ON THE TRANSVERSAL IMMERSION

KAZUAKI KOBAYASHI

(Received November 14, 1968)

(Revised April 4, 1969)

Zeeman and Armstrong [1], [2], [4] introduced the notion of transversality for the intersection of two manifolds or two polyhedra and proved some results. This notion can be considered as a refinement of general position. In this paper we extend this to the self-intersection of an piecewise linear immersion between manifolds.

The main result of this paper (Theorem) says that any locally flat immersion of a closed manifold into a manifold without boundary can be approximated by a transversal immersion.

It will be assumed, without further mention, that all manifolds have a piecewise linear structure and that all maps are piecewise linear immersions of a closed (i.e. compact and without boundary) manifold into a manifold without boundary.

Definitions and Theorem

Let M be a closed m-manifold and Q be a q-manifold without boundary. Let $f:M\to Q$ be an immersion. Let \hat{A} be the barycenter of a simplex A. We denote E^q the q-dimensional euclidean space.

DEFINITION 1. Let J, K be triangulations of M, Q such that $f: J \to K$ is simplicial. If (Lk(fx, K), f(Lk(x, J))) is unknotted sphere pair for any $x \in M$, we say that f is a locally flat immersion. This definition is independent of the triangulation of M, Q. Let $S_f = \{x \in M \mid f^{-1}f(x) \neq \{x\}\}$. Then $S_f = \overline{S}_f$ where \overline{S}_f is the closure of S_f since f is an immersion. And let $S_f(r) = \{x_1 \in M \mid f^{-1}f(x_1) = \{x_1, \dots, x_n\}, n \geq r\}$. Hence $S_f = S_f(2)$.

DEFINITION 2. Let $f^{-1}f(x_1) = \{x_1, \dots, x_n\}$ for some $x_i \in S_f$. If the following diagram commutes for any $i (1 \le i \le n)$ except j, we call f transversal to fM at x_j where φ_j , φ_i , ψ are homeomorphism onto some neighborhoods of x_j , x_i , $f(x_1)$ respectively.

$$D^{2m-q} \times D^{q-m}, 0 \times 0 \xrightarrow{1 \times 1 \times 0} D^{2m-q} \times D^{q-m} \times D^{q-m}, 0 \times 0 \times 0 \xleftarrow{1 \times 0 \times 1} D^{2m-q} \times D^{q-m}, 0 \times 0$$

$$\varphi_{j} \downarrow \qquad \qquad \downarrow \psi \qquad \qquad \downarrow \varphi_{i}$$

$$M, x_{j} \xrightarrow{\qquad \qquad f \qquad \qquad } M, x_{i}$$

And we simply call f transversal to fM at $f(x_1)$ if for any $j(1 \le j \le n)$ f is transversal to fM at x_j .

Furthermore we define f transversal immersion if f is transversal to fM at any f(x), $x \in S_f$.

DEFINITION 3. An immersion f of M into Q is in general postition itself if dim $S_f(r) \le rm - (r-1)q$ for all r.

Theorem. If f is a locally flat immersion of M^m into Q^q , then we can homotope f into a locally flat transversal immersion g by an arbitrarily small homotopy. Furthermore if f is in general position itself, then g is also in general position itself.

- REMARK 1. The above theorem still holds for an immersion f such that f is locally flat at any point of $St(S_f, M)$ although g is a transversal immersion such that g is locally flat at any point of $St(S_g, M)$.
- REMARK 2. Conversely if f is a transversal immersion of M into Q, f is locally flat at any point of S_f . For it is obvious by the left half or the right half of the above diagram.
- Remark 3. When m=q, theorem is obvious. So we shall prove it for m < q.
- **Corollary 1.** If g is a transversal immersion and S_g consists only on double points, then S_g is a closed locally flat (2m-q)-submanifold of M.

If the codimension of M and Q is greater than 3, any immersion is locally flat [4]. Hence we obtain the following Cor. 2.

- **Corollary 2.** If $m+3 \le q$, any piecewise linear immersion of M^m into Q^q is arbitrarily approximated by an transversal immersion. The approximation is made to be homotopic.
- **Corollary 3.** If f is any piecewise linear immersion of M^2 into Q^4 , then f is approximated by an transversal immersion. The approximation can be chosen so near and to be homotopic.

DEFINITION 4. Let f be an immersion of M into Q and J, K be simplicial subdivisions of M, Q respectively. We call f in general position with respect to J and K at x if for any simplexes $\Delta^i \in I$ and $\Delta^k \in K$ such that $x \in \mathring{\Delta}^i$ and $f(x) \in \mathring{\Delta}^k$,

$$\dim (f\Delta^i \cap \Delta^k) \leq i+k-q$$
.

For any $x \in M$ let A be a simplex of K such that $f(x) \in \mathring{A}$. Choose a vertex v of A, let L = Lk(A, K), and $s:AL \to vL$ the simplicial map defined as the join of $A \to v$ to the identity on L.

DEFINITION 5. (Armstrong, Zeeman [1], [2]) Let the map f be an immersion of M into Q and be in general position with respect to J and K where |J|=M, |K|=Q. The map f is transimplicial to K at the point $x\in M$ if there exists a neighborhood N of v in vL, and a commutative diagram

$$N \times D^{m+a-a} \xrightarrow{1 \times k} N \times D^{a} \xrightarrow{p} N$$

$$\alpha \downarrow \qquad \beta \downarrow \qquad \downarrow \subset$$

$$St(x, J) \cap f^{-1}AL \xrightarrow{f} AL \xrightarrow{s} vL$$

where a is the dimension of A, k is a proper embedding $D^{m+a-q} \rightarrow D^a$, p is a projection and α , β are embeddings onto neighborhoods of x, f(x) respectively.

Remark 4. The definition is independent of the choice of v.

REMARK 5. If f is transimplicial to K at x and $x \in \mathring{\Delta}^i$ (i < m), then m+a > q. For since f is in general position and $f(x) \in \mathring{A}$,

$$\dim (f\Delta^i \cap A) \leq i + a - q < m + a - q$$
.

Hence $f\Delta^i \cap A = \phi$ if $m+a-q \leq 0$. This contradicts $x \in \mathring{\Delta}^i$ and $f(x) \in \mathring{A}$. If f is transimplicial to K at x and $x \in \mathring{\Delta}^m$, then $m+a \geq q$. For dim $(f\Delta^m \cap A) \leq m+a-q$. Hence $f\Delta^m \cap A = \phi$ if m+a < q. This is contradiction.

REMARK 6. Let K' be a subdivision of K. If f is transimplicial to K' at $x \in M$ (hence f is in general position with respect to K'), then f is also transimplicial to K at x (see [2]).

DEFINITION 6. Let K be a combinatorial manifold of dimension q. Then K is called a *Brouwer manifold* if

- (i) For each $v \in K$ there is a linear embedding $St(v, K) \rightarrow E^q$
- (ii) For each $v \in K$ there is a linear embedding St(v, K), $St(v, K) \rightarrow E_+^q$, E_+^{q-1} .

REMARK 7. Not all combinatorial manifolds are Brouwer, [3].

REMARK 8. Any subdivision of a Brouwer is Brouwer.

Lemma 0 (Zeeman [2]). Any combinatorial manifold has a Brouwer subdivision.

Lemmata

When m=q, theorem is obvious. So we assume m < q throughout this section.

Now let $f:M\to Q$ be an immersion and J, K be subdivision of M, Q such that f is simplicial with respect to J, K and such that K is Brouwer subdivision. And we may suppose f is in general position itself by [4, Chap. 6]. Let $x_1 \in S_f$, and $f^{-1}f(x_1) = \{x_1, \dots, x_n\}$.

We suppose $x_i \in B_i^b$, $f(x_1) \in \mathring{A}$ where B_i $(i=1, 2, \dots, n)$ and A are simplexes of J and K respectively.

Let
$$X_i = St(\hat{B}_i, J'), W = St(\hat{A}, K').$$

We construct approximating maps $g_i^b(i=1, 2, \dots, n-1)$ of f inductively as follows. First take v_1 in \mathring{W} such that $v_1 \notin f(M)$ and v_1 is in general position with respect to the vertices of W. Then we define g_1^b as follows

$$g_1^b | M - \mathring{S}t(\mathring{B}_1, J') = f | M - \mathring{S}t(\mathring{B}_1, J')$$

 $g_1^b(\mathring{B}_1) = v_1$

and for any $y \in St(\hat{B}_1, J')$ if $y = (1 - \lambda)d + \lambda \hat{B}_1$ $(d \in \dot{S}t(\hat{B}_1, J'))$, $g_1(y) = (1 - \lambda)f(d) + \lambda v_1$.

Obviously g_1^b is not simplicial with respect to J' and K'. We take subdivisions J_1 , K_1 of J', K' such that they are subdividing the parts $f^{-1}(\mathring{W})$ and \mathring{W} and such that $g_1^b: J_1 \rightarrow K_1$ is simplicial.

Next take v_2 in $\mathring{S}t(\mathring{A}, K'_1)$ satisfying $v_2 \notin g_1^b(M)$ and v_2 is in general position with respect to the vertices of the subcomplex W_1 of K'_1 covering W. And we define g_2^b satisfying

$$g_2^b | M - \mathring{S}t(\hat{B}_2, J') = g_2^b | M - \mathring{S}t(\hat{B}_2, J')$$

 $g_2^b(\hat{B}_2) = v_2$ and

for any $y \in \mathring{S}t(\mathring{B}_2, J')$ it maps linearly same as g_1^b . We take subdivisions J_2 , K_2 of J'_1 , K'_1 such that they are subdividing the parts $(g_1^b)^{-1}\mathring{W}_1$ and \mathring{W}_1 and such that $g_2^b: J_2 \to K_2$ is simplicial. We construct g_i^b $(3 \le i \le n-1)$ in the same way. Furthermore we similarly construct approximating maps of f for any other point $x \in S_f$ such that $x \in \mathring{B}^b$.

And we again put the maps g_j^b .

Obviously $g_i^b|X_i$ is in general position with respect to J'_{i-1} and K'_{i-1} ($i=1, 2, \dots, n-1$) at any point $x \in \mathring{X}_i$ where $J_0 = J$, $K_0 = K$ and g_i^b is in general position itself.

Lemma 1. For all $i(i=1, 2, \dots, n-1)$ the map g_i^b constructed above is transimplicial to K'_{i-1} at any point of \mathring{X}_i where $K_0 = K$.

Proof. First we show g_1^b transimplicial to K' at any point of \mathring{X}_1 . For any $y \in \mathring{S}t(\mathring{B}_1, J')$ let C, D be simplexes of J', K' respectively such that $y \in \mathring{C}$, $g_1^b y \in \mathring{D}$. Since K is Brouwer triangulation, we may suppose St(A, K) embedded linearly in E^q . If D is a principal simplex of K', g_1^b is obviously transimplicial to K' at y. Hence we may suppose dim D < q. g_1^bC is the linear join in E^q of v_1 to some simplex of \mathring{W} by the construction of g_1^b . And since v_1 is in general position with respect to the vertices of W, g_1^bC and D span E^q . $g_1^bC\cap D$ is a (c+d-q)-linear convex cell. Let $(g_1^b)^{-1}(g_1^bC\cap D)\cap C=E$ and F a (q-d)-cell through y that is perpendicular to E in C. Let C^* be a simplex of J' having C as a face and $E^*=(g_1^b)^{-1}(g_1^bC^*\cap D)\cap C^*$. Then although E^* is not necessarily perpendicular to F in C^* , it has the property that any (q-d)-cell parallel to F in C^* , and sufficiently close to F, meets it in exactly one point. Therefore for some sufficiently small neighborhood U of y in $St(\mathring{B_1}, J')$ we can define a map $\rho_1: U \rightarrow (g_1^b)^{-1}D$ by projecting $U \cap C^*$ parallel to F onto the corresponding E^* . Now return to E^q . Since we defined F perpendicular to E in C, we know that the linear subspace $[g_1^bF]$ and [D], spanned by g_1^bF and D, are complementary in E^q . Hence we define the map

$$\rho_2 \colon E^q \to [D]$$
 parallel to $[g_1^b F]$.

Then $\rho_2 g_1^b = g_1^b \rho_1$ on U.

Choose a vertex v of D and let L=lk(D, K'), $s:DL \rightarrow vL$ and define $\alpha = sg_1^b \times \rho_1: U \rightarrow vL \times (g_1^b)^{-1}D$

$$\beta = s \times \rho_2$$
: $St(D, K') \rightarrow vL \times [D]$.

We can check that α and β are both piecewise linear embeddings onto neighborhoods of (v, y), $(v, g_1^b y)$ respectively. Choose ball neighborhoods N of v in vL,

$$D^{m+d-q}$$
 of y in $(g_1^b)^{-1}D$ and D^d of $g_1^b y$ in D
$$N \times D^{m+d-q}$$
 image of α
$$N \times D^d$$
 image of β , and $g_1^b D^{m+d-q} \subset D^d$

such that

Hence the following diagram commutes

$$N \times D^{m+d-q} \xrightarrow{1 \times (g_1^b | D^{m+d-q})} N \times D^d \xrightarrow{p} N$$

$$\alpha^{-1} \downarrow \qquad \qquad \downarrow \subset$$

$$g^{-1}DL \cap St(x_1, J') \xrightarrow{g_1^b} DL \xrightarrow{s} vL$$

This complete the proof for g_1^b .

Next we show g_2^b transimplicial to K_1' at any point of \mathring{X}_2 . The main part of the proof is equally for g_1^b and we shall not repeat all, but give the difference part of g_2^b . Since g_2^b is simplicial with respect to J' and $v_2 * \mathring{W}$ on $St(\mathring{A}_2, J')$, if C_2 is the simplex of J' such that $y_2 \in \mathring{C}_2$ where y_2 is any point of \mathring{X}_2 , $g_2^bC_2$ is

the linear join of v_2 and some simplex of \mathring{W} . Let D_2 be the simplex of K'_1 such that $g_2^b y_2 \in \mathring{D}_2$. Since v_2 is in general position with respect to the vertices of W_1 , $g_2^b C_2$ and D_2 span E^q . Hence $(g_2^b)^{-1}(g_2^b C_2 \cap D_2) \cap C_2$ is the (c+d-q)-linear convex cell E_2 . We define F_2 the (q-d)-cell through y_2 that is perpendicular to E_2 . Let C_2^* be a simplex of J' having C_2 as a face. In the same way as g_1^b , g_2^b is transimplicial to K'_1 at any point of \mathring{X}_2 . We can prove the lemma similarly for g_2^b $(3 \le i \le n-1)$.

Lemma 2. If f is a locally flat immersion, g_i^b ($i=1, 2, \dots, n-1$) are also a locally flat immersion.

Proof. By the construction of g_i^b , it is sufficiently to show that g_1^b is locally flat. Since g_1^b is different from f only on $\mathring{S}t(\mathring{B}_1, J')$ and since f is locally flat, $(Lk(f\mathring{B}_1, K'), f(Lk(\mathring{B}_1, J'))$ is the unknotted (q-1, m-1)-sphere pair. Hence

$$(St(g_1^bB, K_1), g_1^b(St(B_1, J)))$$

= $v_1*(Lk(fB_1, K), f(Lk(B_1, J)))$

is an unknotted (q, m)-ball pair.

Therefore g_1^b is locally flat at $x \in \mathring{S}t(\hat{B_1}, J')$. Obviously g_1^b is locally flat at the point $x \in M - St(\hat{B_1}, J')$. Let u be a vertex in $Lk(\hat{B_1}, J')$. Since f is locally flat, (Lk(f(u), K'), f(Lk(u, J')) is an unknotted sphere pair.

Case 1. If u is a vertex of J in $Lk(B_1, J')$,

$$(\mathit{Lk}(f(u),\,K'),\,f(\mathit{Lk}(u,\,J'))\cong\partial(\,\square\,,\,f\,\bigtriangledown\,)$$

where \bigtriangledown is the dual cell of u in J and where \Box is the dual cell of f(u) in K. And $\partial(\Box, f \bigtriangledown) \cap St(f(\mathring{B}_1), K') = (\widetilde{\Box}, f(\widetilde{\bigtriangledown}))$ where $\widetilde{\bigtriangledown} = St(\mathring{B}_1, \partial \bigtriangledown)$ and where $\widetilde{\Box} = St(f(\mathring{B}_1), \partial \Box)$. Since f is locally flat, $(\widetilde{\Box}, f(\widetilde{\bigtriangledown}))$ is the unknotted (q-1, m-1)-ball pair. Hence $\partial(\Box, f \bigtriangledown)$ -Int $(\widetilde{\Box}, f(\widetilde{\bigtriangledown}))$ is the unknotted ball pair (D, C) by [5. Cor. 8] and

$$(Lk(g_1^b(u), K'), g_1^b(Lk(u, J')) \cong (D, C) \cup v_1 * \partial(D, C)$$

is the unknotted sphere pair. Therefore g_1^b is locally flat at u.

Case 2. If u is a vertex of J' not J in $Lk(\hat{B}_1, J')$,

$$(Lk(f(u), K'), f(Lk(u, J'))) \cap St(f\hat{B}_1, K')$$

$$= (St(f\hat{B}_1), Lk(f(u)), f(St(\hat{B}_1, Lk(u, J')))).$$

And since f is locally flat, it is the unknotted (q-1, m-1)-ball pair (E, F). Hence (Lk(f(u), K'), f(Lk(u, J')))-Int(E, F) is the unknotted (q-1, m-1)-ball pair (D, C). Therefore g_1^b is locally flat at u as Case 1.

Lemma 3. If a locally flat immersion $f:M \rightarrow Q$ is transimplicial to K at

 $x_j \in S_f$ where $f^{-1}f(x_j) = \{x_1, \dots, x_j, \dots, x_n\}$ and |K| = Q and if $f \mid M - \mathring{S}t(x_j, J)$ is simplicial with respect to J and K where |J| = M, then f is transversal to f(M) at x_j .

Proof. Since f is a locally flat immersion, g_t^b is also by Lemma 2. Let A be the simplex of K satisfying $f(x_j) \in \mathring{\Delta}$ and L = Lk(A, K). Choose a vertex v of A, let $s:AL \rightarrow vL$ the simplicial map as defined before. Since f is transimplicial to K at x_j , $f \mid St(x_j, J)$ is in general position with respect to K and there exists a neighborhood N of v in vL such that the following diagram commutes (see Remark 5),

$$(0) \qquad A \downarrow \qquad AL \xrightarrow{f} AL \xrightarrow{f} VL$$

$$N \times D^{m+a-q} \xrightarrow{1 \times k} N \times D^{a} \xrightarrow{p} N$$

$$\beta \downarrow \qquad \downarrow \subset$$

$$f^{-1}AL \cap St(x_{j}, J) \xrightarrow{f} AL \xrightarrow{s} vL$$

where $k:D^{m+a-q}\to D^a$ is a proper embedding. Furthermore as f is locally flat, the pair $(N\times D^a, N\times k(D^{m+a-q}))$ is unknotted (q, m)-ball pair. Hence we can write the diagram (0) as follows,

$$N \times D^{m+a-q}, v \times 0 \xrightarrow{1 \times 1 \times 0} N \times D^{m+a-q} \times D^{q-m}, v \times 0 \times 0$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta$$

$$f^{-1}AL \cap St(x_j, J), x_j \xrightarrow{f} AL, f(x_j)$$

On the other hand $f \mid M - St(x_j, J)$ is simplicial, there exist simplexes B_i of J such that $\dot{B}_i \ni x_i$ and $fB_i = A$ ($i = 1, 2, \dots, j, \dots, n$). Let $L_1 = f(Lk(B_i, J))$ and N_1 be a neighborhood of v in vL_1 , then $N_1 = N \cap vL_1$. And since f is locally flat, (N, N_1) is an unknotted (q-a, m-a)-ball pair. Thus there exists an unknotting homeomorphism

$$h:D^{q-m}\times D^{m-a}$$
, $0\times D^{m-a}$, $0\times 0\to N$, N_1 , v .

Hence the following diagram commutes.

$$D^{a-m} \times D^{m-a} \times \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m+a-q}}_{\times D^{q-m}, \ 0 \times 0 \times 0 \times 0} \underbrace{D^{q-m} \times D^{m-a} \times D^{m+a-q}}_{\times D^{q-m}, \ 0 \times 0 \times 0 \times 0} \underbrace{D^{q-m} \times D^{m-a} \times D^{m+a-q}}_{\times D^{q-m}, \ 0 \times 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m+a-q}}_{\times D^{q-m}, \ 0 \times 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a} \times D^{m-a}}_{\times D^{q-m}, \ 0 \times 0 \times 0} \underbrace{D^{m-a} \times D^{m-a}}_{\times D^{m-a} \times D^{m-a}}_{\times D^{m-a} \times D^{m-a}} \underbrace{D^{m-a} \times D^{m-a}}_{\times D^{m-a} \times D^{m-a}} \underbrace{D^{m-a} \times D^{m-a}}_{\times D^{m-a} \times D^{m-a}}_{\times D^{m-a$$

From the top and the bottom of the diagram, f is transversal to f(M) at x_j .

Lemma 4. If $y_k \in Sg_{k-1}^b - Sg_{k-1}^b$ and $(g_k^b)^{-1}(g_k^b)(y_k) = \{ \cdots \ y_k \ \cdots \ y_m \}$ where $y_i \in \mathring{S}t(\hat{B}_i, J')$ and $\mathring{B}_i \ni x_i$, then g_k^b is transversal to $g_k^b M$ at y_i $(1 \le i \le k)$.

Proof. We shall prove the lemma by induction on k. Since g_k^b is transimplical to K'_{k-1} at y_k by Lemma 1, g_k^b is transversal to g_k^bM at y_k by Lemma 3. We suppose g_k^b transversal to g_k^bM at y_i where l' is the largest number satisfying l' < l. Since $g_k^b | \mathring{S}t(\mathring{B}_l, J') = g_l^b | St(\mathring{B}_{l'}, J')$ and g_k^b is transimplicial to K'_i at $y_{l'}$ (i < l'), $g_k^b | \mathring{S}t(\mathring{B}_{l'}, J')$ is transversal to $g_k^b(\mathring{S}t(\mathring{B}_i, J'))$ at $y_{l'}$, (i < l) by Lemma 3. And g_k^b is transversal to $g_k^b(\mathring{S}t(\mathring{B}_j, J'))$ $(1 \le j \le k)$ at $y_{l'}$ by inductive hypothesis. For j < k, since g_k^b does not effect on $\mathring{S}t(\mathring{B}_j, J')$, $g_k^b(\mathring{S}t(\mathring{B}_j, J'))$ is embedded as a subcomplex of K_i' for any i. Hence g_k^b is transversal to $g_k^b(St(\mathring{B}_j, J'))$ (j < k) at $y_{l'}$ because g_k^b is transimplicial to K'_i (i < l') at $y_{l'}$. Therefore g_k^b is transversal to g_k^bM at $y_{l'}$.

We denote the last map like g_{n-1}^b for all other point $x \in S_f$ such that $x \in B^b$ as g^b .

Proof of Theorem.

We order k-simplexes of J containing the point of S_f such Δ_{ij}^k that if $f(\Delta_{ij}^k) = f(\Delta_{mn}^k)$, i=m and that the set of k-simplexes of $f^{-1}f(\Delta_{ij}^k)$ is properly numbered for the second suffix j. We number point contained $|\Delta_{ij}^k| \cap S_f$ as x_{ij}^k .

We perform the shift g_{ij}^b for every $x_{ij}^b \in S_f$ such that $x_{ij}^b \in B_{ij}^b$ and in order to decreasing dimension of b. Since J is a finite dimensional finite complex, the time of shifts is finite.

First perform on *m*-shift g_{tj}^m for $x_{tj}^m \in S_f$ $(i=1,2,\cdots,l;j=1,2,\cdots,q)$ where l is the number of m-simplexes such that $|\Delta_{tj}^m| \cap S_f \neq \phi$, $|\Delta_{st}^m| \cap S_f \neq \phi$ and $f(\Delta_{tj}^m) \cap f(\Delta_{st}^m) = \phi$ and where $f^{-1}f(\Delta_{tj}^k) = \{\Delta_{tl}^k, \cdots, \Delta_{tq}^k\}$. We denote $g_{tq}^m = g^m$ then $g^m | J - J^{m-1}$ is non-singular. Next perform on (m-1)-shift g_{tj}^{m-1} for $x_{tj}^m \in S_f$ $(i=1,2,\cdots,p;j=1,2,\cdots,r)$ where p and r are same as above. We denote $g_{pr}^{m-1} = g^{m-1}$. Then $x_{tj}^{m-1} \notin S_{g^{m-1}}$ for $i=1,2,\cdots,p;j=1,2,\cdots,r$. For any point $y \in S_{g^{m-1}} - S_f$ such that $y \in \mathring{S}t(\mathring{B}_{tj}^{m-1},J')$, g^{m-1} is transversal to $g^{m-1}M$ at $g^{m-1}(y)$ by Lemma 4.

Furthermore since for any k-simplex $\Delta^k \in J'$ whose interior is contained in $\mathring{S}t(\mathring{B}^{m-1}, J') \cap \mathring{S}t(\mathring{B}^m, J')$, $\Delta^k = \mathring{B}^{m-1} * \widetilde{\Delta}^{k-1}$ where $\widetilde{\Delta}^{k-1}$ is the opposite face of \mathring{B}^{m-1} in Δ^k and since $g^{m-1} = g^m$ at $M = \bigcup_{B \in \mathcal{I}} \mathring{S}t(\mathring{B}^{m-1}, J')$, $g^{m-1}(\Delta^k) = v * g^m(\widetilde{\Delta}^{k-1})$ where v is a point of $\mathring{S}t(f(\mathring{B}^{m-1}), K')$ satisfying the conditions 1) $v \notin f(M)$ and 2) v is in general position with respect to the vertices of the complex covered by $St(f(\mathring{B}^{m-1}), K')$. Hence it is obviously that if g^m is transversal to g^mM at $St(\mathring{B}^m, J') \cap St(\mathring{B}^m, J')$, g^{m-1} is also transversal to $g^{m-1}M$ at there. Therefore

 g^{m-1} is transversal to $g^{m-1}M$ at every point of $|J-J^{m-2}|$. In this way any singular point of S_f become non-singular point one time, and if $y \in \mathring{S}t(\mathring{B}^b, J')$ become again a singular point by g^b , then, g^b is transversal to g^bM at g^b by Lemma 4.

Furthermore for any point $y \in \dot{S}t(\mathring{B}^b, J') \cap \mathring{S}t(\mathring{B}^{b+1}, J')$ g^b is transversal to g^bM at y as above. Hence g^b is transversal to g^bM at every point of $|J-J^{b-1}|$. Therefore, in final, g^0 is transversal to g^0M at all points of M particularly of S_{g^0} . Then g^0 is the required g.

And if f is in general position itself, g is obviously in general position itself by construction. Complete the proof.

Proof of Corollary 1.

By the hypothesis if $x \in S_g$, $g^{-1}g(x) = x \cup y$ and the following diagram commutes

$$D^{2m-q} \times D^{q-m}, 0 \times 0 \xrightarrow{k_x} D^{2m-q} \times D^{q-m} \times D^{q-m}, 0 \times 0 \times 0 \xleftarrow{k_y} D^{2m-q} \times D^{q-m}, 0 \times 0$$

$$\varphi_x \downarrow \qquad \qquad \downarrow \varphi_y \qquad \qquad \downarrow \varphi_y$$

$$M, x \xrightarrow{g} \qquad \longrightarrow Q, g(x) \leftarrow \xrightarrow{g} \qquad M, y$$

where $k_x=1\times1\times0$, $k_y=1\times0\times1$ and where φ_x , φ_y , ψ are homeomorphism onto some neighborhoods of x, y, g(x) respectively.

Since $St(x, S_g) \cong St(k_x(0 \times 0), k_x(D^{2m-q} \times D^{q-m}) \cap k_y(D^{2m-q} \times D^{q-m})) = St(0 \times 0 \times 0, D^{2m-q}) \cong D^{2m-q}, S_g$ is a closed (2m-q)-manifold. And in the left side of the above diagram $(St(x, M), St(x, S_g)) \cong (D^{2m-q} \times D^{q-m}, D^{2m-q})$ since $\varphi_x \colon (D^{2m-q} \times D^{q-m}, D^{2m-q} \times 0, 0 \times 0) \to (M, S_g, x).$

Hence S_g is a closed locally flat (2m-q)-submanifold of M.

Proof of Cor. 3.

Let J_0 and K_0 be the subdivisions of M, Q and f be in general position with respect to J_0 , K_0 . Let J, K be the subdivisions of J_0 , K_0 such that $f: J \rightarrow K$ is simplicial.

Then S_f consists only of the vertices of J and the local knotness rises only on the vertices of J. Hence if $y_k \in S_{g^k} - S_{g^{k-1}}$, $y_k \notin J^\circ$ where y_k , g_k are same as Lemma 3.

Then g_k is locally flat at y_k and g_k is transversal to $g_k M$ at y_k as the proof of theorem.

KOBE UNIVERSITY

References

- [1] M.A. Armstrong: Transversality for polyhedra, Ann. of Math. 86 (1967), 172-191.
- [2] and E.C. Zeeman: Transversality for piecewise linear manifolds, Topology 6 (1967), 433-466.
- [3] S.S. Cairns: Triangulated manifolds which are not Brouwer manifolds, Ann. of Math. 41 (1940), 792-795.
- [4] E.C. Zeeman: Seminar on Combinatorial Topology (mimeographed), Inst. Hautes Etudes Sci., Paris, 1963.
- [5] J.F.P. Hudson and E.C. Zeeman: On regular neighborhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.