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The aim of the present paper is to define a completely prime element and a
new type of radicals of elements in some compactly generated cm-lattice", and
to obtain meet-decompositions of radical elements of the cm-lattice.

1. Preliminaries

Let L be a complete (upper and lower) lattice. A non-void subset = of
L is called a compact set of L if, whenever x<sup N for an element x of = and
a subset N of 3, there exists a finite number of elements x,, -++, x,, of IV satisfying
x, U+ Ux,>x. Every element of X is said to be compact. If every element
of L is a join of a finite or infinite number of elements of the compact set % of
L, then L is said to be compactly generated, and = is called a compact generator
of LY,

We can prove easily that a complete lattice has a compact generator if and
only if it is compactly generated in the sense of Dilworth-Crawley®. In this
case, the set of the compact elements® of the lattice is the unique maximal
compact generator under the set-inclusion.

Now we shall consider, throughout this paper, a cm-lattice L which is
compactly generated as a lattice. In what follows, we suppose that L has a
compact generator 3 which satisfies the following condition.

(*) Ifinf S<a for a subset S of 3, and an element a of L, then a=inf (S U a),
where S U a means the set of the elements sUa (s€S).
It is easily verified that the condition (x) holds for any infinitely meet-

1) Cf. [1; pp. 200-201].
2) Cf. [5; p. 105] and [6; p. 54].
3),4) Cf.[2;p.2]and [3; p. 11].
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distributive cm-lattice® with a compact generator. But, there exists a cm-lattice
which is not infinitely meet-distributive, and satisfies the condition (¥). Let £
be the cm-lattice of all ideals of any Dedekind domain £, and = the compact
generator consisting of the principal ideals of . Then, of course, ¥ is not
necessarily infinitely meet-distributive. But, it can be proved easily that the con-
dition (x) holds for £ and =.

Let = be any fixed compact generator of L and let a€L. By the symbol
3, we shall mean the set {x&3|x<a}. Then we can prove that sup A=sup
(V acaZ,) for every non-void subset 4 of L, where V denotes the set-theoretical
union.

2. Completely prime elements

For a non-void subset A of a ¢m-lattice L, A will denote the multiplicative
system (monoid) which is generated by 4 under the multiplication of L.

DrrFINITION 1. An element p of a em-lattice is said to be completely prime
if whenever inf 4 is contained in p, then at least one of the element of 4 is
contained in p.

We can prove easily that completely primes are primes. But the converse
is not true. In fact, we can find an example of cm-lattices with an element
which is prime but not completely prime.

DEFINITION 2. A non-void subset I" of the compact set = of L is called
a c-system, if inf T is a member of I'.  The void set is a c-system.

Lemma 1. The following conditions are equivalent to one another.

(1) p is completely prime.

(2) If inf A<p (p+=ACZX), then there exists an element xE A such that
x<p.

(3) =\, is a c-system.

Proof. (1)=(2) is evident. (2)=>(1): Suppose that p is not completely
prime. Then, there exists a subset 4 of L such that inf A< p and a<Kp for
every acA. Therefore we can take an element x,&3, such as x,<<p. Put
A={x,]acA}. Then it is easy to see that inf A<p. (1)=(3): Suppose that
pis completely prime. It is then easily verified that p does not contain inf Z\Z,.
Hence we can take an element u of 3\3, such that #< inf 3\3,. (3)=(2): Let
Z\X, be a ¢-system, and I" a non-void subset of =. If we suppose that p con-

5) =the dual of a relatively pseudo-complemeted cm-lattice.
6) ¢ will mean the void set.
7) \ will denote the set-defference.



RapicaL ELEMENTS OF A COMPACTLY GENERATED CM-LATTICE 231

tains no element of T', then TS 3\Z,, f‘_QE_\—EI,. Hence we have inf E_\Z_,,S

inf . On the other hand, inf E\EP is not contained in p, since Z\Z, is a
c-system.

Lemma 2. Let T be a c-system such that T \3,=¢" for an element a of
L. Then there exists a completely prime element p such that p>a and T NZ,=¢.

Proof. First we show that the set S={ceL|a<c, T AZ,=¢} is inductive.
Let {c,} be any chain in S, and let ¢*=sup {¢,}. If we suppose that TAZ
contains an element x, then x<c*=sup (V, Z,). Hence there exists a finite
number of elements x,, -, x,, such that x<x,U---Ux, and »,€ V, 2. Since
there exists ¢, such that x,<c,, (v=1, -+, n), we have that TAZ,,>x, which
is a contradiction. Zorn’s lemma assures therefore the existence of a maximal
element p in .S. We now prove that p is completely prime. Let A be a non-void
subset of 3 such that inf A<p. If we suppose that p contains no element of
A, then since p<<p Uu for every u< A, we can find an element v(«) (depending
on u) of X such that v(u)ET'AZ,y,. Now we put V={ov(u)|ucA}. Then
V is contained in I'. We have therefore that inf V>infT". Now let u*=5
(4 *++, u,) be an arbitrary element of A, where ;€A (=1, -+, n), and P denotes
a product-form (product-polynomial) of %,, -+, #,. Then we have that

B(o(uy), =5 v(U)) <P(pUwyy -, pUu,)<pUB(uyy +++, u,) = pUu*.

Since B(v(w,), *+, v(u,,)) €V, we obtain that inf V'<inf A< inf {p Uu* |u* €A}=
pU inf A=p. Hence we have that inf '<<p. Therefore we obtain that
inf fEI‘/\Ep, which is a contradiction.

3. Radicals of elements

Let a be an arbitrary element of L, and let X, be the set of the elements

x of = such that every ¢-system containing ¥ contains an element of 3,. We
now put

DrFiNiTION 3. The suplemum of X, is called a radical of a, and is denoted
by 7(a). An element a of L is said to be radical if r(a)=a.

Therorem 1. Let L be a compactly generated cm-lattice with the condition
(¥). Then the radical of any element a of L is decomposed into the meet of the

completely prime elements containing a. In particular, so is any radical element of
L.

Proof. Let p be any completely prime element containing a. Then 7(a)
<p. For, if contrary, the c-system Z\Z, contains an element x&X such that

8) A will denote the intersection. We say, following McCoy [4], that I" does not meet
3, if TAXS,=¢.
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x£p and x<r(a). Hence (2\Z,) A=, is not vacuous. Since X, is contained
in 3, this is a contradiction. Therefore we obtain that 7(a)< p, 7(a)< N 4<pP-
For the proof of the converse inclusion, it is sufficient to show that x<<r(a)
(x€Z) implies <N ,<,p. Since x<Lr(a), there exists a c-system I" such that
I'Sx and it does not meet 3,. Then, by Lemma 2, we can take a completely
prime element p satisfying a<<p and I" does not meet =,. Hence x is not
contained in (,<,p. This completes the proof.

Corollary 1. Let L be a compactly generated cm-lattice with the condition
(%), and I the greatest element of L. If the ascending chain condition holds for the
elements of the interval I|a, the radical of a has a unique irredundant meet decom-
position into completely prime elements. In particular, a is so if it is radical.

Lemma 3. A completely prime element of amy cm-lattice is completely
irreducible.

Proof. Let p be a completely prime element of any cm-lattice. If p=inf
O, then p>inf Q. Hence there exists an element ¢ in Q such that ¢<p. If
g<<p, then p=inf OQ<g<<p. This is a contradiction.

Corollary 2. Let D be an infinitely meet distributive lattice with a compact
generator. Then every element of D, which is different from the greatest element,
is decomposed into completely irreducible elements of D.

Proof. Let a be any element of D, and let = be any complact generator of
D. Then the set T'={x} consisting of the single element x of =), is a c-system
satisfying inf T=x. Hence ais radical. By Theorem 1 and Lemma 3, we com-
plete the proof.

4. Completely minimal primes

Let T, be any fixed c-system of L, and let a be an element of L such that
3., does not meet I',.  Then it is easily verified that the family of ¢-systems T"
each of which contains I'y and does not meet X, is inductive. Zorn’s lemma
assures therefore the existence of maximal c-systems. Let MM={T,} be the
family of the maximal c-systems based on I',, Then we can see that p,=sup
(E\T)) is completely prime, and the completely prime element p satisfying
a<p and T\, AZ,=¢ coincides with p,. Moreover

T\ — pr = sup (E\TI')),
P)\ - ]-‘)\ = Z\ZP)\

give a one-to-one correspondence between I and the set of the completely primes
{p} which satisfy a< p and T\AZ ,=¢.

9) Cf. [2;p. 3]
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DEerFINITION 4. An completely prime element p of a cm-lattice is said to be
completely minimal prime belonging to a, if it satisfies (1) p>a and (2) there
exists no completely prime p’ such that a<<p’'<<p.

Lemma 4. In order that an element p of L is a completely minimal prime
belonging to a, it is necessary and sufficient that Z\2., is a maximal c-system
which does not meet Z.,.

Proof. We suppose that p is completely minimal prime, and @ is not
completely prime. Then we can assume that a<<p. Now, by Zorn’s lemma,
there exists a maximal ¢-system T such that it does not meet 3,. Then we have
that p,=sup (Z\I')< sup (E\(2\Z,))=p. Since p, is completely prime, we
obtain p=p,. This implies that Z3\I'=3,. Therefore '=3\Z, is a maximal
c-system which does not meet X,. The converse is easy to see.

Theorem 2. Let L be a compactly generated cm-lattice with the condition
(). Then the radical of any element a of L is decomposed into the meet of the
completely minimal primes belonging to a. In particular, so is any radical element

of L.

Proof. Let {p\} be the completely minimal primes belonging to a. In
order to prove that 7(a)> N,p,, it is sufficient to show that x<<r(a) implies
xL Nrpr, where x€Z. Now by the definition of 7(a), we can take a c-
system I' such that x&TI' and it does not meet =,. Hence there exists a
completely minimal prime p belonging to a such that %, does not meet T
Evidently x£p. We have therefore x<£N,p,. The converse inclusion is
evident.

Remark 1. Suppose that p is any completely prime containing a. Then
there exists a completely minimal prime belonging to @ which is contained in
p. Because, Z\Z, is a ¢-system which does not meet X,; and we can take
a maximal ¢-system which contains 2\X, and does not meet =,.

RemaRk 2. If the ascending chain condition holds for elements in the
interval I/a, then the meet-decomposition mentioned in Corollary 1 to Theorem
1 is the irredundant meet-decomposition into the completely minimal primes
belonging to a.
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