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We have some methods to compose a knot from some knots, for instance
composition (or product, sum) [7], union [5], linked sum [11], etc.. Recently,
F. Hosokawa defined in [4] a fusion of a link as an extension of composition.
And further, we have some kinds of knots associated with the torus already
proved of their non-triviality, for example torus knots, parallel knots, doubled
knots [12], Schlingknoten [8], etc..

The purpose of the present note is to define a complete-fusion of a link and
an associated knot with a solid torus T, and to prove the non-trivialities of them.

In §1, the concept of complete-fusion is described as extensions of com-
position and fusion, and in §2 we give a standard model of the solid torus 7}, of
genus y and investigate the relation between complete-fusion and solid torus
T.. In §3, we consider a generalization of knots associated with the socalled
torus T}.

By the Dehn’s Lemma [2], [3], [6], we have the following well-known
unknotting theorem: a knot k is of trivial type if and only if = (S°—k)=Z, infinite
cyclic group. Implicit use of this theorem will be made throughout this work.

The following considerations are based upon the semi-linear point of view.

The author wishes to express his hearty thanks to Professor H. Terasaka for
leading him to this work.

1. A complete-fusion of a link

Let L=(k,, k,:+, ku) be an oriented link with x4 components (4>2) in a
3-sphere S®, and let B,,-:-, B,_, be narrow bands that span L and that are ori-
ented coherently with L. Suppose that L+4-8B,+---+0B._, is a knot", denote
k(L; B,,, B,_,) or simply k(L), where4means homological addition. We say
that the knot k(L) is a complete-fusion of L, see Fig. 1. Note that if the link L
is split, then this definition is a special case of fusion in [4, §2], while this de-
finition can be meant to extend the concept of fusion to of general links. It

1) d=boundary, J =interior.
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will be noticed that a complete-fusion is not determined uniquely, i.e. the knot
type of k(L) depends upon the link type of L and joined bands B,,-:-, B._,.

It is easily shown that the composition (or product, sum) [7] of k,, k,,--+, ku
is the special case of complete-fusion, and we denote this by k*(L)=Fk, 3k, 3 -
#k.. The composition k¥(L) of L is uniquely determined.

Theorem 1.1. Let L=(k,, k,,--, k.) be a split link with yu components (1>2)
in the 3—sphere S°. If at least one of components k,, k,,---, k. of L, say k,, is of
non-trivial knot type, then any complete-fusion k(L) of L is of non-trivial knot type.

Moreover, let g(k) and Ak(t) be genus and Alexander polynomial of k
respectively, then by Terasaka-Yonebayashi’s arguments [10], [13], we have:

(12) g(ML))> glk)+-+g(ks).

(1.3) Awcs()=F@)F(t7') A (t)-Ap,(t) (mod+-2),
where F(t) is an integral polynomial determined by the crossings of B; with k;.

Proof. By the definition at least one of B,,--+, B,_, attachs to k.. So, sliding
the ends of B,,-:+, B._, along k,,-:+, k. and sides of other bands we may assume
that each band B; connects k; and k., i=1,---, u—1, as illustrated in Fig. 1.

X1, Ny, nNp

Xpz21

Xu Nu nNw

Fig. 1

Let %, 1, %i10 " Xiynp Xion s % n;nvp De the generators of the knot
group G(k(L))=r,(S*—k(L)) corresponding to the arcs of k;, i=1, -+, u, with the
same letter in this order. Let b;,, b;,,*, b; 4, and b, 4, b; ,, -+, b; »; be the
generators of the knot group corresponding to the boundary of B;, i=1, .-, u—1.

Then we have a presentation® of G(k(L)) as follows:

2) See [1], Chapter VI.
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generators:
Xi,0 X120 Xi1,m Xiz,1°°" X Nin(ND» (lzl,-", ﬂ) )

bi,o’ bi,u'": bi,M,-) l_)i,o’ 5:‘,1)"'7 Ei,Mly (i:l,-", ll'_l) .

relations:
r; 1=""‘ri,N,':1: (1=1,-, /~L) ’

si:j:I’ t*)*;jzly uiyj=1! aisj=1 ’

bz’,0=xi,1,*’ E;‘,F-zxi,l,*’ (i=1,:-', ,Uf_"l) ’

bt‘,M,-:xM,l,*) bi,Mgzxih,l,*a (l=1,"', ,u—l) .

where i, ;=% j,m; Xk %11, %% €=41, which corresponds to a crossing

point as shown in Fig. 2,

Xije1n bi; b,
Xkt x¢
b.',_,- 1 6.‘,,' 1
Xijnip
Fig. 2 Fig. 3
s",J' = xgbi,j bi_lj xF bi,j+1 bt—,?}.;.l, € = :t]. ,
xe{xl,l,v'"y xll-,Ny,,n(Np,)} s
which corresponds to crossing points as shown in F ig. 3,
Lioskrj = X e ; OO 258 4 o1 B0, € = 41,
(b; b) S {(bo,p bo,1);"" (b#—l,Mp._u b#-x,Mp,-l)} ]
bi'j—> "bi,,- 1
I;*, —— ——— xfk,*,ill
b 5 b—i‘jh— P S, Ei,i\‘l
b 5
\
Fig. 4 Fig. 5

which corresponds to crossing points as shown in Fig. 4,
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Ui = bi,j bb? bi_,.11+1 bb* ’
B, =b; 4, bbb} b D
which correspbnds to crossing points as shown in Fig. 5.

On the other hand, we have a presentation of the knot group G(&*(L))=
7,(S°*—k¥L)) as follows:

generators:
Xi ey Xy (B = Lyoee, )
relations:
Fip==r; yi=1, (= 1,0, 1),
Xy = Xy, (E= 1,0, p—1).

Let h:G(k(L))—G(k*L)) be a correspondence defined by

h(xi,j,k) = X; =1, u ’j = 1""’ N;
h(b; ;) = h(b; ;) = %, i = 1,0, u—1,j =0, 1,---, M.
Then 4 is a homomorphism onto. Because G(k* L)) is not isomorphic to
Z, G(k(L)) is not isomorphic to Z and then k(L) is not of trivial type.

(1.2) and (1.3) are immediately from [10] and [13].
This completes the proof.

The following is a direct consequence of Theorem 1.1.

Corollary 1.4. Let L=(k,, -, ku) be a split link with p components. If
a complete-fusion k(L) is of trivial knot type, then L is of trivial link type, i.e.
ky,+--, ky are of trivial knot type.

Remark 1.5. The knot group G(k,)=m,(S°—k,) of k, has the following
presentation:

generators: | relations:
|

xl,l)‘“! xl,N1 . r 71,12"'=71,Nx=1 .

Let &': G(k(L))—G(k,) be a correspondence defined by
h’(x1,j,k)=x1,ja ]= 1)"': N1)
h,(xi,i,k)le,l’ i=2»"') l/')j': 1)""Ni’
hl(bi,j) = h'(gi,j) = X1,1) i=1,-, l"'—lij =0, 1,.--, M;.

Then A’ is a homomorphism onto. So we can prove the non-triviality of
Theorem 1.1 by using this homomorphism 4’.
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From this Remark 1.5, we can get the following theorem:

Theorem 1.6. Let L=(k,, k,,---, ku) be a link such that k, is of non-trivial
knot type, and k, and (k,,--, ku) are split. Then any complete-fusion k(L) of L
15 of non-trivial type.

Moreover,

8(k(L)) = g(k.)

and Aycpy(t) contains Ay (2) as its factor.

In preparation for next section, we will give an useful fashion of k(L)=Fk(L;
B+, B._,) of L=(k,,-*+, k).

In the proof of Theorem 1.1, we assumed that each band B; connects k; with
ku, i=1,---, u—1, at only one arc x. , of a projection of k,, (see Fig. 6(a)). Then
we can take a band B, such that B,N\ L=0B.N k. and k,+---+k.+0B, is a
link, denote L'=(kg|k,,-+, k), with p+1 components, (see Fig. 6(b)). Especi-
ally, we may assume that L'—kg is the same link type of L and kJ bounds a
2—cell D in S°*—L such that DN (B;U:- UB)=0DN (0B, U-:- UdB,),
(see Fig. 6(c)).

We summarize the above:

Proposition 1.7. As a complete-fusion k(L) of L=(k,,--, k), we consider
always the complete-fusion k(L")=k(L'; B,,-+, B,) of L'=(R§|k,,*+, ku) such that
(1) k3 is the boundary of a 2—cell Dc S*—1L ,
(ii) B; comnects k; with k3, i = 1,---, .,
(i) B;NID=¢,i=1,, u.



480 S. Suzuki

2. A standard model of the solid torus T, in S°

The solid torus T of genus u (Hehkelkcsrper vom Geschlechte x [9, p. 219])
is a 3—cell with p solid handles. We now construct a standard model of 7, in
Se.

Fig. 7 Fig. 8

It is an analoque of that sketched in Fig. 7 for 4=3, and a description of
T, is as follows.

Let D, D,,+-+, D, be p+1 mutually disjoint 2-cells in a hyperplane S3=
R%U{co} of S® and let B,, -+, B, be mutually disjoint narrow bands (=2-cells)
in S3 such that B; connects D with D; as indicated in Fig. 8. .

Let 0D;=k}, i=1,---, u. Then we have a representative L'=(k},-:-, k)
of the trivial link with x components in S° and the composition k*(L°)=Fk*L°;
B,,---, B.). We will call a regular neighborhood N(K; S®) of the complex
K=DUB,U--UB.UK}U--- UKS in S* a standard model of the solid torus of
genus g and denote this by Ty.. T consists of a 3—cell Q=N(D; S?), u solid
cylinders H;=N(B;; S*) and p solid tori (of genus 1) T,(k))=N(k}; S?), i=1,
.-+, u, united as indicated.

We take simple oriented loops a;, b; and simple oriented arcs ; on 07T,

as Fig. 7. Let po=6 v:; and p;=a;Nb;, i=1,---, u. We regard a; and b;

as p,-based loops «y,a;y;* and 6,77, respectively, in 7z (T.; p,) and =, (07%;
Po)-

It is obvious that
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(2.1) b+, by form a free basis for = (Ty; p,).
(2.2) a, -, au, b+, by form a basis for =, (0T,; p,), and subject to the
single relation®

Tlab,a;'b7* ~ 1 on 9T, .

i=1

(23) a;=1in Ty, i=1,--, p.
By abelianizing the group we therefore get:

(2.4) b,, -, bu form a free abelian basis for H,(T.); and a,,---, @y, by, b
form a free abelian basis for H,(0T).

By the definition of the standard solid torus 7y, we can think that the
composition k¥(L°) of the trivial link L'=(k}|kS,-:+, k7) is contained in T as
the core such that % is the core of T\(k}), i=1,--, u.

Let L=(k3|k,,--*, ku) be a link. Then for any complete-fusion k(L) of L,
there exists an embedding @ of 7, in S*® such that

(1) @(T.)=N(K;S?), a regular neighborhood of the complex K=D U B,
U+ UBuUk U+ - Uks in S°. We denote @(T,) by Tu(k(L)).

(i) @(Q)=N(D;S?), (H,)=N(B;;S?), p(T\(k))=N(k;;S?%),i=1,-+-, p.

(i) p(k)=k;, i=1,, .

(v)  p(@)=m;, p(b;)=l;, i=1,, p,

where m; and [; are the meridian and longitude respectively, of ON(k;;
S?) as usual meaning.

Note that an embedding @ of 7T is determined by a complete-fusion k(L)

of L and is unique to within twistings of B,,:-, By.

3. An associated knot with a torus T.(k(L))

In this section we will consider some knots by using the knotted tori Ty.(k(L))
in §2.

DeriniTION 3.1. Let A be a simple oriented loop (i.e. knot) in T, S?,
and let @:T,—Tu(k(L))C S® be as before. Then the knot p(A)c S?® is called
an associated knot with T.(k(L)).

Theorem 3.2. Let )\ be a knot in T,.C S°® such that
A~B.b,+ B+ + Bubu inTyu.

Let L=(k,, -+, ku) be a split link. If at least one of components k,,-+-, k. of L, say
k,, is of non-trivial knot type, then for any complete-fusion k(L) of L the knot @(\)

3) == means homotopic to, ~ means homologous to.
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CS? associated with T,(k(L)) is of non-trivial type provided that (3,%0.

Sketch of the Proof. 'The proof is the same as that of Theorems 1.1 and 1.6
except for obvious modifications. Let k(L) be a regular projection of k(L) into
a hyperplane SZ=RZU {co} that is chosen suitably in the sense of knot theory,
(see [1] Chapter VI). In particular, we may assume that PT,(k(L)) is a regular

neighborhood of Pk(L) in R}, and that PT,.(k(L)) consists of gn(N,-)—i—

I
2 M; domains U, ; 4 and V; ; such that U; ; 4+ Dux; ;4 and V; ;Db; ; where

i=1
%; ;% and b; ; are connected arcs of Pk(L) corresponding to the generators of
G(A(L)).-

Let y; ; « & and ¢; ; be generators of G(@(\)) corresponding to arcs of
Pp(\) such that y; ;4 ,CU; ; « and ¢; ; ,CV; ;.

Let 2":G(@(\))—G(k,) be a correspondence defined by

B (31,7,5.8) = %45
R (Y jx8) = %0y 1=2,0, 1,

h,(ci,j,k) = Xy,1 -

It is easily checked that for every relation s; having in U; ; 4 and V; ;, h'(s;)
becomes a trivial relation in G(k,); hence that 4’ is a homomorphism onto.

The homomorphism %’ of G(p(\)) onto G(k,) enables us to give the
following theorem that is a generalization of Theorem 3.2.

Theorem 3.3. With \ as in 3.2, let L=(k,,:--, k) be a link such that k,
is of non-trivial knot type, and k, and (k,,--, k.) are split. Then for any complete-
fusion k(L) of L, the knot p(\)C S® associated with T.(k(L)) is of non-trivial
type provided that (3,%+0.

RemMARk 3.4. Theorem 1.1 and Theorem 1.6 are special cases of Theorems
3.2 and 3.3, respectively.

Corollary 3.5. (Parallel knots, Cables). With L and k(L) as in 3.2 or 3.3,
and let ) be a knot on 8T, S* such that
x‘,.\/Crlal—l—'ﬁlbl—l“ e +ap.ay.+6p.b;z, in 8Tp, .
Then @(\) associated with Tu(k(L)) is of non-trivial type provided that 3, 0.
RemaRrk 3.6. Let A be a knot in T, which may be homotopically trivial
in Tu.. Let o,U-Uo,=ANT(k) and 7, U - Ur,=AN(Tu— Ty (k))), where

o; and 7; are simple sub-arcs of A. We take simple arcs 7/ in N(H,N
T,(R3); T\(k3)), a regular neighborhood of H,N T,(kY) in T\(k}), corresponding



KNoT ASSOCIATED WITH THE SOLID ToRuUS 483

tor;, i=1,.+-,m,so that \,=o, U - Uo,Ur{U -+ Urhis a knot in T}(k}). Then,
with L and @:T,— Tu(k(L)) as in 3.2 or 3.3, we have an onto homomorphism
J:G(p(A))—>G(p(n,)) defined by

fleg= | e )
mif x;C7;, i = 1,0, m,

where x; and 7; are generators of G(@(\)) and G(p(),)) corresponding to arcs
of Pp(\) and Pp(r,). As we have the non-triviality of some kinds of knots
associated with a solid torus 7,(k), for example, in [5], [11], [12], we can get
the non-triviality of knots @(\) by using this homomorphism f.
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