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Introduction

In [2] M. Auslander and O. Goldman introduced the notion of a
Galois extension of commutative rings. Further work by D. K. Harrison
[9] indicates that the notion of a Galois extension will have significant
applications in the general theory of rings. T. Kanzaki, in this journal,
proved a “Fundamental Theorem of Galois Theory” for an outer Galois
extension of a central separable algebra over a commutative ring. We
generalize, complete, and give a new shorter proof of this result. The
inspiration for the improvements in Kanzaki’s result came from a paper
by S. U. Chase, D. K. Harrison and A. Rosenberg [4].

This author in [6] began the study of ‘Galois algebras’. These are
not necessarily commutative Galois (in the sense of [2]) extensions of
a commutative ring. Here we continue that study by extending some
of the results in [4] and by proving a generalized normal basis type
theorem in this setting. This paper forms a portion of the author’s
Doctoral Dissertation at the University of Oregon. The author is in-
debted to D. K. Harrison for his advice and encouragement.

Section 0

Throughout A will denote a K algebra, C will denote the center of
A (C=B(A)). G will denote a finite group represented as ring auto-
morphisms of A and I' the subring of all elements of A left invariant
by all the automorphisms in G (I'=AF°).

Let A(A :G) be the crossed product of A and G with trivial factor
set. That is

A(A:G) = S,cc AU, such that
2,Us 2,U, = x,0(x,)U,, x, % N0, 7TEG.

This work was done while the author held a National Science Foundation Cooperative
Fellowship.
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View A as a right T" module and define

j:A(A:G)—HimyA, A) by
7 (@U)x = ac(x) a, z€N;0eCG.

Theorem 1. The following are equivalent :
A. A is finitely gemerated projective as a right T module and
71 A(A :G)—=Homu(A, A) is an isomorphism.
B. There exists x,, -+, X,; Y1» s V.= N such that
S () = { (1) Zig for every o<G.

Following Auslander and Goldman, Kanzaki called A a Galois extension
of T' in case A held. Condition B was discovered for commutative
rings by S. U. Chase, D. K. Harrison and A. Rosenberg in [4]. We call
A a Galois extension of T" with group G if either A or B holds.

Our proof of theorem 1 parallels the proof given for theorem (1. 3)
of [4]. First we prove that B implies A.

Define f;=Homp(A,T) by f{x)=3,cco(y:x) x€A, c=G. For any
XEA

2% fi(x) = 2y, xi0(y)o(x) = x.

Thus by the Dual Basis lemma, A is finitely generated and projective

as a right I' module.
Now we show j:A(A:G)—~Homp(A, A) is an isomorphism. Let U,
be a Basis element in A(A :G). Then

2?=1j(U7)[xi]'(Eo'U(r)yi = Ei,UT(xi)a(yi)Um
= Z17(Zix; 70 (9))U, = U,

Hence by linearity, for all U A(A :G)
U= 200) %] G Us) yi -

Thus if j(U)[x]=0 for all x€ A, then U=0 so j is a monomorphism.
To prove j is onto let 2z Homp(A, A) and let

U = Z?=1zcech(xi)Uo-yi ’ UEA(A : G)
for any x€A, JU)[x] = 27, Zecch(x;)o(yix;)

= h(Zt. ZeecXio(y:ix)) (S,o(yx)ET)
= h(Z}-x:fx)) = h(x).

Thus j is an isomorphism.
To prove the converse, we first show that
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(%) Homp(A, T) =j(¢-A) where ¢=3,..U;.

Pick a€A, j(ta)[x]=3,cco(ax)eT. So j(ta)eHomp(A,T). Suppose
f=j(y»)eHomp(A, T), yeA(A:G). If y=3,a,U,, then for all x€A,
Sea,a(x)ET 50 p(Z,a,0(x))=3,a,0(x) for all pG. Thus =,c;p(@,-1,)7(x)
=3, eca,7(x), (r=po) but j is an isomorphism so p(a,-1,)=a, so a,=o(a),
thus y=3,0(a)U,=7-a,. This proves (x).

Now we want to find x,---x,; y,---y,=A satisfying B. Let x,:--x,, f,**fa
be given by the Dual Basis Lemma. By (%) there exists y,:--y,EA
so that

fdx) =j(ty)x.
Let U=30_x:t9,€A(A :G). Then j(U)[x]=S,cc2t-1x0(y:x) =22, %; fi(x)

=x. jis an isomorphism so U=37_,x;fy;=1. Thus 2}_,x;U,y;= {é zii
1o=1

so since j is an isomorphism, 37_,x;0( y,-)={0 o1 and this completes
the proof.

Section I

In this section we prove a sharper version of Kanzaki’s result. All
notation is as it was in section O.

Lemma 2. Let A be separable over C, and assume G induces a group
of automorphisms of C isomorphic to G and that C is a Galois extension
of C°=K. Then A is a Galois extension of A°=T and there exists a
1-1 correspondence between the K-separable subalgebras Q of A containing
T and the K-separable subalgebras A of C given by

A— A-T
3(Q) < Q
Proof. A is a Galois extension of I" by B of theorem 1 and by the
hypothesis that C is Galois over K.
By theorem (A.3) of [2], K= {S,cca(x)|x=C} so
I'=K.T
= {Z,0(x)|x=C}-T
= {S,0(xt)|xeC, teT}cl, (A°=T).
Thus T'={3,0(x)|x=A} and there exists feHomu(A, T') (f=Z,eco) and
there exists an a= A so that f(a)=1. Thus I' is a direct summand of

A as a A-T module.
We now show T' is separable over K by showing I' is a projective



120 F. R. DEMEYER

T'QkT° module. APA’'=ARQxA’ as AQxA° modules since A is separable
over K. Since TI" is a direct summand of A and the hypothesis insure
that A is projective over K (A is finitely generated projective over C
and C is finitely generated projective over K) the sequence 0—>T'® gl
—-AQRxA° is exact. Thus APA'=ARxA’ as T'QxI® modules. By the
symmetry of condition B of theorem 1, A is projective as both a left
and right T module. (A is T'—T projective.) So ARxA’ is projective
as a I'QxI® module. Hence A and thus I is projective over I'® xI"°.

Now define a homomorphism %:T'@xC—A by A(tQRQc)=t-c;teT,
ceC. Since C is Galois over K, by theorem (1.7) of [4] or a glance
at B of theorem 1, one sees that T®xC is Galois of T" with the same
group G. (o(t®c)=t®aoc). By lemma (1) of [6] or by a computation
using B of theorem 1, % is an isomorphism.

Thus the center of I" (denoted B(T")) is K, for if x=3(I') then
x€3(A), (A=hT'®xkC)) so xC. But x=T implies x=C¢ so x€K.

Now we prove the 1-1 correspondence of the lemma. Let Q be a
K-separable subalgebra of A containing I'. Let A be a K-separable
subalgebra of C. Define

¥ Q- 3(Q)
(v:A—-h(Rk)) (notice TRxACT R xC)

If x€3(Q) then x belongs to centralizer in A of T so x=3(A) and
B(Q)cC. B(Q) is separable over K by theorem (3.3) of [2]) thus
is well defined.

Since T" is a central separable K-algebra, AQxI" is a central separ-
able A algebra (theorem (1.6) of [2]) thus %2(A®xI) is a separable
K-algebra, central over A and containing I'. Thus v is well defined
and ry(A)=A for all K-separable subalgebras A of C.

Now yy(Q)=A(B(Q)®x)< and yy(Q) is a central separable over
Q). If Q=+9Y(Q) then by theorems 3.3 and 3.5 of [2] there exist
a central separable 3(Q) algebra Q’ such that

Q = yy(Q)R 3 and

thus Q’ is contained in the centralizer in A of I'. But then Q'<C.
Thus Q' =3(Q) and yy(Q)=Q. This proves the lemma.
Here is the generalization of Kanzaki’s result:

Theorem 3. With the notation and hypotheses of lemma 2, assume
C has no idempotents except O and 1. Then there is a one-one correspon-
dence between the K-separable subalgebras of A containing T and the
subgroups H of G.
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If Q is a K-separable subalgebra of A containing T then there exists
a subgroup H of G so that Q=A~.

Moreover for all subgroups H of G, A is Galois over A" and if H
is a normal subgroup of G then A% in Galois over T with group G/H.

Proof. By theorem (2.3) of [4] there is a one-one correspondence
between the K-separable subalgebras of C and the subgroups of G given
by H—C¥. By lemma 2 there is a one-one correspondence between the
K-separable subalgebras of C and the K-separable subalgebras of A
containing I" by

A—h(TRkA),

Combining these two facts, we have the one-one correspondence,
thus every K-separable subalgebra Q of A containing I' is of the form
AF for some subgroup H of G.

If H is a subgroup of G then by theorem (2.2) of [4] C is a Galois
extension of C¥ with group H. The same elements which satisfy B of
theorem 1 for C over C# satisfy B of theorem 1 for A over A¥. The
same theorem in [4] and the same reasoning apply when H is a normal
subgroup of G. This completes the proof.

Section II

Now we expand our point of view. Let A be a faithful K-algebra
and G a finite group represented as ring automorphisms of A so that
A¢=K. Then all the elements in G are K-algebra automorphisms of
A. As before, A is Galois over K or a Galois K-algebra in case either
A or B of theorem 1 hold. In [6] the author showed :

Lemma 4. Assume A is a Galois K-algebra with group G. [f C=
Center of A contains no idempotents except 0 and 1 then C=A¥ where
H={ceG| o(x)=x for all x=C} and H is a normal subgroup of G so
that C is a Galois extension of K with group G/H.

Proof. See theorem (1) of [6].
We now prove a lemma which allows us to extend the range of
application of Lemma 4.

Lemma 5. If K contains no idempotents except O and 1 and A is a
Calois K-algebra then
AN = ANeB--PAe, (e; minimal central idempotents)

and Ae; is a Galois extension of K with group J;={c=G|o(e;)=¢;}.
Moreover 3(Ae;)=Ce;=Aei where H; is a normal subgroup of J;.
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Proof. C is finitely generated projective and separable over K since
A is finitely generated projective and separable over K. By theorem
(7) of [8] since K has no idempotents but O and 1

C = $3Ce; ¢; minimal idempotents in C.
thus A = PIAe; ¢; minimal central idempotents in A.

0 o&&];
e; o< ];
so by theorem (7) of [8] Ae; is a Galois extension of K with group J;.
Ce;=38(Ae¢;). Let H;={o&];|oc(x)=x for all x&C¢;}. Then by Lemma 3
H; is a normal subgroup of J; and Ae¥:i=Ce;. This completes the proof.

We note that if K has no idempotents except O and 1 this lemma
reduces the study of Galois K-algebras to those already considered in
Section 1 and to the study of central Galois algebras, i.e., Galois algebras
A over K with group G so that 8(A)=K. We now give the structure
of a broad class of central Galois algebras.

The class group “P(K)” of a commutative ring K was defined by
A. Rosenberg and D. Zelinsky in [11] and they showed

1. If A is a central separable K-algebra and o is an algebra
automorphism of A of finite order # such that no element in P(K) has
order dividing # then o is an inner automorphism of A, i.e., there exists
a U.€A such that o(x)=U,xU;" for all x€A.

2. If K is a field, Principal Ideal Domain or local ring, then
P(K)=0.

If A is a central Galois K-algebra, then A is separable over K,
theorem (1) of [6]. Assume the elements of the Galois group G are
inner on A. Then for each o =G there is a U, A so that o(x)=U,xU;*
for all x&A. Pick a U, for each ¢ =G and define a(,) mapping GXG
to U(K)=Units of K by

Let J;={c=G|o(e;)=e¢;}. By the minimality of e¢;, o-(e,-)-e,:{

a(o, 7) = U, U, U,
From the associative law in A,
a(ar, p)a(a, 7) = a(a, Tp)a(r, p)

for all o, 7, pG. Thus a(,) is a 2-cocycle of G (a(,))eZ4G, UK)).
A twisted group algebra KG, is a free K module with basis {U,}
oc&G and multiplication given by U,U.=U,.a(s, 7), a(, ) ZXG, U(K)).

Theorem 6. If A is a central Galois extension of K with group G,
and if G is represented by inner automorphisms on A then

A =KG,, a(,)eZG, UK)).



GENERAL GALOIS THEORY OF RINGS 123

Proof. This is theorem 2 of [6].

This result gives a very clear picture of the central Galois algebras
over K with Abelian group G if no elemeot in P(K) has order dividing
that of an element in G.

Let A be a central Galois extension of K with Abelian group G,
and assume all the automorphisms in G are inner on A. Then A=KG,
=PIKU, with U, U.=U,.a(o, 7), acZ¥G, UK)). If r€G then ~(U,)=
UUU7=U,a(r, o)/ale, 7). Let 7: GXG—U(K) be defined by 7(s, )=
a(o, 7)/a(t, ). One checks easily that

77€skew(G®G, U(K)) =
{yeHom (GRG, UK))| = v(s, ) = 1
for all c=G}.

Moreover since A=K, 7n(c, G)=1 implies ¢=e¢. That is 7 is a non-
singular skew inner product on G.

In [6] a classification of central Galois extensions with Abelian
groups was obtained employing this information. Here we extend one
of the basic results in [6] and obtain some additional information about
Galois extensions with Abelian groups. We notice at once

Corollary 7. If A is a central Galois extension of K with Abelian
group G, and if all the automorphisms of G are inmer on A, then there
exists a primitive n' root of 1 in K where n is the exponent of G.

Proof. Homkew(GRG, U(K))=£0.
If G is an Abelian group and G=H,---H, is its decomposition into
sylow p-subgroups let

Hi_ — Hl@...@H’-_I@H;H‘”@Hn .
In [6] we showed

Theorem 8. [If A is a central Galois extension of K with Abelian
group G and all the automorphisms of G are inner on A then A=A Qg
AR DN, where N; is a central Galois extension of K with group
H; and A,~=AH.'L.

By means of the next lemma we will remove the restriction in
theorem 8 that all the automorphisms in G be inner on A.

Lemma 9. Let S be a central separable algebra over a commutative
ring K. Let S; (i=1,2) be separable subalgebras, finitely generated and
brojective over K. Assume that for every prime ideal ¢ of K
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(KyQ@kS) Rk (K@ kS,)=K;QkS by
Vo (516(@80) = S14Sps  Lhen
S=S,®kS, by ¢6Rs,)=ss,.

Proof. By theorem 3.5 of (2) and the fact that the S; are finitely
generated and projective, the K,QxS; are central separable subalgebras
of K,®QxS, and the centralizer of K,®S; in K,®S is K,QS; (7). The
exact sequence

0—-K—3(S) —3(S,)/K—0 gives
0— Ky — Kis®x3(S:) = Ks®@«3(S))| K — 0

B(S;) is finitely generated over K since S; is finitely generated projective
and separable over K so since K,®3(S;)/K=0 for all prime ideals ¢
of K, B(S;)=K.

By theorem 3.3 of (2), S=S®xS5, (§Si=

{r&Slax = xa for all acS}),

via the map J(sQ¢)=st.
Let x=S%, then as above for every prime ideal ¢ of K we obtain
the exact sequence

0 - K,QxKx — K,Qr(Kx+S,) > K,Qug(Kx+S,)/S, =0

and by theorem 3.5 of (2) together with the hypotheses, K,Q(x+S,)/S,
=0; thus xS,.

Dually S,=S%. Again by theorems 3.5 and 3.3 of (2) S=S®«xS,
by '\!’(Slxsz)zslsz-

Theorem 10. If A is a central Galois extension of K with Abelian
group G then A=ANQx - QxA, where A; is a cental Galois extension of
K with group H; and A=A (the H; as before arve the sylow p-
components of G).

Proof. Let ¢ be any prime ideal of K, then K,QxA is a central
Galois extension of K, with group G. Since K, is local, all automor-
phisms of G are inner on K,® xS, thus K,Q xS=(K,® xS)"1Q xp(K;R S)Ht
via Yro($,R8,)=S8,¢S,¢. Thus the hypothesis of lemma 9 are satisfied
and S=S"%g KS”:'L. By induction on the number of sylow p—-components
of G, the theorem follows.

We now obtain the following amusing result first observed in the
situation whete K is a field by D. K. Harrison.

Theorem 11. Let A be a (non necesearily central) Galois extension
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of the commutative ring K with cyclic group G. Then A is commutative.

Proof. First observe that if for every prime ideal ¢ of K, K;® xA
is commutative, then A is commutative. A quick way of seeing this
is observing that the K submodule E={xy—yx|x, y=A} of A is finitely
generated over K. Since K,QxE=0 for each prime ideal ¢, E=0 and
A is commutative.

We may thus assume K is local. By lemma 5, A=Ae,®D---QAe,, ¢;
minimal central idempotents in A and each Ae; is a Galois extension
of K with group J;, J; a subgroup of G and thus also cyclic.

Continuing to apply the results of lemma 5, there exists a normal
subgroup H; of J; so that

B(A)e; = B(Ae;) = AeH: (H; cyclic.)

Now Ae; is a central Galois extension of B(Ae;) with group H;. Let p
be a maximal ideal in B(Ae;), then B(Ae¢;)/n is a field and by theorem
(2) of [6], B(Ae;)/p@)g(M‘,)Ae,‘ is a Galois extension of B(Ae;)/p with
cyclic group H;. By Harrison’s result for fields, or by theorem 2 plus
the fact that if H; is cyclic, then Homekew(H;, U(K))=0 we must have
H;={e} so Ae;=3(Ae;) and A is commutative.

Section III

In this section we deal exclusively with central Galois extensions
A of a commutative ring K whose group G is Abelian, and such that
all the automorphisms in G are inner on A. The principal purpose of
the section is to prove the Normal Basis Theom in this setting.

Proposition 12. Let A, K, G be as above. Then A=KG, a(,)E
Z2*G, UK)) and KG,={S,a,U,|la,eK}. Then set {U;'/[G:1],U,}
satisfy “B” of theorem 1.

Proof. By lemma (1) of [6] together with theorem 6, £=3%,U;"/
[G:1]®QU? is an idempotent in A® xA° such that (1Qx°—x°®1)é=0 for
all x=A.

Since A is a Galois extension of K, AQA’=®3,AV, as K modules
under /(s®t)=3,s0(t)V, (theorem (1.3) of [4])

&) = =, 3.7(r, o)V, where (V,)=U,a(s, 1),

7€ Homskew(GR G, U(K)) since (1Qx—2xQ1)é=0. We have for all x€A
and 7=G.

(%) x3,m(0, 7) = Z.7(e, 7)T(X)
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thus (x—7(x))2,7(c, 7)=0, for all x&A. Since A(A :G)=Homg(A, A)
by theorem 1, A;

[Z.7(o, 7). 1—Z,9(c, 7)-7]x = 0 for all x,
so Z,7(c, T) = {[G(; 1] :;i which proves the
proposition.
Using the same argument as above, one can show in the case where
G is an arbitrary finite group that {U;'/[G:1], U,} forms a set satis-
fying B of theorem 1 if and only if

zagca(m):{[%l] T2¢ forall -<G.

Finally we have the normal basis theorem in this setting.

Theorem 13. With the same hypothesis as in Proposition 12, there
exists an x= A such that {c(x)|c =G} are a set of free generators of A
as a K module.

Proof. A=KG,=®3KU, with the U,U.,=U,.a(c, ) and a(,)=Z?’
(G, U(K)), and 7(s,7)=a(o, 7)/a(r, o). Let x=3,cU,.
1. {oc(x)}c=G generates A. Since for each -G, 7(x)=
Seecn(o, T)U, it will suffice to show that for all r&G there is a,€K
and 7=G so that

1 i =
2760“7’7(')’» T) = {0 ;i zz':z .

By Proposition 12, 3. (v, -r):{(l) Zii for all yeG. Thus

Scon(o™ 17, V=Zreonlo ™y, 7) = {LOG T V2o
so we just let a,=%(¢"%, 7)/[G:1].
2. {o(x)o{=G are linearly independent. Assume 3 .;a,m(x)=0.

Then 3,e63.ec®.7(e, 7)U,=0 so Z.a.n(c, 7)=0 for all . By the non-
singularity of #, the characters »( , 7) are linearly independent over K.
Thus «,=0 for all . This proves the theorem.

Employing theorem (4.2) of [4] together with this result, one may
obtain several generalized normal basis type theorems.
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