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1. Introduction

Let X be a given compact closed orientable topological manifold

and let Σ = {σt } denote the set of differentiable structures on X. In this

paper one defines a pseudo distance p on Σ which is allowed to take

co as one of its values. It is proved that p is actually a distance

function, namely that p(<rly <r2) = 0 implies σ1 = σ2. More strongly, one

proves the following

Theorem 1. There exists a positive Sx depending on dimension of X,

such that if p(σly σ2)^S1 then σx and σ2 are differentiably equivalent.

The proof is given in Part II. In Part I one investiates relations

between the distance and the combinatorial equivalence.

It is seen that p(<rίy cr2)< oo if σχ and σ2 are combinatorially equivalent,

and the following theorem is proved:

Theorem 2. There exists a positive £2, depending only on dimension

of X, such that if p(σlf σ2)g£2 then σ1 and σ2 are combinatorially equivalent.

In order to assure non triviality of the distance function the following

remark might be sufficient. By J. Milnor and I. Tamura there is found a

compact comibinatorial manifold which admits two smoothings having

different integral Pontrjagin classes, therefore using the result of [ S ]

which asserts that any two differentiable structures of distance less than

1/2 log 3/2 have the same integral Pontrjagin classes, one sees that the

distance between these structures is finite but not less than 1/2 log 3/2.

Although the distance has been allowed to take oo as its value, it

is possible to restrict Σ so that the distaece always gives finite value,

by introducing a notion of Lipschitz manifold and compatible smoothing,

as appears in a sequel.
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PART I

2. Definition of a pseudo distance.

Let X, (/= 1, 2) be metric spaces with metrics d{ (ι = l, 2). Then the
size l(f) (rel. dly d2) of a homeomorphism /of Xx onto X2 is defined to be

K/) = { inf {^^l|VJtr, yeX19 dλ(xy y)/k^d2(f(x)y f(y))^kdλ(xy y)} ,

oo, if the above set of k is empty.

A homeomorphism / is said to be (regular) Lipschitz relative to
dly d2y if the size I(/) (rel. dly d2) is bounded, and the size I(/) (rel. dly d2)
is sometimes called the Lipschitz constant of /.

The following properties l)-3) of the size are elementary.
1) l(id.) (rel. 4 , 4 ) = ].,
2) I(/) (rel. d19 rf,) = I ( r 1 ) (rel. d2, dx\
3) Let X3y d3 be the third metric space and its metric, and let / : X1-+X2,
g: X2-^X3 be homeomorphisms, then

l(gf) (rel. dly d3) ^ {l(g) (rel. d2y d3)} {!(/) (rel. dly d2)} .

Now let M{ (i = l, 2) be compact differentiate manifolds and let /
be a homeomorphism of Mx onto M2y then since M£ admit Riemannian
metrics pt (i = l, 2), one can define the size I(/) (rel. p!,p2) of /. If /?,-
are diffeomorphisms on Mt (i = 1, 2), Â p,- also are Riemannian metrics
on Miy and obviously

IfoAXrel. ft, P2) = I(/)(reL h*f19 h2*f2).

Thus denoting by I(/) the infimum of the sizes I(/) (rel. px, p2) taken
on all Riemannian metrics p, on Mt (/ = 1, 2) one sees that, for any
diffeomorphisms At on Miy

A differentiate manifold M which is homeomorphic to a topological
manifold X is said to be a smoothing of X and two smoothings M13 M2

are said to be equivalent if there is a diffeomorphism between them.
The equivalence classes are called dijferentiable structures on X

Define a real valued function p(Mly M2) of smoothings Mt (i = l, 2) by

j , M2) = inf {log \{h~λh^ \ h{ \M{-^X is homeomorphism} ,

where the infimum is taken over all the homeomorphisms h{ of M,
onto X (ί = l, 2).

Then obviously,
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4) p(Mly M2) depends only on the equivalence classes σ{ (/ = 1, 2) of
smoothings M, and therefore can be denoted by p(σly <τ2).

The function p(σly σ2) defined on the set X of the differentiate
structures on X has the following properties 5-7), which are easily deduced
from 1-3):

5) p(cτlyσ1) = 0.
6) P(σ19 o-2) = p((τ2y σt).
7) p(σly σ3)^p(σly σ2) + p(σ2, σ3), where σ3 also is a differentiate structure

on X.
In the other words,

Proposition 1. p gives a pseudo distance on the set Σ of the
equivalence classes of dijferentiable structures on a compact topological
manifold X.

The following non symmetric versions of the usual Lipschitz condi-
tions are sometimes useful and referred simply as Lipschitz conditions.

A map / of a metric space X1 into a metric space X2 is said to
satisfy Lipschitz condition with a positive λ, if

\dl(f{x\ f{y))-d\{xy y) I ^\d\(x9 y)

for all x,y^Xlm Also / is said to satisfy local Lipschitz condition at
p^Xly if there exists a neighbourhood U(p) of p such that

\dl(Λ*), Λy))-d%χ, y) I £\dl{x, y)

for all xyy£ΞU(p).
Obviously a (regular) Lipschitz map with Lipschitz constant I(/)

satisfies both global and local Lipschitz conditions with λ = \/I 2(/) — 1 .
Conversely, a map satisfying the (global) Lipschitz condition with

λ < l is (regular) Lipschitz and has the Lipschitz constant less than

Proposition 2. For any positive λ < 1, there is a positive p such that
log ϊ (/)<p implies the Lipschitz condition with λ for f Conversely, for
a given p>0, there is a positive λ such that the Lipschitz condition with
λ for f yields logl(/)<p.

3. Local properties of Lipschitz maps.

Throughout the section, Rn denotes the Euclidean w-space with the
usual norm | | and, unless otherwise stated, / is a map of Rn into RN

sending OEΞR" to OEΞRN.

Lemma 1. Assume that f satisfies the local Lipschitz condition with
λ in an open neighbourhood £/(0) of 0, then
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\<Ά*)> Λy)>-<χ, y>\^2\(\x\2+ \y\2)

for all x,y<=U(O).
Let 5 be an ^-simplex in Rn having 0 as one of its vertices, then,

the s-approximation fs of a map / is the linear map which agrees to /
on each vertices v{ of s> that is, fs is the linear map characterized by
fs(Vi)=f(Vi) for all verteces v{ of 5.

Unless otherwise stated, a simplex 5 in {/(0) is understood to have
0 as one of its vertices.

Denote by 8(s) the diameter of a simplex 5 in Rn

9 and denote by θ(s)
the fullness vol (s)/(8(s))n of s.

Lemma 2. For a positive θy there is a positive λ(#, n) depending only
on θ, n, such that, if f satisfies the local Lipschitz condition with \{θ, n)
in £7(0), then for any n-simplex s in £7(0) of fullness θ(s)^>θ, it holds
that

Proof. Choose a sufficiently large A(n) such that, if max|x t V — ai5\
<z,7|, then

I det Xij — det ai$ \ ^ A(n) max | xh — ai5 \ max | ais Γ" 1 .

Substitute xu by </fe), f(v>f) and ai5 by <viy υ^ where vk (k=ly~-,n)
are the vertices of 5 except the origin 0. Then it follows that

(n[)21 vol2 / , (s) - vol2 (s) \ ^ 4A(n)\82tt(s).

Hence,

and the conclusion follows easily.

Lemma 3. Let s, t be n-simplexes in t/(0) such that

βδ<δ(s\ δ(t)<8, θ<θ(s)y θ(t)

then, if f satisfies the local Lipschitz condition with X in £/(0),

\fs(x)-ft(x)\2<8\x\2\n2(l + l/β)/n\Ψ.

for any x^U(0)

Proof. Making use of the fullness θ(s), one gets [Wy, p. 126] that

(3.1) n\θ(s)8(s)< \Vi\<8(s\ for all vertex v£ of s,

and that,

(3.2) I Xi I < I ^xpi I /n\θ(s) \ v{ \ for any linear combination
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Therefore, one easily sees that

\fs(x)-ft(x)\2<2\n2\x\2{2/(n\θ(s)y + 2/(n\θ(t)γ

+ 2(δ\s) + δ\t))/(n! θ(s))2δ(s)(n! θ(t))2δ(t)} .

Hence the evaluation in Lemma follows easily.

Proposition 3. In case of n = N, there exists a positive μ(ny β, θ)
depending only upon n9 β, θ, such that, if f of Rn into Rn satisfies the
local Lipschitz condition with μ(n, β, θ) in £7(0) and if s = (0, vx ••• vn_ly p\
t = (O,v1 » vn_ιy q) are properly joined n-simplexes at the (n — 1) face F=
(0, v1 ••• vn_^) which satisfy

5, tc £7(0) βδ^δ(s), δ(ί)^δ, θ£θ(s), θ(t),

then the simplexes fs(s) and ft(t) are non degenerate and properly joined,
in the other words, non degenerate simplexes fs{s) and ft(t) are separated
each other by the (n — l)-simplex fs(F)=fe(F).

Proof. Assume that / satisfies the Lipschitz condition with the con-
stant X0=X(n, θ) in Lemma 1, then (see (3.1))

any height of fs(s)^nlθ(fs(s))S(fs(s))

in particular
dist(/,(i), plane of fs(F))^n\Vl-X0βδθ/2 ,

therefore if λ is closen so small that

l/β)n/nlΦ<n\\/l-\oβθ/2

then by Lemma 3, both fs(p) and ft(p) lie in the same side of the plane
of fs(F)=ft(F).

Lemma 4. // / of Rn into RN satisfies the Lipschitz condition with
λ in £7(0), then for an n-simplex s in £7(0) and for x<=U(0) such that

it holds that

\f(x)-fs(x) 12^2λ Ix12{1 + 2n2/(n!θ(s)Y + 2n/(n!θ(s))2 + 2n/an\θ(s)}

Proof. A calculation using (3,1), (3, 2) shows that

|/(*) -/ , (*) 12^2λ I x 12(1 + 2*7(>t! θ(s)Y)
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Since aS(s)^ \x\^S(s\

^ \x\(n/nlθ(s) + n/a).

Then one gets the evaluation.
Consider now the case /(0) is not necessarily 0, and let f(p) = q,

then a parallel translation g(x) = f(xJrp) — q maps 0 into 0 and the local
Lipschitz condition for / at p yields that for g at 0. Therefore defining
5-approximation /, of / by the parallel translation of gs, one gets pro-
perties of fs similar to those in Lemmas 1-4 and in Proporition 3.

In particular, since, for any x^s, there found a vertex υ of s such that

\x-v\^n\θ(s)S(s)/2

(see (3,1)). Lemma 4 applied to a parallel translation of / implies

Corollary 1. Under the same condition as in Lemma 4,

for all

4. Simplexwise positive maps.

Let if be a pseudo w-manifold which may have boundary dK.
A map / of K into Rn is said to be simplexwise positive if for each

w-simplex s<=K, / i s smooth and one to one in 5 and Jacobian / / of /
in 5 is positive there.

Lemma 5. // / is simplexwise positive in K, then for any interior
point p of K there exists a neighbourhood U(p) of p in K such that f
restricted on U( p) is one to one.

Proof. Let p be an interior point of a simplex σ in K (dimension
unspecified), then, since / is one to one in all simplexes in K, f(p) is
covered only once by /(St(σ)). Take a sufficiently fine subdivision Kr of
K for which the closed star St'(σ') in K' of a simplex σf having p in
its intorior, is contained in St(σ ). An application of LEMMA 15a of
CWy p. 369] to a simplexwise positive map f in K (therefore, so is in
Kf and in StV)) and a combinatorial w-manifold St^σ7), shows that /
is one to one, when considered only in an inverse image f~\R) of an
open set R in Rn~f (9(St(σ'))) containing f(p).

Let /, g be simplexwise differentiable maps of K into Rn. A homo-
topy ht between / and g is called a non degenerate homotopy, if, for each
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t, ht is simplexwise differentiable and the non degenerate Jacobian Jht

of ht gives a homotopy between / / and Jg. Obviously one gets

Lemma 6. // a simplexwise one to one map f of K into Rn is non
degenerately homotopic to a simplexwise positive map g of K into Rn then
f itself is simplexwise positive.

When one specialize the manifold K to that imbedded in Rn and
satisfying

θ<θ(s) and βS<δ(s)<8.

for each w-simplex 5 of K, one can apply Proposition 3 to get

Proposition 4. Let K be a pseudo manifold as above and let μ(n, β, θ)
be the constant in Proposition 3. Then if a map g of K into Rn satisfies
the Lipschitz condition with μ(ny β, θ), the simplicial approximation gκ of
g on K is simplexwise positive and, therefore, is locally homeomorphic at
any interior point p of K.

Corollary 2. Using the same notations as in Proposition 4, // a

simplexwise one to one map f of K into Rn is non degenerately homotopic

to gKy then f also is simplexwise positive, and thereforey is locally homeomor-

phic at any interior point p of K.

5. A proof of the combinatorial equivalence.

First we fix notations M is an orientable compact connected Riman-
nian w-manifold, isometrically imbedded in an Euclidean iV-space RN

y

and V(M) is the tubular neighbourhood of M with the projection π along
the normal plane field η.

The tangent w-plane at p^M is denoted by Tp(M) or simply by
Tpy then the local projection πp along v of a part of Tp into M is
defined in some neighbourhood of 0 in Tpy and so is the local orthogonal
projection Iip along the fixed plane v(p) of a part of Tp into M.

If 7r*, Π* are defined to be local projections of a part of V{M) into
Tp along η and along v(p)y respectively, then obviously π = πp π*.

The following lemmas are elementary and their proofs are found,
for instance, essentially in [Wy p. 117-174].

Lemma 7. Given £>0, for each p^My there exists a neighbourhood
Uλ(p) of p in M such that if a simplex σ of fullness >£ in RN has its
all vertices in Uλ(p)y then both π*y Π* are non degenerate and one to one
on σ and, moreover, π*, Π* are non degenerately homotopic on σ.

Lemma 8. For any positive K and for each p^M, there exists a
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neighbourhood U2(p) of p in M such that both π* and Π* restricted on
U2(p)y satisfy the Lipschitz condition with K, relative to the Riemannian
metric on M and the usual norm on T .

The existence of a certain triangulation of M, which is very useful
for our purpose, is proved in [Wy. p. 124-135].

Triangulation Theorem. There are defined positive functions β(n, N)
< 1 and θ(ny N) of n, N such that for any positive £, there are a positive
δ<£ and an oriented finite combinatorial n-manifold K(S)dV{M) which
satisfies the following properties 1), 2).
1) The restriction of π to K(£) is a homeomorphism onto M and for each
n-simplex s in K(8)y π is dijferentiable and non degenerate on s.
2) For each point p<=My there is a combinatorial n-submanifold K(p) of
K(ε) satisfying the following:
(2.1) The simplicial approximation (π*)κ of π* on K(p) is isomorphic

and the image contains a neighbourhood of 0 of T.
(2. 2) The isomorphic image L(p) of K(p) by (π*)κ satisfies that

and for all n-simplex s in L(p)>

θ(n, N)<θ(s\ β(ny N)δ<8(s)<δ .

Now let Mf be a second compact connected Riemannian w-manifold,
isometrically imbedded in RN, and let V\M') Tr' etc. denote the cor-
responding notions defined for M'CLRN such as tubular neighbourhood,
projection along the normal plane field etc.

Assume that a map / of M onto Mf satisfies the Lipschitz condi-
tion with μ(n, β(ny N)y θ(ny N))/2, (See Prop 2). Then by Lemmas 2, 7,
8 and by Triangulation Theorem, using the compactness of My M\ one
easily verifies:

Assertion. For some 8 > 0, K(S) satisfies the following properties

l)-3):
1) For all p^My πp is defined on L(p) and both π*\ Π*' are defined on
a neighbourhood of q=f(p) in RN containing both fπp(L(p)) and (fπp)L

(L(p))y moreover, π'v is one to one on π*'(fπp)L(L(p)).
2) For each simplex σ in L(p)y both πf\ Π*' are one to one on the
simplex (fπp)L(σ) in RN and are non degenerately homotopic to each
other on it.
3) The map Ilffπp satisfies the Lipschitz condition with μ{ny β(n, N),
θ(ny N)).

Hence, from Proposition 4 and the property 3) above, (ΐlf'fπp)L is
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simplexwise positive and, since Hf is linear, simplexwise one to one

map 7τ*' (fπp)L is non degenerately homotopic to ΐltXfπp)L

(see 2) above). Therefore π$'(fπp)L is locally homeomorphic at

and so is π¥(fπp)L-(π*)κ=π*Xfπ)κ at p* in K{S) which is mapped to p

by π (see (2.1) of Triangulation Theorem).

Thus the composition π'qoπ$/(fπ)κ=π/(fπ)κ is locally homeomorphic

at P*ΪΞK(£).

These facts can be unified as follows:

Proposition 4. Let M, Mf be oriented compact connected Riemannian
n-manifoldsy isometrically imbedded in RN and let f be a map of M onto
Mr which satisfies the Lipschitz condition with μ(ny β(ny N), θ(n, N))/2
relative to the Riemannian metrics, then there exists a triangulation K{β) of
M such that the simplexwise dijferentiable and simplexwise non degenerate
map F=π\fπ)κis a homeomorphism of K{β) onto M', that is, there is a
combinatorial equivalence between K(6) aud M'.

Proof. Since F is locally homeomorphic, F: K(β)-+M' is a covering
of M\ (see, for instance, [Hu, p. 105]). And since F is homotopic to
a homeomorphic map fπ, every point in Mr is covered only once by
F(K(S))f indicating that F itself is a homeomorphism.

According to J. Nash and N. Kuiper [N], every Riemannian manifold
M is isometrically imbedded in RN, and an upper bound of N can
be given as a function N(ή) of the dimension n of M. Thus letting
χ(n) = μ(ny β(ny N(ri))θ{n, N(ή))/4, for instance, one gets

Theorem 1. Let M, M be oriented compact connected Riemannian n-
manifolds. Then if there exists a map f on M onto Mf of which Lipschitz
constant I(/) is less than a certain positive \{n)y which is a function
only in n, the dijferentiable manifolds M, Mr admit a common triangulation.

In particular Theorem 1 implies (see Prop 2)

Theorem 2. Let σly σ2 be dijferentiable structures on an orient able
compact connected topological n-manifold. Then there exists a positive
p{ri) depending only on n such that p(σly σ2)<p(ή) implies the combinatorial
equivalence of σx and σ2.

PART II

l φ approximation of a Lipschitz map.

Let φ be a non negative smooth function on R satisfying (1.1)-(1.3):
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(1.1) C a r φ c [ - l , l ] , maxφ = l .

(1.2) Car φ ' c [ - 1 , -1/2] U [1/2,1], max|φ' |<4.

(1.3) max I φ" I < 32.

For a positive δ, define κ(n) and φB(x) by

κ(n)=

(1.4) φs(x) =

where \dv denotes the integration over R" by the standard volume

element dv. Then obviously

(1.5)

(1.1)' Car φ 5 c ί/8(0), max φδ = l/«(«)δ" .

Let 9 f / denote the differential in ξ^Tx(R"):

dtf = Km f(x + ξt)-f(x)/t.

Then an easy calculation shows that, for ξ,

(1.2)' Car 9 έφ δc t/δ/2(0)' n C7β(0),

(1.3)/ max 19,θeφδ(jc) | ̂  641 ξ \ \ v \ /φ)8n+2.

Define φδ(#, p) (or simply φ(x, p)) for x, p<=Rn by

ΦδO> î ) = Φδ(#-£).

Denote simply by \fdυ the componentwise integration over Rn of an

i?^ valued function / on Rn:

And define the φδ(#, />) approximation (or simply φ approximation) φ(/)
of a map / of Rn into RN by

Then, if / satisfies the local Lipschitz condition with λ2 on t/δ(0), that
is, if
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Wf(χ)-f(y)\2-\χ-y\2\<^2\χ-y\2

for all x, j/et/δ(0), one gets the following evaluations (1.6) (1.7):
(1.6) For some positive μo = μo (n, N),

(1.7) // σ is an n-simplex having p as one of its vertices and such that

p(σ)^V, δ(σ) = δ ,

then there is a positive μx = μ1 (n, N, y), such that

for £ e T0(Rn) and for the σ approximation fσ of f

Proof. (1.6) is easily deduced from (1.1)', and μ0 is given by

Mo = VNy(n)/κ(n),

where γ(w) is the ratio of the volume of the w-ball £/δ(0) to δΛ. (1.7)
is obtained with the aid of Lemma 4 of part I which shows that, if
8(σ)/2<\x-p\<8(σ)9 then

for some β = β(n, y). And one deduces (1.7) from (1.2)7 as follows:

> P) if{χ) -fAχ))dv I

where μi(n, N, y) = W2Nβry(n)/κ(n).

2. ^-neighbourhood of φ.

If no confusion occurs, the notations Car gy \ g dv> and 9 ^ of a func-

tion g of two variables x> p denote the carrier, integration in x of g(x)

= g(x, po)y and the differential in p of g(p) = g(x0, P), respectively.

A smooth function g on RnxRn is said to be in α-neighbourhood

of φt(x, P), if

(2.1) \g(x, P)-φ8(xy p)I < l / δ w , Car g(x, p)czUλ(p),

(2. 2) Idtg(x, P)-dξφs(x, P)\<a\ξ\ /Sn+1,

(2.3) \g(x,P)dv=lt
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where Ux(p) denotes the open ball

U1(P)= {y^Rn/\y-p\<28}.

Let g(f) be the g-average of a map / of Rn into Rn:

g(f)(P)= \g{x,P)f(x)dv.

Then if / satisfies the λ2-Lipschitz condition on Ux{p) and if g is in
α-neighbourhood of φδ, one easily gets the following :

(2.4)

(2.5)

where μ2 is given by

Combining (2,4) (2,5) with (1,6) (1,7), one gets the following

Proposition 1. Let φ8(x, P) be the function defined in 1) and assume
that a map f satisfies the X2-Lipschitz condition on U2S(p), then there exist
positive numbers μ0, μlyμ2 such that, for any function g in a-neighbourhood
of φδ,

(2. 6) Ig(f)(p)-f(p) \<(μo + μ2)(l + λ)8 ,

(2.7)

Corollary 1. There exists λ o = λ o in, N, v)>0, such that, iff satisfies
the Lipschitz condition with \l and if g is in a-neighbourhood of φ8(x, p)
for some small a, then the g-aυerage g(f) is non degenerate at p.

3. Proof of main theorem.

Let M be a compact manifold with Riemannian metric p. Denote by
dV the volume element on M and define a function Gs(Xy P) on M x M by

f P) = Φ(P(X, P)/S)/\ Φ(P{X, P)/8)dV,

where φ is the function defined in 1).
The Gδ(X, P)-average G8(F) of a map F of M into RN is defined to be

G8(Xf P)F(X)dV.

Obviously G8(F) is a smooth map of M into RN. If no confusion
occurs, denote simply by corresponding small letters x9 py ••• the points
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in TQ(M) which are mapped by the exponential map EQ to 1 , P, ••• in M,
and let fQ(x), pQ(x, p) ••• denote the composition maps F(EQ(x)), p(EQ(p)).
Then if δ is sufficiently small and if Q is near to P, one gets

(3.1) Gδ(X, P) = φ(pQ(xy p)/δ)j\ φ(pQ(x, P)/δ)eQ(x)dv ,

(3.2) Gδ (F)(P) - j &(*, P)fQ(x)eQ(x)dv,

where d# is the volume element in Tp(M) and ^(#) is given by

dEQ(x).

Assertion. For any α > 0 , there exists δ>0, such that the function
g(x, p) of two variables defined by

g{x, P) = g*{x, P)eQ(x)

is in ^-neighbourhood of φδ(x, p)y provided p is sufficiently near to 0.

Proof. (2, 3) for g is obvious. Also the following (3, 3) (3, 4) are
well known

(3. 3) dEQφ) = id,

(3.4) if x = 0 or p = 0 or x=p, then pQ{x, p) = \x—p\.

Since pQ(x, p)> \x—p\ both are smooth, (3,4) implies the following:
Given £>0, there is γ > 0 such that if \x\<j then

\PQ(X, P)- \X-PW <G\X-P\,

Therefore one gets the following evaluations:

X, P)/S)-φ(\x-p\ /8)\<8S y

Taking (3,3) into consideration, if δ and \p\ are sufficiently small, one
also gets

X, p)/δ)eQ(x)dv-\φ(\x-p\/δ)dv

(*, P)/8)dQ(x)dv - aejφ(\x-p\ £'δn-1 \ξ\ .

From these inequalities, (2,1) (2, 2) can be deduced easily, and this finishes
the proof.
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(3. 3) also yields that if F(X) satisfies the Lipschitz condition with
λ2/4 at Q G M then fQ(x) = F(EQ(x)) satisfies that with λ2 at 0<EΞ TQ(M).
Thus from Proposition 1, Corollary 1 and Assertion, one easily gets

Proposition 2. // F(X) satisfies the Lipschitz condition with λo/4 at
QeM, there are δ0 and a neighbourhood V(Q), in M of Q such that, for
any 0<δ^δ 0 and for any P e V(Q), G8(X, P) is non degenerate and

(3. 4) I GIF)(P) -F(P)\< (μo + μ2)(l + λo)δ .

Now let F be a map of M onto a Riemannian manifold M isome-
trically imbedded in RN and assume that F satisfies the Lipschitz condi-
tion with λg/4 for each point Q<=M. Making δ small, G8(F)(M) is in
the tubular neighbourhood of M and the composition π'G8(F) is defined,
where π' is the projection of the tubular neighbourhood onto M\

Proposition 3. If F: M->Mr satisfies the Lipschitz condition with
λ1=λ1(») for each QeM, then π'GB(Xy P) is non degenerate at any point
in M.

Proof. Make λί^λo/4 so small that / of the λ^Lipschitz condition
satisfies

for σdTQ(M) of fullness ^£ and of diameter δ and for the σ-approxima-
tion fσ of fQ. Then by LEMMA Πa of [Wy p. 123], one concludes that,
for some δ, the plane Π(/σ(σ)) is near to TQ>{M') and any vector ξ<=RN

satisfying

\ξ-v\<*\v\ for some

is not in rf r'-kernel near Q', therefore, by (2, 7), for a small λ ^ λ ί and δ,

dπ'dG8(F)(ξ) Φ 0, for any ξ e TQ(M).

Thus the compactness arguement finishes the proof.
Using the same notations as in Proposition 3, define Ht(P) by

F(P)

π'Gtδ(F)(P)

then Ht(P) gives a homotopy between F(P) and π'Gs(F)(P)7 because the
continuity of Ht(P) at t = 0 is given by (3, 4). Since Fi s homeomorphic,
the fiber of the covering (M, M\ π'G8(F)) (see [Hu p. 105]) consists of
a single point, that is, π'G&{F) itself is homeomorphic.
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Theorem 1. Let M, M be compact connected Riemannian n-manifolds.
Then, if there exists a map f of M onto M whose Lipschitz constant I ( / )
is less than a certain positive, which is a function only in n, the differen-
tiable manifolds are diffeomorphic.
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