DECOMPOSITION OF RADICAL ELEMENTS OF A COMPACTLY GENERATED cm-LATTICE

Dedicated to Prof. Atuo Komatu for his 60th birthday

KENTARO MURATA

(Received July 29, 1968) (Revised September 11, 1968)

The aim of the present paper is to define a completely prime element and a new type of radicals of elements in some compactly generated cm-lattice¹, and to obtain meet-decompositions of radical elements of the cm-lattice.

1. Preliminaries

Let L be a complete (upper and lower) lattice. A non-void subset Σ of L is called a compact set of L if, whenever $x \leq \sup N$ for an element x of Σ and a subset N of Σ , there exists a finite number of elements x_1, \dots, x_n of N satisfying $x_1 \cup \dots \cup x_n \geq x$. Every element of Σ is said to be compact. If every element of L is a join of a finite or infinite number of elements of the compact set Σ of L, then L is said to be compactly generated, and Σ is called a compact generator of L^{2} .

We can prove easily that a complete lattice has a compact generator if and only if it is compactly generated in the sense of Dilworth-Crawley³). In this case, the set of the compact elements⁴) of the lattice is the unique maximal compact generator under the set-inclusion.

Now we shall consider, throughout this paper, a *cm*-lattice L which is compactly generated as a lattice. In what follows, we suppose that L has a compact generator Σ which satisfies the following condition.

(*) If inf $S \leq a$ for a subset S of Σ and an element a of L, then $a=inf(S \cup a)$, where $S \cup a$ means the set of the elements $s \cup a$ ($s \in S$).

It is easily verified that the condition (*) holds for any infinitely meet-

¹⁾ Cf. [1; pp. 200–201].

²⁾ Cf. [5; p. 105] and [6; p. 54].

^{3), 4)} Cf. [2; p. 2] and [3; p. 11].

K. MURATA

distributive *cm*-lattice⁵⁾ with a compact generator. But, there exists a *cm*-lattice which is not infinitely meet-distributive, and satisfies the condition (*). Let \mathfrak{L} be the *cm*-lattice of all ideals of any Dedekind domain \mathfrak{D} , and Σ the compact generator consisting of the principal ideals of \mathfrak{D} . Then, of course, \mathfrak{L} is not necessarily infinitely meet-distributive. But, it can be proved easily that the condition (*) holds for \mathfrak{L} and Σ .

Let Σ be any fixed compact generator of L and let $a \in L$. By the symbol Σ_a we shall mean the set $\{x \in \Sigma \mid x \leq a\}$. Then we can prove that $\sup A = \sup (\bigvee_{a \in A} \Sigma_a)$ for every non-void subset A of L, where \vee denotes the set-theoretical union.

2. Completely prime elements

For a non-void subset A of a *cm*-lattice L, \overline{A} will denote the multiplicative system (monoid) which is generated by A under the multiplication of L.

DEFINITION 1. An element p of a *cm*-lattice is said to be *completely prime* if whenever inf \overline{A} is contained in p, then at least one of the element of A is contained in p.

We can prove easily that completely primes are primes. But the converse is not true. In fact, we can find an example of *cm*-lattices with an element which is prime but not completely prime.

DEFINITION 2. A non-void subset Γ of the compact set Σ of L is called a *c*-system, if $\inf \overline{\Gamma}$ is a member of Γ . The void set is a *c*-system.

Lemma 1. The following conditions are equivalent to one another.

(1) p is completely prime.

(2) If inf $\overline{\Delta} \leq p$ ($\phi^{6} \neq \Delta \subseteq \Sigma$), then there exists an element $x \in \Delta$ such that $x \leq p$.

(3) $\Sigma \setminus \Sigma_{p}^{\gamma}$ is a c-system.

Proof. $(1) \Rightarrow (2)$ is evident. $(2) \Rightarrow (1)$: Suppose that p is not completely prime. Then, there exists a subset A of L such that $\inf \overline{A} \le p$ and $a \le p$ for every $a \in A$. Therefore we can take an element $x_a \in \Sigma_a$ such as $x_a \le p$. Put $\Delta = \{x_a \mid a \in A\}$. Then it is easy to see that $\inf \overline{\Delta} \le p$. $(1) \Rightarrow (3)$: Suppose that p is completely prime. It is then easily verified that p does not contain $\inf \overline{\Sigma \setminus \Sigma_p}$. Hence we can take an element u of $\Sigma \setminus \Sigma_p$ such that $u \le \inf \overline{\Sigma \setminus \Sigma_p}$. $(3) \Rightarrow (2)$: Let $\Sigma \setminus \Sigma_p$ be a c-system, and Γ a non-void subset of Σ . If we suppose that p con-

230

^{5) =} the dual of a relatively pseudo-complemented *cm*-lattice.

⁶⁾ ϕ will mean the void set.

⁷⁾ \setminus will denote the set-defference.

tains no element of Γ , then $\Gamma \subseteq \Sigma \setminus \Sigma_p$, $\overline{\Gamma} \subseteq \overline{\Sigma \setminus \Sigma_p}$. Hence we have $\inf \overline{\Sigma \setminus \Sigma_p} \leq \inf \overline{\Gamma}$. On the other hand, $\inf \overline{\Sigma \setminus \Sigma_p}$ is not contained in p, since $\Sigma \setminus \Sigma_p$ is a *c*-system.

Lemma 2. Let Γ be a c-system such that $\Gamma \wedge \Sigma_a = \phi^{\otimes}$ for an element a of L. Then there exists a completely prime element p such that $p \ge a$ and $\Gamma \wedge \Sigma_p = \phi$.

Proof. First we show that the set $S = \{c \in L \mid a \leq c, \Gamma \land \Sigma_c = \phi\}$ is inductive. Let $\{c_{\lambda}\}$ be any chain in S, and let $c^* = \sup\{c_{\lambda}\}$. If we suppose that $\Gamma \land \Sigma_{c^*}$ contains an element x, then $x \leq c^* = \sup(\bigvee_{\lambda} \Sigma_{c_{\lambda}})$. Hence there exists a finite number of elements x_1, \dots, x_n such that $x \leq x_1 \cup \dots \cup x_n$ and $x_v \in \bigvee_{\lambda} \Sigma_{c_{\lambda}}$. Since there exists c_m such that $x_v \leq c_m$ ($v=1, \dots, n$), we have that $\Gamma \land \Sigma_{c_m} \ni x$, which is a contradiction. Zorn's lemma assures therefore the existence of a maximal element p in S. We now prove that p is completely prime. Let Δ be a non-void subset of Σ such that $\inf \overline{\Delta} \leq p$. If we suppose that p contains no element of Δ , then since $p for every <math>u \in \Delta$, we can find an element v(u) (depending on u) of Σ such that $v(u) \in \Gamma \land \Sigma_{p \cup u}$. Now we put $V = \{v(u) \mid u \in \Delta\}$. Then \overline{V} is contained in $\overline{\Gamma}$. We have therefore that $\inf \overline{V} \geq \inf \overline{\Gamma}$. Now let $u^* = \mathfrak{P}(u_1, \dots, u_n)$ be an arbitrary element of $\overline{\Delta}$, where $u_i \in \Delta$ ($i=1, \dots, n$), and \mathfrak{P} denotes a product-form (product-polynomial) of u_1, \dots, u_n . Then we have that

$$\mathfrak{P}(v(u_1), \dots, v(u_n)) \leq \mathfrak{P}(p \cup u_1, \dots, p \cup u_n) \leq p \cup \mathfrak{P}(u_1, \dots, u_n) = p \cup u^*$$

Since $\mathfrak{P}(v(u_1), \dots, v(u_n)) \in \overline{V}$, we obtain that $\inf \overline{V} \leq \inf \overline{\Delta} \leq \inf \{p \cup u^* | u^* \in \overline{\Delta}\} = p \cup \inf \overline{\Delta} = p$. Hence we have that $\inf \overline{\Gamma} \leq p$. Therefore we obtain that $\inf \overline{\Gamma} \in \Gamma \land \Sigma_p$, which is a contradiction.

3. Radicals of elements

Let *a* be an arbitrary element of *L*, and let X_a be the set of the elements x of Σ such that every *c*-system containing x contains an element of Σ_a . We now put

DEFINITION 3. The suplemum of X_a is called a *radical* of *a*, and is denoted by r(a). An element *a* of *L* is said to be *radical* if r(a)=a.

Theorem 1. Let L be a compactly generated cm-lattice with the condition (*). Then the radical of any element a of L is decomposed into the meet of the completely prime elements containing a. In particular, so is any radical element of L.

Proof. Let p be any completely prime element containing a. Then $r(a) \le p$. For, if contrary, the c-system $\Sigma \setminus \Sigma_p$ contains an element $x \in \Sigma$ such that

⁸⁾ \wedge will denote the intersection. We say, following McCoy [4], that Γ does not meet Σ_a , if $\Gamma \wedge \Sigma_a = \phi$.

 $x \leq p$ and $x \leq r(a)$. Hence $(\Sigma \setminus \Sigma_p) \wedge \Sigma_a$ is not vacuous. Since Σ_a is contained in Σ_p , this is a contradiction. Therefore we obtain that $r(a) \leq p, r(a) \leq \bigcap_{a \leq p} p$. For the proof of the converse inclusion, it is sufficient to show that $x \leq r(a)$ $(x \in \Sigma)$ implies $x \leq \bigcap_{a \leq p} p$. Since $x \leq r(a)$, there exists a *c*-system Γ such that $\Gamma \supseteq x$ and it does not meet Σ_a . Then, by Lemma 2, we can take a completely prime element *p* satisfying $a \leq p$ and Γ does not meet Σ_p . Hence *x* is not contained in $\bigcap_{a \leq p} p$. This completes the proof.

Corollary 1. Let L be a compactly generated cm-lattice with the condition (*), and I the greatest element of L. If the ascending chain condition holds for the elements of the interval I/a, the radical of a has a unique irredundant meet decomposition into completely prime elements. In particular, a is so if it is radical.

Lemma 3. A completely prime element of any cm-lattice is completely irreducible.⁹⁾

Proof. Let p be a completely prime element of any *cm*-lattice. If $p=\inf Q$, then $p\geq \inf \overline{Q}$. Hence there exists an element q in Q such that $q\leq p$. If q < p, then $p=\inf Q \leq q < p$. This is a contradiction.

Corollary 2. Let D be an infinitely meet distributive lattice with a compact generator. Then every element of D, which is different from the greatest element, is decomposed into completely irreducible elements of D.

Proof. Let *a* be any element of *D*, and let Σ be any complact generator of *D*. Then the set $\Gamma = \{x\}$ consisting of the single element *x* of $\Sigma_{r(a)}$, is a *c*-system satisfying inf $\overline{\Gamma} = x$. Hence *a* is radical. By Theorem 1 and Lemma 3, we complete the proof.

4. Completely minimal primes

Let Γ_0 be any fixed *c*-system of *L*, and let *a* be an element of *L* such that Σ_a does not meet Γ_0 . Then it is easily verified that the family of *c*-systems Γ each of which contains Γ_0 and does not meet Σ_a is inductive. Zorn's lemma assures therefore the existence of maximal *c*-systems. Let $\mathfrak{M}=\{\Gamma_\lambda\}$ be the family of the maximal *c*-systems based on Γ_0 . Then we can see that $p_{\lambda}=\sup (\Sigma \setminus \Gamma_{\lambda})$ is completely prime, and the completely prime element *p* satisfying $a \leq p$ and $\Gamma_{\lambda} \wedge \Sigma_p = \phi$ coincides with p_{λ} . Moreover

$$\begin{split} &\Gamma_{\lambda} \to p_{\lambda} = \sup\left(\Sigma \backslash \Gamma_{\lambda}\right), \\ &p_{\lambda} \to \Gamma_{\lambda} = \Sigma \backslash \Sigma_{p_{\lambda}} \end{split}$$

give a one-to-one correspondence between \mathfrak{M} and the set of the completely primes $\{p\}$ which satisfy $a \leq p$ and $\Gamma_{\lambda} \wedge \Sigma_{p} = \phi$.

9) Cf. [2; p. 3].

DEFINITION 4. An completely prime element p of a *cm*-lattice is said to be *completely minimal prime belonging to a*, if it satisfies (1) $p \ge a$ and (2) there exists no completely prime p' such that $a \le p' < p$.

Lemma 4. In order that an element p of L is a completely minimal prime belonging to a, it is necessary and sufficient that $\Sigma \setminus \Sigma_p$ is a maximal c-system which does not meet Σ_a .

Proof. We suppose that p is completely minimal prime, and a is not completely prime. Then we can assume that a < p. Now, by Zorn's lemma, there exists a maximal c-system Γ such that it does not meet Σ_a . Then we have that $p_0 = \sup(\Sigma \setminus \Gamma) \le \sup(\Sigma \setminus (\Sigma \setminus \Sigma_p)) = p$. Since p_0 is completely prime, we obtain $p = p_0$. This implies that $\Sigma \setminus \Gamma = \Sigma_p$. Therefore $\Gamma = \Sigma \setminus \Sigma_p$ is a maximal c-system which does not meet Σ_a . The converse is easy to see.

Theorem 2. Let L be a compactly generated cm-lattice with the condition (*). Then the radical of any element a of L is decomposed into the meet of the completely minimal primes belonging to a. In particular, so is any radical element of L.

Proof. Let $\{p_{\lambda}\}$ be the completely minimal primes belonging to a. In order to prove that $r(a) \ge \bigcap_{\lambda} p_{\lambda}$, it is sufficient to show that $x \le r(a)$ implies $x \le \bigcap_{\lambda} p_{\lambda}$, where $x \in \Sigma$. Now by the definition of r(a), we can take a csystem Γ such that $x \in \Gamma$ and it does not meet Σ_a . Hence there exists a completely minimal prime p belonging to a such that Σ_p does not meet Γ . Evidently $x \le p$. We have therefore $x \le \bigcap_{\lambda} p_{\lambda}$. The converse inclusion is evident.

REMARK 1. Suppose that p is any completely prime containing a. Then there exists a completely minimal prime belonging to a which is contained in p. Because, $\Sigma \setminus \Sigma_p$ is a *c*-system which does not meet Σ_a ; and we can take a maximal *c*-system which contains $\Sigma \setminus \Sigma_p$ and does not meet Σ_a .

REMARK 2. If the ascending chain condition holds for elements in the interval I/a, then the meet-decomposition mentioned in Corollary 1 to Theorem 1 is the irredundant meet-decomposition into the completely minimal primes belonging to a.

YAMAGUCHI UNIVERSITY

K. Murata

References

- [1] G. Birkhoff: Lattice Theory, Amer. Math. Colloq. Publ., 25, (2nd ed.) 1968.
- [2] R.P. Dilworth and Peter Crawley: Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc. 96 (1960), 1-22.
- [3] R.P. Dilworth: Structure and decomposition theory of lattices, Proceedings of Symposia in Pure Mathematics II, Amer. Math. Soc. (1961), 1-16.
- [4] N.H. McCoy: Prime ideals in general rings, Amer. J. Math. 71 (1948) 823-838.
- [5] K. Murata: Additive ideal theory in multiplicative systems, J. Inst. Polytec. Osaka City Univ. 10 (1959), 91-115.
- [6] -----: On nilpotent-free multiplicative systems, Osaka Math. J. 14 (1962), 53-70.