ON THE KNOT ASSOCIATED WITH THE SOLID TORUS

SHIN'ICHI SUZUKI

(Received March 26, 1969)

We have some methods to compose a knot from some knots, for instance composition (or product, sum) [7], union [5], linked sum [11], etc.. Recently, F. Hosokawa defined in [4] a fusion of a link as an extension of composition. And further, we have some kinds of knots associated with the torus already proved of their non-triviality, for example torus knots, parallel knots, doubled knots [12], Schlingknoten [8], etc..

The purpose of the present note is to define a complete-fusion of a link and an associated knot with a solid torus T_{μ} , and to prove the non-trivialities of them.

In §1, the concept of complete-fusion is described as extensions of composition and fusion, and in §2 we give a standard model of the solid torus T_{μ} of genus μ and investigate the relation between complete-fusion and solid torus T_{μ} . In §3, we consider a generalization of knots associated with the socalled torus T_1 .

By the Dehn's Lemma [2], [3], [6], we have the following well-known unknotting theorem: a knot k is of trivial type if and only if $\pi_1(S^3-k) \cong Z$, infinite cyclic group. Implicit use of this theorem will be made throughout this work.

The following considerations are based upon the semi-linear point of view. The author wishes to express his hearty thanks to Professor H. Terasaka for leading him to this work.

1. A complete-fusion of a link

Let $L=(k_1, k_2, \dots, k_{\mu})$ be an oriented link with μ components ($\mu \geq 2$) in a 3-sphere S^3 , and let $B_1, \dots, B_{\mu-1}$ be narrow bands that span L and that are oriented coherently with L. Suppose that $L+\partial B_1+\dots+\partial B_{\mu-1}$ is a knot¹⁾, denote $k(L; B_1, \dots, B_{\mu-1})$ or simply k(L), where+means homological addition. We say that the knot k(L) is a *complete-fusion* of L, see Fig. 1. Note that if the link L is split, then this definition is a special case of fusion in [4, §2], while this definition can be meant to extend the concept of fusion to of general links. It

¹⁾ $\partial =$ boundary, $\mathcal{J} =$ interior.

476 S. Suzuki

will be noticed that a complete-fusion is not determined uniquely, i.e. the knot type of k(L) depends upon the link type of L and joined bands $B_1, \dots, B_{\mu-1}$.

It is easily shown that the composition (or product, sum) [7] of k_1, k_2, \dots, k_{μ} is the special case of complete-fusion, and we denote this by $k^{\sharp}(L) = k_1 \# k_2 \# \dots \# k_{\mu}$. The composition $k^{\sharp}(L)$ of L is uniquely determined.

Theorem 1.1. Let $L=(k_1, k_2, \dots, k_{\mu})$ be a split link with μ components $(\mu \ge 2)$ in the 3-sphere S^3 . If at least one of components k_1, k_2, \dots, k_{μ} of L, say k_1 , is of non-trivial knot type, then any complete-fusion k(L) of L is of non-trivial knot type.

Moreover, let g(k) and $\Delta_k(t)$ be genus and Alexander polynomial of k respectively, then by Terasaka-Yonebayashi's arguments [10], [13], we have:

- (1.2) $g(k(L)) \ge g(k_1) + \cdots + g(k_{\mu})$.
- $(1.3) \quad \Delta_{\mathbf{k}(L)}(t) \equiv F(t)F(t^{-1}) \quad \Delta_{\mathbf{k}_1}(t) \cdots \Delta_{\mathbf{k}_{\mu}}(t) \pmod{\pm t} ,$

where F(t) is an integral polynomial determined by the crossings of B_i with k_j .

Proof. By the definition at least one of $B_1, \dots, B_{\mu-1}$ attachs to k_{μ} . So, sliding the ends of $B_1, \dots, B_{\mu-1}$ along k_1, \dots, k_{μ} and sides of other bands we may assume that each band B_i connects k_i and k_{μ} , $i=1,\dots,\mu-1$, as illustrated in Fig. 1.

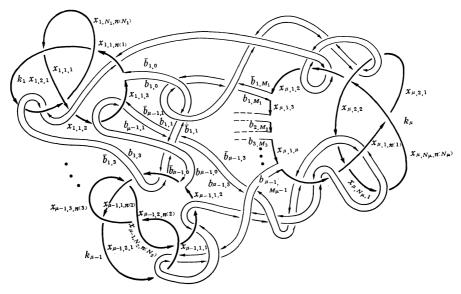


Fig. 1

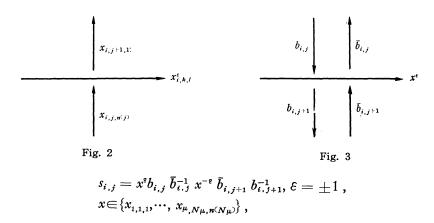
Let $x_{i,1,1}$, $x_{i,1,2}$, \cdots , $x_{i,1,n_1}$, $x_{i,2,1}$, \cdots , $x_{i,N_i,n^i(N_i)}$ be the generators of the knot group $G(k(L)) = \pi_1(S^3 - k(L))$ corresponding to the arcs of k_i , $i = 1, \dots, \mu$, with the same letter in this order. Let $b_{i,0}$, $b_{i,1}$, \cdots , b_{i,M_i} and $\bar{b}_{i,0}$, $\bar{b}_{i,1}$, \cdots , \bar{b}_{i,M_i} be the generators of the knot group corresponding to the boundary of B_i , $i = 1, \dots, \mu - 1$.

Then we have a presentation²⁾ of G(k(L)) as follows:

²⁾ See [1], Chapter VI.

$$\begin{pmatrix} \textit{generators}: \\ x_{i,1,1}, \, x_{i,1,2}, \cdots, \, x_{i,1,n_1}, \, x_{i,2,1}, \cdots, \, x_{i,N_i,n(N_i)}, \, (i\!=\!1,\cdots,\mu) \,, \\ b_{i,0}, \, b_{i,1}, \cdots, \, b_{i,M_i}, \, \bar{b}_{i,0}, \, \bar{b}_{i,1}, \cdots, \, \bar{b}_{i,M_i}, \, (i\!=\!1,\cdots,\mu\!-\!1) \,. \\ \textit{relations}: \\ r_{i,1}\!=\!\cdots\!=\!r_{i,N_i}\!=\!1, \, (i\!=\!1,\cdots,\mu) \,, \\ s_{i,j}\!=\!1, \, t_{*,*,j}\!=\!1, \, u_{i,j}\!=\!1, \, \bar{u}_{i,j}\!=\!1 \,, \\ b_{i,0}\!=\!x_{i,1,*}, \, \bar{b}_{i,\mu}\!=\!x_{i,1,*}, \, (i\!=\!1,\cdots,\mu\!-\!1) \,, \\ b_{i,M_i}\!=\!x_{\mu,1,*}, \, \bar{b}_{i,M_i}\!=\!x_{\mu,1,*}, \, (i\!=\!1,\cdots,\mu\!-\!1) \,. \end{pmatrix} ,$$

where $r_{i,j}=x_{i,j,n_j}$ $x_{i,k,l}^{\varepsilon}$ $x_{i,j+1,1}^{-1}$ $x_{i,k,l}^{-\varepsilon}$, $\varepsilon=\pm 1$, which corresponds to a crossing point as shown in Fig. 2,



which corresponds to crossing points as shown in Fig. 3,

$$(b, \bar{b}) \in \{(b_{0,1}, \bar{b}_{0,1}), \cdots, (b_{\mu_{-1}, M_{\mu_{-1}}}, \bar{b}_{\mu_{-1}, M_{\mu_{-1}}})\},$$

$$x'_{*,*,j} \longrightarrow b$$

$$b$$

$$b$$

$$b$$

$$b$$

$$c$$

$$b_{i,j+1}$$

$$b$$
Fig. 4

 $t_{*,*,j} = x_{*,*,j}^{\varepsilon} b \bar{b}^{-1} x_{*,*,j+1}^{-\varepsilon} \bar{b} b^{-1}, \varepsilon = \pm 1,$

which corresponds to crossing points as shown in Fig. 4,

478 S. Suzuki

$$u_{i,j} = b_{i,j} b \bar{b}^{-1} b_{i,j+1}^{-1} \bar{b} b^{-1},$$

 $\bar{u}_{i,j} = b_{i,j+1} \bar{b} b^{-1} b_{i,j}^{-1} b \bar{b}^{-1}$

which corresponds to crossing points as shown in Fig. 5.

On the other hand, we have a presentation of the knot group $G(k^{\sharp}(L)) = \pi_1(S^3 - k^{\sharp}(L))$ as follows:

$$\left(\begin{array}{c} \textit{generators:} \\ x_{i,1}, \cdots, \ x_{i,N_i}, \ (i=1,\cdots,\mu) \ . \\ \textit{relations:} \\ r_{i,1}, = \cdots = r_{i,N_i} = 1, \ (i=1,\cdots,\mu) \ , \\ x_{i,1} = x_{\mu,1}, \ (i=1,\cdots,\mu-1) \ . \end{array}\right).$$

Let $h:G(k(L)) \rightarrow G(k^{\sharp}(L))$ be a correspondence defined by

$$\begin{split} h(x_{i,j,k}) &= x_{i,j}, \ i = 1, \cdots, \, \mu \,, j = 1, \cdots, \, N_i \,, \\ h(b_{i,j}) &= h(\bar{b}_{i,j}) = x_{\mu,1}, \ i = 1, \cdots, \, \mu - 1, \, j = 0, \, 1, \cdots, \, M_i \,. \end{split}$$

Then h is a homomorphism onto. Because $G(k^*(L))$ is not isomorphic to Z, G(k(L)) is not isomorphic to Z and then k(L) is not of trivial type.

(1.2) and (1.3) are immediately from [10] and [13].

This completes the proof.

The following is a direct consequence of Theorem 1.1.

Corollary 1.4. Let $L=(k_1,\dots, k_{\mu})$ be a split link with μ components. If a complete-fusion k(L) is of trivial knot type, then L is of trivial link type, i.e. k_1,\dots, k_{μ} are of trivial knot type.

REMARK 1.5. The knot group $G(k_1) = \pi_1(S^3 - k_1)$ of k_1 has the following presentation:

$$\left(\begin{array}{c|c} generators: & relations: \\ x_{1,1}, \dots, x_{1,N_1}. & r_{1,1} = \dots = r_{1,N_1} = 1. \end{array}\right).$$

Let $h': G(k(L)) \rightarrow G(k_1)$ be a correspondence defined by

$$\begin{split} h'(x_{1,j,k}) &= x_{1,j} \;, & j = 1, \cdots, \, N_1 \;, \\ h'(x_{i,j,k}) &= x_{1,1} \;, & i = 2, \cdots, \, \mu, \, j = 1, \cdots, \, N_i \;, \\ h'(b_{i,j}) &= h'(\overline{b}_{i,j}) = x_{1,1} \;, & i = 1, \cdots, \, \mu - 1, \, j = 0, \, 1, \cdots, \, M_i \;. \end{split}$$

Then h' is a homomorphism onto. So we can prove the non-triviality of Theorem 1.1 by using this homomorphism h'.

From this Remark 1.5, we can get the following theorem:

Theorem 1.6. Let $L=(k_1, k_2, \dots, k_{\mu})$ be a link such that k_1 is of non-trivial knot type, and k_1 and (k_2, \dots, k_{μ}) are split. Then any complete-fusion k(L) of L is of non-trivial type.

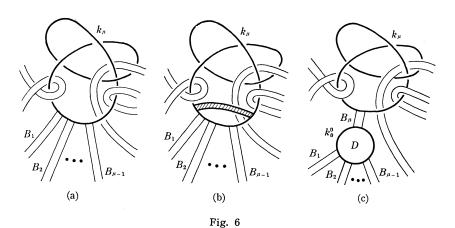
Moreover,

$$g(k(L)) \geq g(k_1)$$

and $\Delta_{k(L)}(t)$ contains $\Delta_{k_1}(t)$ as its factor.

In preparation for next section, we will give an useful fashion of $k(L)=k(L; B_1,\dots, B_{\mu-1})$ of $L=(k_1,\dots, k_{\mu})$.

In the proof of Theorem 1.1, we assumed that each band B_i connects k_i with k_{μ} , $i=1,\dots, \mu-1$, at only one arc $x_{\mu,1}$ of a projection of k_{μ} , (see Fig. 6(a)). Then we can take a band B_{μ} such that $B_{\mu} \cap L = \partial B_{\mu} \cap k_{\mu}$ and $k_1 + \dots + k_{\mu} + \partial B_{\mu}$ is a link, denote $L' = (k_0^0 | k_1, \dots, k_{\mu})$, with $\mu+1$ components, (see Fig. 6(b)). Especially, we may assume that $L' - k_0^0$ is the same link type of L and k_0^0 bounds a 2-cell D in $S^3 - L$ such that $D \cap (B_1 \cup \dots \cup B_{\mu}) = \partial D \cap (\partial B_1 \cup \dots \cup \partial B_{\mu})$, (see Fig. 6(c)).



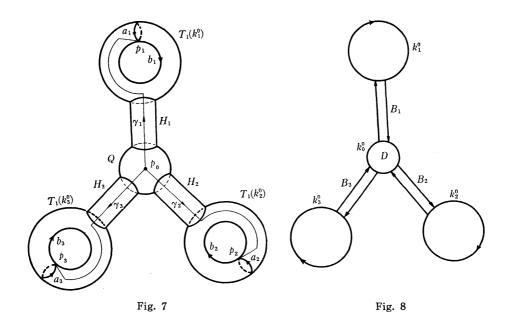
We summarize the above:

Proposition 1.7. As a complete-fusion k(L) of $L=(k_1,\dots,k_{\mu})$, we consider always the complete-fusion $k(L')=k(L';B_1,\dots,B_{\mu})$ of $L'=(k_0^0|k_1,\dots,k_{\mu})$ such that

- (i) k_0^0 is the boundary of a 2-cell $D \subset S^3 L$,
- (ii) B_i connects k_i with k_0^0 , $i=1,\cdots, \mu$,
- (iii) $B_i \cap \mathcal{J}D = \phi$, $i = 1, \dots, \mu$.

2. A standard model of the solid torus T_{μ} in S^3

The solid torus T_{μ} of genus μ (Henkelkörper vom Geschlechte μ [9, p. 219]) is a 3-cell with μ solid handles. We now construct a standard model of T_{μ} in S^3 .



It is an analoque of that sketched in Fig. 7 for $\mu=3$, and a description of T_{μ} is as follows.

Let D, D_1, \dots, D_{μ} be $\mu+1$ mutually disjoint 2-cells in a hyperplane $S_0^2 = R_0^2 \cup \{\infty\}$ of S^3 and let B_1, \dots, B_{μ} be mutually disjoint narrow bands (=2-cells) in S_0^2 such that B_i connects D with D_i as indicated in Fig. 8.

Let $\partial D_i = k_1^0$, $i = 1, \dots, \mu$. Then we have a representative $L^0 = (k_1^0, \dots, k_\mu^0)$ of the trivial link with μ components in S^3 and the composition $k^{\sharp}(L^0) = k^{\sharp}(L^0; B_1, \dots, B_{\mu})$. We will call a regular neighborhood $N(K; S^3)$ of the complex $K = D \cup B_1 \cup \dots \cup B_{\mu} \cup k_1^0 \cup \dots \cup k_{\mu}^0$ in S^3 a standard model of the solid torus of genus μ and denote this by T_{μ} . T_{μ} consists of a 3-cell $Q = N(D; S^3)$, μ solid cylinders $H_i = N(B_i; S^3)$ and μ solid tori (of genus 1) $T_1(k_1^0) = N(k_1^0; S^3)$, $i = 1, \dots, \mu$, united as indicated.

We take simple oriented loops \boldsymbol{a}_i , \boldsymbol{b}_i and simple oriented arcs γ_i on ∂T_{μ} as Fig. 7. Let $p_0 = \bigcap_{i=1}^{\mu} \gamma_i$ and $p_i = \boldsymbol{a}_i \cap \boldsymbol{b}_i$, $i = 1, \dots, \mu$. We regard \boldsymbol{a}_i and \boldsymbol{b}_i as p_0 -based loops $\gamma_i \boldsymbol{a}_i \gamma_i^{-1}$ and $\gamma_i \boldsymbol{b}_i \gamma_i^{-1}$, respectively, in $\pi_1(T_{\mu}; p_0)$ and $\pi_1(\partial T_{\mu}; p_0)$.

It is obvious that

- (2.1) b_1, \dots, b_μ form a free basis for $\pi_1(T_\mu; p_0)$.
- (2.2) $a_1, \dots, a_{\mu}, b_1, \dots, b_{\mu}$ form a basis for $\pi_1(\partial T_{\mu}; p_0)$, and subject to the single relation³⁾

$$\prod_{i=1}^{\mu} a_i b_j a_i^{-1} b_i^{-1} \simeq 1 \text{ on } \partial T_{\mu} .$$

(2.3) $a_i \simeq 1 \text{ in } T_{\mu}, i = 1, \dots, \mu$.

By abelianizing the group we therefore get:

(2.4) b_1, \dots, b_{μ} form a free abelian basis for $H_1(T_{\mu})$; and $a_1, \dots, a_{\mu}, b_1, \dots, b_{\mu}$ form a free abelian basis for $H_1(\partial T_{\mu})$.

By the definition of the standard solid torus T_{μ} , we can think that the composition $k^{\sharp}(L^0)$ of the trivial link $L^0 = (k_0^0 | k_1^0, \dots, k_{\mu}^0)$ is contained in T_{μ} as the core such that k_i^0 is the core of $T_1(k_i^0)$, $i=1,\dots,\mu$.

Let $L=(k_0^0|k_1,\dots,k_{\mu})$ be a link. Then for any complete-fusion k(L) of L, there exists an embedding φ of T_{μ} in S^3 such that

- (i) $\varphi(T_{\mu})=N(K;S^3)$, a regular neighborhood of the complex $K=D\cup B_1\cup\cdots\cup B_{\mu}\cup k_1\cup\cdots\cup k_{\mu}$ in S^3 . We denote $\varphi(T_{\mu})$ by $T_{\mu}(k(L))$.
- (ii) $\varphi(Q) = N(D; S^3), \ \varphi(H_i) = N(B_i; S^3), \ \varphi(T_1(k_i^0)) = N(k_i; S^3), \ i = 1, \dots, \mu.$
- (iii) $\varphi(k_i^0)=k_i$, $i=1,\dots,\mu$.
- (iv) $\varphi(a_i)=m_i$, $\varphi(b_i)=l_i$, $i=1,\dots,\mu$, where m_i and l_i are the meridian and longitude respectively, of $\partial N(k_i; S^3)$ as usual meaning.

Note that an embedding φ of T_{μ} is determined by a complete-fusion k(L) of L and is unique to within twistings of B_1, \dots, B_{μ} .

3. An associated knot with a torus $T_{\mu}(k(L))$

In this section we will consider some knots by using the knotted tori $T_{\mu}(k(L))$ in §2.

DEFINITION 3.1. Let λ be a simple oriented loop (i.e. knot) in $T_{\mu} \subset S^3$, and let $\varphi: T_{\mu} \to T_{\mu}(k(L)) \subset S^3$ be as before. Then the knot $\varphi(\lambda) \subset S^3$ is called an associated knot with $T_{\mu}(k(L))$.

Theorem 3.2. Let λ be a knot in $T_{\mu} \subset S^3$ such that

$$\lambda \sim \beta_1 \boldsymbol{b}_1 + \beta_2 \boldsymbol{b}_2 + \cdots + \beta_{\mu} \boldsymbol{b}_{\mu}$$
 in T_{μ} .

Let $L=(k_1,\dots,k_{\mu})$ be a split link. If at least one of components k_1,\dots,k_{μ} of L, say k_1 , is of non-trivial knot type, then for any complete-fusion k(L) of L the knot $\varphi(\lambda)$

³⁾ \simeq means homotopic to, \sim means homologous to.

 $\subset S^3$ associated with $T_{\mu}(k(L))$ is of non-trivial type provided that $\beta_1 \pm 0$.

Sketch of the Proof. The proof is the same as that of Theorems 1.1 and 1.6 except for obvious modifications. Let $\mathcal{P}k(L)$ be a regular projection of k(L) into a hyperplane $S_0^2 = R_0^2 \cup \{\infty\}$ that is chosen suitably in the sense of knot theory, (see [1] Chapter VI). In particular, we may assume that $\mathcal{P}T_{\mu}(k(L))$ is a regular neighborhood of $\mathcal{P}k(L)$ in R_0^2 , and that $\mathcal{P}T_{\mu}(k(L))$ consists of $\sum_{i=1}^{\mu} n(N_i) + i$

 $\sum_{i=1}^{r} M_i$ domains $U_{i,j,*}$ and $V_{i,j}$ such that $U_{i,j,*} \supset x_{i,j,*}$ and $V_{i,j} \supset b_{i,j}$ where $x_{i,j,*}$ and $b_{i,j}$ are connected arcs of $\mathcal{L}k(L)$ corresponding to the generators of G(k(L)).

Let $y_{i,j,*,k}$ and $c_{i,j,k}$ be generators of $G(\varphi(\lambda))$ corresponding to arcs of $\mathcal{P}\varphi(\lambda)$ such that $y_{i,j,*,k}\subset U_{i,j,*}$ and $c_{i,j,k}\subset V_{i,j}$.

Let $h':G(\varphi(\lambda))\to G(k_1)$ be a correspondence defined by

$$h'(y_{1,j,*,k}) = x_{1,j},$$

 $h'(y_{i,j,*,k}) = x_{1,1}, i=2,\dots, \mu,$
 $h'(c_{i,j,k}) = x_{1,1}.$

It is easily checked that for every relation s_i having in $U_{i,j,*}$ and $V_{i,j}$, $h'(s_i)$ becomes a trivial relation in $G(k_1)$; hence that h' is a homomorphism onto.

The homomorphism h' of $G(\varphi(\lambda))$ onto $G(k_1)$ enables us to give the following theorem that is a generalization of Theorem 3.2.

Theorem 3.3. With λ as in 3.2, let $L=(k_1,\dots,k_{\mu})$ be a link such that k_1 is of non-trivial knot type, and k_1 and (k_2,\dots,k_{μ}) are split. Then for any complete-fusion k(L) of L, the knot $\varphi(\lambda) \subset S^3$ associated with $T_{\mu}(k(L))$ is of non-trivial type provided that $\beta_1 \neq 0$.

REMARK 3.4. Theorem 1.1 and Theorem 1.6 are special cases of Theorems 3.2 and 3.3, respectively.

Corollary 3.5. (Parallel knots, Cables). With L and k(L) as in 3.2 or 3.3, and let λ be a knot on $\partial T_{\mu} \subset S^3$ such that

$$\lambda \sim \alpha_1 \boldsymbol{a}_1 + \beta_1 \boldsymbol{b}_1 + \cdots + \alpha_{\mu} \boldsymbol{a}_{\mu} + \beta_{\mu} \boldsymbol{b}_{\mu} \text{ in } \partial T_{\mu}$$
.

Then $\varphi(\lambda)$ associated with $T_{\mu}(k(L))$ is of non-trivial type provided that $\beta_1 \pm 0$.

REMARK 3.6. Let λ be a knot in T_{μ} , which may be homotopically trivial in T_{μ} . Let $\sigma_1 \cup \cdots \cup \sigma_n = \lambda \cap T_1(k_1^0)$ and $\tau_1 \cup \cdots \cup \tau_n = \lambda \cap (T_{\mu} - T_1(k_1^0))$, where σ_i and τ_i are simple sub-arcs of λ . We take simple arcs τ_i' in $N(H_1 \cap T_1(k_1^0); T_1(k_1^0))$, a regular neighborhood of $H_1 \cap T_1(k_1^0)$ in $T_1(k_1^0)$, corresponding

to τ_i , $i=1,\dots,n$, so that $\lambda_1=\sigma_1\cup\dots\cup\sigma_n\cup\tau_1'\cup\dots\cup\tau_n'$ is a knot in $T_1(k_1^0)$. Then, with L and $\varphi:T_\mu\to T_\mu(k(L))$ as in 3.2 or 3.3, we have an onto homomorphism $f:G(\varphi(\lambda))\to G(\varphi(\lambda_1))$ defined by

$$f(x_j) = \begin{cases} x_j & \text{if } x_j \subset (\sigma_1 \cup \dots \cup \sigma_n), \\ \tau_i' & \text{if } x_j \subset \tau_i, i = 1, \dots, n, \end{cases}$$

where x_j and τ'_i are generators of $G(\varphi(\lambda))$ and $G(\varphi(\lambda_1))$ corresponding to arcs of $\mathcal{P}\varphi(\lambda)$ and $\mathcal{P}\varphi(\lambda_1)$. As we have the non-triviality of some kinds of knots associated with a solid torus $T_1(k)$, for example, in [5], [11], [12], we can get the non-triviality of knots $\varphi(\lambda)$ by using this homomorphism f.

KOBE UNIVERSITY

References

- [1] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, New York, Ginn and Co., 1963.
- [2] M. Dehn: Über die Topologie des drei-dimensionalen Raumes, Math. Ann. 69 (1910), 137-168.
- [3] T. Homma: On Dehn's Lemma for S3, Yokohama Math. J. 5 (1957), 223-244.
- [4] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1967), 362–373.
- [5] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J. 9 (1957), 131-153.
- [6] C.D. Papakyriakopoulos: On Dehn's Lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- [7] H. Schubert: Die eindeutige Zerlegbarkeit eines Knotes in Primknoten, Sitzungsber. Akad. Wiss. Heidelberg, Math. -nat. Kl. No. 3 (1949), 57-104.
- [8] H. Seifert: Schlingknoten, Math. Z. 52 (1949), 62-80.
- [9] H. Seifert and W. Threlfall: Lehrbuch der Topologie, Leipzig und Berlin, Teubner, 1934.
- [10] H. Terasaka: On null-equivalent knots, Osaka Math. J. 11 (1959), 95-113.
- [11] ——: On the non-triviality of some kinds of knots, Osaka Math. J. 12 (1960), 113-144.
- [12] J.H.C. Whitehead: On doubled knots, J. London Math. Soc. 12 (1937), 63-71.
- [13] K. Yonebayashi: On the Alexander polynomial of ribbon 2-knots, Master's thesis, Kobe University, 1969.