ONE FLAT 3-MANIFOLDS IN 5-SPACE

Dedicated to Professor Hidetaka Terasaka on his sixtieth birthday

Hiroshi NOGUCHI

(Received June 23, 1964)

1. Introduction

The results concerned with closed orientable surfaces in 4-space obtained in [5] will be extended in the paper.

Things will be considered only from the piecewise-linear (or semilinear) and combinatorial point of view, and manifolds M, W etc., will be combinatorial, orientable with an orientation, maps will be piecewiselinear with respect to (simplicial) subdivisions and generally homeomorphisms between manifolds will be orientation preserving. So that $M \subset M_{1}, M=M_{2}$ and $\partial M=M_{3}$ will indicate obvious relations between the orientations of manifolds, if meaningful, together with the usual set theoretic meanings, where ∂M is the boundary of M.

Let M_{i} be a closed n-manifold in an ($n+2$)-manifold W_{i} without boundary, $i=1,2$. Precisely, there are subdivisions K_{i} and L_{i} of M_{i} and W_{i} respectively such that K_{i} is a subcomplex of L_{i}. For convenience, the situation is simply said that $M_{i}=\left|K_{i}\right|$ is in $W_{i}=\left|L_{i}\right|$ in the rest of the paper. Then M_{1} is iso-neighboring to M_{2} if there are regular neighborhoods U_{i} of M_{i} in W_{i}, see [4], where $U_{i} \subset W_{i}$ and an onto homeomorphism $\psi: U_{1} \rightarrow U_{2}$ such that $\psi^{\prime}\left(M_{1}\right)=M_{2}$. By Theorem 1 of [4], the iso-neighboring relation is an equivalence relation.

In $\S 2$ two invariances the collection of singularities and the StiefelWhitney class under the iso-neighboring relation will be dealt with. Let a closed n-manifold $M=|K|$ be in an ($n+2$)-manifold $W=|L|$ without boundary. For each point x of M, the links $L k(x, K) L k(x, L)$ in K, L are $(n-1)-,(n+1)$-spheres respectively. Then M is said to be p-flat in W if the link $L k(x, K)$ bounds an n-cell in $L k(x, L)$, alternatively the $(n-1, n+1)-\operatorname{knot}(\operatorname{Lk}(x, K), \operatorname{Lk}(x, L))$ is trivial, where $x \in M-\left|K^{p-1}\right|$ and K^{q} is the q-skeleton of $K\left(K^{-1}\right.$ is the empty set). The p-flatness of M in W is clearly invariant under the iso-neighboring relation. A 0 -flat M in W is alternatively said to be locally flat. For a 1-flat M in W the collection of singularities of M in W will be defined, which is an in-
variance under the iso-neighboring relation.
If K is a full subcomplex of L, then the star neighborhood $N\left(K^{\prime}, L^{\prime}\right)$ is a regular neighborhood, which consists of ($n+2$)-cells dual to vertices of K in L, where X^{\prime} denotes the first barycentric subdivision of X. In general, a regular neighborhood U of M in W carries some properties similar to those of normal bundles in differential topology. So that an invariance ω, called the Stiefel-Whitney class, under the iso-neighboring relation may be defined for M in W following the classical arguments due to Seifert [7] and Whitney [8].

In the paper the boundary of a regular neighborhood of M in W is called a tube of M in W, and for a mapping $f: X \rightarrow Y, f^{*}\left(f_{*}\right)$ denotes the induced homomorphism between cohomology groups of Y and X (homology groups of X and Y).

The following will be established in $\S 3$.
Theorem A. Let a closed 3-manifold M_{i} be 1-flat in 5-manifold W_{i} without boundary, where $i=1,2$. Then M_{1} and M_{2} are iso-neighboring if and only if there is an onto homeomorphism $\phi: M_{1} \rightarrow M_{2}$, such that $\phi^{*}\left(\omega_{2}\right)$ $=\omega_{1}$ and they have the same collection of singularities.

By the argument due to [7] the Stiefel-Whitney class ω is the identity if M is in euclidean ($n+2$)-space R^{n+2}. Thus,

Corollary to Theorem A. Let closed 3-manifolds M_{1} and M_{2} be 1-flat in 5-space such that M_{1} and M_{2} are homeomorphic and symmetric. Then they are iso-neighboring if and only if they have the same collection of singularities. (We say that M is symmetric if there is an orientation reversing homeomorphism onto itself.)

Moreover, $M \times o$ is locally flat in $M \times R^{2}$ and its Stiefel-Whitney class ω is the identity, where R^{2} is 2 -space and o is the origin of R^{2}. And $M \times C^{2}$ is a regular neighborhood of $M \times 0$ in $M \times R^{2}$ where C^{2} is a 2 -cell containing o in its interior. Therefore,

Theorem B. If a closed 3-manifold M is locally flat in 5-space R^{5}. Then a regular neighborhood U of M in R^{5} is the product of M and a 2-cell.

Finally, (1). Some results of the paper [4] will be used in this paper. Although they were proved modulo the Schoenflies conjecture, they are verified without the conjecture in virtue of Theorem (2.3) of [6].
(2). The detail of the proofs which were omitted in the paper [5] will be seen in the paper, even if this paper concentrates upon 3-manifolds M.

The author thanks Masako Ujihara for her valuable discussions.

2. Invariances

Notation A. Let $M=|K|$ be a closed n-manifold in an ($n+2$)manifold $W=|L|$ without boundary, where it is assumed that K is a full subcomplex of L, that is, the intersection of a simplex of L and $|K|$ is either a simplex of K or empty. By Δ we shall denote a (closed) r-simplex of K. Then by ∇ and \square we denote the $(n-r)-,(n-r+2)-$ cells dual to Δ in K and L respectively. (∇ and \square are covered by subcomplexes of K^{\prime} and L^{\prime} respectively.) By \Re^{q} we shall denote the polyhedron consisting of dual cells ∇ where Δ ranges over $K-K^{n-q-1}$. Similarly by \mathfrak{R}^{q+2} we denote the polyhedron consisting of dual cells \square where $\Delta \in K-K^{n-q-1}$. Note that \mathfrak{R}^{n+2} is the star neighborhood $N\left(K^{\prime}, L^{\prime}\right)$.

If an orientation is assigned to Δ, the orientation of $\nabla(\square)$ is naturally determined such that the intersection number of Δ and $\nabla(\square)$ in $M(W)$ is 1 . We shall always assigne an orientation to Δ and use those natural orientation for ∇ and \square throughout the paper. It is obvious that the ($n-1, n+1$)-knot ($L k(x, K), L k(x, L)$) is trivial if $x \in M-\left|K^{n-2}\right|$, and that M is $(n-1)$-flat in W.

Lemma 1. If M is p-flat in W then for each r-simplex Δ of K the $(n-r-1, n-r+1)-k n o t(\partial \nabla, \partial \square)$ is trivial where $r \geq p \geq 0$ and for each ($p-1$)-simplex Δ the $(n-p, n-p+2)$-knot $(\partial \nabla, \partial \square)$ is locally flat, where $p \geq 1$.

Proof. Let x be an interior point of an r-simplex Δ of K. It is elementary to check that that the ($n-1, n+1$)-knots $(L k(x, K), L k(x, L))$ and $(\partial \Delta * \partial \nabla, \partial \Delta * \partial \square)$ are equivalent, where $X * Y$ is the join of X and Y. If $(\partial \nabla, \partial \square)$ is not trivial then $(L k(x, K), \operatorname{Lk}(x, L))$ is not locally flat, because the latter is the suspension of the former. In particular ($\operatorname{Lk}(x, K), \operatorname{Lk}(x, L))$ is not trivial, contradiction. Therefore $(\partial \nabla, \partial \square)$ is trivial.

Let x be a point of $\partial \nabla$ where Δ is a ($p-1$)-simplex of K. Then x is an interior point of a q-simplex η of K where $q>p-1$. Let ε be the face opposite to Δ in η and c be the barycenter of ε. Since the $(n-1, n+1)-\mathrm{knot}\left(\partial^{\prime}(\Delta * c) * L k(x, \partial \nabla), \partial(\Delta * c) * L k(x, \partial \square)\right)$ is equivalent to $(L k(x, K), L k(x, L))$ which is trivial, the $(n-p-1, n-p+1)-\operatorname{knot}(L k(x, \partial \nabla)$, $L k(x, \partial \square)$) may not be non-trivial. Hence ($L k(x, \partial \nabla), L k(x, \partial \square))$ is trivial for each x of $\partial \nabla$ and $(\partial \nabla, \partial \square)$ is locally flat.

Definition 1. Let $M=|K|$ be 1 -flat in $W=|L|$. By Lemma 1 only the $(n-1, n+1)$-knot $(\partial \nabla, \partial \square)$ may not be trivial where Δ is a vertex of K. We say that a vertex Δ is a non-singular point or singular point of M in W according as the $(n-1, n+1)$-knot class k containing $(\partial \nabla, \partial \square)$
is a trivial class 0 or $k \neq 0$. If $k \neq 0$, we say that the singularity of M on W at Δ is of type k. If M in W has singular points $\Delta_{1}, \cdots, \Delta_{s}$ of type k_{1}, \cdots, k_{s}, then the unordered set of classes k_{1}, \cdots, k_{s} will be called the collection of singularities of M in W, which is invariant under the isoneighboring relation as easily seen.

Now let us define the Stiefel-Whitney class ω for M in W following the argument due to Seifert [7] and Whitney [8]. Let \mathscr{S} be a subpolyhedron of \Re^{n}, we say that a map $\kappa: \mathfrak{S} \rightarrow \partial N\left(K^{\prime}, L^{\prime}\right)$ is a cross section over \mathfrak{S} if $\kappa(\nabla) \subset \partial \square$ for all ∇ of \mathfrak{N}.
(a) Let $\sigma: \mathfrak{S} \rightarrow \partial N\left(K^{\prime}, L^{\prime}\right)$ be a cross section, then σ may be extended to a cross section κ over $\mathfrak{S} \cup \Re^{1}$, where \mathfrak{S} may be empty.

Proof. Define $\kappa^{0}(\nabla)=$ a vertex of $\partial \square$ if $\nabla \in \mathfrak{R}^{0}-\mathfrak{S}$ and $\kappa^{0}|\mathfrak{L}=\sigma| \mathfrak{C}$, then $\kappa^{0}: \mathfrak{S} \bigcup \mathfrak{R}^{0} \rightarrow \partial N\left(K^{\prime}, L^{\prime}\right)$ is a cross section over $\mathfrak{S} \cup \mathfrak{R}^{0}$. Let Δ be an ($n-1$)-simplex then ∇ and \square are 1-, 3-cells respectively. Let Δ_{1}, Δ_{2} be n-simplexes incident to Δ then $\square_{1} \cup \square_{2}$ is a regular neighborhood of the 0 -sphere $\nabla_{1} \cup \nabla_{2}$ in the 2-sphere $\partial \square$, and $\partial \square-$ Int $\left(\square_{1} \cup \square_{2}\right)$ is the cylinder $S^{1} \times I$ where Int M is the interior of M and I is the closed unit interval. Then there is a homeomorphism $\kappa_{\nabla}: \nabla \rightarrow \partial \square-$ Int $\left(\square_{1} \cup \square_{2}\right)$ such that $\kappa_{\nabla}\left|\nabla_{1} \cup \nabla_{2}=\kappa^{0}\right| \nabla_{1} \cup \nabla_{2}$. Define $\kappa \mid \nabla=\kappa_{\nabla}$ if $\nabla \in \mathfrak{R}^{1}-\mathfrak{S}$ and $\kappa|\nabla=\sigma| \nabla$ if $\nabla \in \mathfrak{S}$, then $\kappa: \mathfrak{S} \bigcup \Re^{1} \rightarrow \partial N\left(K^{\prime}, L^{\prime}\right)$ is the required cross section.
(b) Using a cross section $\kappa: \Re^{1} \rightarrow \partial N\left(K^{\prime}, L^{\prime}\right)$, let us define an integral 2-cochain W_{κ} of M as follows.

Let Δ_{j} be an ($n-2$)-simplex of K then ∇_{j}, \square_{j} are 2-, 4-cells respectively. Then we have a knot $\left(\partial \nabla_{j}, \partial \square_{j}\right)$ and the tube (=torus) $T_{j}=\partial\left(U_{k} \square_{j k}\right)$, where $U_{k} \square_{j k}$ is a regular neighborhood of $\partial \nabla_{j}$ in $\partial \square_{j}$ when $\Delta_{j k}$ ranges over ($n-1$)-simplexes of K incident to Δ_{j} by Lemma 4 of [4]. By the knot theory the longitude b_{j} and the meridian a_{j} of the torus T_{j} are well defined up to homology such that $a_{j} \sim \partial \square_{p}$ in T_{j} where $\Delta_{p}(\subset M)$ is an n-simplex having Δ_{j} as a face, and such that $b_{j} \sim \partial \nabla_{j}$ in $U_{k} \square_{j k}$ and $b_{j} \sim 0$ in $\partial \square_{j}-\operatorname{Int}\left(U_{k} \square_{j k}\right)$ where \sim means to be homologous. By w_{j} we denote the looping coefficient of $\kappa_{*}\left(\partial \nabla_{j}\right)$ and b_{j} in $\partial \square_{j}$. That is, $\kappa_{*}\left(\partial \nabla_{j}\right) \sim w_{j} a_{j}+b_{j}$ in T_{j}. Then an integral 2-cochain W_{κ} of M is defined by taking $W_{k}\left(\nabla_{j}\right)=w_{j}$ for each ∇_{j}.

The following (c), (d) and (e) are the modification of the arguments due to Seifert and Whitney.
(c) Let κ, σ be cross sections over \Re^{1} then W_{κ} is cohomologous to W_{σ} in M. See [8, p. 120].
(d) Let M and W be spheres. Then there is a cross section σ over
\Re^{1} such that $W_{\sigma}\left(\nabla_{j}\right)=0$ for each ∇_{j}. See [7, pp. 6-7].
(e) W_{κ} is a cocycle. See [8, p. 121].
(f) The cohomology class ω containing the cocyle W_{κ} is independent of the subdivisions K and L.

Proof. As usual it is sufficient to prove that W_{L} is cohomologous to W_{Z} where W_{L} and W_{Z} are the cocyles obtained from the subdivisions K, L and Y, Z of M, W respectively such that Z is a subdivision of L and Y is the subcomplex of Z covering M.

Then it may be assumed that L is transformed to Z by a simple subdivision (γ, d) of L where γ is a 1 -simplex of L and d is an interior point of γ, see [1, p. 302]. The proof is separated in two cases. That is, $\gamma \notin K$ and $\gamma \in K$. Since the both cases may be treated similarly, we shall prove the second one.

Suppose that $\gamma \in K$. Let $\gamma=a b$ where a and b are vertices of K. At first we construct an onto map $\theta: N\left(Y^{\prime}, Z^{\prime}\right) \rightarrow N\left(K^{\prime}, L^{\prime}\right)$ which takes the dual cells of d in Y, Z onto the dual cells of γ in K, L and the dual cells of c in Y, Z onto the dual cells of itself in K, L respectively, where c is a vertex of Y other than d. Let \square_{Z} be the dual cell of d in Z, $\partial \square_{Z}$ consists of simplexes written $v_{0} v_{1} \cdots v_{q}$ where v_{j} is the barycenter of the simplex $d c_{0} c_{1} \cdots c_{j}$ and c_{i} is a vertex of L lying in $L k(d, L)$. Define $\theta\left(v_{0} \cdots v_{q}\right)=u_{0} \cdots u_{q}$ if $c_{0}=a$ (or b), where u_{i} is the barycenter of $b c_{0} \cdots c_{q}$ $\left(a c_{0} \cdots c_{q}\right), \theta\left(v_{0} \cdots v_{q}\right)=u_{0} \cdots u_{q}$ if $c_{0} \neq a$ and b, where u_{i} is the barycenter of $a b c_{0} \cdots c_{q}, \theta(d)=e$, the barycenter of γ, and $\theta \mid L k(d, L)=$ identity. Since a simplex of Z^{\prime} in the star $S t(d, L)$ is either the join of a simplex lying in $L k(d, L)$ and a simplex in $\partial \square_{Z}$, or the join of a simplex in $\partial \square_{Z}$ and d, the map θ may be extended over the $\operatorname{star} S t(d, L)$ and then over $N\left(Y^{\prime}, Z^{\prime}\right)$ by taking identity on $N\left(Y^{\prime}, Z^{\prime}\right)-S t(d, L)$. Then the map θ is the required one.

By (d) and (a) we may construct a cross section κ defining W_{Z} such that $W_{Z}\left(\nabla_{Y}^{2}\right)=0$ for each 2-cell ∇_{Y}^{2} which is on $\partial \nabla_{Y}$ and ∇_{Y} is the cell dual to d in Y and such that for each point x of Ω^{1} the set $\theta^{-1}(x)$ is mapped by θ_{κ} to a point of $\partial N\left(K^{\prime}, L^{\prime}\right)$. Then the mapping $\theta_{\kappa} \theta^{-1}$ is well defined which is a cross section over \Re^{1} defining W_{L} such that $W_{L}\left(\nabla_{K}^{2}\right)=0$ for each 2-cell ∇_{K}^{2} which is on $\partial \nabla_{K}$ and ∇_{k} is the cell dual to γ in K, and such that $W_{Z}(\nabla)=W_{L}(\nabla)$ for each ($n-2$)-simplex Δ of K, which does not contain γ. Hence W_{Z} is cohomologous to W_{L}.

Definition 2. Let a closed n-manifold $M=|K|$ be in an $(n+2)$ manifold $W=|L|$ without boundary. Then by (a), (b), (c), (d), (e) and (f) a 2-dimensional cohomology class ω of M is defined, called the StiefelWhitney class of M in W.

We gather the above in the following :
Lemma 2. The Stiefel-Whitney class ω of M in W is invariant under the iso-neighboring relation. Moreover, ω is the identity if W is $(n+2)-$ space R.

3. The dual skeletonwise extension scheme

Notation B. Let $M_{i}=\left|K_{i}\right|$ be a closed n-manifold in an ($n+2$)manifold $W_{i}=\left|L_{i}\right|$ without boundary, $i=1,2$. Suppose that $\phi: M_{1} \rightarrow M_{2}$ is a homeomorphism which is simplicial relative to K_{1} and K_{2}. Then by $\Delta_{i}, \Delta_{i j}$ we shall denote simplexes of K_{i} such that $\phi\left(\Delta_{1}\right)=\Delta_{2}, \phi\left(\Delta_{1 j}\right)$ $=\Delta_{2 j}$. Since ϕ induces an isomorphism between complexes K_{1} and K_{2} and the correspondence between Δ_{i} and ∇_{i} is one-to-one, ϕ also induces an isomorphism, written ϕ, between \Re_{1}^{q} and \Re_{2}^{q} by taking $\phi\left(\nabla_{1}\right)=\nabla_{2}$. Since the correspondence between Δ_{i} and \square_{i} is one-to-one, ϕ also induces a one-to-one correspondence ψ between cells of \mathfrak{N}_{1}^{q+2} and cells of \mathfrak{N}_{2}^{q+2}, by taking $\psi\left(\square_{1}\right)=\square_{2}$.
(0) Let $M_{i}=\left|K_{i}\right|$ be a closed n-manifold in an ($n+2$-manifold $W_{i}=\left|L_{i}\right|$ without boundary. Let $\phi: M_{1} \rightarrow M_{2}$ be a homeomorphism which is simplicial relative to K_{1} and K_{2}. Then there is a homeomorphism $\psi^{0}: \mathfrak{N}_{1}^{2} \rightarrow \mathfrak{N}_{2}^{2}$ such that $\psi^{0} \mid \Re_{1}^{0}=\phi$, and $\psi^{0}\left(\square \square_{1}\right)=\square_{2}$ for each n-simplex Δ_{i} of K_{i}.

Proof. For each n-simplex $\Delta_{i}\left(\subset M_{i}\right)$ of $K_{i}, \partial \square_{i}$ is a 1 -sphere and we have a homeomorphism $\psi^{\prime \prime}: \partial \square_{1} \rightarrow \partial \square_{2}$. Since ∇_{i} is the point such that \square_{i} is the join $\nabla_{i} *\left(\partial \square_{i}\right)$, there is a homeomorphism $\psi^{\prime}: \square_{1} \rightarrow \square_{2}$ such that $\psi^{\prime} \mid \partial \square_{1}=\psi^{\prime \prime}$ and $\psi^{\prime}\left|\nabla_{1}=\phi\right| \nabla_{1}$. Since all \square_{i} are disjoint, $\psi^{0}: \mathfrak{N}_{1}^{2} \rightarrow \mathfrak{R}_{2}^{2}$ defined by $\psi^{0} \mid \square_{1}=\psi^{\prime}$ is a homeomorphism such that $\psi^{0} \mid \Re_{1}^{0}=\phi$ and $\psi^{0}\left(\square_{1}\right)=\square_{2}$ for each Δ_{i}, proving (0).
$(0) \rightarrow(1)$. Under the situation of (0), furthermore we suppose that $\phi^{*}\left(\omega_{2}\right)=\omega_{1}$ where ω_{i} is the Stiefel-Whitney class of M_{i} in W_{i}. Then there is a homeomorphism $\rho: \mathfrak{R}_{1}^{3} \rightarrow \mathfrak{N}_{2}^{3}$ such that $\rho \mid \Re_{1}^{1}=\phi$ and $\rho\left(\square_{1}\right)=\square_{2}$ for each ($n-1$)-simplex Δ_{i} of K_{i} and such that for each ($n-2$)-simplex $\Delta_{i j}$ of K_{i}, $\rho_{*} a_{1 j} \sim a_{2 j}, \rho_{*} b_{1 j} \sim b_{2 j}$ on the tube $T_{2 j}$, see (b) in $\S 2$.

Proof. Let $\Delta_{i a}, \Delta_{i b}$ be n-simplexes incident to an ($n-1$)-simplex Δ_{i}. Then $\square_{i a} \cup \square_{i b}$ is a regular neighborhood of the 0 -sphere $\partial \nabla_{i}$ in the 2-sphere $\partial \square_{i}$ by [4]. Since $\square_{i a} \cup \square_{i b}$ consists of disjoint 2-cells and $\phi: M_{1} \rightarrow M_{2}$ is orientation preserving, there is an onto homeomorphism $\psi^{\prime \prime}: \partial \square_{1} \rightarrow \partial \square_{2}$ such that $\psi^{\prime \prime}\left(\partial \nabla_{1}\right)=\partial \nabla_{2}$ and $\psi^{\prime \prime}\left|\square_{1 a} \cup \square_{1 b}=\psi^{0}\right| \square_{1 a} \cup \square_{1 b}$. Since \square_{i} is the join $c_{i} *\left(\partial \square_{i}\right)$ and $\nabla_{i}=c_{i} *\left(\partial \nabla_{i}\right)$ where c_{i} is the barycenter
of Δ_{i}, we have an onto homeomorphism $\psi^{\prime}: \square_{1} \rightarrow \square_{2}$ such that $\psi^{\prime} \mid \partial \square_{1}$ $=\psi^{\prime \prime}$ for each Δ_{i}. Define ψ^{1} by taking $\psi^{1} \mid \square_{1}=\psi^{\prime}$ for each ($n-1$ simplex Δ_{1}, we have a homeomorphism $\psi^{1}: \mathfrak{N}_{1}^{3} \rightarrow \mathfrak{N}_{2}^{3}$ such that $\psi^{1} \mid \Re_{1}^{1}=\phi$ and $\psi_{*}^{1} a_{1 j} \sim a_{2 j}$ on $T_{2 j}$ for each ($n-2$)-simplex $\Delta_{i j}$ of K_{i}. Let $\kappa: \Re_{1}^{1}$ $\rightarrow \partial N\left(K_{1}^{\prime}, L_{1}^{\prime}\right)$ be a cross section we, have integers $w_{1 j}, w_{2 j}$ such that $\kappa^{*}\left(\partial \nabla_{1 j}\right) \sim w_{1 j} a_{1 j}+b_{1 j}$ on $T_{1 j}$ and $\psi_{*}^{1} \kappa_{*}\left(\partial \nabla_{1 j}\right) \sim w_{2 j} a_{2 j}+b_{2 j}$ on $T_{2 j}$.

Let $W_{i}\left(\nabla_{i j}\right)=w_{i j}$ then W_{i} is a 2-cocycle contained in ω_{i}. Since $\phi^{*}\left(\omega_{2}\right)=\omega_{1}, W_{1}-\phi^{*} W_{2}=\delta X$ for a 1 -cochain X of M_{1}, where δ is the coboundary operator. Since $\partial \square_{i}-\operatorname{Int}\left(\square_{i a} \cup \square_{i b}\right)$ is the finite cylinder C_{i}, there is an onto homeomorphism $\eta: \square_{1} \rightarrow \square_{2}$ such that $\eta \mid \square_{1 a} \cup \square_{1 b}$ $=\psi^{1} \mid \square_{1 a} \cup \square_{1 b}$ and $(\eta \kappa)_{*}\left(\nabla_{1}\right)-\psi_{*}^{1} \kappa_{*}\left(\nabla_{1}\right)=\left(X \cdot \nabla_{1}\right) a_{2 j}$ on $T_{2 j}$, where $X \cdot \nabla_{1}$ is the coefficient of ∇_{1} in X. Define ρ by taking $\rho \mid \square_{1}=\eta$ if $X \cdot \nabla_{1} \neq 0$, and $\rho\left|\square_{1 j}=\psi^{1}\right| \square_{1}$ otherwise. Since $W_{1}-\phi^{*} W_{2}=\delta X,(\rho \kappa)_{*}\left(\partial \nabla_{1 j}\right) \sim\left(w_{2 j}+X \cdot \partial \nabla_{1 j}\right)$ $a_{2 j}+b_{2 j}=w_{1 j} a_{2 j}+b_{2 j}$ on $T_{2 j}$ for each $\Delta_{i j}$. Since $\rho_{*} \kappa_{*}\left(\partial \nabla_{1 j}\right) \sim \rho_{*}\left(w_{1 j} a_{1 j}+b_{1 j}\right) \sim$ $w_{1 j} a_{2 j}+\rho_{*}\left(b_{1 j}\right), \rho_{*}\left(b_{1 j}\right) \sim b_{2 j}$ on $T_{2 j}$.
(1) \rightarrow (2). Under the situation of $(0) \rightarrow(1)$, suppose that M_{i} is ($\left.n-2\right)-$ flat in W_{i}. Then there is an onto homeomorphism $\psi^{2}: \mathfrak{N}_{1}^{4} \rightarrow \mathfrak{N}_{2}^{4}$ such that $\psi^{2} \mid \Re_{1}^{2}=\phi$ and $\psi^{2}\left(\square_{1}\right)=\square_{2}$ for each $(n-2)$-simplex Δ_{i} of K_{i}.

Proof. Let $\Delta_{i j}$ be $(n-1)$-simplexes of K_{i} incident to Δ_{i}. Then $U_{j} \square_{i j}$ is a regular neighborhood of the 1 -sphere $\partial \nabla_{i}$ in the 3 -sphere $\partial \square_{i}$ by [4]. By Lemma 1, the knot $\left(\partial \nabla_{i}, \partial \square_{i}\right)$ is trivial, and then there is an onto homeomorphism $\theta: \partial \square_{2} \rightarrow \partial \square_{1}$ such that $\theta\left|\partial \nabla_{2}=\phi^{-1}\right| \partial \nabla_{2}$ and such that $\theta\left(\bigcup_{j} \square_{2 j}\right)=\bigcup_{j} \square_{1 j}$ by Theorem 1 of [4]. So we have a homeomorphism $\rho \theta: \bigcup_{j} \square_{2 j} \rightarrow U_{j} \square_{2 j}$ such that $(\rho \theta)_{*} a_{2} \sim a_{2}$ and $(\rho \theta)_{*} b_{2} \sim b_{2}$ on $T_{2}\left(=\partial\left(U_{j} \square_{2 j}\right)\right)$. By the argument due to Baer [2] $\rho \theta \mid T_{2}: T_{2} \rightarrow T_{2}$ is isotopic to the identity. And then by Theorem 4 of [4] there is an onto homeomorphism $\alpha: \partial \square_{2} \rightarrow \partial \square_{2}$ such that $\alpha\left|U_{j} \square_{2 j}=\rho_{\theta}\right| U_{j} \square_{2 j}$.

Taking $\psi^{\prime \prime}=\alpha \theta^{-1}$, then $\psi^{\prime \prime}: \partial \square_{1} \rightarrow \partial \square_{2}$ is an onto homeomorphism such that $\psi^{\prime \prime} \mid U_{j} \square_{1 j}=\rho$. Since \square_{i} is the join $c_{i} *\left(\partial \square_{i}\right)$ and $\nabla_{i}=c_{i} *\left(\partial \nabla_{i}\right)$ where c_{i} is the barycenter of Δ_{i}, we have an onto homeomorphism $\psi^{\prime}: \square_{1} \rightarrow \square_{2}$ such that $\psi^{1} \mid \partial \square=\psi^{\prime \prime}$. Then $\psi^{2}: \mathfrak{N}_{1}^{4} \rightarrow \mathfrak{R}_{2}^{4}$ defined by $\psi^{2} \mid \square_{1}^{4}$ $=\psi^{\prime}$, is an onto homeomorphism such that $\psi^{2} \mid \Re_{1}^{2}=\phi$ and $\psi^{2}\left(\square_{1}\right)=\square_{2}$ for each ($n-2$)-simplex Δ_{i}, proving (1) $\rightarrow(2)$.

Under the conditions that there is a homeomorphism $\phi: M_{1} \rightarrow M_{2}$ which is simplicial relative to K_{1} and $K_{2}, \phi^{*}\left(\omega_{2}\right)=\omega_{1}$, and M_{i} is $(n-2)-$ flat in W_{i}, we have proved the following (m) for $m \leq 2$.
(m) There is an onto homeomorphism $\psi^{m}: \mathfrak{N}_{1}^{m+2} \rightarrow \mathfrak{N}_{2}^{m+2}$ such that $\psi^{m} \mid \Re_{1}^{m}$ $=\phi$ and $\psi^{m}\left(\square_{1}^{m+2}\right)=\square_{2}^{m+2}$ for each $(n-m)$-simplex Δ_{i} of K_{i}.

Proof of Theorem A. The necessity follows from §2. Let $\phi: M_{1} \rightarrow M_{2}$ be a given homeomorphism, it may be assumed that ϕ is simplicial with respect to K_{1} and K_{2}. Furthermore since any point x of a closed manifold may be mapped into a given point y of the manifold by a homeomorphism of the manifold onto itself, it is assumed that the ($n-m-1, n-m+1$)-knots $\left(\partial \nabla_{1}, \partial \square_{1}\right)$ and $\left(\partial \nabla_{2}, \partial \square_{2}\right)$ belong to the same class for every pair of m-simplexes Δ_{1} and Δ_{2} by Lemma 1 and the assumption of Theorem A.

Then (0), (0) $\rightarrow(1),(1) \rightarrow(2)$ hold. Suppose that all (m) are proved for $m \leq n$. Since $\Re_{i}^{n}=M_{i}$ and $\Re_{i}^{n+2}=N\left(K_{i}^{\prime}, L_{i}^{\prime}\right)$, the homeomorphism $\psi^{n}: \mathfrak{N}_{1}^{n+2} \rightarrow \mathfrak{N}_{2}^{n+2}$ is the required homeomorphism ψ. Therefore it remains to prove that the proposition (2) implies the proposition (3).

Let $\Delta_{i j}$ be a 1 -simplex of K_{i} incident to a vertex Δ_{i}. Then $\psi^{2}\left(U_{j} \square_{1 j}\right)$ $=U_{j} \square_{2 j}$ where $U_{j} \square_{i j} \subset \partial \square_{i}$ and $U_{j} \square_{i j}$ is a regular neighborhood of the 2 -sphere $\partial \nabla_{i}$ in the 4 -sphere $\partial \square_{i}$ by Lemma 4 of [4]. Since $\partial \nabla_{i}$ is locally flat in $\partial \square_{i}$ by Lemma 1, the tube $T_{i}\left(=\partial\left(U_{j} \square_{i j}\right)\right)$ is homeomorphic to $S^{2} \times S^{1}$ by Theorem B of [5]. Since the corresponding (2,4)-knots $\left(\partial \nabla_{1}, \partial \square_{1}\right)$ and $\left(\partial \nabla_{2}, \partial \square_{2}\right)$ belong to the same class, there is a homeomorphism $\theta: \partial \square_{2} \rightarrow \partial \square_{1}$ such that $\theta\left|\partial \nabla_{2}=\phi^{-1}\right| \partial \nabla_{2}$ and $\theta\left(U_{j} \square_{2 j}\right)=U_{j} \square_{1 j}$ by Theorem 1 of [4]. Then $\psi^{2} \theta \mid T_{2}: T_{2} \rightarrow T_{2}$ is an onto homeomorphism such that
and

$$
\begin{aligned}
& \left(\psi^{2} \theta\right)_{*} S^{2} \sim S^{2} \\
& \left(\psi^{2} \theta\right)_{*} S^{1} \sim S^{1}
\end{aligned}
$$

Therefore $\psi^{2} \theta \mid T_{2}: T_{2} \rightarrow T_{2}$ is isotopic to either the identity or the homeomorphism \boldsymbol{T}, see [3 p. 320]. Since \boldsymbol{T} may not be extended over $U_{j} \square_{2 j}, \psi^{2} \theta \mid T_{2}$ is isotopic to the identity by [3p.323]. Then, by Theorem 4 of [4], there is a homeomorphism $\alpha: \partial \square_{2} \rightarrow \partial \square_{2}$ such that $\alpha\left|\bigcup_{j} \square_{2 j}=\psi^{2} \theta\right| \bigcup_{j} \square_{2 j}$. Then $\alpha \theta^{-1}: \partial \square_{1} \rightarrow \partial \square_{2}$ is a homeomorphism such that $\alpha \theta^{-1}\left|\bigcup_{j} \square_{1 j}=\psi^{2}\right| \bigcup_{j} \square_{1 j}$. Then, by the similar argument in (1) $\rightarrow(2)$, we may obtain the required homeomorphism ψ^{3}.

Waseda University

References

[1] J. W. Alexander: The combinatorial theory of complexes, Ann. of Math. 31 (1930) 292-320.
[2] R. Baer: Isotopie von Kurven auf orientierbaren geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen. J. reine angew. Math. 159 (1928) 101-116.
[3] H. Gluck: The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308-333.
[4] H. Noguchi: The thickening of combinatorial n-manifolds in ($n+1$)-space, Osaka Math. J. 12 (1960), 97-112.
[5] H. Noguchi: A classification of orientable surfaces in 4-space, Proc. Japan Acad. 39 (1963), 422-423.
[6] R. Penrose, J. H. C. Whitehead, and E. C. Zeeman: Imbedding of manifolds in euclidean space, Ann. of Math. 73 (1961) 613-623.
[7] H. Seifert: Algebraische Approximation von Mannigfaltigkeiten, Math. Z. 41 (1936) 1-17.
[8] H. Whitney: On the topology of differentiable manifolds, Lectures in Topology, Univ. of Mich. Press, 1941.

