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The present paper is concerned with the differentiability and analy-
ticity of solutions of weighted elliptic boundary value problems (see [2]
for the definition of weighted ellipticity)

A(x, t, Dx, Dt)u(x> 0 = /(*> 0 > *<ΞΩ , (0.1)

Bj(x,t,DχyDt)u(x9t) = 0, x^dίl, j = ly - ,m, (0.2)

in some cylindrical domain with Ω as its base, where we denote the
order type of A by {2m, /). We first investigate such regularity pro-
perties of the solution u considered as a function of t with values in
L2(Ω) or H2m(Ω) and then the same properties of u as a numerical function
of all independent variables (JC, t). In [2] S. Agmon and L. Nirenberg
proved the differentiability and analyticity in t of the solutions of (0.1)-
(0.2) in Lp(Ωi)y l<p<oo, under the corresponding hypothesis on / in
case in which all the coefficients of A and {Bj}™^ do not depend on t
with the aid of their general results on abstract differential equations

£Auf{t) (0.3)
i dt

in a Banach space. Recently in [4] A. Friedman obtained such kind of
regularity theorems for the solutions of abstract differential equations

^A(t)uf(t) (0.4)
% dt

in a Hubert space using Fourier transform in t. In his results A(t)
may depend on t but is assumed to have a constant domain. In £11]
the author showed that A. Friedman's method can be applied to the
problem with time-dependent boundary conditions

du(x, t)/dt + A(x, t, d/dx)u(x, t) = f(x, t), # e Ω , (0. 5)

Bj(x, t, d/dx)u(x, 0 = 0, #e9Ω, ; = 1, •••, m , (0. 6)
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where A(x, t, d/dx) is an elliptic operator of order 2m, provided that the
positive and negative imaginary axes are of minimal growth in the sense
of S. Agmon [1] with respect to (̂ 4, {Bj}, Ω). In the present paper we
shall generalize this result to the higher order problem (0. l)-(0.2), the
whole contents being based on a slight extention of the inequality (14. 6)
in [2]. As in [4] essential use is made of Plancherel theorem, there-
fore we are obliged to take L2(Ω) as the basic Banach space. Roughly
speaking our first main result is stated as follows: putting d = 2rn/l if
A{x, ty Dx, ±Df) is elliptic in (x, y)^Ω x( — oo, oo) and the Complement-
ing Condition ([3]) is satisfied by (A(x, ty Dχy ±D% {Bj(x, t, Dx, ±Da

y)})
in Πx(-oo, oo) for each fixed /, then the solution u of (0. l)-(0.2) is a
smooth function of t with values in L2(Ω) provided that the coefficients
of A and {Bj} as well as / are sufficiently smooth and u is analytic in
t provided that all the coefficients together with some of their jtr-diriva-
tives and / are analytic in /. With the aid of this result we shall
finally prove that the solutions of (0. l)-(0.2) are analytic in all variables
if the coefficients of A, {Bj} and/are all analytic functions of (x, f)eίl
χ(—oo, oo) and the boundary of Ω is an analytic manifold. The proof
of this last statement is so lengthy in the general case (0. l)-(0.2) that
we shall confine ourselves to the special case (0. 5)-(0. 6).

We shall investigate solutions of (0.1) satisfying the homogenous
boundary conditions (0.2). However, unless the boundary system is
equivalent to another one whose coefficients are independent of t, the
boundary conditions satisfied by Dk

tu are not necessarily homogenous if
u is a solution of (0. l)-(0.2). For the the same reason the tangential
derivatives of u in the space directions may not satisfy the homogenous
boundary conditions (0.2). Therefore in sections 2 and 3 we shall obtain
some estimate for the solutions of the inhomogenous boundary value
problems. Based on this estimate we shall prove the differentiability
in t of the solutions by means of difference quotient method and their
analyticity in t following L. Hormander's proof of the interior analyticity
of the solutions of elliptic differential equations with analytic coefficients
([5], pp. 178-180). In the proof of the analyticity in all independent
variables we follow the method of C. B. Morrey and L. Nirenberg [10]
and show that the Cauchy data of u are analytic on the boundary so
that we may apply Holmgren's theorem to obtain the desired result.

Finally we note that in [13] the analyticity in the abstract sense
was proved for the solutions of (0.5)-(0.6) in LP(Ω), l<p<oo9 when
{Bj} is normal and all the rays {reiθ: 0<r<oo} with 7r/2^0^3τr/2 are
of minimal growth with respect to (A, {Bj}, ίϊ) as an application of a
result on the existence problem of abstract differential equations in a
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Banach space ([6]). We mention also [12], [9], [7], [8] and [15] for
related topics.

1. Notations and assumptions

We denote by Ω a domain in the w-dimensional Euclidean space En

and by 3Ω its boundary. Let (x, t) = (xiy -», xn9 t) be the generic point

in £„,. We pu, D.. Q-l^JL. .., ^ JL), A _ _ L _ L and

denote by D«χy a = (a19 - , an\ the ^-derivative Dϊ»-D*I Λ dVn V ( - l ) 1 / 2 a V
— ) . I of I denotes the length of the multi-index a: \a\ =

\(-i)1/2dxJ

For any integer k we denote by Hk(Ω) the class of all complex
valued measurable functions whose distribution derivatives of order up
to k are square integrable in Ω, the norm of Hk(Ω) being denoted by

Especially H0(Ω) = L2(Ω).
HM-i/2@Ω) is to be the class of functions φ which are the boundary

values of functions v belonging to Hk(Ω). In this class we introduce
the norm

IQ — m i \\u\\ktQ >

where inf is taken over all functions v in Hk(Ω) which equal φ on the
boundary.

Let m and / be positive intergers and let d=2mjL We assume
that d is also an integer. A(x9 ty Dχy Dt) is a linear differential operator
of the form

A(xy ty Dx, Dt) = Σ Λ-*O> t9 Dx)Dk

t (1.1)

where

Ai-άx, t, Dx) = Σ aι-k «(x> t)DΪ , 0^k<ίy (1.2)

are differential operators in x of order 2m —kd at the most with coeffi-
cients defined in Ox {t: — oo <£<oo} and A0(x9 t9 Dx) = l. Let mβ be
non negative integers smaller than 2m and let /y = [my/ί/] = the integral
part of ntj/d. Bj(x7 ty Dχy Dt)y j = l9 --9tn9 are differential operators of
the form

Bj(xy t9 Dχy Dt) = Σ BJJrh{x9 t9 Dx)Dk

t (1. 3)
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where

(1.4)

are differential operators in x of order m5 — kd at the most with coeffi-
cients defined on 3ίl x {t: — oo <t< oo}. In what follows we shall assume
without restriction that the coefficients of B(xy ty Dχy Dt)y j = ly~-ymy

are defined not only on 3 Ω x { / : — o o < £ < o o } but also in Πx{t: — oo<
/<oo}.

Denote by A)_k(x, t, Dx)y k = 0, •••,/, the sum of terms in A^k{xy t, Dx)
which are of precise order 2m — kdy letting A^k = 0 if there are no such
terms. Following [2] the weighted principal part A* of A is defined as

A\xy ty Dχy Dt) = ± Alk(x, ty DX)DΪ. (1. 5)
k=0

Similarly we denote by B)j._k{x> t, Dx), k = 0> •• ,/ i , j = l, ~'ymy the sum
of terms in BSjrh which are of precise order nij — kd, letting B)jrh = Q
if there are no such terms. The weighted principal part B) of BΊ is

B%x, t, Dχy Dt) = Σ B) ,,_*(*, ί, Dx)Dl. (1. 6)

Let y be an auxiliary real variable and we denote by Γ the infinite
cyclinder :

Γ = {(*, y): ΛΓGίl, - oo <y< oo} .

For each fixed t> A(xy ty Dχy ±Dd

y) is a linear differential operator in (xy y)
of order 2m with coefficients defined in Γ. Similarly for each i = ly •••, m
and /e(—oo, oo), Bj(xy ty Dχy ±Dα

y) is a linear differential operator in (xy y)
of order m5 at most with coefficients defined in Γ. Clearly the principal
part A\xy t, Dχy ±Dα

y) of A(xy ty Dχy ±Dα

y) is

A\xy t, Dχy ±D«) = A\xy t, Dχy ±Dα

y). (1. 7)

Similarly if the order of Bj(x, ty Dχy ±Dy) is equal to mjy its principal
part is

B'j(x, ty Dχy ±Dα

y) = B%xy ty Dχy ±Ddy). (1. 8)

ASSUMPTIONS. (I) For each /, A(xy ty Dχy ±Dy) is a uniformly elliptic
operator of order 2m in Γ hence A(xy ty Dx, Dt) is a uniformly
weighted elliptic operator of order type (2my I) in the terminology
of [2]. For every (x, /)eθΩ x(— oo, oo) and for every set of real
vectors ξ^Eny v^Eny T G ^ such that (ξy τ)Φθ and v^O the poly-
nomial A\xy ty ξ + svy τ) in ^ has exactly m roots with a positive
imaginary part.
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(II) For each j = l, --ym and fe(—oo, oo), the order of Bj(xy ty Dχy

±Dy) is equal to m5.

(III) Let (x, t) be any point on 9Ωx(-oo,oo). Let v be the normal
to ΘΩ and ξ^En be a real vector parallel to 3Ω at x. Whenever r
is a real number such that (f, τ)4=0, the polynomials in s:B*(x,t,
ξ + svy T), y = l, •••, m, are linearly independent modulo the polynomial

ΐl(s—sϊ(ξf T)) where sΐ(ξyτ)y k = ly-- ymy are the roots of 4̂*(ΛΓ, f,
J f e = l

£ + si>, T) with positive imaginary part. In other words the Comple-
menting Condition is satisfied by (A(x, ty Dχy D% {Bj(xy1, Dχy Da

y)}^ly

Γ) and (A(xy t, Όχy -Ό% {Bj(x, t, Dχy -D*)}?= 1, Γ).

(IV) For \a\^2m-kdy k = 0y •-,/, a^kΛ{xyt) (recall (1.2)) are
continuous in O x {t: — oo</<oo}. For \β\ίίmj — kdy k = 0y •••, ljy

\κ\ ^2m — mjy j = ly •••, m and ι = 0 , — , / + l, D*bjj.-.k>β(xyt) and

D\bjj._kβ{xyt) (recall (1.4)) are continuous in O x { / : — oo<£<oo}.

(V) Ω is a bounded domain of class C2m.

We shall first prove some results on differentiability in t of solutions
of (0. l)-(0. 2) assuming further differentiability of the coefficients. The
problem is local, therefore without loss of generality we shall assume

(IV) All the functions in (IV) are uniformly continuous and bounded
in O x { / : —

Throughout this paper it is understood that any solution of (0.1)-
(0.2) is a function u such that Ώ\u(f) is a strongly condinuous function
of t with values in H2m-M(Ω) for k = 0y 1, •••, 2m and such that (0. l)-(0.2)
hold for u. In what follows we denote by CiyC2y ••• constants dependent
only on the assumptions (I)—(V) and (IV7) unless otherwise stated.

2. Estimate in case of time-independent coefficients

As a preparation we obtain some estimates in the special case in
which all the coefficients of A and {Bj} 3*βl are independent of t:

A(x,t,Dx,Dt) = A(xyDx,Dt)y

Bj(xy ty Dχy Dt) = Bj(xy Dχy Dt), j = l, - , m .

From now on we shall usually write the abbreviated forms \\u\\ky <φ>Λ

omitting Ω and 3Ω respectively.

Lemma 2.1. Under the assumptions of section 1 for any function
(Ω) and real number λ we have
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g ix, Dx, λ)«||β
+ Σ I λ IC2m-mS/d\\wj(\)\U Σ I|«;,(λ)||2OT_m. +1|«||0} , (2.1)

where w5 (.7 = 1, •••, m) /s #w arbitrary function in H2m^.m.{Ω) which satisfies
the boundary condition

Bj(x, Dχy X)u(x) = Wj(x, λ) , x^dny - o o < λ < o o , y = l , . . . ,m. (2.2)

Proof. We follow the proof of Theorem 5.2 of [2] . Let ζ(y) be
an infinitely differentiable function on the real line such that ζ=l for
\y\ ̂ 1 , f = 0 for \y\^2. We introduce the function

where μ is a real number and «ei/2OT(Ω). By the assumptions and the
remark in the proof of Theorem 5.2 of [2], we have

IML..r^C,{IIΛ(*, Dx, Da

y)v\\o,r+ Σ <B£x, Dx, l>5)»>,»-«,,,r + ll»ll.tr}

From the obvious relation

A(x, Dx, Df)v(x,y) = ζ(y)e^υ^A(x, Dx, μ«)u(x)

+ Σ A,-Ax,

it follows that

\\Ά(xy Dχy Da

y)υ\\0Γ ^ C3{\\A(x, Dx, μd)u\\0+±(l+\μ\*d-1)\\u\\2m-kd}. (2.3)Σ

Recalling the definition of the boundary norm < >Λ and noting that
Bj(xy Dχy μd)u(x) = Wj(x, μd) OΏ 9Ω, we get

j(x, Dx9

+ 11X1^-^ Dx)u^(kf)Drpζ^pe^V^y\\2m-mj
J

Σ ' d +\μ\)kd~1+9\l«lI—.-«} (2.4)

Noting that v(x, y) = ec~Όl/2μ-yu(x) for | .y |^ l , we obtain

1 ' 2 \2m~kl 1

Thus if | μ | is sufficiently large we find
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Σ l/*Γ-*IMI*^c.{||A(*, Dx, μ")u\\
* o

* - • • • • - - ,

u

2m-mj 2m-l+ Σ Σ I /* I ""-"^-*l I ">>ΌI I* +1 /* I -1 Σ I /»r"* I l«l I*} (2- 6)

Replacing A(x, Dχy Da

y) and {£,.(*, D*, Z)*)}T=1 by ^4(#, Zλ,, -Z)J) and
{Bj(x9 Dχy —Df)}f=1 respectively, we obtain an estimate similar to (2.6).
Putting \ = μd or \=—μd, we can show that if λ is a real number with
a sufficiently large absolute value

The proof of the lemma will be easily completed noting that for 0<k
<2m—mj

If u(x9 t) is a function defined for I E Ω , — OO<^<OO, we denote by
ώ(#, λ) the Fourier transform of u with respect to t:

. t)dt. (2. 7)

Lemma 2. 2. Le/ u be a function of t with values in H2m(Ω) satis-
fying

A(x> DXJ Dt)u(x, t) = f(x, t), * e Ω , - oo < / < oo, (2.8)

Bj(x, Dx, A ) «(^» t) = gj(x> t ) y x<EΞdΩy - oo < t < o o , (2.9)

where f and gjy j = l, * ,m, are functions of t with values in L2(Ω) and
respectively. Then we have

11/(01 IW/
o

+ Σ ( (I λ I ^-—^rfιii/\)||0)
2rfx-i- (2.10)

j = l J - o o

+ Σ S^JI^ (OIIL-^+ \[j\u(t)\\ldt}

if all the terms of the above inequality are finite.

Note that (2. 9) is assumed to hold only on the boundary although
the functions on both sides are defined also in the interior.

Proof. ύ(xy λ) satisfies
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A(x, Dχy \)ύ{Xy λ) = f(xy λ ) , . #<ΞΩ, — o o < λ < o o ,

Bj(x, Dχy \)u(xy λ) = gj(x, λ ) , Jce3Ω, — oo < λ < oo .

If we apply Lemma 2.1 to u(xy λ) taking gj(x, λ) as Wj(x, λ), we get

Σ
Σ

Integrating the above relation over — oo < λ < oo and applying Plancherel
theorem we complete the proof.

3. Estimates in general case

In this section we obtain some estimates in the general case of
time-dependent coefficients.

Lemma 3 .1. Let υ be a solution of

A(xy ty Dχy Dt)v(xy t) = f(x> t), Λ G Ω , - oo <t< oo , (3.1)

Bj(x, t9 Dx, Dt) v(x, t) = gj(x, t), x e 9Ω, - oo < t < oo , (3.2)

y = l, ~,rn.

If the support of v as a function of t is sufficiently small, then the
same estimate as (2.10) holds for v replacing C7 by another constant if
necessary.

Proof. Let s be an arbitrary real number and suppose

Φ Γ , 0 = 0 if | ί - 5 | > δ (3.3)

where δ is some small positive number. Let φ(t) be a smooth real
valued function such that φ(f) = l for | ί | ^ 1 and φ(f) = 0 for \t\>2. If
we write ψ(t) = φ((t—s)/,δ), then ψ(t) = l on the support of v. Clearly v
satisfies /

A(x, s, Dχy Dt)υ(xy t) = F(xy t), * e Ω , - oo.</< oo , (3. 4)

Bj(xy sy Dx, Dt)v(xy t) = Gj(xy t), xeί9Ω, - ώ < / < oo , (3. 5)

y = i , ••-,»*,
where

± Λ(X, s)-a^ktΛ(xy f))Ό«xD\υ, (3.6)

with the notation



WEIGHTED ELLIPTIC BOUNDARY PROBLEMS 171

Ύj,h-*,β(x, S, t) = ψ(/)(δΛI/_*>β(*, s)-b-t..κβ(x, 0) (3. 8)

As is easily seen

\yιι.^β(x,s,t)\^C10S, (3.9)

IDl+ i

Ύ j J.^β(x, s, t)I £Cuδ~', (3.10)

and hence

|? y > / ,_ M (*,s,λ) |^C 1 2 δ 2 , (3.11)

I *-ι+Vj.ι,-k.άx, s, λ) I ̂ C13V->. (3.12)

It follows from the above two inequalities that

(" \<9,1,-k.άx, s, X)\dX^CuS, (3.13)

j " |λΓ'"-'V/«|tf y . ^ U U ί l Λ ί g - ' - " , * if w, >0. (3.14)

The Fourier transform of G/x, t) is

6 / * , λ) = ij(x, λ) + Σ Σ f, /y-* β(x, s, -)*(DξDiυ)\x, •). (3.15)

If we notice the following lemma:

Lemma 3. 2 / / / and g are complex valued functions on the real
line — oo<χ<oo, we have for γ > 0

~M (I λ π (f*g)(χ) I )Wλ)V2^2γ j " j /(x) i Jλ ( J " j i x

+2" ^jxr\f(\)\d\(yJg(X)\2d\J/2 (3.16)

provided that all the terms of the inequality are finite

we get from (3.11), (3. 9), (3.10)

Γ (ixi«m-mP>d16j(x, x)iγdx^cJΓ (iλi<*—v*ιgj{x, x)\γdx
J —oo {J —oo

+δ2Σ Σ Γ
k=0 \β\^mj-kd J -oo

4-Σ Σ 8«>-a
*=0 ]β\^mj-kd

Integrating over I G Ω we get

Γ
«/ — o
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M>J"..(lλl*ll^λ)ll-y-«)>

f^Czm-mp/d 1 ^ 1 (.2m-mj+kdyd\kd/(.2m-m .+kdϊ §-(.2m

<§<:2m-mp/d 1^ K2W

(3.17)

we have

Γ (|λ|Λ | |
J — o o

— ^ ^ H ^ I L ^ w y r f λ (3.18)

-» Γ ||ί(λ)||» w r f λ .
J — CXJ

Noting

we have also

J - o

!" \\ύ{x)\\ldx. (3.19)

It should be noted here that (3.19) is true for &=0 and also for k=lj
if l]=mj\d. Summing up we get

(I λ I «m-mP>*\ \6j(X)\ \0Yd\ ^ C 1 8 { J ^ (I λ I c«—y

^ ^ r f λ (3.20)

The following two inequalities are easily proved

Γ IIG//)IIL-yΛ^Cig{(" ||*/f)ll!
J —oo ^ J —oo

+ί(δ)ΣlΓ (|λn|ί(λ)| |2 w_w)2Jλ} ( (3.21)

, (3.22)



WEIGHTED ELLIPTIC BOUNDARY PROBLEMS 173

where £(δ) is a function such that £(δ)-^0 as δ-*0. Making use of
(3. 20), (3. 21), (3. 22) in the application of Lemma 2.2 to vy we get

2m Γ oo

Σ (iλic2w-*
* = 0 J-oo

+ Σ Γ (I λ I *"-"y^|li/λ)| |0)Wλ + Σ Γ I |#/f)lI!—./** (3.23)
y=i J-oo j=i J -oo

S oo 2W Γ°° Ί

||ί)(OII2o^+£(δ)Σ (|λ|<2m-*3/"lWλ)ll*)Wλ
- o o k = 0 J - o o J

the desired inequality for v follows from (3.23) when 0 < δ ^ δ 0 , δo being
some small positive number independent of s and u.

Let a and b be any real numbers satisfying 0<δ — <z^2δ0 where δ0

is a positive number such that (3. 3) holds whenever the length of the
support of v is not larger than 2δ0 (cf. the end of the proof of Lemma
3.1). Let δ and δ' be any pair of positive numbers satisfying δ '<δ<δ 0

and φ(f) be a smooth real valued function such that φ(t) = 0 if t<a + δ'
or t>b + V and φ(t) = l if a + δ^t^b-δ and

\DkMt)\^K(δ-δTk, Λr=l, --,/, (3.24)

with some constant K independent of δ and δ'. v is to be a smooth
function having a compact support in the real line and satisfying v(t) = 1
in some open set containing the closed interval [#, b~\.

Lemma 3. 3. Using the above notations for any solution u of

A(x, t, Dχy Dt)u(x, t) = / ( * , /), X6Ω, a<t<b , (3. 25)

Bj(x, ty Dx, Dt)u(x, t) = gjix, t), *GΞΘΩ, a<t<by (3.26)

we have

Σ \b~S\\Dl-ku(t)\\ladt£cJ\''~''/\\f(t)\\ldt

+ Σ J"^(Iλ I<"->V"|\φgj(X)\\oγd\+Σ £*',\\gM\lm-m)dt (3.27)

+ (M0KY Σ T^ΛTT
^ ( θ θ ) β

where Mo is a constant such that

\κ\ ^2m —
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Proof. If we write

v(x,t) = φ(t)u(x,t)9

then the length of the support of v is not larger than 2δ0 and υ satisfies

A(x, t, Dx> Dt)v(x, t) = F(x, t), x<=Ωf - oo<t< co ,

Bj(x, t, Dx, Dt)υ(x, t) = Gj(x9 t), x^dCί, - oo <t< oo ,

y=i , •• ,m,

where

± AiΛx, t, D) Σ

Σ Σ (!) Σ **,/,-*

As in the proof of Lemma 3.1 we get

^ C23{ J"_ (I λ I c~-yV-| | ^ , ( λ ) | \,)'d\

+MI-Σ Σ (" \\(D)-»φ-D»tuy(x)\\lrkddχ).

If lj = mj/d, (2m — nij)/d is an integer and we can immediately apply

Parseval theorem to all the summands in the second sum on the right.

If nij/d is not an integer, we shall replace these summands by the sums

of other integrals in which only integers occur as the exponents of | λ |.

Hence suppose m^d is not an integer. We notice

(lj+l)d-mj

By (3.29) we get for any function w<=Hm._kd(Ω)

|λ|C 2 m-"V>Λ I |ML i- i W

tίco{\\\ '-'nMa^-M^r"'";*1-'^ I λ I ι

y * | | ι ι ; | l o ) . (3.30)

By (3.30) with (/>?">• ̂ ?«)Λ(λ) in place of w we get
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i] k-i

Σ Σ Γ ( iλ i c 2 m -
k = l /,=0 J-oo

+clJ2 Σ Γ (\\\'-l!\\(Dk

ι-
p<P DΊu)

k=l ί=0 J-oo

^ f ? Σ Σ Γ \\D\''r\Db

c-Mt)'D"tu{t))\\l^-k

Έ Σ
^ 0

S § ( V

Clearly

Γ ιi(Drv £>?
J — oo

Summing up we obtain

Γ (I λ I c—yW||£/ ( λ)| |o)^λ^C J Γ (I λ I o—.yV-|\φg£κ)\\oγd\
J -oo ^ J -oo

Σ ,. Λ\\
i+kψι ( δ — δ ) * Jβ+β7

As is easily seen
Γ
J - o

+(Moκγ

kψ

Σ̂  (δ δ ) «

Hence with the aid of Lemma 3.1 we get (3.27).
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4. Differentiability in t

From now now on we shall write fcp\xy t) = Dp

tf(xy t) for any func-

tion / of (xy t). By q we denote a natural number. In addition to the

assumptions of section 1 here we make the following

ASSUMPTIONS. (VI,) a^koύ(xyt)y \a\S2m — kdy k = 0, •••,/— 1, are q

times continuously differentiable in t in O x ( - o o , o o ) ;

( V I L , ) D l b j j . ^ k β{xy t) a n d b 5 ι r k β(xy t), \β\ < ^ m 5 — k d y k = 0y •••, ljy

\κ\ ^2m — mjy 7 = 1, -- ,m, are q t imes and q + l + 1 t imes continuously

differentiable in t respectively in Ω x ( — oo, oo).

Let Mpy p = Oy --yqy be positive constants such that for p = Oy~-yq

s u p \aflk Λ{Xy t ) \ ^ M y \ a \ ^ 2 m — kdy k = 0y •••,/— 1 ,

sup \DlVft kB{x,t)\tίMp,
Ϊ £ Ω

 J P

O O < / < O O

sup

s u p ί " Iλl^—"yw |(i7ί5rί.-*β)Λ(x, λ ) | J λ ^ M , if

where η is an arbitrary smooth real valued function with a compact

support of some fixed length such that

77(/) = l in some interval of length 2δo + l, \Dϊv(t)\^K1 for k = 0, •••,
/ + 1, —oo</<oo, with some fixed constant Kx.

Lemma 4.1. Suppose for some q the assumption (VI,) and (VII^) are
satisfied in addition to the assumptions in section 1. Suppose f{x, t) is
q times continuously differentiable in t when it is considered as a function
with values in L2(Ω). / / u is a solution of

A(x, t, Dx9 Dt)u{xy t) = f{xy t), *e=Ω, - 00 <t< 00 , (4.1)

Bj(xy ty Dχy Dt)u(x, 0 = 0, jtreθΩ, - 00 <t< 00 , (4. 2)

j = ly ~ - y m y

such that HDt^^Ollα-o?* ί = 0, •••,/, p = 0y •-, qy are locally square inte-

grable, then for any ay b such that 0<b~aS2δ0 and δ, δ' such that

0<δ / <δ<δ g , we have
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1/2 (ίCb-S' \l/2

i/2

l/2

a b-V

Proof. ucg\xy t) is a solution of

A(x, t, Dχy Dt)uiq\xy t) = F(xy t), Λ G Ω , - oo <t< oo ,

βy(Λ, t, Dχy Dt)ucq\x, t) = Gj(x, t), XEΞdΩ, - oo <t< oo ,

where letting A\qsp and βJV/-* stand for the operators obtained by
differentiating in t (q — r) times the corresponding coefficients of At_k

and B5ι_k respectively

ro *0

By the assumptions F(t)^L\Ω) and Gj(t)^H2m_m.(Ω), j = l,—,m9 for
each ί, hence we can apply Lemma 3.3 to ucg\ The estimation of

[b~*'\\F(t)\\ldt and ί^'jIGyίOIIL-^Λ, i = l, - , m , is straightforward.

As in the proof of Lemma 3. 3 we get

( I I Cb-h'

,-r\Έ ( ,\\DWXt)\\U
U=0 \Ja+8/

i / rft-δ7 \V2Λ

^ jiDr1-'^^)!!^)
—δ )* w«+s' / J

l /2

Thus the proof of the present lemma is completed.

With the aid of Lemma 4.1 we can proceed by difference quotient
argument to prove

Theorem 4.1. Suppose the assumptions (I)—(V), (VI,) and
are satisfied for some q>0 and f is a q times continuously differentiate
function of t with values in L2(Ω). Let u be a solution of (4. l)-(4.2). //

Σ \\Dιt~ku{t)\\kd is locally square integrable in t, then so is Σ \\D\~k+qu(f)\\kd
o Λ o
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especially u is a l + q — 1 times continuously differentiable function of t
with values in L2(Ω).

5. Analytcity in t

In this section we prove the abstract analyticity in / of solutions of
(4. l)-(4.2) assuming that the coefficients of A, {Bj} as well as / are
all analytic functions of /.

Theorem 5.1. Suppose in addition to the assumptions (I)^(V)

a^koύ(xyt)y \a\<:2rn — kd> k=0> •••,/— 1,

are analytic functions of t in Ω x(— oo, oo) with t-derivatives of all orders
continuous in Ox(—00,00). If f is analytic in t when considered as a
function with values in L2(Ω), then so is the solution u of (4. l)-(4.2).

Proof. By Theorem 4.2 Σ \\D]-kuiq\t)\\kd is locally square inte-

grable. Write
,1/2

whenever the right side is finite. Let 0<b — #^min (2δ0, 1). By the as-
sumptions it is easy to see that there exist constants M and Lo such that

(5.1)

\ (5.2)

for any non-negative integer p. Now we apply Lemma 4.1 with
and δ' = qεy where £ is some small positive number. Noting

Όξ(un if O^r^q-1,

(ucr-») if l^r^q, l^i^l, (5.3)

a b-q* \l/2

W\t)\\ldt) ^N(q.ι+oM"-n) if
we get when q>l

Σ ̂Σ ^MMq-rε9+ιNί+Ό{u^)+ Σ ^-MM"-r ΣΣ -^-M0M"r Σ
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(5-3)

We prove that there exists a positive constant L such that for any
positive integer p

+1. (5.4)

It is clear that (5.4) is true for p = 0, ,l if L is sufficiently large.
Suppose (5.4) is known to hold for r=0, - ,q — 1 with some q>ί. If
qε>l the left member of (5.3) vanishes. If qε^l

Σr="
Σ
r=0

Σ ?! {r^-1ε
0

if L^2M. Estimating similarly the other terms we get if LΞ>max(2M, 1)

£!*+WC?+1)8(MC«) ^ C2 {L.M*?!+2MML'+9 + 4ML 9 + '

ΣΛί''

Therefore if L is sufficiently large it follows that (5.4) holds also for
p = q. If 0<δ<δ 0 and (q+ 1)6 = 8, then from (5.4) it follows

*=o \Jβ+δ /

which implies the desired analyticity of u(t).

6. Analyticity in all variables

We conclude this paper by showing that the solutions of (0. l)-(0. 2)
are analytic in all variables in Dx(-oo, oo) if the coefficients, the known
function and the boundary of Ω are all analytic. In order to avoid an
inessential complication we confine ourselves to the case / = 1 , hence the
problem (0. l)-(0. 2) is reduced to

DM*, t) + A(x, t, Dx)u(xy t) = f(x, t), ^ E Ω , (6.1)

Bj(xy t, Dx)u(xy t) = 0 , χ(Ξdn, j = l9—,m. (6.2)

Here A(xytyDx)= Σ aΛ{xyt)DΛ

x and Bj(xytyDx)= Σ bjβ(xyt)Dξ (j = ly

-~ym) are differential operators in x of order 2m and m} respectively
all of which do not contain Dt.
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Our assumptions are restated as follows:

ASSUMPTIONS. (Γ) for each t ±D$m-\-A(x, /, Dx) is an elliptic operator
in (xy jy)eΓ of order 2m, and the Complementing Condition is satis-
fied by (±Z)J~ + i4(*, ty Dx\ {Bj(x, t, Dx)}%iy Γ).
(IF) The boundary 8Ω of Ω is an analytic manifold.
(ΠF) All the functions aΛ(x,t), \a\^2m, bιβ(x,t)> |/?|gm y, j = l,
•->rn> f(x, f) are analytic in (x, ί ) E θ x ( - o o , oo).

Before proving the main result we note that if the coefficients of
Ay {Bj}y the function / and the boundary of Ω are all infinitely differ -
entiable, then the solution is infinitely difϊerentiable up to the boundary.
This statement can be proved by differentiating (6. l)-(6.2) in t succes-
sively or by starting from

(6.3)Σ
instead of the one with k = 0 in the proof of Lemma 2.1. Thus it
suffices to verify that the Cauchy data of u on the boundary are analytic,
since once this has been proved we can apply Holmgren's theorem to
show the analyticity of u near the boundary and the interior analyticity
of u is easier to be proved. Furthermore we want to notice here that
the analyticity of u as a function of t with values in H2m+k(Ω) follows
for any k>0 under the present assumptions for the same reason that
implied the infinite differentiability of u above.

By means of an analytic transformation we may suppose that the
origin is located on a part of dfl which is contained in the hyperplane
xn = 0y and we shall prove that the Cauchy data of u are analytic near
the origin x = 0y t = 0. In what follows we denote by C29, •••, C42 constants
dependent only on the assumption (F) as well as certain smoothness
properties of the coefficients of Ay {Bj} and the boundary ΘΩ.

We shall employ the following semi-norms and norms:

M? = | 0 | ? Q = Σ ( \D*Xx)\2dx,
|κ|=f J Q

r = Σ l»l?r
, =o

We may take positive numbers cQ9 cx in such a manner that we have
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\v\aco\v\yj\v\r^+c1\v\O9 (6.4)

\v\i^co\v\yi\v\X-i>»+c1r-i\v\Otr, (6.5)

if 0<i<j^2m and 0<r. Furthermore following M. Schechter [11] we
use the boundary semi-norms for a function defined on dfί:

where the infinum is taken over all functions υ coinciding φ on 8Ω.
First we consider the case in which all the operators Ay Bjy j = l,

•• ,m, have only highest order derivatives with constant coefficients:

A(x, U Dx) = A(DX) =Έ2ma«D«x ,

Bj(x, t, Dx) =Bj(Dx) =ΈmblβDξ .

We begin with some estimation of a function u which satisfies

DMx> t) + A(Ds)u(x, t) = /(*, /), xtΞ& , (6. 6)

Bj(Dx) u(xy t) = gj(x, t), x e 8Ω, j = 1, , m . (6.7)

By Theorem 3.1 of [11] we have

| e ; | 2 W ) Γ ^ C 2 9 ( | ( ± Z ) r ^

for any function υ which is defined and smooth in Γ and vanishes for
| J / | > 1 . Hence the same argument as in section 2 yields

Lemma 6.1. // u satisfies (6. 6)-(6. 7) and has a compact support^
then we have

2m Λ°o
VM ( \ \ I C2W-̂ j)/2

= 0 J-oo

+ Σ Γ (IλI<*-*/>»"• ii/x)10)
2rfλ + Σ Γ

y = l J-oo ; = 1 J -

y=i J -

Let r>0, δ>0 be such that r + δ < p and let ζ(x)y ψ(t) be smooth
functions satisfying ζ(x) = l for \x\<ry ζ(x) = 0 for |ΛΓ| > r + δ, ψ(t) = l
for | ί | < r , ψ(t) = 0 for | ί | > r + δ and for all x or t

(6.8)

(6.9)

If u is a solution of (6. 6)-(6. 7), then υ(x, t) = ψ{t)ζ(x)u(xy t) is a func-
tion with a compact support satisfying
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where

Dtv + A(Dx)υ = F(x, t),

Bj(Dx)υ = Gj(x, t),

F =

, j = 1, •••, m ,

2 *β Σ D«x«'ζ D«x'u ,

Iβl^y y ' β'<β

By the same argument as that of section 2 we can prove

(6.10)

(6.11)

= (6.12)

where Moo is a constant such that \aa\^M00, \bJβ\^M00 for all a, β
and;. Nothing \x^"-mP/2m^£\x\ +£-i2m-mP""j and using (6.5) we can
easily show that for 0g

I λ I «

I λ I

| a ; | β f r +

φ 1 0 > r + ,

(6.13)

' }

If we combine (6.13) and (6.14) after a suitable choice of €lt ε2, 63,
we get

which c2 =

o j

m} \ w \ 0>r,« '

c1. Using (6.15) with ε = 8mrk/L, L ^ l , we obtain

(6.16)

Substituting (6.16) in (6.12) and then applying PlanchereΓs theorem
we get
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1/2

= (ί".('
i/2 1/2

I u(t) I ^

Similarly noting that if L^
2m-mj

y i o J i w j k r+δ , (6.17)

(6.18)

we obtain

a r+S \i/2 / rr+δ

_r_t\8λt)\Ό.r+»<iή + M β > 0 L - 1 ( J _ r _ β i«(/) I !».,+
8

 β i u(t) i ;>r+

i/2

S oo Λoo

|F(ί)|odί and \ \GJjt)\ldt can be estimated in a similar manner.
_ o o J — oo

Thus with the aid of Lemma 6.1 we obtain
Lemma 6.2. // u is a solution of (6. 6)-(6. 7), then for each r>0,

δ>0 such that r + δ<p we have

I »(/) I

I λ I
1/2

1/2

i/2 r+δ \ 1/2)

r 8\u(t)\lmr+sdή J

where ψ is the function depending on ry S as was defined after Lemma 6.1.

From now on we shall distinguish the normal variable xn from the
tangential space variables x' = (x19 •••, χH_J and by V̂  we denote any
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derivative of order p with respect to x\ For the sake of convenience
we express Leibnitz formula as follows:

although some comment would be necessary in doing so. We denote by
A* and B] the principal parts of A and Bj respectively:

A%xy t, Dx) = Σ aΛ(x, t)Dt,

B)(x, t, Dr) = Σ bj β(x, t)D* , j = l,-,m.

If u is a solution of (6. l)-(6.2), then for Dq

tV
pu we have

DtD"cV
pu + A\0, 0, Dx)D1V"u = Fp,q(x, t), jceΩ , (6.19)

B)φ, 0, Dx)DΊVpu = Gj.p.Λ*, /) , Λ:e8Ω, ; = 1, - , w . (6.20)

Here

Fp,n = DV7>f+ Σ («„((), 0)-ββ(x, ))

( 6 2 1 )

- Σ «»£>:^?v^- Σ' (S) t ) Σ βΓ ί

5.P,q = Σ (* y β(0,0)-* i P(j
(6.22)

\β\m \Q I \P /iβis"1

where Σ ' means that the summation extends over all (p', q') satisfying
OSP'^kP, O^q'tίq expect for {p, q) = (p', q'). If v{f) is a function such
that 7(/) = l for \t\£r+δ, v(t)=O for | ί |>2(r+δ), and \Din(t)\£K(r+8)-*
for A;=1,2, then

where yjtβ(x> t) = v(t)(bjβ(0, 0) — bJβ(x, t)). As in section 3 we can easily
show that there exists a constant M1 such that if |jt;|<^r+δ and rrij>0

\~J7JAX> WdX^M^r+S) (6.23)

Γ 1 x ^ 2 — ^ / ^ 1 ^ ^ χ ) | j χ ^ M 1 ( r + δΓi / 2 w . (6.24)

Let Mp,q be positive numbers such that for all a, β> K, j with \a
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sup I DlDϊVpbJtίi(x, t)\^Mp,q,

WbjsYix, λ)\dX^Mp,v,
J -oo

s u p ( " \\σmmP/2m\(D"Vpb)A(

sup
X J - o o

(
X J — oo

(6.25)

where sup is taken over Ωx(— oo,co)orΩ. Then it follows from (6.23),
(6.24), (6.25) and Lemma 3.2 that

( J " . ( i * i
Iλ I

i/2

α l /2

The following inequalities follow from (6. 5), (6.15), (6.14)

(r+S)mJ/2m I to

+ (c, + ̂
w 2mtr+s

-1 3 '"/2 '") I w
0>r+δ

^ ^ , + | | a ; | L i > r + ί

(6.26)

(6.27)

m { w L r + s h (6.28)

(6. 29)
0) --\W\Ojr+h) -

We shall use the following notations:

dp,q(u, r) = m a x j ( I |Dq

c

+1Wpu(t) 11 rdtj + ί \ |Dq

tV
pu(t) 12m rdtj >

a r \i/2

I Dq

tV
pf(t) I o>r«Π

for ^, ̂  = 0,1, •••, 0<r<p, where the maximum is taken over all deriva-
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tives V* of order p.

Applying (6.27), (6,28), (6.29) to the right of (6.26) and then

making use of Plancherel theorem we get

λ '
, + M0>0)(r + δ) x

/V(«, r+8)

As is easily seen

1/2

^ JZ)JV*(/)lSr+.Λ) } (6.30)

i/2α r+δ /

I^.Q(Olofr+8^) i s dominated by
the sum of ep,q(f,r+δ) and the right-hand side of (6.30) with C40

possibly replaced by another constant. Similarly
Σ

j=i

l /2

+ Ca Σ' ( J ) ( ^

Thus with the aid of Lemma 6. 2 we obtain
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dp.v(u, r)^Ci2ep.v(f, r+B) + CJr+S + L~ι)dp.9{u, r+B)
i/2

where C43 is a constant dependent only on the assumptions (Γ), certain
smoothness properties of the coefficients of A, {Bj} and the boundary of
ίl, and the constants M19MOfQ,K. We introduce the following notations:

NPpq(u) = ((p + qy.y1 sup rfp ,(«, r ) ( p - r ) 2 w + ^ ,
f ' P/2^r<p

Λίp, •(/) = (( ί+ί) ! )" 1 sup epβ(f, r)(p-rγm+i>+«
' ' P/2^r<p '

for p, q = 0y 1,2, •••. Under the present assumptions there exist positive
constants Mo, M such that

ί!, p, q = 0,1,2, - . (6.31)

From the definition it follows that if p^>2rn

( Π \ | D ? V M 0 l ° 2 ^ (6.34)

Due to the previous remark u{t) is analytic in / as a function with
values in i/4Wί(Ω), hence there exist positive constants iV0, Λf such that

for 0<=p^2rn, q = 0,1,2, •••. We may assume Λ/>2M. Multiplying by
(p-r)2m/(p+q)\ both sides of (6.31) with p/2^r<p and 8 = (ρ-r)/(p + q
+ 1) and using (6.32), (6.33), (6.34) we obtain for p^

p p - 2 m q\U)

/ + — X P V ( H ) (6. 35)

—
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If we note

q'\p'\

m(p, + q,_2m)\<g(2m)2tn(2m + l)p~p' if p^p'^
\

we obtain from (6.35)

Hence if p is so small and L is so large that C^ζp + L" 1 )^ 1/2, we
conclude

+ Mo Σ QMyNμy9Λu)

with some constant C44 of the same property as C43. By assumption
we have Mppq(f)^RoRp+q for all p, q with some constants i?0, R. We
want to show that there exist positive constants Ho, H such that

NPPfq(u)^H0H
p+9 (6.37)

for all p, q = 0,1,2, •••. It follows from (6.34) that this is the case for
p<^2m, q = 0,1,2, •••. By induction we can show that the same is the
case also for q = 0, p = 0,1,2, •••. Hence we can proceed by induction
with respect to p + q to show that (6.37) is true for every py q if Ho

and // are so large that

5C 4 4 L 2 W 1 ^
44

log (20mCuM0N0\/JH-1)+2m log s ^ s log H(pM)-1 for 5 = 1,2,
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Due to the inequality

\v(x\ 0)\2dx/^Z2r~1 \ \v\2dx + Z2r \ \gradv\2dx
\xf\<r J\x\<r J\x\<r

x

n>° xn>0

which may be found in p. 282 of [10] where Z2 depends only on n, we

have

O r Λ \i/2 / Cr C V/2

\v(x/

yθyt)\2dx/dt) ^\Z2r-Λ \ \v\2dxdt)
-r J\χ'\<r 1 \ J-rJ\x\<r J

*n>° (6. 38)

+ (z2r[r [ \gmdxv\2dxdt)1/2.
*n>°

Applying (6.37) to Dι

XftD
q

tV
pu, 0^i<2m, and using (6.5), (6.38) we get

/ fr Γ V̂ 2 — / M \£+9

for all p, q where

(6. 39) shows that the Cauchy data of u on the boundary near the origin

are analytic, hence with the aid of Holmgren's theorem we get

Theorem 6.1. Under the assumptions (P), (IF), (HP) any solution

of (6. l)-(6.2) is analytic in (*, f)eflx(-oo, oo).
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