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Let A be a central separable algebra over a field K> and assume that it
contains a normal extension L of K as a maximal commutative subalgebra.
When LjK is moreover separable, one obtains a description of A as a crossed
product by extending automorphisms of L to inner automorphisms of A, When
L/K is purely inseparable of exponent 1, one obtains similarly a concrete de-
scription of A by extending derivations of L to inner derivations of A (e.g.
Jacobson [5]). Here we apply a similar procedure using higher derivations in
case L is purely inseparable of exponent 2, and derive the normal form
(a\βoy /3J for A given by Schmid [7] and Witt [9]. For this purpose we
prove in § 1 some facts about inner-extension of higher derivations.

1. Inner-extension of higher derivations

Let A be an algebra over a commutative ring R. Let A[T]q=A[T]/
(Tg+1), where T is an indeterminate. We denote Γ(mod Tg+1) by t, so that any
element of A[T]q is written uniquely as ao-\-a1t-\--"-{-aqt

q (a^A). Let B be
an i?-algebra containing A. A higher derivation D of A into B of rank q is a
sequence {Dly •••, Dq} of i?-linear maps D{: A-+B such that

Dt: A^B[T]g; Dt(a) = a+D^t+'-'+D^t* (a^A)

is an algebra homomorphism, or what is the same thing, Dt defines an algebra
homomorphism A[T]q->B[T]q over R[T]q. HD={DU •••, Dq) is a higher deri-
vation of rank q, {Dlf •••, Dk} (k^q) is a higher derivation of rank k, which will
be called the k-sectίon of D.

For any dly •••, dq^A, the polynomial

is invertible in A[T]q. It yields a higher derivation d of A, via inner automor-
phism of A[T]q> i.e.
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dt(a) = dtadΐι
 (CKEΞA)

W e call such d an inner higher derivation of A determined by {dly •••, dq}. I n

other words, a higher derivation D is inner if there exist dιy •••, dq^. A such that

for any

dka = Dk{a)+Dk_ι{a)d1+-+D1{a)dk_1+adk (k = 1, - , q).

EXAMPLE 1. Embed A into End(^ί) as the set of left multiplications.

Any higher derivation D: A-^A is then extended to the inner higher derivation

of End (A) defined by A , —, A,eEnd (A).

EXAMPLE 2. Let 1, •••, q be invertible in R. A derivation δ: A-^A gives
rise to a higher derivation ^(δ) defined by

eq(8)t(a) = α+δ(α)/+
2! 5!

If δ is an inner derivation defined by d^A, then ^(δ) is an inner higher deri-

vation defined by

eq(d)t = l+dt+dΨ++
2! q\

Let B b e a subalgebra of A, and D: B-+A a higher derivation. If there
exists an inner higher derivation d of A which coincides on B with D, we say
that d is an inner-extension of D.

Theorem 1. If B is a separable algebra [2] over R, any higher derivation

D: B—>A has an inner-extension A-+A.

Proof. There exist uiy v^B ( ί = l , •••, n) such that

i) 2 upi = 1, and

n) Σ bUi®Vi = Σ u&Όib (in B®B).

Set

For ό e ΰ , we have

Dt(b)dt = Σ Dt{b)Dt{ut)v{ = Σ A ( K R

This shows that d is an inner-extension of D.

Theorem 2. Let A be a central separable algebra over R} and B be a left

(or right) semίsimple subalgebra [3] of A. Then any higher derivation D of B into
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A has an inner-extension A-^A.

REMARK. A special case is proved in Jacobson [5], and the theorem itself
is essentially a special case of Sweedler [8, Th. 9. 5],

Proof. We proceed by induction on q. The case q=ϊ is proved in the
following manner (after Hochschild [4]). Let A0 be an anti-isomorphic copy
of A. The direct sum (A, A)=A®A is considered as a B®^-module by
setting

b(au a2)a = (φaλa> D1(b)a1a-\-ba2a).

The map (aiy a2)^^ax defines an i?-split (B®^0)-epimorphism AQ)A->A,
where A is considered naturally as a Z?(g) l̂0-module. Since B®A° is left
semisimple [3, Prop. 2. 4], there exists a 5®y4°-monomorphism a: A->AφA
such that (A, A)=(0, ^)©im (a). If a(l)=(u, v), u is invertible, and we have
D{b)=^{vu'λ)b—b{vu~x) (cf. [4]). Let q>\ and assume that du •••, dq_^A give

an inner-extension of the (q— l)-section D={DX, •••, Dq_1} of D. Set

For every b^B, the terms of degree <q in Dt(b)d't—df

tb all vanish. So there
exists f(b)^ A such that

f(b)P = Dt(b)d't-d'tb.

We have

whence

Hence there exists dq<=A such that f(b)=dqb--bdq{
vb^B).

Setting

dt = d'e+dqt«,

we have

dtb = Dt(b)dt (vb£ΞB). q.e.d.

If both d and d1 are inner-extensions of D: B-*A> then it is clear that
dτλd't<=: VA(B)[T\g, where VA(B) denotes the commuter of B in A.

Proposition 3. Let D be a higher derivation B-+A which admits an inner-
extension A->A. If the k-section of D (k^q) has an inner-extension A-+A
determined by d19—,dk, then we can find dk+u - ydq^A so that D is extended to
the inner higher derivation defined by {d19 "'ydky dk+ιy •••, dq}.
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Proof. Let the inner higher derivation by {d[y ••-,</£} yields D when
restricted to B. Then there exist cly , ck^ VA(B) such that

H Vckt
k) (mod^+ 1)

Determine dk+ly •••, dq^A by the identity (in A[T]g)

l+d1t+-+dkt*+dk+1tk
+1+-+dgt« = dXl+cJ+. .+cJ*).

It is clear that {dly --ydky dk+iy ~-,dg} induces the higher derivation D of B.

2. p-algebras of exponent 2

Let A be a central separable algebra over a field i£ of characteristic p Φ 0,
and assume that there exists a maximal commutative subalgebra L which is a
purely inseparable extension of K such that

( 1 ) L = K(u), u"2 = aeK

Since L^K[X]l(Xp2—a), a higher derivation D: L-+A of rank q is determined
by assigning to u a polynomial £),(#)£ ̂ 4[T]^ such that Dt(u)p2=a. It follows
that for q<p2> there exists a (unique) higher derivation D={Dly •••, Z)J: L->L
such that Z)t (z/)=βt , i = l , •••, <?, for any preassigned values αn - j f l ^ L ,

In particular, there exists a higher derivation Z): L->L of rank p such that

i\ i\

Dp{u) = 0 .

By Theorem 2, D has an inner-extension A->A. If Z^ is given by the inner
derivation by d^Ay {Dly •••, Dp_^ is given by {dly •••, rf^.j} where έ/f—(l/i!)έ/ί
( z = l , "'yp— 1). Hence, by proposition 3, D is extended to an inner higher
derivation defined by

di," ,dύ; where di = —r-d{y / = 1 , « , ί > — 1 .
z!

In particular we have

( 2 ) u~1d1u = d1-\-l ,

( 3 ) u~ιdpu = rf^+^2 —-L—rfί.

By (2) we have

(2') u~1d^u z==z d!\-\-\

Hence d\—d1 commutes with uy and d\—dx^L. It commutes moreover with
dx. Hence d\—dx^K(up). It follows that
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By (2') we may start with d{ instead of dΎ. So we may assume

( 4 ) dl-d^β^K.

Set υ=[du dp\=dλdp-dpdx. We have

ii-w = (dι+l)(dp+S)-(d,+S){d1+l) = v ,

since S=uridpu—dp commutes with dx (cf. (3)). Hence n ε i .

We have

d\dp-dpd\ = [d~^[du dp]- ] = DΓ\v).

This together with (4) shows

This means that df

p=dp—iy{~~\v) commutes with dτ. Since d'p satisfies (3),

we can use this dp in place of dp.

Hence we may assume

( 5 ) dxd, = dpdx

dλ and dp generate a commutative subalgebra P. Let W2{P) be the group of

Witt vectors of length 2 in P. By definition, we have

where ! = ( 1 , 0). (Notice (/>— 1)!ΞΞ — 1 (mod/)).) Hence (2) and (3) mean

( 6 ) u-\dlydp)

Similarly, (2') and the identity

(3') uH*μ = d'-

which is derived from (3), mean

(6') u-\d>l,d>)u = (dl,

Putting

( 7 ) (P(d19 dp) = (dt, d*)-{dlt dp) = (A, β1)

we have (by (6) and (6'))
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Since βτ (as well as β0) commutes with dλ, dp and u, it must lie in K. Finally

it is clear that d19 dp and u generate the whole algebra. A. The structure of

A is thus completely determined by (1), (5), (6) and (7), and we have arrived

to the normal form (a \ β0, βx] given by Schmid [7] and Witt [9].
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