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1. Introduction

The results concerned with closed orientable surfaces in 4-space
obtained in [5] will be extended in the paper.

Things will be considered only from the piecewise-linear (or semi-
linear) and combinatorial point of view, and manifolds M, W etc., will
be combinatorial, orientable with an orientation, maps will be piecewise-
linear with respect to (simplicial) subdivisions and generally homeo-
morphisms between manifolds will be orientation preserving. So that
McM,, M=M, and oM =M, will indicate obvious relations between the
orientations of manifolds, if meaningful, together with the usual set
theoretic meanings, where oM is the boundary of M.

Let M; be a closed s#-manifold in an (#-+2)-manifold W; without
boundary, i=1, 2. Precisely, there are subdivisions K; and L; of M; and
W respectively such that K; is a subcomplex of L;. For convenience, the
situation is simply said that M;=|K;| is in W;=|L;| in the rest of the
paper. Then M, is iso-neighboring to M, if there are regular neighborhoods
U; of M; in W;, see [4], where U;= W, and an onto homeomorphism
¥: U— U, such that y{M,)=M,. By Theorem 1 of [4], the iso-neigh-
boring relation is an equivalence relation.

In §2 two invariances the collection of singularities and the Stiefel-
Whitney class under the iso-neighboring relation will be dealt with. Let
a closed n-manifold M=|K| be in an (#+2)-manifold W=|L| without
boundary. For each point x of M, the links Lk(x, K) Lk(x, L) in K, L
are (n—1)-, (n+1)-spheres respectively. Then M is said to be p-flat in
W if the link Lk(x, K) bounds an m-cell in Lk(x, L), alternatively the
(n—1, n+1)-knot (Lk(x, K), Lk(x, L)) is trivial, where x € M— |K?-'| and
K? is the g-skeleton of K (K is the empty set). The p-flatness of M
in W is clearly invariant under the iso-neighboring relation. A O0-flat M
in W is alternatively said to be locally flat. For a 1-flat M in W the
collection of singularities of M in W will be defined, which is an in-
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variance under the iso-neighboring relation.

If K is a full subcomplex of L, then the star neighborhood N(K’, L’)
is a regular neighborhood, which consists of (#+2)-cells dual to vertices
of K in L, where X’ denotes the first barycentric subdivision of X. In
general, a regular neighborhood U of M in W carries some properties
similar to those of normal bundles in differential topology. So that an
invariance o, called the Stiefel-Whitney class, under the iso-neighboring
relation may be defined for M in W following the classical arguments
due to Seifert [7] and Whitney [8].

In the paper the boundary of a regular neighborhood of M in W is
called a tube of M in W, and for a mapping f:X—Y, f*(f,) denotes
the induced homomorphism between cohomology groups of Y and X
(homology groups of X and Y).

The following will be established in §3.

Theorem A. Let a closed 3-manifold M; be 1-flat in 5-manifold W;
without boundary, where i=1,2. Then M, and M, are iso-neighboring if
and only if there is an onto homeomorphism ¢ : M,— M,, such that ¢*(w,)
=w, and they have the same collection of singularities.

By the argument due to [ 7] the Stiefel-Whitney class o is the identity
if M is in euclidean (n+2)-space R"*%. Thus,

Corollary to Theorem A. Let closed 3-manifolds M, and M, be 1-flat
in 5-space such that M, and M, are homeomorphic and symmetric. Then
they are iso-neighboring if and only if they have the same collection of
singularities. (We say that M is symmetric if there is an orientation
reversing homeomorphism onto itself.)

Moreover, Mo is locally flat in M x R* and its Stiefel-Whitney class
o is the identity, where R? is 2-space and o is the origin of R%. And
M x C? is a regular neighborhood of M xo0 in M x R? where C? is a 2-cell
containing o in its interior. Therefore,

Theorem B. If a closed 3-manifold M is locally flat in 5-space R°.
Then a regular neighborhood U of M in R® is the product of M and a 2-cell.

Finally, (1). Some results of the paper [4] will be used in this paper.
Although they were proved modulo the Schoenflies conjecture, they are
verified without the conjecture in virtue of Theorem (2.3) of [6].

(2). The detail of the proofs which were omitted in the paper [5]
will be seen in the paper, even if this paper concentrates upon 3-mani-
folds M.

The author thanks Masako Ujihara for her valuable discussions.
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2. Invariances

NotaTtion A. Let M=|K| be a closed z-manifold in an (n+2)-
manifold W=|L| without boundary, where it is assumed that K is a
full subcomplex of L, that is, the intersection of a simplex of L and |K]|
is either a simplex of K or empty. By A we shall denote a (closed)
r-simplex of K. Then by v and OO we denote the (n—7#)-, (n—7r+2)
cells dual to A iin K and L respectively. (v and [1 are covered by
subcomplexes of K’ and L’ respectively.) By 87 we shall denote the
polyhedron consisting of dual cells v where A ranges over K— K" 7',
Similarly by ‘' we denote the polyhedron consisting of dual cells []
where A€ K—K” %', Note that 9"** is the star neighborhood N(K’, L’).

If an orientation is assigned to A, the orientation of v ([J) is naturally
determined such that the intersection number of A and v () in M (W)
is 1. We shall always assigne an orientation to A and use those natural
orientation for v and [ throughout the paper. It is obvious that the
(n—1, n+1)knot (LK%, K), Lk(x, L)) is trivial if x€ M—|K"-?|, and that
M is (n—1)-flat in W.

Lemma 1. [f M is p-flat in W then for each r-simplex A of K the
(n—r—1, n—r+1)-knot (0v, 900) is trivial where r=>p>0 and for each
(p—1)-simplex A the (n—p, n—p+2)-knot (ov, 900) is locally flat, where
p=1

Proof. Let x be an interior point of an r-simplex A of K. It is
elementary to check that that the (—1, n+1)-knots (Lk(x, K), Lk(x, L))
and (OA%0V, 0Ax0[]) are equivalent, where XxY is the join of X and Y.
If (9v, 90) is not trivial then (Lk(x, K), Lk(x, L)) is not locally flat, because
the latter is the suspension of the former. In particular (Lk(x, K), Lk(x, L))
is not trivial, contradiction. Therefore (0v, o1) is trivial.

Let x be a point of OV where A is a (p—1)-simplex of K. Then x
is an interior point of a g¢-simplex 7 of K where ¢ >p—1. Let & be
the face opposite to A in 5 and ¢ be the barycenter of & Since the
(n—1, n+1)-knot (S{Axc)xLk(x, OV), d(AxckLk(x, 90J)) is equivalent to
(LK%, K), LK(x, L)) which is trivial, the (n—p—1, n—p+1)-knot (Lk(x, V),
Lk(x, 200)) may not be non-trivial. Hence (Lk(x, OV), Lk(x, 907)) is trivial
for each x of OV and (0v, o0J) is locally flat.

DerFiNiTION 1. Let M=|K| be 1-flat in W=|L|. By Lemma 1 only
the (n—1, n+1)-knot (9v, 20J) may not be trivial where A is a vertex
of K. We say that a vertex A is a non-singular point or singular point
of M in W according as the (n—1, n+1)-knot class k containing (ov, o)
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is a trivial class O or £==0. If k=0, we say that the singularity of M
on W at Aisof type k. If M in W has singular points A,,---,A; of type
k,,+,k;, then the unordered set of classes k,,-:-,k, will be called the
collection of singularities of M in W, which is invariant under the iso-
neighboring relation as easily seen.

Now let us define the Stiefel-Whitney class o for M in W following
the argument due to Seifert [7] and Whitney [8]. Let © be a subpoly-
hedron of ®”, we say that a map«:9—2NK’, L') is a cross section over
9 if »(Vv)zol for all v of 9.

(@) Let o:D—9N(K', L) be a cross section, then o may be extended
to a cross section « over O|R', where © may be empty.

Proof. Define «(v)= a vertex of 90 if VE& -9 and «°|9=¢|9,
then «°: QR —ON(K', L) is a cross section over 9 (J®°. Let A be an
(n—1)-simplex then v and [J are 1-, 3-cells respectively. Let A,, A, be
n-simplexes incident to A then (J,|JJ, is a regular neighborhood of the
O-sphere v, ) v, in the 2-sphere o[J, and oC]—Int (C1,|J,) is the cylinder
S*x I where Int M is the interior of M and I is the closed unit interval.
Then there is a homeomorphism «,:V—00—1Int ((0,|J,) such that
ke|V,UV,=«"|V,JV,. Define «|v=x, if vE&' -9 and «|v=c|V if
vVeED, then x: DR —>ON(K’, L) is the required cross section.

(b) Using a cross section «: &' —9N(K’, L’), let us define an integral
2-cochain W, of M as follows.

Let A; be an (z—2)-simplex of K then v;, [J; are 2-, 4-cells respec-
tively. Then we have a knot (0ov;, 9(J;) and the tube (=torus)
T;=9(x0Ojs), where [J.O, is a regular neighborhood of 9V ; in 9[J; when
Aj, ranges over (n—1)-simplexes of K incident to A; by Lemma 4 of
[4]. By the knot theory the longitude b; and the meridian a; of the
torus T; are well defined up to homology such that @;~0U, in T; where
A (M) is an n-simplex having A; as a face, and such that 6;~0v;
in U.Oj and b;~0 in 900,— Int (|J ;) where~means to be homologous.
By w; we denote the looping coefficient of «,(0V;) and b; in 9J;. That
is, £ (0V;)~w;a;+b; in T;. Then an integral 2-cochain W, of M is
defined by taking W(v;)=w; for each v;.

The following (c), (d) and (e) are the modification of the arguments
due to Seifert and Whitney.

(c) Let x, o be cross sections over & then W, is cohomologous to W,
in M. See [8, p. 120].

(d) Let M and W be spheres. Then there is a cross section o over
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& such that W.v;)=0 for each v;. See [7, pp. 6-7].
(e) W, is a cocycle. See [8, p. 121].

(f) The cohomology class w containing the cocyle W, is independent
of the subdivisions K and L.

Proof. As usual it is sufficient to prove that W, is cohomologous
to W, where W, and W, are the cocyles obtained from the subdivisions
K,L and Y, Z of M, W respectively such that Z is a subdivision of L
and Y is the subcomplex of Z covering M.

Then it may be assumed that L is transformed to Z by a simple
subdivision (v, d) of L where v is a 1-simplex of L and d is an interior
point of v, see [1, p. 302]. The proof is separated in two cases. That
is, y¢ K and y€ K. Since the both cases may be treated similarly, we
shall prove the second one.

Suppose that ye€ K. Let y=ab where @ and b are vertices of K.
At first we construct an onto map 0:N(Y’, Z’)— N(K’, L') which takes
the dual cells of d in Y, Z onto the dual cells of v in K, L and the dual
cells of ¢ in Y, Z onto the dual cells of itself in K, L respectively, where
¢ is a vertex of Y other than d. Let [0, be the dual cell of d in Z,
o[, consists of simplexes written vp,---v, where v; is the barycenter of
the simplex dcyc,---c; and ¢; is a vertex of L lying in Lk(d, L). Define
v, +vy)=ty,--ttg if c,=a (or b), where u; is the barycenter of bc,--c,
(@cy-cq)y, Oy --vg)=uy--u, if c,==a and b, where u; is the barycenter of
abc,-+cq, 0(d)=e, the barycenter of v, and 0| Lk(d, L)=identity. Since a sim-
plex of Z’ in the star S#(d, L) is either the join of a simplex lying in Lk(d, L)
and a simplex in 90, or the join of a simplex in 9, and d, the map
0 may be extended over the star S{d, L) and then over N(Y’, Z’) by
taking identity on M(Y’, Z')—S#d, L). Then the map @ is the required one.

By (d) and (a) we may construct a cross section « defining W, such
that W,(v%)=0 for each 2-cell V% which is on 9V and Vy is the cell dual
to d in Y and such that for each point x of & the set 6-(x) is mapped
by 6« to a point of ON(K’, L’). Then the mapping 0«0~ is well defined
which is a cross section over ®' defining W, such that W, (v%)=0 for
each 2-cell v% which is on 9vx and V, is the cell dual to v in K, and
such that W,(Vv)=W,Vv) for each (n—2)-simplex A of K, which does
not contain y. Hence W, is cohomologous to W,.

DeriNiTION 2. Let a closed #-manifold M=|K| be in an (#+2)-
manifold W=|L| without boundary. Then by (a), (b), (c), (d), (¢) and
(f) a 2-dimensional cohomology class  of M is defined, called the Stiefel-
Whitney class of M in W.
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We gather the above in the following :

Lemma 2. The Stiefel-Whitney class o of M in W is invariant under
the iso-neighboring relation. Moreover, o is the identity if W is (n+2)-
space R.

3. The dual skeletonwise extension scheme

NotaTtioN B. Let M;=|K;| be a closed #-manifold in an (n+2)-
manifold W;=|L;| without boundary, i=1, 2. Suppose that ¢:M,— M,
is a homeomorphism which is simplicial relative to K, and K,. Then
by A;, A;; we shall denote simplexes of K; such that ¢(A)=A,, $(A,))
=A,;. Since ¢ induces an isomorphism between complexes K, and K,
and the correspondence between A; and V; is one-to-one, ¢ also induces
an isomorphism, written ¢, between £{ and R{ by taking ¢H(Vv,)=V,.
Since the correspondence between A; and [J; is one-to-one, ¢ also induces
a one-to-one correspondence yr between cells of M{*? and cells of NI*?
by taking Y((1,)=01,.

(0) Let M;=|K;| be a closed n-manifold in an (n+2)-manifold
W:=|L;| without boundary. Let ¢:M,—M, be a homeomorphism which
is simplicial relative to K, and K,. Then there is a homeomorphism
YO NE—>NE such that V°|K3=9, and Y O,)=0, for each n-simplex A; of
K;.

Proof. For each n-simplex A(CM;) of K;, o[J; is a 1-sphere and
we have a homeomorphism "’ :2],—92],. Since V; is the point such
that [J; is the join v x(2];), there is a homeomorphism ' : [J,— [, such
that ¢/|o00,=+" and ¥’'|v,=¢|V,. Since all [J; are disjoint, ¥°: N3— N2
defined by +°|[J,=+’ is a homeomorphism such that °|®=¢ and
J(,)=0C1, for each A;, proving (0).

(0)—(Q). Under the situation of (0), furthermore we suppose that
P¥(w,)=w, where w; is the Stiefel-Whitney class of M; in W;. Then there
is @ homeomorphism p : N2—N3 such that p|Ri=¢ and p(C1,)=0, for each
(n—1)-simplex A; of K; and such that for each (n—2)-simplex A;; of K,
Px@,j~as;, Pxb,j~b,; on the tube T,;, see (b) in §2.

Proof. Let A;,, A;, be n-simplexes incident to an (z—1)-simplex A;.
Then [J;,|JO0;, is a regular neighborhood of the O-sphere 9v; in the
2-sphere 2J; by [4]. Since [;,|JJ;, consists of disjoint 2-cells and
¢:M,— M, is orientation preserving, there is an onto homeomorphism
Y :o0,—~0o0, such that 4 (0v,)=0ov, and |00, U0O,=v°|00,, JO,;.
Since [J; is the join ¢#(2];) and V;=cx(0V;) where ¢; is the barycenter
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of A;, we have an onto homeomorphism +:[J,—[J, such that /|20,
=+ for each A;. Define ' by taking +'|CJ,=+" for each (n—1-
simplex A,, we have a homeomorphism ' :N{—MN} such that *|Ri=¢
and +ka,;~a,; on T,; for each (n—2)-simplex A;; of K;. Let «:8!
—OMK]{, L]) be a cross section we, have integers w,;, w,; such that
¥V, ;)~w,;a,;+b,; on T,; and Yy (OV,;)~wy;a,;+b,; on T,;.

Let W(v;;)=w,;; then W, is a 2-cocycle contained in ;. Since
dMw,)=w,, W,—¢p*W,=06X for a l-cochain X of M,, where & is the
coboundary operator. Since olJ; —Int ([J;,|J0J;;) is the finite cylinder
C;, there is an onto homeomorphism #:,—[J, such that 5|, JO,,
= "l"llmlaUDw and ("/’c)*(v1)_"l’}k’c*(v1)=(X' V1)a2j on sz: where X- Vv, is
the coefficient of v, in X. Define p by taking p|0,=% if X-v,==0, and
plO,;=v¥' |0, otherwise. Since W,—¢*W,=0X, (px),(0V,;)~(w,;+X-9V,;)
@5+ b,;=w,;a,;+b,; on T,; for each A;;. Since pyr(OV,;)~pw(w,,a,;+b,,)~
wu'azj"—P*(bﬁ)’ P*(b1.7'>~b2i on T;.

(1)—=>(2). Under the situation of (0)—(1), suppose that M; is (n—2)-
flat in W;. Then there is an onto homeomorphism *: Nt —NE such that
V| RE=¢ and Y(O,)=0], for each (n—2)-simplex A; of K;.

Proof. Let A,; be (n—1)-simplexes of K; incident to A;. Then
U;0;; is a regular neighborhood of the 1-sphere OV, in the 3-sphere
o0; by [4]. By Lemma 1, the knot (0Vv;, o[J;) is trivial, and then there
is an onto homeomorphism 6:90],—9], such that #|0v,=¢"'|9y, and
such that 6(J;0,;)= U ;0,; by Theorem 1 of [4]. So we have a homeo-
morphism p0: |J;0,;— U;0,; such that (pd).a,~a, and (p6),b,~b, on
T,(=9(U;0,;). By the argument due to Baer [2] p8|T,: T,— T, is iso-
topic to the identity. And then by Theorem 4 of [4] there is an onto
homeomorphism «:90J,—92], such that «| ) ;0,;=pg| U ;0,;.

Taking Y"=af™’, then " :00,—-00, is an onto homeomorphism
such that ¥”|{J;00,;=p. Since [J; is the join c¢x(00J;) and V;=c#(0V;)
where c¢; is the barycenter of A;, we have an onto homeomorphism
A . 00,—0, such that '|o00=+". Then ¥*: NI —->N; defined by |14
=4, is an onto homeomorphism such that ¥*|®2=¢ and *[,)=0], for
each (n—2)-simplex A;, proving (1)—(2).

Under the conditions that there is a homeomorphism ¢:M,— M,
which is simplicial relative to K, and K,, $"(w,)=w,, and M; is (n—2)-
flat in W;, we have proved the following (m) for m<2.

(m) Thereis an onto homeomorphism ™ : NP+2—N7*2 such that V™| K7
=¢ and Y((O7*2)=0%*2 for each (n—m)-simplex A; of K;.
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Proof of Theorem A. The necessity follows from §2. Let
¢:M,—~M, be a given homeomorphism, it may be assumed that ¢ is
simplicial with respect to K, and K,. Furthermore since any point x of a
closed manifold may be mapped into a given point y of the manifold
by a homeomorphism of the manifold onto itself, it is assumed that the
(n—m—1, n—m+1)knots (0v,, 9J,) and (oV,, 2J,) belong to the same
class for every pair of m-simplexes A, and A, by Lemma 1 and the as-
sumption of Theorem A.

Then (0), (0)—(1), (1)—(2) hold. Suppose that all (m) are proved
for m<m. Since 8}=M; and N**=N(K/, L), the homeomorphism
" N2> N3*2 is the required homeomorphism +r. Therefore it remains
to prove that the proposition (2) implies the proposition (3).

Let A;; be a 1-simplex of K; incident to a vertex A;. Then ¥*({J;0,;)
= |J;0,; where |J;00;;c20; and |J;0;; is a regular neighborhood of the
2-sphere OV; in the 4-sphere 9[J; by Lemma 4 of [4]. Since 9vV; is
locally flat in 9J; by Lemma 1, the tube T;(=9(|);;,)) is homeomorphic
to S?xS*' by Theorem B of [5]. Since the corresponding (2, 4)-knots
(ov,, 20,) and (9V,, 2J,) belong to the same class, there is a homeomor-
phism 6:200,—90, such that #|ov,=¢*|oVv, and &|J;00,;)= (J;00,; by
Theorem 1 of [4]. Then «*0|T,: T,— T, is an onto homeomorphism
such that

(4704 S*~S?
and (P*0)S'~S*.

Therefore *0|T,: T,— T, is isotopic to either the identity or the
homeomorphism T, see [3 p. 320]. Since 7 may not be extended over
U,;0.;, ¥°6|T, is isotopic to the identity by [3 p.323]. Then, by
Theorem 4 of [4], there is a homeomorphism «:900],—2], such that
al;0,;=v0| U;0,;. Then af~*:000,—0], is a homeomorphism such
that wf~*| |J;0,;=v*| U;0,;. Then, by the similar argument in (1)—(2),
we may obtain the required homeomorphism +°
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