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Introduction

In 1938, T. Tannaka [10] found a duality theorem for compact
groups. The theorem was deepened by C. Chevalley [2] for compact Lie
groups. In fact his theory establishes an intimate connection between
compact Lie groups and reductive linear algebraic groups. More precise-
ly, he associated an affine algebraic group Gc defined over R with each
compact Lie group G and proved that G is canonically isomorphic to
the subgroup GR of all /^-rational points of Gc. The existence of this
isomorphism amounts to the Tannaka duality theorem in this case.
Conversely, for every reductive algebraic linear group G*, there exists a
compact Lie group G such that Gc is isomorphic to G* (Proposition 1).
The purpose of this paper is to prove a duality theorem for the homo-
geneous spaces of compact Lie groups which is analogous to Chevalley's
theorem. For each homogeneous space M=G/H of a compact Lie group
G, we construct a complex affine algebraic set Mc which will be called
the complexification of M and prove that the associated algebraic group
Gc of G acts on Mc rationally and transitively (Proposition 3). Moreover
the isotropy subgroup of Gc at the origin is identified with the associated
algebraic group Hc of H (Proposition 3). This proves that the quotient
space Mc = Gc/Hc of a complex reductive algebraic group Gc over a
complex reductive group Hc is an affine algebraic set (corollary to
Proposition 3). This fact is proved by Borel and Harish-Chandra [1]
when Gc is connected. There is a natural bijection of M onto the subset
M1 of Mc consisting of all real points of Mc. This is our duality theorem
(Theorem 1). By introducing the notion of linear representation of a
homogeneous space, this duality theorem can be formulated as a theorem
of classical Tannaka-Chevalley type (Theorem 2). As the consequences
of our duality theorem, we obtain the following results (Theorem 3).

1) The homogeneous space G/H of a compact Lie group G has the
structure of a real affine algebraic set. 2) G/H has a faithful linear
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representation. 2) was obtained earlier by G.D. Mostow [7]. The results
of this paper were obtained in the autumn of 1959 and read at the
spring meeting of Mathematical Society of Japan in 1960. The paper has
not been published earlier because of several reasons on the side of the
authors. Meanwhile A.L. Oniscik [9] introduced the complexification
Gc/Hc of G/H in somewhat different context.

1. Notations and conventions

Throughout this paper, we use the following notations:
C(X): the algebra of all complex valued continuous functions on a

compact space X with the uniform norm

= max|/(Λ:)|,

G: a compact Lie group, e: the identity element of G,
Mi a C°°-manifold on which G acts differentiablly and transitively,
p0: a fixed point (the origin) of M,
H: the isotropy subgroup of G at p09

Lg: the left translation induced by g^G on G, (Lgf)(g0)=f(gg0)y

Rg: the right translation induced by g(=G on G; (Rgf)(g0)=f(gQg\
Tg: the transformation induced by g^G on M; (Tgf)(p)=f(gp)y

o(G)= {f^C(G) dim \_Lg ^ G G ] < O O } : the representative algebra of G,

{ / ( ) ; [ ^ / ; ^ ] < }
i: the canonical injection of o(M) into o(G)

dg(dh): the normalized Haar measure of G(H)y

dp: the normalized G-invariant measure of M,
/ : the complex conjugate function of f^C(X).

A representation of G means always a finite dimentional continuons (so
analytic) representation over the field C of complex numbers unless the
contrary is explicitly stated. A homomorphism ω of an algebra with
the unit 1 into an algebra B with 1 is always assumed to be unitary,
i.e.,

2. Duality theorem of Chevalley-Tannaka

In this section we summarize, using the approach of Hochschild-
Mostow [3], the known results about the duality theorem of compact
Lie groups due to C. Chevalley and T. Tannaka for our later use.

Let o(G) be the representative ring of a compact Lie group G. o(G)
is, by definition, the algebra consisting of the finite linear combinations
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of the matricial coefficients of the representations of G. The associated
algebraic group (the complexification) Gc of a compact Lie group G is
defined as follows. As a group, Gc is a subgroup of Aut (o(G)) defined
as follows:

Gc = {σGAut (o(G)) σoLg = Lg°σ for all geίG} ,

where Aut (o(G)) denotes the automorphism group of the algebra o(G).
On the other hand Gc has the structure of an affine algebraic set. The
algebra o(G) is a finitely generated commutative algebra without nilpotent
element. To every σ in Gc corresponds the homomorphism ω = ω σ e
Horn (o(G), C) defined by

ωσ(/) = (σf)(e) for every / in o(G),

where e is the identity element of G. The mapping σ->ωσ is a bijection
of Gc onto Horn (o(G), C). The group Gc identified with Horn (o(G), C) by
this bijection has the structure of an affine algebraic set. And the group
Gc now becomes a complex affine algebraic group and hence a complex
Lie group. For every element ^ G G , the right translation Rg belongs
to the associated algebraic group Gc of G. The mapping g-+Rg is an

isomorphism of the group G onto the subgroup Gx= {σGGc; σ(/) = σ(/)
for every f^o(G)} of Gc. This fact is the essential part of the Tannaka
duality theorem for the compact Lie group G (see [4] for a proof). In
the following we identify g<=G with Rg and regard G as a subgroup of
Gc via the injective homomorphism g^Rg from G into Gc.

Let 3ΐ be the set of all matricial representations of G. A representa-
tion of 9ϊ is, by definition, a mapping ζ which assigns to every P G S a
regular matrix ζ(p) of degree equal to the degree d(p) of p in such a
way that the equalities

ζiPi e p2) = r(Λ) e ?(P2)

f (pi ® ρ2)

hold for any representations ply p2, p of G and any regular matrix 7 of
degree d(p). The set of all representations of $R is denoted by G*.
G* has the structure of a group. The group operation is defined by
ζ1ξ21(p) = ζi(p)ζ2(py1 for any ζly ζ2^G* andpe3ΐ. Every σ^Gc corresponds
to an element ζσ of G* defined by the equality

for any
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where σp = (σpiJ) if ph is the (ί, ./^-coefficient of p. Then the mapping
σ-^ζσ is an isomorphism of Gc onto G*. The above defined isomorphism
g->Rg of G onto Gλ induces an isomorphism g-*ζRg of G onto G?= { ^ G G *
£(p) = Γ03)} This is the original form of the duality theorem of Cheval-
ley-Tannaka. Every representation p of G can be uniquely extended to
a rational representation of the associated algebraic group Gc of G.
pc is defined by

Pc(σ) = ζσ{p).

Let T be the automorphism of o(G) regarded as the algebra over
R defined by τ ( / ) = / (/eo(G)). Then the mapping S: σ->τστ(σ<=Gc)
is an involutive automorphism of the group Gc. Let (p, Cn) be a unitary
representation of G whose coefficients generate the algebra o(G). Then
pc is a faithful representation of Gc and

Pc(τσ-W) = W ) . ( 1 )

Therefore pc(Gc) is a self-adjoint algebraic subgroup of GL(n, C). We
identify σ<=Gc with pc(σ) and Gc with pc(Gc). Then Gc is a self-adjoint
algebraic subgroup of GL(n, C) and the intersection of Gc with the
unitary group U{ή) coincides with G by the identity (1): Gc Π U(ή) = G.
Every element σ of Gc can be expressed uniquely as

Z^ϊXy g<=G and

where g is the Lie algebra of G. expx/^ΪQ is the intersection of Gc

with the set P(n) of all positive definite hermitian matrices of degree
n. Gc is the smallest algebraic subgroup of GL(n, C) containing G and
G is a maximal compact subgroup of Gc. Using the canonical 72-isomor-
phism between Cn and R2n, we may assume that the above representation
P of G is a real representation, i.e., p(G) consists of real matrices. So
the algebraic set Gc is defined over R. By means of the Tannaka
duality theorem, G is equal to the subgroup of Gc consisting of all real
matrices in Gc. Therefore every compact Lie group G is an Λ-algebraic
group.

Proposition 1. For an algebraic subgroup G* of GL{n, C), the fol-
lowing two conditions, 1) and 2), are mutually equivalent:

1) G* is the associated algebraic group of a compact Lie group,
2) G* is self-adjoint for some positive definite hermitian form on Cn.
When these conditions are satisfied, G* is the associated algebraic group

of a maximal compact subgroup G of G* which is the intersection of G*
with the unitary group of the above hermitian form.
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Proof. 1) implies 2) as explained above (cf. Chevalley [2]). Let
G* be a self-adjoint algebraic subgroup of GL(n, C). Then G* can be
decomposed uniquely as

([2] Ch. VI. § IX Lemma 2), where G = G*Π U(n) and g is the Lie algebra
of G. The identity mapping p: g-^g is a faithful representation of G.
p can be extended uniquely to a rational representation pc of the associat-
ed algebraic group Gc of G. pc is a homomorphism of Gc into GL(n9 C)
and pc(Gc) = P ( G ) e x p v

/ ^ ϊ * ( g ) = G*. Let <r=£exp ^ = 1 K ^ G G , l e g )
be an arbitrary element in the kernel of pc. Then we have l = ρc(σ) =
p(g)/^ϊdp(X) = σ. So pc is an isomorphism of Gc onto G*.

REMARK. G. D. Mostow [6] showed that the condition 2) in propo-
sition 1 is equivalent to the following condition: 3) G* is fully reducible
on Cn. M. Nagata [8] showed that the condition 3) is equivalent to the
following condition: 4) the radical of G* is a complex torus C*m.

3. The algebra o(M)

Let G be a compact Lie group acting transitively and differentiably
on a C°°-manifold M and H be the isotropic subgroup of G at a point
p0. H consists of the elements of G leaving p0 fixed. M is identified
with the coset space G/H by the homeomorphism gpo-*gH.

DEFINITION. A continuous function / on M is called a spherical
function on M if

The set o(M) of all spherical functions on M is an algebra over C. The
structure of an algebra is defined by

(af)(p) = af(pl a(ΞC; (f+g)(p) = f(p) + g(P) (fg)(p) = ΛP)g(P).

Then the canonical projection π: g-+gH of G onto M induces an injec-
tion c: f-*f°π of o(M) into o(G)> ιo(M) consists of the elements in o(G)
which are invariant under every right translation Rh(h^H). In the
following, we shall identify / in o(M) with ι(f) in o(G) and regard o(M)
as a subalgebra of o(G). Let (p, V) be a representation of G whose
restriction to the subgroup H has an invariant vector J^ΦO in V, and
(x19 •••, xn) be a basis of V containing the invariant vector xx. Then the
linear transformation ρ(g) can be represented by a matrix (pij(g)) using
the basis (xlf •••, xn). The coefficients ptl's in the first column of this
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matrix belong to o(M). o(M) consists of the finite linear combinations
of all such pt /s varying the representation p and the invariant vector
xλ. Now we shall prove that the algebra o(M) is finitely generated.
Since the algebra o(G) is finitely generated ([2] Ch. VI), G has a
representation (p, V) whose coefficients generate o(G). Let E be the
vector space consisting of all linear transformations of the vector space
V and φ(E) be the algebra of all polynomial functions on E. Then
every element g in G induces an automorphism Rg of the algebra
Rg is defined by

(RgF)(X) = F{Xp(g)\ F^(E) and

Every polynomial function F in φ(E) defines a function F=F°p on G.
Since the coefficients of p generate the algebra o(G), the mapping Φ:
F^F is a homomorphism of the algebra ^β(E) onto o(G). Moreover
we have

(R^F) = RgF for every g^G and F e φ ( E ) . (2)

Lemma 1. Let

φH(E) = {Fe5β(E) ;RhF= F for every /zei/} .

homomorphism Φ: F->F=Fop maps ?βH(E) onto o(M).

Proof. First, φH(U)A is contained in o(M)= {/EO(G) Rhf=f for
every h^H} by the above identity (2). Conversely let/be any element
in o(M). Then there exists an F in ?β(E) such that F=f since Φ maps
$β(E) onto o(G). The polynomial function Fo defined by

Fo = [ RhFdh
JH

belongs to φH(E). Moreover since RhF=F for every h in H, we have
F0=F=f Thus Φ map ^H(E) onto o(M).

Proposition 2. L /̂ G be a compact Lie group and H be a closed
subgroup of G. Then the algebra o(Af) of the sperical functions on M=
G/H is finitely generated.

Proof. The algebra S$H(E) of the invariant polynomials for the
compact group H is finitely generated (cf. H. Weyl [11] p. 274). So
proposition 2 is an immediate consequence of Lemma 1.

4. The complexification Mc of M

Let G, H, M=G/H and o(M) be the same as above.
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DEFINITION. The complexification Mc of M is defined as

Mc = HomG(o(M), o(G)), i.e.,

Mc = {^GHom(o(M), o(G));φoTg = Lg φ for every

where Hom(o(M), o(G)) is the set of all homomorphism of the algebra
o(M) into the algebra o(G) and

(Tgf)(p) = f(gp\ /EO(M),

(Lgf)(x) = f(gx\ /GO(G),

The topology of Mc is defined as the weakest topology such that the
map φ^φ(f) is continuous for every / in o(M). Any positive number
£ and any finite set {/Ί, •••,/„} of functions in o(M) define a neigh-
bourhood

U(φo;f19-,fH;ε)= {φ^Mc Wφf.-φJ.WKS (l^i^w)}

of a point <p0 in Mc. All such t/(<p0 f19 ••• ,/„ 6)'s form a basis
of neighbourhoods of <?v Now let Horn (o(M), C) be the set of all
homomorphisms of the algebra o(M) into the field C of complex numbers.
The topology of Horn (o(M), C) is the weakest topology such that the
map ω->ω(/) is continuous for every / in o(M). Now let us construct
a bijection Mc->Hom (o(M), C) using the idea given in [3].

Lemma 2. The mapping φ->ω = ωφ defined by

ω(f) = (φf)(e\ /GΞO(M) ( 3 )

is a homeomorphism of Mc onto Horn (o(M), C).

Proof. It is clear that ω defined by (3) belongs to Horn (o(M), C)
if φ is in Mc. Moreover the identity

(φf)(g) = ω(Tgf), g^G, /eo(M)

shows that the mapping φ->ω is a bijection from Mc onto Horn (o(M), C).
Since |ω(/) — ωo(/)| ̂ | |^/— 9>0/||, the mapping φ->ω is continuous. To
prove that ω^>φ is also continuous, let p be a unitary matricial
representation of G such that Pil(h) = Sil, l^i^n = d(ρ) for every /ze/f.
Then the functions /i, •••,/« on M such that tfk = pki belong to o(M).

Applying φ<=Mc to the identity TgfJ=^pil(g)fi9 we get Lg(φfj) =

Σ Pii(£)<pfi The values at £ of the both sides of the last identity give
1 = 1

the equality
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(<pfj)(g) = Σ PtiigWi) for any g<=G. ( 4 )

Since | P{j(g) | ^ 1, the last equality (4) leads to the inequality

^ Σ Wt)-<ft)\. (5)
1

As every / in o(M) is a finite linear combination of such //s, the
inequality (5) proves that the mapping ω->φ is continuous. The lemma
is proved.

From now on, we identify φ<=Mc with ω = ωφ in (3) and Mc with
Horn (o(M), C). Proposition 2 and Lemma 2 give the structure of an
affine algebraic set to Mc. Let fly •••,/„ be a finite system of the
generators of o(M). Then the mapping F: ω->(ω(/i), •••, ω(fn)) is a
homeomorphism from Horn (o(M), C) = MC onto some algebraic set M*
(a model of Mc) in Cn. Since o(M) contains / together with /, M c is
defined over R.

We owe H. Matsumura the proof of the following lemma.

Lemma 3. Let a be a proper (i.e. αΦo(M)) ideal of the algebra o(M)
and b = cao(G). Then b is a proper ideal of o{G).

Proof. For the sake of simplicity we identify / G O ( M ) with ί/eo(G).
For every a in o(G), we define the mean a* of a over the subgroup
H by

Then β^ belongs to o(M). Now suppose b = o(G). Then there exists a
finite number of elements f19 ••-,/» in α and ^ , ••-,#„ in o(G) such that
Σ ^ /ί = l The last identity leads to 2 4 / i = l which contradicts the

I i

fact that α is a proper ideal of o(M).

Proposition 3. Let Gc be the associated algebraic group of a compact
Lie group G and Mc be the complexification of a homogeneous space
M=G/H. If we define the operation of Gc on Mc by

σ(φ) = σoφ for <r<=Gc and φ^M° ,

then Gc acts continuously and transitively on Mc. The isotropic subgroup
H* at c (the canonical injection of o(M) into o(G)) coincides with the
associated algebraic group Hc of H.

Proof. Clearly the group Gc operates on Mc to the left by the
above rule of the operation. Let fs be the same as in the proof of
Lemma 2. Applying σ on the identity (4), we get
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{σoφ)f. =
1 = 1

So we have an inequality

||(«r9>)/y-(o-o9Ό)/yll̂  £ \Wpij-σoPij\\{\φo{fi)\+ I ω(/,-)-«„(/,) |)

+ ΣlkoP,7ll|ω(/1 )-ω 0 (/ ί ) |

which proves that (σ, <p)-+σ°φ is continuous. Now we shall prove the
transitivity of the action of Gc on M\ that is, for an arbitrary but fixed
point φ in Mc we shall find a σ in Gc such that σoL = φ. By Lemma 2,
φ^Mc corresponds to the unique ω=ω^GHom(o(M), C). Similarly, to
each σ in G, there corresponds the unique θ = θσ in Hom(o(G), C), such
that θ(f) = (σf)(e) for every / in o(G). Therefore to prove the existence
of σ^Gc such that σoL = φ is equivalent to find a (9(=Hom(o(G), C) such
that θ°ι = ω, because we have the equalities

= θ{Lgcf) = (θoc)(Tgf) and

Let α be the kernel of ω. Then by Lemma 3, there exists a maximal
ideal b of o(G) containing ιao(G). Let (p, V) be a unitary representation
of G whose coefficients generate o(G), and ^β(E) be the same as in 2. Let
b0 be the complete inverse image of the ideal b by the homomorphism
Φ : F-+F of φ(E) onto o(G). Then b0 is a maximal ideal of φ(E). Since

is isomorphic to the polynomial ring C\Jly •••, ί N ], the factor algebra
is isomorphic to the field C. So we have o(G)/b^C and there

exists a homomorphism θ of o(G) onto C whose kernel coincides with b.
As θoc vanishes on α, θoi coincides with ω. The transitivity of Gc on
Mc is now proved. Let H* be the subgroup of Gc consisiting of the
elements of Gc which keep the canonical injection c invariant. Let r be
the real automorphism f-^J of o(G). Then we have

( 7 )

σ in Gc belongs to H* if and only if σf=f for every / in ι(o{M)). Since
/ and / belong to ω(M) simultaneously, we have (jστ)f=σ(f)=f=f
for σ in H*. So σ E ί ί * implies τστ^H* and the equality (7) holds.
The identities (1) and (7) prove that pc(H*) is self-adjoint. On the other
hand if* is an algebraic subgroup of Gc. Moreover, as the functions in
o(M) separate the points of M (cf. the proof of Theorem 1 below), we
have H*ΓiG = H. Therefore, by proposition 1, we have pc(H*)ΓιU(n) =
p\H* Π G) = p(H). So H* is canonically isomorphic to the associated
algebraic group Hc of H. Hence the proposition is proved completely.
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As Mc is the quotient manifold of a complex Lie group Gc, Mc has
the structure of a complex analytic manifold compatible with the
topology of Mc defined earlier. Moreover the operation of Gc on Mc,
i.e., the mapping (σ, φ)^σ{φ) is holomorphic. Proposition 1, 2 and 3
lead to the following corollary.

Corollary to Proposition 3. Let Let G*Z)H* be two self-adjoint
complex algebraic groups. Then the quotient manifold G*/H* has the
structure of an ajfine algebraic set.

REMARK. G is regarded as a subgroup of Gc by identifying
with the right translation Rg. So the operation of g^G on Mc is as
follows:

gφ = Rg φ, φ<E:Mc .

In the realization of Mc as Hom(o(M), C), an element g^G operates on
Mc by the formula

(gω)(f) = ω{Tgf\ /GO(M), (8)

because we have (g

5. The duality theorem

Lemma 4. o(M) is dense in C{M) with \\ \\-topology.

Proof. We identify / in o(M) with if in o(G). By Peter-Weyl's
theorem, for any f(=C(M) and £>0, there exists an / 0 GO(G) such that

ll/-/oll<£. Let/£ = ( Rhfodh. Then ft belongs to o(M). And we

have ||/—/ill^ε. So the lemma is proved (cf. N. Iwahori [5]).

Theorem 1 (The duality theorem). Every p in M defines a homomor-
phism ωp<= Horn (o(M), C) = MC by means of the equality ωp(f)=f(p)
(/GO(M)). Then the mapping p-^ω is a homeomorphism of M onto M1

= {ω<=Mc ωf = ωf for every / E O ( M ) } . Moreover regarded as G-spaces,
M and M1 are isomorphic to each other, that is,

gωp = ωgpy for every g^G and p^M. (9)

Proof. If p is a point in M, then ωp belongs to Mx. Let ωp = ωp'y
for two points p and p' in M. Then we have f(p)=f(P') for all / in
o(M). These equalities lead to f(p)=f(p/) for all / in C(M) by Lemma
4. The last equalities imply that p=p', because M i s a normal space.
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So the mapping Φ:p-^ωp is an injection from M into Mx. By the
definition of the topology in Mc, the mapping is continuous. Since M
is compact, Φ is a homeomorphism of M onto M2= {ωp; p^M}. M is
isomorphic to M2 as the G-space, because we have

(gωp)(f) = ωp(Tgf) = f(gp) = ωgp(f)

by (8).
Clearly M2 is contained in M1. Now we shall prove the converse :

M1dM2. Let Q be the involutive transformation of Mc=Hom(o(M), C)
defined by

(Qω)(f) = ω(f) /eo(M),

and S the involutive automorphism of Gc=Hom(o(G), C) defined by

(Sθ)(f) = 0(/), /GO(G),

Let 7τ be the canonical projection of Gc onto MC=GC/HC. If σ belongs
to Gc=Hom(o(G), C), then the element 7r(σ)GMc, regarded as an element
of Hom(o(M), C), is equal to σ°*. So we have

Qojt = πoS . (10)

Since Gc acts on Mc transitively, every ω in Mc can be written as ω =
π(σ) for some σ in Gc. ω belongs to Mx if and only if Qω = ω which
is equivalent to S(σ)Hc=σHc by the identity (10). Let ω = π(σ) be an
arbitrary element of M l t σ is expressed uniquely as

and a = expχ/^ΐX> Xeg (11)

where g is the Lie algebra of G. Then, by the identity (11), S(σ) is
decomposed as

S(a) = £«-*

As S(σ) is congruent to σ modulo Hc, we can find an element η oί Hc

such that σ = S(σ)η. v is expressed uniquely as

and 6 = exp>/^ΐ Y,

where ^ is the Lie algebra of H. The identity σ = S{σ)η leads to ga~ιη=ga
and a2 = v = hb. So we have by the uniqueness of the expression (11)

h = e, X=2

and σ = ga = gexp2'1\/^ϊ Y<=gHc where g lies in the original compact
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Lie group G. Therefore we have proved ω = π(σ) = π(g) = ωgPo(=M2 and
M1 = M2. The theorem is now proved completely.

DEFINITION. Let p be a matricial representation of a group G and
n be the degree of p. The continuous mapping F of M=G/H into Cn

satisfying

F(gp) = p(g)F(p) for every g^G and pe^M, (12)

is called a (linear) representation of M associated with p. n is called
the degree of the representation F and is denoted by d(F).

Two representations (Fly ply C"1) and (F2y p2y Cn*) of M are called
equivalent if n1 = n2 and there exists a non singular matrix γ of degree
nx satisfying yF1 = F2 and rγ°Pι(g) = p2(g)oΎ for every G^G.

The direct sum and the tensor product of two representations
(Fly piy C"1) and (F2y p2y Cnz) can be defined naturally and are denoted by

(F 1 0F 2 ,p 1 θp a , C W ) and

(Fx®F2y pί®p2y Cnin2) respectively.

The complex conjugate representation (ί7, p, Cw) of (F, py C
n) is also

defined in a natural way.

DEFINITION. Let 3ΐ be the set of all representations of M=G/H.
By a representation of 5R, we understand a mapping ζ which assigns
to every F<=9ΐ a vector f(F) in Cn (n = d(F))y in such a way that the
equalities

F) = Ύζ(F)

2) SiF&F,) =

3) ?(Fi®Λ) =
4) f (E) = 1

hold for any representations Fly F2y F of M and any regular matrix y
of degree d(F) and the (1-dimensional) unit representation E: p->l.

Let FEΞVΪ and F{p) = \f1{p\ ••• y fn(p)). Then each /,. belongs to
o(M) and o(M) is spanned by such //s. We denote /, by f{iy F) and
introduce the indeterminates u(i, F) (l^i^d(F)) for every Fe3ΐ. Let
U be the ring of polynomials in the variables u(i, F)'s with the coefficients
in C. Then there exists a homomorphism Ψ of U onto o(M) which
maps each w(i, F) upon the corresponding /(i, JF1). Let b be the kernel
of this homomorphism.

To every representation F^% let us assign the vector U(F) = \u(ly
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F), ••• , u(d(F), F)). Among the polynomials belonging to the ideal b =
ker Ψ, we find in particular the following ones:

1) The components of the vectors U(yoF) — yU(F)> where y is any
regular matrix of degree d(F).

2) the components of the vectors U(F1®F2)-(U(F1)®U(F2))
3) the components of the vectors U(F1®F2)-(U(F1)®U(F2))
4) «(1,E)-1.

Lemma 5. Let M=G/H be a homogeneous space of a compact Lie
group G. Then the polynomials listed above under the headings 1), 2), 3),
and 4) form a set of generators of the ideal b = ker Ψ.

The proof of this Lemma is same as the proof of the similar
proposition for the algebra o(G) (Chevalley [2], Ch. VI §VIII, Proposi-
tion 1).

Gc operates on the set 9Jί of all representations of 3ί by the formula

(σfXF) = P\σ)ζ{F\ σ e C , fe2», F^m. (13)

After these preparations, Theorem 1 can be interpreted to a duality
theorem of usual Tannaka-Chevalley type.

Theorem 2. Let 9Jί be the set of all representations ofΐR. Then every
ωGHom(o(M), C) = MC corresponds to a representation ζ of 3Ϊ defined by

ζω(F) = <(ω(/(l, F)\ - Mf(d(F\ F))). (14)

The mapping ω-^ζω is a Gc-space isomorphism from Mc onto sJJi.

Moreover let "ϋlλ= {ζ^SOl ζ(F) = ζ{F) for every F G 3 Ϊ } . Then the
mapping p-*ζωp is a G-space isomorphism of M onto SSSi1.

Proof. ζω belongs to sJJi, because ω is a homomorphism of o(M)
onto C. If ωx and ω2 are two distinct elements in Mc, then there exists
a function /(i, F\ F(ΞΪR such that <ox(f(i, F))Φω2(/(i, F)). It follows
ζωi(F)Φζω2(F). And the mapping ω-*ζω is an injection. Let ζ be an
arbitrary element in sJJi. Then ζ defines consistently an ωEHom(o(M), C)
satisfying (14) for ζω = ζ by virtue of Lemma 5. So the first half of
the theorem is proved. The second half of the theorem is a direct
consequence of Theorem 1 because ω belongs to the set Mλ in Theorem
1 if and only if ζω belongs to 2Jϊlβ Now the theorem is proved.

Every representation F of M=G/H can be extended to a represen-
tation Fc of MC = GC/HC identified with sUϊ by defining

F\ω) = ζm{F). (15)

Fc is an everywhere defined rational mapping of Mc into CdCF\
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Lemma 6. Let F be a representation of M whose components form

a system of generators of o(M). Then the extension Fc of F defined by

(15) is a faithful rational representation of Mc in Cn (n = d(F)). FC(MC)

is the smallest algebraic set in Cn containing F(M).

Proof. The first half of the Lemma is clear. Let α be the ideal

of C[t19 ••• , tn~] consisting of all polynomials P satisfying P(/( l , F), ••• ,

f(n, F)) = 0 and N be the algebraic set in Cn defined by α. Let ω be an

element of Hom(o(M), C) = MC and P in α. Then F(ω(/(1, F)), •• , (/(«,

F))) = 0. So F\Mc)(zN. Conversely, let 2 = (<Zi> •••, zn) be any point in

N. Then there exists the unique α)GHom(o(M), C ) = M C such that

ω(f(i,F)) = zi (l£i£n). So we have proved FC(MC) = N. The Lemma

is proved.

Let (F, p, CM) be a representation of M=G/H such that the com-

ponents of F generate o(M) and p(G) is contained in GL(ny R). We

identify WGMC with Fc(ω) and Mc with its model FC{MC). Then we

have the following theorem.

Theorem 3. 1) M=McΓ\Rn. 2) M is a real affine algebraic set.

3) Mc is defined over R. 4) M=G/H has a faithful representation. 5)

The operation of Gc on Mc is rational, that is, the mapping (σ, ω)->cr(ω)

is an everywhere defined rational mapping of Gc x Mc onto Mc.

Proof. 1) is clear from Theorem 2. 2) and 3) are obtained from

1) and Lemma 6. 4) is clear since Fc is faithful. Since pc is a rational

representation, 5) follows directly from the formula (13).
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