ON THE TRANSVERSAL IMMERSION

Kazuaki KOBAYASHI

(Received November 14, 1968)
(Revised April 4, 1969)

Zeeman and Armstrong [1], [2], [4] introduced the notion of transversality for the intersection of two manifolds or two polyhedra and proved some results. This notion can be considered as a refinement of general position. In this paper we extend this to the self-intersection of an piecewise linear immersion between manifolds.

The main result of this paper (Theorem) says that any locally flat immersion of a closed manifold into a manifold without boundary can be approximated by a transversal immersion.

It will be assumed, without further mention, that all manifolds have a piecewise linear structure and that all maps are piecewise linear immersions of a closed (i.e. compact and without boundary) manifold into a manifold without boundary.

Definitions and Theorem

Let M be a closed m-manifold and Q be a q-manifold without boundary. Let $f: M \rightarrow Q$ be an immersion. Let \hat{A} be the barycenter of a simplex A. We denote E^{q} the q-dimensional euclidean space.

Definition 1. Let J, K be triangulations of M, Q such that $f: J \rightarrow K$ is simplicial. If $(\operatorname{Lk}(f x, K), f(L k(x, J)))$ is unknotted sphere pair for any $x \in M$, we say that f is a locally flat immersion. This definition is independent of the triangulation of M, Q. Let $S_{f}=\left\{x \in M \mid f^{-1} f(x) \neq\{x\}\right\}$. Then $S_{f}=\bar{S}_{f}$ where \bar{S}_{f} is the closure of S_{f} since f is an immersion. And let $S_{f}(r)=\left\{x_{1} \in M \mid f^{-1} f\left(x_{1}\right)\right.$ $\left.=\left\{x_{1}, \cdots, x_{n}\right\}, n \geq r\right\}$. Hence $S_{f}=S_{f}(2)$.

Definition 2. Let $f^{-1} f\left(x_{1}\right)=\left\{x_{1}, \cdots, x_{n}\right\}$ for some $x_{1} \in S_{f}$. If the following diagram commutes for any $i(1 \leq i \leq n)$ except j, we call f transversal to fM at x_{j} where $\varphi_{j}, \varphi_{i}, \psi$ are homeomorphism onto some neighborhoods of $x_{j}, x_{i}, f\left(x_{1}\right)$ respectively.

And we simply call f transversal to $f M$ at $f\left(x_{1}\right)$ if for any $j(1 \leq j \leq n) f$ is transversal to $f M$ at x_{j}.

Furthermore we define f transversal immersion if f is transversal to $f M$ at any $f(x), x \in S_{f}$.

Definition 3. An immersion f of M into Q is in general postition itself if $\operatorname{dim} S_{f}(r) \leq r m-(r-1) q$ for all r.

Theorem. If f is a locally flat immersion of M^{m} into Q^{q}, then we can homotope f into a locally flat transversal immersion g by an arbitrarily small homotopy. Furthermore if f is in general position itself, then g is also in general position itself.

Remark 1. The above theorem still holds for an immersion f such that f is locally flat at any point of $\operatorname{St}\left(S_{f}, M\right)$ although g is a transversal immersion such that g is locally flat at any point of $\operatorname{St}\left(S_{g}, M\right)$.

Remark 2. Conversely if f is a transversal immersion of M into Q, f is locally flat at any point of S_{f}. For it is obvious by the left half or the right half of the above diagram.

Remark 3. When $m=q$, theorem is obvious. So we shall prove it for $m<q$.

Corollary 1. If g is a transversal immersion and S_{g} consists only on double points, then S_{g} is a closed locally flat $(2 m-q)$-submanifold of M.

If the codimension of M and Q is greater than 3, any immersion is locally flat [4]. Hence we obtain the following Cor. 2.

Corollary 2. If $m+3 \leq q$, any piecewise linear immersion of M^{m} into Q^{q} is arbitrarily approximated by an transversal immersion. The approximation is made to be homotopic.

Corollary 3. If f is any piecewise linear immersion of M^{2} into Q^{4}, then f is approximated by an transversal immersion. The approximation can be chosen so near and to be homotopic.

Definition 4. Let f be an immersion of M into Q and J, K be simplicial subdivisions of M, Q respectively. We call f in general position with respect to J and K at x if for any simplexes $\Delta^{i} \in I$ and $\Delta^{k} \in K$ such that $x \in \Delta^{i}$ and $f(x) \in \Delta^{k}$,

$$
\operatorname{dim}\left(f \Delta^{i} \cap \Delta^{k}\right) \leq i+k-q
$$

For any $x \in M$ let A be a simplex of K such that $f(x) \in \AA$. Choose a vertex v of A, let $L=L k(A, K)$, and $s: A L \rightarrow v L$ the simplicial map defined as the join of $A \rightarrow v$ to the identity on L.

Definition 5. (Armstrong, Zeeman [1], [2]) Let the map f be an immersion of M into Q and be in general position with respect to J and K where $|J|=M,|K|=Q$. The map f is transimplicial to K at the point $x \in M$ if there exists a neighborhood N of v in $v L$, and a commutative diagram

where a is the dimension of A, k is a proper embedding $D^{m+a-q} \rightarrow D^{a}, p$ is a projection and α, β are embeddings onto neighborhoods of $x, f(x)$ respectively.

Remark 4. The definition is independent of the choice of v.
Remark 5. If f is transimplicial to K at x and $x \in \Delta^{i}(i<m)$, then $m+a>$ q. For since f is in general position and $f(x) \in \AA$,

$$
\operatorname{dim}\left(f \Delta^{i} \cap A\right) \leq i+a-q<m+a-q .
$$

Hence $f \Delta^{i} \cap A=\phi$ if $m+a-q \leq 0$. This contradicts $x \in \Delta^{i}$ and $f(x) \in \AA$.
If f is transimplicial to K at x and $x \in \Delta^{m}$, then $m+a \geq q$. For $\operatorname{dim}\left(f \Delta^{m} \cap A\right)$ $\leq m+a-q$. Hence $f \Delta^{m} \cap A=\phi$ if $m+a<q$. This is contradiction.

Remark 6. Let K^{\prime} be a subdivision of K. If f is transimplicial to K^{\prime} at $x \in M$ (hence f is in general position with respect to K^{\prime}), then f is also transimplicial to K at x (see [2]).

Definition 6. Let K be a combinatorial manifold of dimension q. Then K is called a Brouwer manifold if
(i) For each $v \in K$ there is a linear embedding

$$
S t(v, K) \rightarrow E^{q}
$$

(ii) For each $v \in K$ there is a linear embedding

$$
S t(v, K), S t(v, K) \rightarrow E_{+}^{q}, E^{q-1} .
$$

Remari 7. Not all combinatorial manifolds are Brouwer, [3].
Remark 8. Any subdivision of a Brouwer is Brouwer.
Lemma 0 (Zeeman [2]). Any combinatorial manifold has a Brouwer subdivision.

Lemmata

When $m=q$, theorem is obvious. So we assume $m<q$ throughout this section.

Now let $f: M \rightarrow Q$ be an immersion and J, K be subdivision of M, Q such that f is simplicial with respect to J, K and such that K is Brouwer subdivision. And we may suppose f is in general position itself by [4, Chap. 6]. Let $x_{1} \in S_{f}$, and $f^{-1} f\left(x_{1}\right)=\left\{x_{1}, \cdots, x_{n}\right\}$.

We suppose $x_{i} \in B_{i}^{b}, f\left(x_{1}\right) \in \AA$ where $B_{i}(i=1,2, \cdots, n)$ and A are simplexes of J and K respectively.

Let $X_{i}=S t\left(\hat{B}_{i}, J^{\prime}\right), W=S t\left(\hat{A}, K^{\prime}\right)$.
We construct approximating maps $g_{i}^{b}(i=1,2, \cdots, n-1)$ of f inductively as follows. First take v_{1} in \dot{W} such that $v_{1} \notin f(M)$ and v_{1} is in general position with respect to the vertices of W. Then we define g_{1}^{b} as follows

$$
\begin{aligned}
g_{1}^{b} \mid M-\stackrel{\circ}{S} t\left(\hat{B}_{1}, J^{\prime}\right) & =f \mid M-\dot{S} t\left(\hat{B}_{1}, J^{\prime}\right) \\
g_{1}^{b}\left(\hat{B}_{1}\right) & =v_{1}
\end{aligned}
$$

and for any $y \in S t\left(\hat{B}_{1}, J^{\prime}\right)$ if $y=(1-\lambda) d+\lambda \hat{B}_{1}\left(d \in \dot{S} t\left(\hat{B}_{1}, J^{\prime}\right)\right), g_{1}(y)=(1-\lambda) f(d)$ $+\lambda v_{1}$.

Obviously g_{1}^{b} is not simplicial with respect to J^{\prime} and K^{\prime}. We take subdivisions J_{1}, K_{1} of J^{\prime}, K^{\prime} such that they are subdividing the parts $f^{-1}(\dot{W})$ and $\stackrel{\circ}{W}$ and such that $g_{1}^{h}: J_{1} \rightarrow K_{1}$ is simplicial.

Next take v_{2} in $\dot{S} t\left(\hat{A}, K_{1}^{\prime}\right)$ satisfying $v_{2} \notin g_{1}^{b}(M)$ and v_{2} is in general position with respect to the vertices of the subcomplex W_{1} of K_{1}^{\prime} covering W. And we define g_{2}^{b} satisfying

$$
\begin{array}{rlrl}
g_{2}^{b} \mid M-\dot{S} t\left(\hat{B}_{2}, J^{\prime}\right) & =g_{2}^{b} \mid M-\stackrel{\circ}{S} t\left(\hat{B}_{2}, J^{\prime}\right) \\
g_{2}^{b}\left(\hat{B}_{2}\right) & =v_{2} & \text { and }
\end{array}
$$

for any $y \in \dot{S} t\left(\hat{B}_{2}, J^{\prime}\right)$ it maps linearly same as g_{1}^{b}. We take subdivisions J_{2}, K_{2} of $J_{1}^{\prime}, K_{1}^{\prime}$ such that they are subdividing the parts $\left(g_{1}^{b}\right)^{-1} W_{1}$ and \dot{W}_{1} and such that $g_{2}^{b}: J_{2} \rightarrow K_{2}$ is simplicial. We construct $g_{i}^{b}(3 \leq i \leq n-1)$ in the same way. Furthermore we similarly construct approximating maps of f for any other point $x \in S_{f}$ such that $x \in \dot{B}^{b}$.

And we again put the maps g_{j}^{b}.
Obviously $g_{i}^{b} \mid X_{i}$ is in general position with respect to J_{i-1}^{\prime} and $K_{i-1}^{\prime}(i=1,2, \cdots$, $n-1)$ at any point $x \in \dot{X}_{i}$ where $J_{0}=J, K_{0}=K$ and g_{i}^{b} is in general position itself.

Lemma 1. For all $i(i=1,2, \cdots, n-1)$ the map g_{i}^{b} constructed above is transimplicial to K_{i-1}^{\prime} at any point of \dot{X}_{i} where $K_{0}=K$.

Proof. First we show g_{1}^{b} transimplicial to K^{\prime} at any point of \dot{X}_{1}.
For any $y \in \dot{S} t\left(\hat{B}_{1}, J^{\prime}\right)$ let C, D be simplexes of J^{\prime}, K^{\prime} respectively such that $y \in \dot{C}, g_{1}^{b} y \in \dot{D}$. Since K is Brouwer triangulation, we may suppose $\operatorname{St}(A, K)$ embedded linearly in E^{q}. If D is a principal simplex of K^{\prime}, g_{1}^{b} is obviously trans-
implicial to K^{\prime} at y. Hence we may suppose $\operatorname{dim} D<q . g_{1}^{b} C$ is the linear join in E^{q} of v_{1} to some simplex of W by the construction of g_{1}^{b}. And since v_{1} is in general position with respect to the vertices of $W, g_{1}^{b} C$ and D span E^{q}. $g_{1}^{b} C \cap D$ is a $(c+d-q)$-linear convex cell. Let $\left(g_{1}^{b}\right)^{-1}\left(g_{1}^{b} C \cap D\right) \cap C=E$ and F a $(q-d)$-cell through y that is perpendicular to E in C. Let C^{*} be a simplex of J^{\prime} having C as a face and $E^{*}=\left(g_{1}^{b}\right)^{-1}\left(g_{1}^{b} C^{*} \cap D\right) \cap C^{*}$. Then although E^{*} is not necessarily perpendicular to F in C^{*}, it has the property that any $(q-d)$-cell parallel to F in C^{*}, and sufficiently close to F, meets it in exactly one point. Therefore for some sufficiently small neighborhood U of y in $\operatorname{St}\left(\hat{B}_{1}, J^{\prime}\right)$ we can define a map $\rho_{1}: U \rightarrow\left(g_{1}^{b}\right)^{-1} D$ by projecting $U \cap C^{*}$ parallel to F onto the corresponding E^{*}. Now return to E^{q}. Since we defined F perpendicular to E in C, we know that the linear subspace $\left[g_{1}^{b} F\right]$ and $[D]$, spanned by $g_{1}^{b} F$ and D, are complementary in E^{q}. Hence we define the map

$$
\rho_{2}: E^{q} \rightarrow[D] \text { parallel to }\left[g_{1}^{b} F\right] .
$$

Then $\rho_{2} g_{1}^{b}=g_{1}^{b} \rho_{1}$ on U.
Choose a vertex v of D and let $L=l k\left(D, K^{\prime}\right), s: D L \rightarrow v L$ and define $\alpha=s g_{1}^{b} \times \rho_{1}: U \rightarrow v L \times\left(g_{1}^{b}\right)^{-1} D$

$$
\beta=s \times \rho_{2}: S t\left(D, K^{\prime}\right) \rightarrow v L \times[D] .
$$

We can check that α and β are both piecewise linear embeddings onto neighborhoods of $(v, y),\left(v, g_{1}^{b} y\right)$ respectively. Choose ball neighborhoods N of v in $v L$,
D^{m+d-q} of y in $\left(g_{1}^{b}\right)^{-1} D \quad$ and
D^{d} of $g_{1}^{b} y$ in D
such that
$N \times D^{m+d-q}$ image of α
$N \times D^{d}$ image of β, and
$g_{1}^{b} D^{m+d-q} \subset D^{d}$
Hence the following diagram commutes

This complete the proof for g_{1}^{b}.
Next we show g_{2}^{b} transimplicial to K_{1}^{\prime} at any point of \dot{X}_{2}. The main part of the proof is equally for g_{1}^{b} and we shall not repeat all, but give the difference part of g_{2}^{b}. Since g_{2}^{b} is simplicial with respect to J^{\prime} and $v_{2} * \dot{W}$ on $\operatorname{St}\left(\hat{A}_{2}, J^{\prime}\right)$, if C_{2} is the simplex of J^{\prime} such that $y_{2} \in \dot{C}_{2}$ where y_{2} is any point of $\dot{X}_{2}, g_{2}^{b} C_{2}$ is
the linear join of v_{2} and some simplex of \dot{W}. Let D_{2} be the simplex of K_{1}^{\prime} such that $g_{2}^{b} y_{2} \in \dot{D}_{2}$. Since v_{2} is in general position with respect to the vertices of $W_{1}, g_{2}^{b} C_{2}$ and D_{2} span E^{q}. Hence $\left(g_{2}^{b}\right)^{-1}\left(g_{2}^{b} C_{2} \cap D_{2}\right) \cap C_{2}$ is the $(c+d-q)$ linear convex cell E_{2}. We define F_{2} the $(q-d)$-cell through y_{2} that is perpendicular to E_{2}. Let C_{2}^{*} be a simplex of J^{\prime} having C_{2} as a face. In the same way as g_{1}^{b}, g_{2}^{b} is transimplicial to K_{1}^{\prime} at any point of \dot{X}_{2}. We can prove the lemma similarly for $g_{i}^{b}(3 \leq i \leq n-1)$.

Lemma 2. If f is a locally flat immersion, $g_{i}^{b}(i=1,2, \cdots, n-1)$ are also a locally flat immersion.

Proof. By the construction of g_{i}^{b}, it is sufficiently to show that g_{1}^{b} is locally flat. Since g_{1}^{b} is different from f only on $\dot{S} t\left(\hat{B}_{1}, J^{\prime}\right)$ and since f is locally flat, ($L k\left(f \hat{B}_{1}, K^{\prime}\right), f\left(L k\left(\hat{B}_{1}, J^{\prime}\right)\right)$ is the unknotted $(q-1, m-1)$-sphere pair. Hence

$$
\begin{aligned}
& \left(S t\left(g_{1}^{b} B, K_{1}\right), g_{1}^{b}\left(S t\left(B_{1}, J\right)\right)\right) \\
& \quad=v_{1} *\left(\operatorname{Lk}\left(f B_{1}, K\right), f\left(\operatorname{Lk}\left(B_{1}, J\right)\right)\right)
\end{aligned}
$$

is an unknotted (q, m)-ball pair.
Therefore g_{1}^{b} is locally flat at $x \in \dot{S} t\left(\hat{B}_{1}, J^{\prime}\right)$. Obviously g_{1}^{b} is locally flat at the point $x \in M-S t\left(\hat{B}_{1}, J^{\prime}\right)$. Let u be a vertex in $L k\left(\hat{B}_{1}, J^{\prime}\right)$. Since f is locally flat, ($L k\left(f(u), K^{\prime}\right), f\left(L k\left(u, J^{\prime}\right)\right)$ is an unknotted sphere pair.

Case 1. If u is a vertex of J in $L k\left(\hat{B}_{1}, J^{\prime}\right)$,

$$
\left(L k\left(f(u), K^{\prime}\right), f\left(L k\left(u, J^{\prime}\right)\right) \cong \partial(\square, f \nabla)\right.
$$

where ∇ is the dual cell of u in J and where \square is the dual cell of $f(u)$ in K. And
$\partial(\square, f \nabla) \cap S t\left(f\left(\hat{B}_{1}\right), K^{\prime}\right)=(\widetilde{\square}, f(\widetilde{\nabla}))$ where $\widetilde{\nabla}=S t\left(\hat{B}_{1}, \partial \nabla\right)$ and where $\widetilde{\square}=\operatorname{St}\left(f\left(\hat{B}_{1}\right), \partial \square\right)$. Since f is locally flat, $(\widetilde{\square}, f(\widetilde{\nabla}))$ is the unknotted $(q-1, m-1)$ -ball pair. Hence $\partial(\square, f \nabla)-\operatorname{Int}(\widetilde{\square}, f(\widetilde{\nabla}))$ is the unknotted ball pair (D, C) by [5. Cor. 8] and

$$
\left(L k\left(g_{1}^{b}(u), K^{\prime}\right), g_{1}^{b}\left(L k\left(u, J^{\prime}\right)\right) \cong(D, C) \cup v_{1} * \partial(D, C)\right.
$$

is the unknotted sphere pair. Therefore g_{1}^{b} is locally flat at u.
Case 2. If u is a vertex of J^{\prime} not J in $L k\left(\hat{B}_{1}, J^{\prime}\right)$,

$$
\begin{aligned}
& \left(L k\left(f(u), K^{\prime}\right), f\left(L k\left(u, J^{\prime}\right)\right)\right) \cap S t\left(f \hat{B}_{1}, K^{\prime}\right) \\
& \quad=\left(\operatorname{St}\left(f \hat{B}_{1}\right), \operatorname{Lk}(f(u)), f\left(\operatorname{St}\left(\hat{B}_{1}, \operatorname{Lk}\left(u, J^{\prime}\right)\right)\right)\right) .
\end{aligned}
$$

And since f is locally flat, it is the unknotted ($q-1, m-1$)-ball pair (E, F). Hence $\left(L k\left(f(u), K^{\prime}\right), f\left(L k\left(u, J^{\prime}\right)\right)\right)-\operatorname{Int}(E, F)$ is the unknotted $(q-1, m-1)$-ball pair (D, C). Therefore g_{1}^{b} is locally flat at u as Case 1.

Lemma 3. If a locally flat immersion $f: M \rightarrow Q$ is transimplicial to K at
$x_{j} \in S_{f}$ where $f^{-1} f\left(x_{j}\right)=\left\{x_{1}, \cdots, x_{j}, \cdots, x_{n}\right\}$ and $|K|=Q$ and if $f \mid M-\dot{S} t\left(x_{j}, J\right)$ is simplicial with respect to J and K where $|J|=M$, then f is transversal to $f(M)$ at x_{j}.

Proof. Since f is a locally flat immersion, g_{i}^{b} is also by Lemma 2. Let A be the simplex of K satisfying $f\left(x_{j}\right) \in \Delta$ and $L=L k(A, K)$. Choose a vertex v of A, let $s: A L \rightarrow v L$ the simplicial map as defined before. Since f is transimplicial to K at $x_{j}, f \mid S t\left(x_{j}, J\right)$ is in general position with respect to K and there exists a neighborhood N of v in $v L$ such that the following diagram commutes (see Remark 5),

where $k: D^{m+a-q} \rightarrow D^{a}$ is a proper embedding. Furthermore as f is locally flat, the pair ($N \times D^{a}, N \times k\left(D^{m+a-q}\right)$) is unknotted (q, m)-ball pair. Hence we can write the diagram (0) as follows,

On the other hand $f \mid M-S t\left(x_{j}, J\right)$ is simplicial, there exist simplexes B_{i} of J such that $\dot{B}_{i} \ni x_{i}$ and $f B_{i}=A(i=1,2, \cdots, \stackrel{*}{j}, \cdots, n)$. Let $L_{1}=f\left(L k\left(B_{i}, J\right)\right)$ and N_{1} be a neighborhood of v in $v L_{1}$, then $N_{1}=N \cap v L_{1}$. And since f is locally flat, $\left(N, N_{1}\right)$ is an unknotted $(q-a, m-a)$-ball pair. Thus there exists an unknotting homeomorphism

$$
h: D^{q-m} \times D^{m-a}, 0 \times D^{m-a}, 0 \times 0 \rightarrow N, N_{1}, v .
$$

Hence the following diagram commutes.

From the top and the bottom of the diagram, f is transversal to $f(M)$ at x_{j}.

Lemma 4. If $y_{k} \in S g_{k}^{b}-S g_{k-1}^{b}$ and $\left(g_{k}^{b}\right)^{-1}\left(g_{k}^{b}\right)\left(y_{k}\right)=\left\{\begin{array}{lllll}\cdots & y_{k} & \cdots & y_{m}\end{array}\right\}$ where $y_{i} \in \dot{S} t\left(\dot{B}_{i}, J^{\prime}\right)$ and $\stackrel{\circ}{B}_{i} \ni x_{i}$, then g_{k}^{b} is transversal to $g_{k}^{b} M$ at $y_{i}(1 \leq i \leq k)$.

Proof. We shall prove the lemma by induction on k. Since g_{k}^{b} is transimplical to K_{k-1}^{\prime} at y_{k} by Lemma $1, g_{k}^{b}$ is transversal to $g_{k}^{b} M$ at y_{k} by Lemma 3. We suppose g_{k}^{b} transversal to $g_{k}^{b} M$ at $y_{j}(1 \leq j \leq k)$. Next we shall show g_{k}^{b} transversal to $g_{k}^{b} M$ at y_{l} where l^{\prime} is the largest number satisfying $l^{\prime}<l$. Since $g_{k}^{b}\left|\dot{S} t\left(\hat{B}_{l}, J^{\prime}\right)=g_{i^{\prime}}^{b}\right| S t\left(\hat{B}_{l^{\prime}}, J^{\prime}\right)$ and g_{k}^{b} is transimplicial to K_{i}^{\prime} at $y_{l^{\prime}}\left(i<l^{\prime}\right), g_{k}^{b} \mid \dot{S} t$ $\left(\hat{B}_{l^{\prime}}, J^{\prime}\right)$ is transversal to $g_{k}^{b}\left(\stackrel{\circ}{S} t\left(\hat{B}_{i}, J^{\prime}\right)\right)$ at $y_{l^{\prime}},(i<l)$ by Lemma 3. And g_{k}^{b} is transversal to $g_{k}^{b}\left(\mathscr{S} t\left(\hat{B}_{j}, J^{\prime}\right)\right)(1 \leq j \leq k)$ at $y_{t^{\prime}}$ by inductive hypothesis. For $j<k$, since g_{k}^{b} does not effect on $\stackrel{\circ}{S} t\left(\hat{B}_{j}, J^{\prime}\right), g_{k}^{b}\left(\stackrel{\circ}{S} t\left(\hat{B}_{j}, J^{\prime}\right)\right)$ is embedded as a subcomplex of $K_{i}{ }^{\prime}$ for any i. Hence g_{k}^{b} is transversal to $g_{k}^{b}\left(S t\left(\hat{B}_{j}, J^{\prime}\right)\right)(j<k)$ at $y_{l^{\prime}}$ because g_{k}^{b} is transimplicial to $K_{i}^{\prime}\left(i<l^{\prime}\right)$ at y_{l}. Therefore g_{k}^{b} is transversal to $g_{k}^{b} M$ at $y_{t^{\prime}}$.

We denote the last map like g_{n-1}^{b} for all other point $x \in S_{f}$ such that $x \in B^{b}$ as g^{b}.

Proof of Theorem.
We order k-simplexes of J containing the point of S_{f} such $\Delta_{i j}^{k}$ that if $f\left(\Delta_{i j}^{k}\right)$ $=f\left(\Delta_{m n}^{k}\right), i=m$ and that the set of k-simplexes of $f^{-1} f\left(\Delta_{i j}^{k}\right)$ is properly numbered for the second suffix j. We number point contained $\left|\Delta_{i j}^{k}\right| \cap S_{f}$ as $x_{i j}^{k}$.

We perform the shift $g_{i j}^{b}$ for every $x_{i j}^{b} \in S_{f}$ such that $x_{i j}^{b} \in B_{i j}^{b}$ and in order to decreasing dimension of b. Since J is a finite dimensional finite complex, the time of shifts is finite.

First perform on m-shift $g_{i j}^{m}$ for $x_{i j}^{m} \in S_{f}(i=1,2, \cdots, l ; j=1,2, \cdots, q)$ where l is the number of m-simplexes such that $\left|\Delta_{i j}^{m}\right| \cap S_{f} \neq \phi,\left|\Delta_{s t}^{m}\right| \cap S_{f} \neq \phi$ and $f\left(\Delta_{i j}^{m}\right) \cap f\left(\Delta_{s t}^{m}\right)=\phi$ and where $f^{-1} f\left(\Delta_{i j}^{k}\right)=\left\{\Delta_{i l}^{k}, \cdots, \Delta_{i q}^{k}\right\}$. We denote $g_{i q}^{m}=g^{m}$ then $g^{m} \mid J-J^{m-1}$ is non-singular. Next perform on $(m-1)$-shift $g_{i j}^{m-1}$ for $x_{i j}^{m} \in S_{f}$ $(i=1,2, \cdots, p ; j=1,2, \cdots, r)$ where p and r are same as above. We denote $g_{p r}^{m-1}$ $=g^{m-1}$. Then $x_{i j}^{m-1} \notin S_{g^{m-1}}$ for $i=1,2, \cdots, p ; j=1,2, \cdots, r$. For any point $y \in$ $S_{g m-1}-S_{f}$ such that $y \in \stackrel{\circ}{S} t\left(\hat{B}_{i j}^{m-1}, J^{\prime}\right), g^{m-1}$ is transversal to $g^{m-1} M$ at $g^{m-1}(y)$ by Lemma 4.

Furthermore since for any k-simplex $\Delta^{k} \in J^{\prime}$ whose interior is contained in $\stackrel{\circ}{S} t\left(\hat{B}^{m-1}, J^{\prime}\right) \cap \grave{S} t\left(\hat{B}^{m}, J^{\prime}\right), \Delta^{k}=\hat{B}^{m-1} * \widetilde{\Delta}^{k-1}$ where $\widetilde{\Delta}^{k-1}$ is the opposite face of \hat{B}^{m-1} in Δ^{k} and since $g^{m-1}=g^{m}$ at $M-\bigcup \underset{B \in I}{ } S_{i} t\left(\hat{B}^{m-1}, J^{\prime}\right), g^{m-1}\left(\Delta^{k}\right)=v * g^{m}\left(\Delta^{k-1}\right)$ where v is a point of $\dot{S} t\left(f\left(\hat{B}^{m-1}\right), K^{\prime}\right)$ satisfying the conditions 1$) v \notin f(M)$ and 2) v is in general position with respect to the vertices of the complex covered by $S t\left(f\left(\hat{B}^{m-1}\right), K^{\prime}\right)$. Hence it is obviously that if g^{m} is transversal to $g^{m} M$ at $S t\left(\hat{B}^{m}, J^{\prime}\right) \cap S t\left(\hat{B}^{m}, J^{\prime}\right), g^{m-1}$ is also transversal to $g^{m-1} M$ at there. Therefore
g^{m-1} is transversal to $g^{m-1} M$ at every point of $\left|J-J^{m-2}\right|$. In this way any singular point of S_{f} become non-singular point one time, and if $y \in \dot{S} t\left(B^{b}, J^{\prime}\right)$ become again a singular point by g^{b}, then, g^{b} is transversal to $g^{b} M$ at y by Lemma 4.

Furthermore for any point $y \in \dot{S} t\left(\hat{B}^{b}, J^{\prime}\right) \cap \dot{S} t\left(\hat{B}^{b+1}, J^{\prime}\right) g^{b}$ is transversal to $g^{b} M$ at y as above. Hence g^{b} is transversal to $g^{b} M$ at every point of $\left|J-J^{b-1}\right|$. Therefore, in final, g^{0} is transversal to $g^{0} M$ at all points of M particularly of $S_{g^{0}}$. Then g^{0} is the required g.

And if f is in general position itself, g is obviously in general position itself by construction. Complete the proof.

Proof of Corollary 1.
By the hypothesis if $x \in S_{g}, g^{-1} g(x)=x \cup y$ and the following diagram commutes

where $k_{x}=1 \times 1 \times 0, k_{y}=1 \times 0 \times 1$ and where $\varphi_{x}, \varphi_{y}, \psi$ are homeomorphism onto some neighborhoods of $x, y, g(x)$ respectively.

Since $\quad S t\left(x, \quad S_{g}\right) \cong S t\left(k_{x}(0 \times 0), \quad k_{x}\left(D^{2 m-q} \times D^{q-m}\right) \cap k_{y}\left(D^{2 m-q} \times D^{q-m}\right)\right)=$ $S t\left(0 \times 0 \times 0, D^{2 m-q}\right) \cong D^{2 m-q}, S_{g}$ is a closed ($2 m-q$)-manifold. And in the left side of the above diagram $\left(S t(x, M), S t\left(x, S_{g}\right)\right) \cong\left(D^{2 m-q} \times D^{q-m}, D^{2 m-q}\right)$ since $\varphi_{x}:\left(D^{2 m-q} \times D^{q-m}, D^{2 m-q} \times 0,0 \times 0\right) \rightarrow\left(M, S_{g}, x\right)$.

Hence S_{g} is a closed locally flat ($2 m-q$)-submanifold of M.
Proof of Cor. 3.
Let J_{0} and K_{0} be the subdivisions of M, Q and f be in general position with respect to J_{0}, K_{0}. Let J, K be the subdivisions of J_{0}, K_{0} such that $f: J \rightarrow K$ is simplicial.

Then S_{f} consists only of the vertices of J and the local knotness rises only on the vertices of J. Hence if $y_{k} \in S_{g^{k}}-S_{g^{k-1}}, y_{k} \notin J^{0}$ where y_{k}, g_{k} are same as Lemma 3.

Then g_{k} is locally flat at y_{k} and g_{k} is transversal to $g_{k} M$ at y_{k} as the proof of theorem.

Kobe University

References

[1] M.A. Armstrong: Transversality for polyhedra, Ann. of Math. 86 (1967), 172-191.
[2] and E.C. Zeeman: Transversality for piecewise linear manifolds, Topology 6 (1967), 433-466.
[3] S.S. Cairns: Triangulated manifolds which are not Brouwer manifolds, Ann. of Math. 41 (1940), 792-795.
[4] E.C. Zeeman: Seminar on Combinatorial Topology (mimeographed), Inst. Hautes Etudes Sci., Paris, 1963.
[5] J.F.P. Hudson and E.C. Zeeman: On regular neighborhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.

