DECOMPOSITION OF RADICAL ELEMENTS OF A COMPACTLY GENERATED cm-LATTICE

Dedicated to Prof. Atuo Komatu for his 60th birthday

Kentaro MURATA

(Received July 29, 1968)
(Revised September 11, 1968)

The aim of the present paper is to define a completely prime element and a new type of radicals of elements in some compactly generated cm-lattice ${ }^{1}$, and to obtain meet-decompositions of radical elements of the cm -lattice.

1. Preliminaries

Let L be a complete (upper and lower) lattice. A non-void subset Σ of L is called a compact set of L if, whenever $x \leq \sup N$ for an element x of Σ and a subset N of Σ, there exists a finite number of elements x_{1}, \cdots, x_{n} of N satisfying $x_{1} \cup \cdots \cup x_{n} \geq x$. Every element of Σ is said to be compact. If every element of L is a join of a finite or infinite number of elements of the compact set Σ of L, then L is said to be compactly generated, and Σ is called a compact generator of L^{2}).

We can prove easily that a complete lattice has a compact generator if and only if it is compactly generated in the sense of Dilworth-Crawley ${ }^{3}$). In this case, the set of the compact elements ${ }^{4}$) of the lattice is the unique maximal compact generator under the set-inclusion.

Now we shall consider, throughout this paper, a $c m$-lattice L which is compactly generated as a lattice. In what follows, we suppose that L has a compact generator Σ which satisfies the following condition.
(*) If inf $S \leq$ a for a subset S of Σ and an element a of L, then $a=\inf (S \cup a)$, where $S \cup a$ means the set of the elements $s \cup a(s \in S)$.

It is easily verified that the condition (*) holds for any infinitely meet-

[^0]distributive $c m$-lattice ${ }^{5}$) with a compact generator. But, there exists a $c m$-lattice which is not infinitely meet-distributive, and satisfies the condition (*). Let \mathbb{B} be the $c m$-lattice of all ideals of any Dedekind domain $\mathcal{\bigcirc}$, and Σ the compact generator consisting of the principal ideals of \mathfrak{D}. Then, of course, \mathfrak{E} is not necessarily infinitely meet-distributive. But, it can be proved easily that the condition $(*)$ holds for \mathcal{R} and Σ.

Let Σ be any fixed compact generator of L and let $a \in L$. By the symbol Σ_{a} we shall mean the set $\{x \in \Sigma \mid x \leq a\}$. Then we can prove that $\sup A=\sup$ ($\vee_{a \in A} \Sigma_{a}$) for every non-void subset A of L, where \vee denotes the set-theoretical union.

2. Completely prime elements

For a non-void subset A of a cm -lattice L, \bar{A} will denote the multiplicative system (monoid) which is generated by A under the multiplication of L.

Definition 1. An element p of a $c m$-lattice is said to be completely prime if whenever $\inf \bar{A}$ is contained in p, then at least one of the element of A is contained in p.

We can prove easily that completely primes are primes. But the converse is not true. In fact, we can find an example of cm -lattices with an element which is prime but not completely prime.

Definition 2. A non-void subset Γ of the compact set Σ of L is called a c-system, if $\inf \bar{\Gamma}$ is a member of Γ. The void set is a c-system.

Lemma 1. The following conditions are equivalent to one another.
(1) p is completely prime.
(2) If inf $\bar{\Delta} \leq p\left(\phi^{6} \neq \Delta \subseteq \Sigma\right)$, then there exists an element $x \in \Delta$ such that $x \leq p$.
(3) $\Sigma \backslash \Sigma_{p}{ }^{7}$ is a c-system.

Proof. $(1) \Rightarrow(2)$ is evident. (2) $\Rightarrow(1)$: Suppose that p is not completely prime. Then, there exists a subset A of L such that $\inf \bar{A} \leq p$ and $a \neq p$ for every $a \in A$. Therefore we can take an element $x_{a} \in \Sigma_{a}$ such as $x_{a} \neq p$. Put $\Delta=\left\{x_{a} \mid a \in A\right\}$. Then it is easy to see that $\inf \bar{\Delta} \leq p . \quad(1) \Rightarrow(3)$: Suppose that p is completely prime. It is then easily verified that p does not contain inf $\overline{\Sigma \backslash \Sigma_{p}}$. Hence we can take an element u of $\Sigma \backslash \Sigma_{p}$ such that $u \leq \inf \overline{\Sigma \backslash \Sigma_{p}} . \quad(3) \Rightarrow(2)$: Let $\Sigma \backslash \Sigma_{p}$ be a c-system, and Γ a non-void subset of Σ. If we suppose that p con-
5) =the dual of a relatively pseudo-complemeted cm -lattice.
6) ϕ will mean the void set.
7) \} will denote the set-defference.
tains no element of Γ, then $\Gamma \subseteq \Sigma \backslash \Sigma_{p}, \bar{\Gamma} \subseteq{\bar{\Sigma} \backslash \Sigma_{p}}$. Hence we have inf $\overline{\Sigma \backslash \Sigma_{p}} \leq$ $\inf \bar{\Gamma}$. On the other hand, inf $\overline{\Sigma \backslash \Sigma_{p}}$ is not contained in p, since $\Sigma \backslash \Sigma_{p}$ is a c-system.

Lemma 2. Let Γ be a c-system such that $\Gamma \wedge \Sigma_{a}=\phi^{8)}$ for an element a of L. Then there exists a completely prime element p such that $p \geq a$ and $\Gamma \wedge \Sigma_{p}=\phi$.

Proof. First we show that the set $S=\left\{c \in L \mid a \leq c, \Gamma \wedge \Sigma_{c}=\phi\right\}$ is inductive. Let $\left\{c_{\lambda}\right\}$ be any chain in S, and let $c^{*}=\sup \left\{c_{\lambda}\right\}$. If we suppose that $\Gamma \wedge \Sigma_{c^{*}}$ contains an element x, then $x \leq c^{*}=\sup \left(V_{\lambda} \Sigma_{c_{\lambda}}\right)$. Hence there exists a finite number of elements x_{1}, \cdots, x_{n} such that $x \leq x_{1} \cup \cdots \cup x_{n}$ and $x_{\nu} \in \vee_{\lambda} \Sigma_{c_{\lambda}}$. Since there exists c_{m} such that $x_{\nu} \leq c_{m}(\nu=1, \cdots, n)$, we have that $\Gamma \wedge \Sigma_{c_{m}} \ni x$, which is a contradiction. Zorn's lemma assures therefore the existence of a maximal element p in S. We now prove that p is completely prime. Let Δ be a non-void subset of Σ such that $\inf \bar{\Delta} \leq p$. If we suppose that p contains no element of Δ, then since $p<p \cup u$ for every $u \in \Delta$, we can find an element $v(u)$ (depending on u) of Σ such that $v(u) \in \Gamma \wedge \Sigma_{p \cup u}$. Now we put $V=\{v(u) \mid u \in \Delta\}$. Then \bar{V} is contained in $\bar{\Gamma}$. We have therefore that $\inf \bar{V} \geq \inf \bar{\Gamma}$. Now let $u^{*}=\mathfrak{P}$ (u_{1}, \cdots, u_{n}) be an arbitrary element of $\bar{\Delta}$, where $u_{i} \in \Delta(i=1, \cdots, n)$, and \mathfrak{F} denotes a product-form (product-polynomial) of u_{1}, \cdots, u_{n}. Then we have that

$$
\mathfrak{F}\left(v\left(u_{1}\right), \cdots, v\left(u_{n}\right)\right) \leq \mathfrak{P}\left(p \cup u_{1}, \cdots, p \cup u_{n}\right) \leq p \cup \mathfrak{P}\left(u_{1}, \cdots, u_{n}\right)=p \cup u^{*} .
$$

Since $\mathscr{S}_{3}\left(v\left(u_{1}\right), \cdots, v\left(u_{n}\right)\right) \in \bar{V}$, we obtain that $\inf \bar{V} \leq \inf \bar{\Delta} \leq \inf \left\{p \cup u^{*} \mid u^{*} \in \bar{\Delta}\right\}=$ $p \cup \inf \bar{\Delta}=p$. Hence we have that $\inf \bar{\Gamma} \leq p$. Therefore we obtain that inf $\bar{\Gamma} \in \Gamma \wedge \Sigma_{p}$, which is a contradiction.

3. Radicals of elements

Let a be an arbitrary element of L, and let X_{a} be the set of the elements x of Σ such that every c-system containing x contains an element of Σ_{a}. We now put

Definition 3. The suplemum of X_{a} is called a radical of a, and is denoted by $r(a)$. An element a of L is said to be radical if $r(a)=a$.

Therorem 1. Let L be a compactly generated cm-latice with the condition (*). Then the radical of any element a of L is decomposed into the meet of the completely prime elements containing a. In particular, so is any radical element of I.

Proof. Let p be any completely prime element containing a. Then $r(a)$ $\leq p$. For, if contrary, the c-system $\Sigma \backslash \Sigma_{p}$ contains an element $x \in \Sigma$ such that

[^1]$x \nsucceq p$ and $x \leq r(a)$. Hence $\left(\Sigma \backslash \Sigma_{p}\right) \wedge \Sigma_{a}$ is not vacuous. Since Σ_{a} is contained in Σ_{p}, this is a contradiction. Therefore we obtain that $r(a) \leq p, r(a) \leq \cap_{a \leq p} p$. For the proof of the converse inclusion, it is sufficient to show that $x \neq r(a)$ ($x \in \Sigma$) implies $x \not \leq \cap_{a \leq p} p$. Since $x \not \ddagger r(a)$, there exists a c-system Γ such that $\Gamma \ni x$ and it does not meet Σ_{a}. Then, by Lemma 2, we can take a completely prime element p satisfying $a \leq p$ and Γ does not meet Σ_{p}. Hence x is not contained in $\bigcap_{a \leq p} p$. This completes the proof.

Corollary 1. Let L be a compactly generated cm-lattice with the condition (*), and I the greatest element of L. If the ascending chain condition holds for the elements of the interval I/a, the radical of a has a unique irredundant meet decomposition into completely prime elements. In particular, a is so if it is radical.

Lemma 3. A completely prime element of any cm-lattice is completely irreducible. ${ }^{9}$)

Proof. Let p be a completely prime element of any $c m$-lattice. If $p=\inf$ Q, then $p \geq \inf \bar{Q}$. Hence there exists an element q in Q such that $q \leq p$. If $q<p$, then $p=\inf Q \leq q<p$. This is a contradiction.

Corollary 2. Let D be an infinitely meet distributive lattice with a compact generator. Then every element of D, which is different from the greatest element, is decomposed into completely irreducible elements of D.

Proof. Let a be any element of D, and let Σ be any complact generator of D. Then the set $\Gamma=\{x\}$ consisting of the single element x of $\Sigma_{r(a)}$, is a c-system satisfying $\inf \bar{\Gamma}=x$. Hence a is radical. By Theorem 1 and Lemma 3, we complete the proof.

4. Completely minimal primes

Let Γ_{0} be any fixed c-system of L, and let a be an element of L such that Σ_{a} does not meet Γ_{0}. Then it is easily verified that the family of c-systems Γ each of which contains Γ_{0} and does not meet Σ_{a} is inductive. Zorn's lemma assures therefore the existence of maximal c-systems. Let $\mathfrak{M}=\left\{\Gamma_{\lambda}\right\}$ be the family of the maximal c-systems based on Γ_{0}. Then we can see that $p_{\lambda}=$ sup ($\Sigma \backslash \Gamma_{\lambda}$) is completely prime, and the completely prime element p satisfying $a \leq p$ and $\Gamma_{\lambda} \wedge \Sigma_{p}=\phi$ coincides with p_{λ}. Moreover

$$
\begin{aligned}
& \Gamma_{\lambda} \rightarrow p_{\lambda}=\sup \left(\Sigma \backslash \Gamma_{\lambda}\right), \\
& p_{\lambda} \rightarrow \Gamma_{\lambda}=\Sigma \backslash \Sigma_{p_{\lambda}}
\end{aligned}
$$

give a one-to-one correspondence between \mathfrak{M} and the set of the completely primes $\{p\}$ which satisfy $a \leq p$ and $\Gamma_{\lambda} \wedge \Sigma_{p}=\phi$.
9) Cf. [2; p. 3].

Definition 4. An completely prime element p of a $c m$-lattice is said to be completely minimal prime belonging to a, if it satisfies (1) $p \geq a$ and (2) there exists no completely prime p^{\prime} such that $a \leq p^{\prime}<p$.

Lemma 4. In order that an element p of L is a completely minimal prime belonging to a, it is necessary and sufficient that $\Sigma \backslash \Sigma_{p}$ is a maximal c-system which does not meet Σ_{a}.

Proof. We suppose that p is completely minimal prime, and a is not completely prime. Then we can assume that $a<p$. Now, by Zorn's lemma, there exists a maximal c-system Γ such that it does not meet Σ_{a}. Then we have that $p_{0}=\sup (\Sigma \backslash \Gamma) \leq \sup \left(\Sigma \backslash\left(\Sigma \backslash \Sigma_{p}\right)\right)=p$. Since p_{0} is completely prime, we obtain $p=p_{0}$. This implies that $\Sigma \backslash \Gamma=\Sigma_{p}$. Therefore $\Gamma=\Sigma \backslash \Sigma_{p}$ is a maximal c-system which does not meet Σ_{a}. The converse is easy to see.

Theorem 2. Let L be a compactly generated cm-lattice with the condition (*). Then the radical of any element a of L is decomposed into the meet of the completely minimal primes belonging to a. In particular, so is any radical element of L.

Proof. Let $\left\{p_{\lambda}\right\}$ be the completely minimal primes belonging to a. In order to prove that $r(a) \geq \cap_{\lambda} p_{\lambda}$, it is sufficient to show that $x \nsubseteq r(a)$ implies $x \nleftarrow \cap_{\lambda} p_{\lambda}$, where $x \in \Sigma$. Now by the definition of $r(a)$, we can take a c system Γ such that $x \in \Gamma$ and it does not meet Σ_{a}. Hence there exists a completely minimal prime p belonging to a such that Σ_{p} does not meet Γ. Evidently $x \not \$ p$. We have therefore $x \nleftarrow \cap_{\lambda} p_{\lambda}$. The converse inclusion is evident.

Remark 1. Suppose that p is any completely prime containing a. Then there exists a completely minimal prime belonging to a which is contained in p. Because, $\Sigma \backslash \Sigma_{p}$ is a c-system which does not meet Σ_{a}; and we can take a maximal c-system which contains $\Sigma \backslash \Sigma_{p}$ and does not meet Σ_{a}.

Remark 2. If the ascending chain condition holds for elements in the interval I / a, then the meet-decomposition mentioned in Corollary 1 to Theorem 1 is the irredundant meet-decomposition into the completely minimal primes belonging to a.

Yamaguchi University

References

[1] G. Birkhoff: Lattice Theory, Amer. Math. Colloq. Publ., 25, (2nd ed.) 1968.
[2] R.P. Dilworth and Peter Crawley: Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc. 96 (1960), 1-22.
[3] R.P. Dilworth: Structure and decomposition theory of lattices, Proceedings of Symposia in Pure Mathematics II, Amer. Math. Soc. (1961), 1-16.
[4] N.H. McCoy: Prime ideals in general rings, Amer. J. Math. 71 (1948) 823-838.
[5] K. Murata: Additive ideal theory in multiplicative systems, J. Inst. Polytec. Osaka City Univ. 10 (1959), 91-115.
[6] -: On nilpotent-free multiplicative systems, Osaka Math. J. 14 (1962), 53-70.

[^0]: 1) Cf. [1; pp. 200-201].
 2) Cf. $[5 ;$ p. 105] and $[6 ;$ p. 54].
 3), 4) Cf. [2; p. 2] and [3; p. 11].
[^1]: 8) \wedge will denote the intersection. We say, following McCoy [4], that Γ does not meet Σ_{a}, if $\Gamma \wedge \searrow_{a}=\phi$.
