί\. Repeating this argument, we have a family of finite

sub-set {JF,.}. Then ^4M(mσ)= S a ^ - i ) ^ - ^ - ^ . . ^ ^ ^ ) , where τ c ί ) runs

through elements in i^ . From the assumption there exists nσ such that v4Wσ(mσ)

= 0 by the Konig Graph theorem, (cf. [11], ρ.42). Hence, if we put B= jπ An

y

then B is an element in [M, M]# since {An} is a summable system. Further-
more, A(—B)—A = —B. Hence, A is quasi-regular in [M, M]R. There-
fore, & is the radical in §1 by Theorem 7.

Theorem 9. Let M be a directsum of completely indecomposable sub-modules
MΛ and Nβ as in (I) and (1'). Then the following three statements are equivalent.

i. Condition II is satisfied for any objects in 51 defined in Theorem 7 and
any sub-set I' and ]'

ii. $' defined in Theorem 7 is the radical in 51.
iii. Every family of non-isomorphic R-homomorphisms of MΛ to MJ [not

necessarily aΦa') is an elementwise T-nilpotent system.
Furthermore, the fact that Condition III is satisfied for any direct summand

of M is equivalent to
iv. Let ey f be idempotents in RM=[M, M]R. If eRMί^M^fRMl^f

M, then
eRM**fRM.
And i implies iv.

Proof, i implies iii by Lemma 9. iii implies ii by Lemma 10 and Theorem
7. ii implies i by Corollary 2 to Theorem 7. We assume Condition III.
Then M=eMφ(l—e)M and eM and (1— e)M are objects in 5ί. Hence, eM is
equal to the the image e in 5ί/^7 by Lemma 2. If e^f in St/^'. then im e=eM
is isomorphic to imJ=fM in 2I/S7. Since eM and fM are objects in 51, eM^fM
in 3JlR by Condition I in Theorem 7. Therefore, eRM^fRM. Next, we
assume iv. Let M' be a direct summand of M, say M'=eM> e2=e. Then we
know in the proof of Theorem 7 that there exists an idempotent / in RM such
that eRM^fRM and fM= Σ Σ ®Map. Since eRM^fRM by iv, eM^fM in

MR. The last part is also clear from Corollary 2.
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REMARK 3. If we replace i in Theorem 9 by i'; Condition II is satisfied
for M and any sub-set Γ and J\ then i' does not imply ii and iii. For example,
let {/>, pi) be a family of distinct primes and M=ZP@ Σ ΘZ/pf θ Σ θ^//>,

0 . Then M satisfies condition II for any sub-set /' and/', however, iii is
not satisfied. We shall show later that iv does not imply i.

We slightly generalize Carollary 2, ii to Theorem 6.

Proposition 10. Let M be an R-module as in (1). If M is a quasi-injective,
then ^'[M, M]R is the radical of RM. Hence, Conditions II and III are satisfied
forM.

Proof. The first half of the following is due to [1], Theorem 2. Let eΛ

be a projection of M to Mω and x be in ^'[M, M]. Then eΛ=eΛxeΛ-\-eΛ(l—x)ea

and e^xe^ is not isomprphic by the definition of 3>'. Hence, eΛ(\—x)ecύ is iso-

morphic for all a. If ker (1— #)Φθ, ker (1— Λ?)Π Σ MΛ.Φθ for some {ag} and

^2ea.(l—x)ea. is an automorphism of Σ Map which is a contradiction.

Therefore, 1—x=a is monomorphic. Since Mis quasi-injcetive, aM is a direct
summand; aM=eM, e2=e. Hence, 0=(l—e)a=l—e (mod ξV). Therefore,
e=\ by Lemma 7 and # is quasi-regular.

Corollary. Let {Mα}αe/ ό̂  a family of infinite many of ίnjective indecompo-
sable R-modules. / / Σ θ ^ * w ίnjective, then any family {fa} of non-iso homo-

morphisms of MΛ to Mβ (αΦβ) is an elementwise T-nilpotent system. IfRis right
noetherian, then any family of R-non-ίso homomorphisms of injective indecom-
posable modules is an elementwise T-nilpotent system.

Proof. It is clear from Proposition 10, Corollary 2 to Theorem 7 and
Lemma 9.

4. Special cases

In this section we shall consider special modules. Let R be a commutative
Dedekind domain, which is not local. Then a finitely generated and completely
indecomposable i?-module is isomorphic to Rjpn for some prime p (cf. [10],
Theorems 1 and 9).

Proposition 11. Let R be a not local Dedekind domain and R\pn^p<^ be a
family of completely indecomposable modules. Then M= Σ Θ^Z/C^ satisfies

Condition II for any sub-set Γ and J' if and only if n{pΛ) is bounded for each pΛ.
In this case, Condition III is satisfied.

Proof. It is clear that each R/pn has a composition series. If n(pΛ) is not
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bounded for some p. Then we have a family {/,} of non-iso monomorphisms
ft of RIpni to R/pni+iy which is not elementwise Γ-nilpotent. Hence, Condition
II is not satistied. We assume that n(pa) is bounded for all pΛ. Since
[R/pn, R/qm]R=0 if p*q, [AT, M]R= Π [ Σ ®Rjp\ Σ @Rlpn*]R. The radical

P

of latter rings are nilpotent by the well known theorem (see Corollary to
Lemma 12 below). Hence, ^ [ M , M]R is the radical of [M, M]R. Therefore,
we have the proposition by Corollary 2 to Theorem 7.

The following lemmas may be well known, however we shall give prooves
for the sake of completeness. By \M\ we denote the composition length of
i?-module M.

Lemma 11. Let {Mt} be a family of indecomposable R-modules with \M{\
=n<oo for all i. Let f{ be a non-iso homomorphism of M{ to Mi+1(Mi+1 may
be equal to M, ). Then | θ(2m

y \){MΎ) | <w-wι- l for any m.

Proof. Since \Mt\=n for all /, each/,, is neither monomorphic nor
epimorphic. We shall prove it by the induction on m. 1) If m=0, \fλ{M^)\
<w—l=w—0—1. 2) We assume \θ(2m

y 1XMJI < w - m - l and n—m—lφ0.
3) It is clear that \θ{2m+\ 1XMJI <m-m-l. If \θ(2m+\ l)(M1)\=n-m-ly

then \θ(2m

9l)(M1)\=n-m-l. Hence, (θ(2m+\ 2m+ί)\ θ(2m

y l^M,)) is mono-
morphic. Furthermore, we have \θ(2m+\ 2m+l)(M2m+1)\ <τz—m~ 1 from
the assumption 2). Since \θ(2m+\ 2m+l){M2m+1)\ > \θ(2m+\ l)(M1)\ =n-m
- 1 , θ(2^\ 2m+l)(M2m+1) = θ(2^\ 1XM0. Hence, M2m+1 = θ(2>»y l)(M0
θ k e r ^ 1 " ^ , 2m+ί) and θ{2m

y lXM^φO, ker θ(2m+\ 2 w + l ) φ 0 , which is a
contradiction. Therefore, \θ(2m+\ l)(M1)\ <w—m—2.

Lemma 12. Let {Mf }, {/,-} έ^ ^ above with | M f | < n < o o /or β// ί.
no.

Proof. It is clear from the assumption that at least one fi+J. among fi+k

k=0y 1, ---yn is not monomorphic. Let fil9fi2, ••• be not monomorphic, then
gi=θ(h—ly h)y g2=θ{h—l> h)> ••• a r e n o t monomorphic. We take a family
{Mίy}. Since | Mfj \ <ny there exist some r<w and an infinite sub-system {MΛ|.}
such that \Mk\=r for all k. We put h1=gk2_1gk2_2—ghl, A2=Λ3-Γ ft2, "-and
apply Lemma 11 for a system {AJ, then we have a fixed large k0 such that
0(nOy l )=0. It is clear that we can find such n0 independently on a choice of
M£ and /,-.

Corollary. Let {MΛ} be as above and M= Σ @MΛ. Then $'[M, M]R is

nilpotent.

Proof. Since each MΛ is finitely generated i?-module, [M, M]R is isomor-

phic to the ring of column finite matrices. Hence, ̂ '[M, M]R is nilpotent.
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Finally we shall show that Condition III does not imply Condition II.

Proposition 12. Let {MΛ}ι be a family of finitely generated and completely

indecomposable R-modules such that [MΛy Mβ]R=Qfor a>β. Then M= f ] 0 M Λ

satisfies Condition III.5 )

Corollary. Let Abe a division ring and Rbea ring of lower tri-angular matrices
over A with dimension Xo. Let {eh} be a system of matrix units in R. Then

oo

M= 2 ®^uR satisfies Condition III, however some family of elements in

$'[M, M]R is not T-nilpotent.
Proof. It is clear that {Mi=eiiR} satisfies the condition of the proposition

and that [M, M]R is isomorphic to the ring of column finite lower tri-angular
matrices over Δ with dimension %0. Then {ei+u} is not Γ-nilpotent. Hence,
Condition II is not satisfied by Lemma 9.

Proof of Proposition 12. We put RσΊ= [Mτy Mσ]R. Then RM= [Λf, M]R is

isomorphic to the ring of column finite lower tri-angular matrices whose com-
ponent consists of all elements in Rστ. Furthermore, RM=RMI^RM

= Π (2?σσ/3f ϋ σ σ ) . Let E be an idempotent in RMy then E= Π £σ o where eσ's are
σ. '

identities in Rσ. We put F= Π eσ. and show that ERM^FRM. Let σ be an

integer and A in RM We shall divide A into four parts:

0

Ai*j
*21

and Aftis a (σ X σ)-matrix. Then E= (Eft 0 \ , F = (Fft 0 \ and EftRMft/

\Eft E%) \FR Fff/
'ii vV^Afii anu ^ϋii; = i i n , ^r'ffJ^Fi? m RMVL- If

cr=l, £ίi )=FiV and hence, there exists an RM

(ιi-isomorphism / c l ) of F[^RMγί
to EγiRMϊ$. We assume there exist i^^^-isomorphisms /Cτ) of F Γ I ^ M Ώ to
EiίR^iί for all τ < σ such that fCτ^\FιίRMiy=fCr^ for all τ<τ 1 # 1). Let

where E{ι=E^r1\ P u t / ^ / ^ " 1 ^ Since (Eft)2=Eft, we have

On the other hand Fft

^ = (E[1 0\,
\Λ:21 0/

A/ ^ n e / < A / f

5) Added in proof. This proposition is true without the assumption \_MΛi Mβ] = 0 for
by [18]. However, we can apply our proof to more general case under certain assump-

tions without finitely generatedness for any infinite family of MΛ.
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=(F'1X 0\ and FftRMK=(F'nR'M 0\. We define/w by setting fm((F[lXn 0\
U 0/ \ 0 0/ \ 0 0/

=ίf'(F'11xn) 0\, wheref'{Ff

11xtι)=Eί1x
f

n. Since x21E'u=x2i, fm is well defined
\#2i#ii 0/

and fm is Λ^-isomorphic. 2). Let ££> = /£"„ 0 \, then EftR& =

W ej

I t ι s c l e a r t h a t K1J11+J2J is equal to {y2ί} when j 2 l runs

through all elements. We define / ( σ ) by setting fi<n((Fί1yn eσy22\)((Fί1yn eσy22\)
\ V,, 0 /

= /f(Fίιyn) eσy2.\. Then/C<r:) is Λ^-isormorphic. In either case, it is clear

\ y« 0 I
that /c<Γ) |f ΓI^M ( T ) -=/ C T ) for all τ < σ . Thus, we have defined a system {/w}.
Since RM is column finite, each column of elements in FRM is contained in
some F^RMII. Hence, we can define an /^-isomorphism / of FRM to ERM

via {Λσ)}. Therefore, M satisfies Condition III by iv in Theorem 9.

Finally, we shall consider a contrary case of Proposition 12.

Proposition 13. Let {MΛ}Γ be as above. We assume [MΛ, Mβ]R=0 if a<β.

Then M= Σ ®MΛ satisfies Conditions I, II and III.
1

Proof. In this case, [M, M]R is isomorphic to the ring of upper tri-angular
matrices with components in [Mσ, MT]R. We shall show that ^;[My M]R is the
radical. It is clear that if / is finite, then ̂ [ M , M]R is the radical. As before, we
divide matrices A into four parts; A=/An A12\. Let A be in ^ [ M , M]R and

\ 0 Aj
assume A has the quasi-inverse B=(BkJ). Then AH has the quasi-inverse BH.
Conversely, if AH has the quasi-inverse, then we put B12=—(1— A^)"1

A22(l—B12)~\ Hence, A has the quasi-inverse (2Ϊ#7). From those facts and
the induction as in the proof of Proposition 12, we can prove A is quasi-
regular. Hence, the proposition is clear from Corollary 2 to Theorem 7.

5. In case of C3-abelian category

In this section we always assume (£ a C3-abelian category with generator
U. In this case E has any products by [6], and any object has an injective
envelope by [11], p. 87, Theorem 3.2. Let T=[U, ] be the functor of (£ to %RR

and S a coadjoint for Γ, where R=[U> U]. Then TM is injective if and only
if so is M in (£ by [17]. Furthermore, T(U M)=U (TM) and if TN=A1®A2
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for Ne&, then STN=SA1®SA2*nd STN t* Nby[6]. TSTN^TSAλ®TSA2

and φTN\TN^TSTN\φAi\ A^TSAi are homomorphic. Therefore, φA.

are isomorphic. Thus if we want to study the full sub-category C(M) in (£ as

in the section 1, then it is equivalent to study the full sub-category C(TM) in

yJlR. Therefore, we have the following from Theorem 1:

Theorem 1'. Let & be a C3-abelian category with generator and M an

injectίve object in S. Then C(M)ffi is a spectral abelian category with generator.

Since & has an injective cogenerator by [12], p. 90, Corollary 3.4, we can

obtain the similar results as in the section 2.

Finally, we shall consider results in the section 3 for S. P. Gabriel has

already generalized Azumaya's theorem to (£ in [5]. He proved it by replacing

Azumaya's method by categorical terms. We shall make use of Gabriel's

method.

We use the same definitions and notations in the section 3.

Lemma 5'. Let M= Σ ®MΛ, N= Σ Θ^Vβ and Γ = Σ θ ?\ be copro-
I i' I"

ducts of completely indecomposable objects. Let !3fcβ Λ ) be the sub-set of [M, N]

whose element consists of all f in [M, N] such that pβ fia is not isomorphic for all a

and β. Then [N, T]3cβ>*^^>«\ 3f<* »[M, iV]c3ί<* Λ> and 3f<*e> is an abelian

group, where pβ, ίΛ mean projection to Nβ and injection of MΛi respectively.

Proof. It is clear from the definition that ^ c β > Λ ) is abelian. Let /<E$ c β Λ )

and g^ [N9 T]. Since K is a C3-category, there exists a finite set K such that

/ W n Σ ^ Φ ( O ) if /(MΛ)Φ0. Hence, ft^^^+l^^^l^

+pygh'-κfi* Since/~x( Σ JVβ/)Φ(0), pygh'.Kfi* is not isomorphic and

β ε / — K

pyglKfia is not isomorphic by the assumption. Hence, gf^ $5CV>Λ). Similarly,

we have 3 c 7 ' β W N]^3«>"\

If we put M=N= T in Lemma 5', we know that 3f^ Λ )=3fc y i r t ) and ̂ ^ is

an ideal in (£. We shall denote it by 3ί'.

Lemma 13. Let M and & be as above. Then [M, M] /& is isomorphic to a

product of rings of linear transformations of vector spaces over division ring. Further-

more, we may regard [M, M]ffi' as the ring of endomorphisms of M considering

Ma minimal, (cf. [1], Theorem 3).

Proof. Put S=[M,M] and S = 5/3T. Since S=Π[Ma,M], we put

/ = Π/Λ for /<E S and / Λ e [Mm M\. Let K={j] be a sub-set of / such that

pyfω is isomorphic. If we put ft=fΛ—(1 — 1 κΛ)f» and / ' = Π/J, then / ' - /

= Π (1 — l ^ J / ^ e ^ 7 . Hence, we can chose a representative/ i n / such that
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each pβfia is isomorphic or zero. If /(MΛ)Φ(0) for a, then there exists a finite
set K in I such that f(Ma)Π Σ θ M β Φ ( 0 ) . Put f~\ Σ 0M β)=M^Φ(O).

Then ptfia\M^=0 for all tEΞl-K. Hence, ptfiΛ(MΛ)=(0) by the choice of/.
Therefore, f(Ma)ςz 2 θΛίβ. From this fact we have an isomorphism of 5

to the ring of column finite matrices with components pβfiΛ: MΛ-^Mβ. Since
[ΛfΛ, MΛ]ffi' Π [MΛ, MΛ] is a division ring, we may regard MΛ as a minimal object
by the above isomorphism. Hence, we have the lemma.

From those lemmas and the proof of Theorem 7 we have

T h e o r e m 7'. Let 3) and ® 7 be the full sub-category in K whose object
consists of any (resp. finite) coproducts of a given family {Ma} of completely in-
decomposable objects in K. Then ©/$' (resp. 2)^/3?') is a C3-completely reducible
(resp. completely reducible) abelain category.

From this theorem we have the K-R-S-A theorem for a C3-abelian category
E as in Corollary 1 to Theorem 7, (cf. [5]).

REMARK 4. We replace the argument in the proof of Lemma 9 by categorical
terms. The relation (2) is true, since they are images of automorphisms /f. of
M such that

/
0 -
1 0 -

F, = ( 0 1 0 .» 1 , F2 =
Λ i

1
0

0

1

u 1

0 1

Λ

0

1

o .

and we obtain M^iMίφMίφ-φM^ker(f^J^^-f,) by pullback.

Hence, if M satisfies Condition II then Mn= (J ker θ(m, n) for all n. However,
m

it may be necessary some assumption on MΛ to obtain Theorem 9.
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