Noda, R. and Yamaki, H.
Osaka J. Math.
7 (1970), 313-319

A CHARACTERIZATION OF THE ALTERNATING GROUPS
OF DEGREES SIX AND SEVEN®

Ryuzasuro NODA anD HirovosHt YAMAKI

(Received April 10, 1970)

1. Introduction
The purpose of this paper is to prove the following theorem.

Theorem. Let ® be a doubly transitive group on the set Q={1, 2, -+, n}.
If the stabilizer & of the set of points 1 and 2 is isomorphic to the alternating group
of degree four, then one of the followings holds :

(1) n=06and & is ¥U,,

(2) n=15and ® is A,

(3) n=16 and G is A(2, 4),

4) O=Cg())O(®) for some involution J.

Here 2,, denotes the alternating group of degree m and A(t, q) denotes the
group of all affine transformations of the ¢-dimensional affine geometry AG(t, q)
over the field of g-elements.

Notation. Let X and %) be the subset of &. J(X) will denote the
set of all the fixed points of ¥ and «(%) is the number of points in J(E).
X~9) means that X is conjugate to ¥ in &. All other notation is standard.

2. Preliminaries

Since & is A,, & is generated by the elements K and 7 subject to the
following relations:

K3=‘TZ= (KT)3: 1 (2.1)

Put 7,=K 7K and 8=,7, 7,>. Then B is a four group and a Sylow 2-sub-
group of & Let © be the stabilizer of the point 1. Since & is doubly
transitive on (), it contains an involution / with the cycle structure (1, 2)--
which normalizes  and we may assume that [I, 7]=1. Thus we have the
following decomposition of &:

& =HUDID 2.2)

1) We thank Professor H. Nagao for pointing out a gap of our original proof.
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Let g(2), h(2) and d denote the number of involutions in &, , and the coset
OIH for HE9, respectively. Then d is the number of elements in & inverted
by I, that is, the number of involutions in & with the cycle structure (1, 2)--
and the following equality is obtained from (2.2):

8(2) = K(2)+d(n—1) (2.3)
Lemma 1. One of the followings holds :

(1) IrI=7r, IKI=K™, d=6,
I~IK~IK A~ ITKr~ITK 2~ T

(2) [I,B]=1, IKI=7Kr, d=4,
It~IT ~I77,,

3) [I, R]=1, d=4,

It~It ~ITT,.

Proof. Since the automorphism group of ® is the symmetric group of
degree four we may assume that the action of 7 on & is (1), (2), or (3) by (2.1).
Assume that the case (1) holds. Now <7, K> and {I, 7K ) are dihedral groups
of order 6. Therefore I~IK~IK?in <{I, K> and I~ITKT~ITK*r in {I, TKT).
Thus the result follows in this case. Note that in this case every involution is
conjugate to 7 in @. The cases (2) and (3) are trivial. This proves our lemma.

Let 7 keep 7 (:>>2) points of Q unchanged. So we may put J(7)=
{1,2, -++,4}. The group Cg(7) acts on J(7) and the kernel of this permutation
representation is B or (7> because Cgx(T)N®=L. By a theorem of Witt
[6; p. 105], | Cy(7)| =4i(i—1). Hence there exist (&: Cy(7))=3(n—1)n/(—1):
involutions in & each of which is conjugate to 7.

At first, let us assume that # is odd. Let £*(2) be the number of involutions

in O leaving only the point 1 fixed. Then from (2.3) the following equality is
obtained:

r*(2n+3(n—n/(i—1) = 3(n—1)/(:—1)+h*(2)+d(n—1) (2.4)

Put B=d—h*(2). It follows from (2.4) that n=4(Bi—B-+3)/3. This implies
that ¢ is odd.

Next let us assume that z is even. Let g*(2) be the number of involutions

in & which are semi-regular on Q. Then corresponding to (2.4) the follwing
equality is obtained from (2.3):

£5(2)+3(n—1)n)(i—1) = 3(n—1)/(i—1)+d(n—1) (2.5)
Put B=d—g*(2)/(n—1). Then by (2.5) we have n=i(Gi—B+3)/3. This

implies that ¢ is even.
In both cases, by the definition of B3, B is the number of involutions with
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the cycle structure (1, 2)--- each of which is conjugate to 7. Since & is doubly
transitive on ), we have 8>0.

Lemma 2. B=1, 3, 4, or 6.
Proof. The result follows immediately from Lemma 1.

Lemma 3. If a(t)=a(B), then BNG'BVG=1 or B for every element
Gin®.

Proof. If BN G BG contains 7, then J(7) contains JF(B) and J(G'BG),
and thus J(7)=J(B)=JJ(G'VG). This implies that BV and G'VG are

contained in & and so B=G'VG. This proves our lemma.

Lemma 4. If a(t)>a(B), then one of the followings holds :

(1) i=6 and C(r)[<r> is %,

(2) =28, a(B)=4 and Cy(7)/{7)> is PI'L(2, 8),

(3) i=p*™ for some prime p, a(B)=p™ and Cy(7)/{T) contains a regular
normal subgroup. Moreover if p is odd, then there exists a unique involution in
Co()/<{7> which fixes only one point on J(7).

Proof. Since Cg(7)/<7> is doubly transitive on J(7) of degree 7 and
order 2(7—1)i, the results follow from Ito’s theorem [7] and its proof.

Lemma 5. If a(t)<a(DB), then 3=3, 4, or 6.

Proof. There exist two points j and & in J(7)—IJ(B) such that 7,=(j, k)---.
Hence 77, =(j, k)--- and Lemma 2 yields 8=3, 4, or 6 since & is doubly
transitive on (.

3. The case n is odd

In the following if £*(2)>0, then without loss of generality we may assume
that a(I)=1.

Lemma 6. If h*(2)=1, then 8=Cy(I)O(®).

Proof. Let © be a Sylow 2-subgroup of & containing I. By our as-
sumption {G'IG; Ge®}NS={I}. It follows from the Z*-theorem of
Gluaberman [6; p. 628] that <I>O(®) is a normal subgroup of & and then
Frattini argument implies that 8=Cg(/)O(®). This proves our lemma.

Lemma 7. If a(t)=a(B) and h*(2)=3, then there exists no group
satisfying the condition of our theorem.

Proof. Put J(I)={k} and let &, be the stabilizer of a point & in ©.
Then &, contains Cg(I) and J(I7,)=J(J77,)={k}. It follows from h*(2)=3
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that {Ir,, IT7, I>=<I, B> is normal in &,. Now <I, B> is half transitive on
Q—{k}. On the other hand I acts on J(DB), and I-orbits on J(B) are of length
2 and B-orbits on Q—J(V) are of length 4 by our assumption. Thus we get
a contradiction. The proof is complete.

Now %£*(2)=0 and then 7 is a central involution in some Sylow 2-subgroup
of . Let & be a Sylow 2-subgroup of & containing <I, B> and contained in
Ce(7).

Lemma 8. If h*(2)=0, then a(t)=a(DB).

Proof. Assume by way of contradiction that a(t)<a(%L). Then |Cg(7)|
=4i(i—1) and |Ng(B)| =47 (vV 7 —1) by Lemma 4 since Cg(7) and Ng(B)
is doubly transitive on J(7) and J(B), respectively. Hence Ng(L) does not
contain a Sylow 2-subgroup of @. We first show that (1) in Lemma 1 holds in
this case. Suppose that (2) or (3) in Lemma 1 holds. Then &, ,,=<I>8& has
no element of order four and hence any 2-element with a 2—cycle must be an
involution since ® is doubly transitive. Then since 4#*(2)=0 & has no element
of order four and so & is elementary abelian. Then Ng(®L) contains &, a
contradiction. Thus (1) in Lemma 1 must hold. Then &, , is the symmetric
group of degree four, 8=d=6 and n=¢(2{—1). In particular, O(@)=1. Four
groups in &, , form two conjugate classes and their representatives are B
and <I, 7). Now we regard & as a transitive permutation group on the set
of the unordered pairs of the points of Q. Then &, , is the stabilizer of the
pair {1, 2}. If B is not conjugate to <I, 7> in &, BV satisfies the assumption
of a theorem of Witt [6; p. 150], and hence Ng(®B) is transitive on the pairs
which % fixes. This forces 8 to have no orbit of length 2 on Q since N(*B)
fixes J(BV) as a whole. This implies that a(7)=a(B), contrary to the assump-
tion. Thus B~<I, 7> in &. On the other hand since ~*(2)=0, any four
group has an orbit of length 2 and hence is conjugate to 8. Then if & is not
of a maximal class, Ng(2) contains a Sylow 2-subgroup of & (See [2; p. 215])
which is a contradiction. Thus & must be of a maximal class and hence
dihedral or semi-dihedral. Since Cg(7)/<{7> has a dihedral Sylow 2-subgroup
&/{T>, a result of Gorenstein-Walter [4] and Lemma 4 imply that Cg(7)/<T>
is 2’—closed and so is Cg(7). By theorems of Gorenstein [3] and Liineburg
[9] we get a contradiction. The proof is complete.

Lemma 9. If h*(2)=0, then n=15 and & is ..

Proof. Since a(7)=a(B) by Lemma 8, Cg(7)/L is a complete Frobenius
group of odd degree 7 and then &/ is cyclic or generalized quaternion. Assume
that [7, B]+=1. It follows that (&: Cg(B))=2 and IV is a unique involution
in &/B. Now Cg(B)=2B and &=, B) is a dihedral group of order 8. Since
B=d=6 by Lemma 1 and n=4(2i{—1), ® contains no regular normal subgroup.
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Applying theorems of Gorenstein-Walter [4] and Liineburg [9], @ is 2%,. On
the other hand it is well known that 2, has a doubly transitive permutation
representation of degree 15 in which the stabilizer of two points is U, (See [6;
p. 157]). Thus n=15 and & is A,. Next assume that [/, B]=1. Then by
the same way as in the proof of Lemma 8, & is elementary abelian and hence
=, B)>. Now Cg() is solvable and so theorems of Gorenstein [1] and
Liuineburg [9] yield a contradiction. This proves our Lemma.

4. The case n is even

Lemma 10. If a(r)=a(B), then n=6 and & is A, or n=16 and & is
A2, 4).

Proof. Assume that © is 2-closed. Then O acts on J(B) and since
is transitive on Q— {1}, we have J(B)=Q which is impossible. By Lemma 3,
is a (TI)-group in the sense of Suzuki [11]. Since $/O(D) is also a (T)-group,
Suzuki’s result [11; p. 69] implies that $/O(D) is PSL(2, 4) and O(D) is con-
tained in the center of ©. On the other hand we have | Ng(B)|=12{(i—1)
and | Co(B)| =4(i—1). Now |O®) =i—1 and |D/O(D)| =4(Bi+3)=
| PSL(2,4)|=60. Therefore Bi=12. In our case since Cg(7)/B is a complete
Frobenius group of even degree 7, 7 is a power of 2 and then /=2 or 4. If i=2,
then n=6 and ® is A,. If /=4, then n=16. Since R=K, VL) and K is of
order 3, a(B)—a(R) is divisible by 3 and J(V)=J(R). Applying a result of
Witt [6; p. 150] to Ng(®) and Ng(CK>) we can get easily a(®)=4. Therefore
R is semi-regular on Q—J(R) and thus & is transitive on Q—J(R). Since
is even it follows from Kantor’s theorem [8] that @ is isomorphic to a subgroup
of A(2, 4) or A(4, 2). Assume that ® is a subgroup of A(4, 2). Let N be a
regular normal subgroup of A(4, 2). If &NN=1, then & is isomorphic to
a subgroup of GL(4, 2) which is impossible because GL(4, 2) contains no
subgroup of index 7. Hence @NMN=+1 and then & contains N and 9 is
isomorphic to /M. Since |O(H)| =3 and O(D) is contained in the center of 9,
9 is GL(2, 4). Thus n=16 and @ is 4(2, 4). This proves our lemma.

Lemma 11. If a(7)>a(B) and i=6 or 28, then there exists no group
satisfying the condition of our theorem.

Proof. Assume that i=6. Since Cg(7) contains B, Schur’s theorem
[10] implies that Ce(7)={7> X where § is U; by Lemma 4. It follows that
[I, B]=1 and d=4. Now |Cyp(r)|=2%-5 and |D|=22-3°-5 or 2°-3-5.7.
Assume that 7=28. Then Lemma 4 yields a(B)=a(f)=4 and using a result
of Witt [6; p. 150], | Ng(®)|=|Ng(B)| =144, Ng(R)=8& X Cg(®). It follows
that [, B]=1 and so d=4. Now |Cy(7)|=2°-3° and |D|=2°:3°-5-23 or
22.34.29. In both cases applying a theorem of Gorenstein-Watler [4], $/O(D)
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is isomorphic to a subgroup of PI"L(2, r) containing PSL(2, r). Clearly this is
impossible. This proves our lemma.

In the following we assume that the case (3) of Lemma 4 holds.
Lemma 12. The group $/0(D) is PSL(2, q) for some q.

Proof. Since Cg(7)/{r> is a solvable doubly transitive group on J(7)
of degree 22" it follows from a theorem of Huppert [5] that Cg(7)/{> is
contained in 1-dimensional semi-linear affine transformation group over the field
of 2*"-elements and then Cg(7) has a cyclic normal 2-complement. Thus by
a result of Gorenstein-Walter [4], ©/O(9) is PSL(2, g). 'This proves our lemma.

Lemma 13, There exists no group with o(7)=2"" and a(B)=2".

Proof. Put $=9/0(9). Then 9 is PSL(2, q) with ¢=3 or 5 (mod. 8) by
Lemma 12. Hence CH(B)=P and CgH(7) has a normal 2-complement of
order g+1/4 or g—1/4 according as ¢=3 or 5 (mod. 8). On the other hand
| Co(r)| =4(i—1) and |Co(B)| =4 (v/7—1) since |Na(B)|=12 (v/7—1).
Then |O(D)NCo(B)|= (/7 —1) and hence |O(D)N Co(7)| =x(v/7 —1) with
some odd integer x dividing \/7+1. Then the formula of Brauer-Wielandt
[12] yields |O(D)|=x’(~/7 —1). Since |9|=12(n—1)=4(B—1)(Bi+3), we
have

191 = 4(v 7 +1)(Bi+3)/+* = (¢-+1)g(g—1)/2 (4.1)

Since Cg(7) has a cyclic normal 2-complement {w) of order i—1 and C%(7)=
Co(T), we have

o) =1i—1[x(\/7—1)=qx1/4 (4.2)
Then (4.1) yields
2(Bi+3)[x* = q(gF1) (4.3)

In particular, x is a common divisor of \/7 +1 and B7+3 where v/ =2" and
B=3,4, or 6 by Lemma 5. Assume that 3=3. Then x=1 or 3 since Bi+3
=3.2""43=6 (mod. 2”+1). Now it is easy to see that (4.2) and (4.3) are
incompatible. In the case where 3=4 or 6, the proofs are similar.

The proof of our theorem is complete.
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