Harada, M. Osaka J. Math. 1 (1964), 61-68

ON GENERALIZATION OF ASANO'S MAXIMAL ORDERS IN A RING

MANABU HARADA

(Received March 26, 1964)

As an extension of maximal orders in a central simple algebra Σ over K of finite dimension, the arthor has studied structure of hereditary orders in Σ in [4], [5]. On the other hand in [1], [1'] the theory of maximal orders in Σ was extended to the theory in any ring by Asano. Following the method given by Asano in [1], [1'] we shall generalize the notion of hereditary order in Σ .

Let S be a ring with unit element 1 and Λ a subring in S containing 1 such that S is the right and left quotient ring of Λ with respect to $\Lambda \cap S^*$, where S^* consists of all non zero-divisors in S. We call Λ an order in S. Asano showed in [1], [1'] that Λ is a maximal order which satisfies two conditions (A_2') , (A_3) (see below) if and only if the set of two-sided ideals is a group with respect to multiplication. In this case

(H) every two-sided ideal¹) is finitely generated Λ -projective as a right and left Λ -module.

Thus, we shall generalize the notion of the Asano's maximal order to orders which satisfies (H).

In this note we shall show that many results of hereditary orders in a central simple algebra in [4], [5] and [6] are valid in the above generalized orders.

We shall call briefly an order Λ in S which satisfies (H) an *H*-order. Furthermore, we call elements in S^* regular.

1. Definitions and lemmas

DEFINITION 1. Let Λ be an order in S. A subset \mathfrak{A} of S is called *left (right) ideal* of Λ if \mathfrak{A} satisfies the following conditions:

- 1) \mathfrak{A} is a left (right) Λ -module,
- 2) \mathfrak{A} contains a regular element,

¹⁾ See Definition 1,

3) there exists a regular element $\lambda \in \Lambda$ such that $\mathfrak{A} \subseteq \Lambda$ ($\lambda \mathfrak{A} \subseteq \Lambda$). If \mathfrak{A} is a right and left ideal of Λ , we call \mathfrak{A} a *two-sided ideal* of Λ .

DEFINITION 2. Let Λ and Γ be orders in S. If there exist regular elements α , α' , β and β' such that $\alpha \Lambda \alpha' \subseteq \Gamma$ and $\beta \Gamma \beta' \subseteq \Lambda$ then we call Λ and Γ are *similar* and we denote by $\Lambda \sim \Gamma$.

Lemma 1. ([4], Lemma 1.2). Let Λ be an order in S and $\mathfrak{L}, \mathfrak{L}'$ left ideals of Λ . Then $\operatorname{Hom}_{\Lambda}^{\iota}(\mathfrak{L}, \mathfrak{L}') = \{x \mid \in S, \mathfrak{L}x \subseteq \mathfrak{L}'\}.$

Proof. It is clear that $\{x \mid \in S, \ \Re x \subseteq \ \Re'\} \subseteq \operatorname{Hom}_{\Lambda}^{i}(\ \Re, \ \Re')$. Since $S \Re = S$, we have, for any element x in S, that $x = \sum s_i l_i$, $s_i \in S$, $l_i \in \ \Re$. We define $\overline{f}(x) = \sum s_i f(l_i)$ for $f \in \operatorname{Hom}_{\Lambda}^{i}(\ \Re, \ \Re')$. Let $x = \sum s'_i l'_j$ be another expression, then there exists a regular element γ in Λ such that γs_i , $\gamma s'_i \in \Lambda$ for all i by [1']. Hence, $\gamma \sum s_i f(l_i) = \sum f(\gamma s_i l_i) = \sum \overline{f}(\gamma s'_i l'_i) = \gamma \sum s'_i f(l'_i)$. Therefore, \overline{f} is well defined and $\overline{f} \in \operatorname{Hom}_{S}(S \Re, S \Re) = S$. Hence, $\overline{f}(x) = xy$ for some $y \in S$. It is clear that $\overline{f} | \Re = f$.

If $\mathfrak{L}=\mathfrak{L}'$, then $\operatorname{Hom}_{\Lambda}^{\iota}(\mathfrak{L},\mathfrak{L})$ is a similar order to Λ by [1'], Theorem 4.4 and we call it *the right order* of \mathfrak{L} and denote it by $\Lambda^{r}(\mathfrak{L})$. Similarly, we can define *the left order* of \mathfrak{L} and denote it by $\Lambda^{\prime}(\mathfrak{L})$.

DEFINITION 3. Let Λ be an order in S. If there exist regular elements α , β in Λ for x in S such that $x\Lambda\alpha \subseteq \Lambda$, $\beta\Lambda x \subseteq \Lambda$, then Λ is called *regular*.

Lemma 2. Let Λ be a regular order in S and Γ a similar order to Λ . Then there exist regular elements α , β in Λ such that $\alpha \Gamma \subseteq \Lambda$ and $\Gamma \beta \subseteq \Lambda$, and Γ is also regular.

It is clear (cf. [1'] pp. 163–165).

Corollary. Let Λ be a regular order and Γ an order containing Λ . If Λ is a finitely generated left or right Λ -module, then $\Gamma \sim \Lambda$. Hence, Γ is a two-sided ideal of Λ and is regular.

It is clear by [1'] and [2].

Lemma 3. Let Λ be an order and \mathfrak{L} a left ideal. Then $\mathfrak{L}\mathfrak{L}^{-1} = \Lambda^{l}(\mathfrak{L})$ if and only if \mathfrak{L} is a finitely generated projective $\Lambda^{r}(\mathfrak{L})$ -module, where $\mathfrak{L}^{-1} = \{x \mid \in S, \mathfrak{L}\mathfrak{L}\mathfrak{L} \subseteq \mathfrak{L}\}.$

Proof. We put $\Gamma = \Lambda^{r}(\mathfrak{L})$. We define $\varphi: \mathfrak{L} \otimes_{\Gamma} \text{Hom}(\mathfrak{L}, \Gamma) = \mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1} \rightarrow \text{Hom}_{\Gamma}(\mathfrak{L}, \mathfrak{L}) = \Lambda^{l}(\mathfrak{L})$ by setting $\varphi(l \otimes f)(l') = f(l')l$, where $l, l' \in \mathfrak{L}$ and $f \in \mathfrak{L}^{-1}$. Then the lemma is clear by [3], Proposition A. 1.

Lemma 4. Let Λ be an order and \mathfrak{A} a two-sided ideal of Λ which is

62

finitely generated as left, right module. If \mathfrak{A} is a projective left Λ -module, then $\Lambda^{r}(\mathfrak{A})$ is a right finitely generated Λ -projective module.

Proof. The operation of Λ on $\Lambda^{r}(\mathfrak{A})$ from the right side coincides with the operation of Λ on $\operatorname{Hom}_{\Lambda}^{i}(\mathfrak{A},\mathfrak{A})$ with respect to the second \mathfrak{A} . Since \mathfrak{A} is left Λ -projective, $M = \Sigma \oplus \Lambda u_{i} \to \mathfrak{A} \to 0$ splits. Hence, $\operatorname{Hom}_{\Lambda}(M, \mathfrak{A}) =$ $\Sigma \oplus \mathfrak{A} \leftarrow \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{A},\mathfrak{A}) \leftarrow 0$ splits as a usual right Λ -module. Since \mathfrak{A} is a finitely generated right Λ -module, so is $\Lambda^{r}(\mathfrak{A})$.

2. *H*-orders

We shall quote here Asano's axioms. Let Λ be an order in S.

 (A_2) Λ satisfies a minimal condition for two-sided ideals in Λ which contains a fixed two-sided ideal.

(A₃) Every prime ideal in Λ is a maximal two-sided ideal.

Proposition 1. If a regular order Λ satisfies (A_2') and (A_3) and Λ is maximal among similar orders to it, then Λ is an H-order.

Proof. By [1], [1'] we know that the set of two-sided ideals is a group with respect to multiplication. Hence, Λ satisfies (H) by Lemma 3.

From Lemma 2 and the proof of [4], Lemma 1.2, we have

Theorem 1. Let Λ be a regular H-order in S. If Γ is an order containing Λ which is similar to Λ , then Γ is an H-order.

Proposition 2. Let Λ be an H-order and \mathfrak{A} a two-sided ideal of Λ . Then $\mathfrak{A}\mathfrak{A}^{-1}=\Lambda^{l}(\mathfrak{A})$ and $\mathfrak{A}^{-1}\mathfrak{A}=\mathfrak{A}^{r}(\mathfrak{A})$.

Proof. It is clear from the fact $\Lambda'(\mathfrak{A}) = \tau_{\Lambda'(\mathfrak{A})}(\mathfrak{A}) = \mathfrak{A}\mathfrak{A}^{-1}$ and $\Lambda'(\mathfrak{A}) = \tau_{\Lambda'(\mathfrak{A})}(\mathfrak{A}) = \mathfrak{A}^{-1}\mathfrak{A}$ which is obtained by [3], Proposition A. 3.

Corollary. Let Λ be a regular H-order and maximal order among similar orders to Λ . Then Λ is a maximal order satisfying (A_2') and (A_3) .

Proof. Let \mathfrak{A} be a two-sided ideal in Λ . Since $\Lambda'(\mathfrak{A}) \sim \Lambda$, $\Lambda'(\mathfrak{A}) = \Lambda$. Hence $\mathfrak{A}\mathfrak{A}^{-1} = \mathfrak{A}^{-1}\mathfrak{A} = \Lambda$. Let \mathfrak{B} be any two-sided ideal of Λ . Since $\mathfrak{B}\lambda \subseteq \Lambda$ for some regular element λ in Λ , $\mathfrak{B}\Lambda\lambda\Lambda \subseteq \Lambda$. By [1'], Theorem 4.12 $\Lambda\lambda\Lambda$ is a two-sided ideal in Λ . Hence the set of two-sided ideals of Λ is a group.

We note that in the proof of [4], Proposition 1.6 we have only used the facts that \mathfrak{A} is a finitely generated projective module and $\Lambda^{I}(\mathfrak{A})$, $\Lambda^{r}(\mathfrak{A}) \subseteq S$ for a two-sided ideal \mathfrak{A} of Λ and that if an order $\Gamma \supseteq \Lambda$ is a finitely generated left Λ -module, $C(\Gamma) = \{x \mid \in S, \Gamma x \subseteq \Lambda\}$ is a two-sided ideal in Λ . Hence, we have by Lemma 4

Theorem 2. ([4], Theorem 1.7). Let Λ be an H-order in S and Γ an order containing Λ . If Γ is finitely generated left Λ -projective, then $C(\Gamma)$ is an idempotent two-sided ideal in Λ and $\Gamma = \Lambda^{I}(C(\Gamma))$. Conversely, if \mathfrak{A} is an idempotent two-sided ideal in Λ then $\Lambda^{I}(\mathfrak{A})$ is finitely generated left Λ -projective and $\mathfrak{A} = C(\Lambda^{I}(\mathfrak{A}))$. This correspondence is anti-lattice isomorphic.

Corollary 1. Let Λ be a regular H-order in S. Then there exists the above one-to-one correspondence between two-sided idempotent ideals in Λ and orders Γ containing Λ which is finitely generated as a right or left Λ -module.

Proof. It is clear from Theorem 2 and Lemma 2.

Corollary 2. Let Λ be a regular H-order in S. If there exists only a finite number of maximal orders containing Λ which are similar to Λ , then Λ is equal to the intersection of them.

Proof. Let $\{\Omega_i\}_{i=1}^n$ be the set of maximal orders in the corollary. Then $\{C(\Omega_i)\}_{i=1}^n$ is the set of minimal ones among idempotent two-sided ideals by Theorem 2. We put $\mathfrak{D}=\Sigma C(\Omega_i)$. \mathfrak{D} is also idempotent. Let $\Gamma = \cap \Omega_i = \Lambda^i(\mathfrak{D})$, and $\Gamma' = \Lambda^r(\mathfrak{D})$. Since $C(\Omega_i)$ is minimal idempotent, $\Lambda^r(C(\Omega_i))$ is also a maximal order. Hence, $\{\Omega_i\}_{i=1}^n = \{\Lambda^r(C(\Omega_i))\}_{i=1}^n$ and $\Gamma = \cap \Omega_i = \Gamma'$ by Theorem 2. Therefore, $\Lambda = \Gamma$ by [4], Corollary 1.9.

Proposition 3. Let Λ be an H-order in S and \mathfrak{L} a left ideal of Λ such that $\Lambda = \Lambda^{i}(\mathfrak{L})$. Then the following statements are equivalent.

- 1) $\Lambda^r(\mathfrak{L}^{-1}) = \Lambda$.
- 2) $\&\&^{-1} = \Lambda$.
- 3) \mathfrak{L} is a finitely generated $\Lambda^{r}(\mathfrak{L})$ -module.

Proof. 2) is equivalent to 3) by Lemma 3. It is clear that 2) implies 1).

1) \rightarrow 3). We set $\Gamma = \Lambda^{r}(\mathfrak{L})$. Hom^{*l*}_{$\Lambda}(\mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1}, \Lambda) = Hom^{$ *l* $}_{\Gamma}(\mathfrak{L}^{-1}, Hom^{$ *l* $}_{\Lambda}(\mathfrak{L}, \Lambda))$ = Hom^{*l*}_{Γ}($\mathfrak{L}^{-1}, \mathfrak{L}^{-1}$)= Λ . From an exact sequence $\mathfrak{L} \otimes \mathfrak{L}^{-1} \rightarrow \mathfrak{L} \mathfrak{L}^{-1} \rightarrow 0$ we obtain an exact sequence $0 \rightarrow Hom^{$ *l* $}_{\Lambda}(\mathfrak{L}^{-1}, \Lambda) \rightarrow Hom^{$ *l* $}_{\Lambda}(\mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1}, \Lambda) = \Lambda$. Since $\mathfrak{L}^{\mathfrak{L}^{-1}} \subseteq \Lambda$, Hom^{*l*}_{$\Lambda}(\mathfrak{L}^{\mathfrak{L}^{-1}}, \Lambda) \supseteq \Lambda$. Therefore, Hom^{*l*}_{\Lambda}($\mathfrak{L}^{\mathfrak{L}^{-1}}, \Lambda$)= Λ , which implies $\Lambda^{r}(\mathfrak{L}^{\mathfrak{L}^{-1}})=\Lambda$ and $\tau^{$ *l* $}_{\Lambda}(\mathfrak{L}^{\mathfrak{L}^{-1}})=\mathfrak{L}^{\mathfrak{L}^{-1}}\Lambda=\mathfrak{L}^{\mathfrak{L}^{-1}}$. Hence $\mathfrak{L}^{\mathfrak{L}^{-1}}$ is idempotent by [4], Lemma 1.5. Therefore, we obtain by Theorem 2 that $\Lambda = D(\Lambda)^{2^{2^{j}}} = D(\Lambda^{r}(\mathfrak{L}^{\mathfrak{L}^{-1}}))=\mathfrak{L}^{\mathfrak{L}^{-1}}$.}</sub>

²⁾ $D(\Gamma) = \{x \mid \in S, x\Gamma \subseteq \Lambda\}.$

Corollary. Let Λ be an order in S. We assume the set of two-sided ideals of Λ is a group. Then every left ideal \mathfrak{L} of Λ is finitely generated Λ -projective and $\mathfrak{L}^{-1}=\Lambda$.

Proof. Λ is a maximal order among similar to Λ by [1'], Theorem 4.22. It is clear that $\Lambda \sim \Lambda^{\prime}(\mathbb{S}^{-1})$. Hence, $\Lambda^{\prime}(\mathbb{S}^{-1}) = \Lambda$.

Proposition 4. ([6], Theorem 1.1). Let Λ be an H-order in S and \mathfrak{L} a left ideal of Λ . If $\Lambda^{I}(\mathfrak{L}) = \Lambda$ and \mathfrak{L} is finitely generated Λ -projective, then $\Lambda^{r}(\mathfrak{L})$ is an H-order and \mathfrak{L} is finitely generated $\Lambda^{r}(\mathfrak{L})$ -projective.

Proof. Let $\Gamma = \Lambda^{r}(\mathfrak{L})$. Since \mathfrak{L} is finitely generated Λ -projective, we have $\Gamma = \mathfrak{L}^{-1}\mathfrak{L}$ by Lemma 3, and $\tau_{\Lambda}^{l}(\mathfrak{L})\mathfrak{L} = \mathfrak{L}$ by [3], Proposition A. 5. Hence, $\tau_{\Lambda}^{l}(\mathfrak{L}) = \mathfrak{L}\mathfrak{L}^{-1} = \tau_{\Lambda}^{l}(\mathfrak{L})\mathfrak{L}\mathfrak{L}^{-1} = \tau(\mathfrak{L})^{2}$. We obtain $\Lambda^{l}(\tau_{\Lambda}^{l}(\mathfrak{L})) = \Lambda$ from the facts $\Lambda^{l}(\mathfrak{L}) = \Lambda$ and $\tau_{\Lambda}^{l}(\mathfrak{L})\mathfrak{L} = \mathfrak{L}$. Therefore, $\mathfrak{L}^{-1} = \tau_{\Lambda}(\mathfrak{L}) = \Lambda$ by Theorem 2. We can easily check that a correspondence $\mathfrak{A} \leftrightarrow \mathfrak{L}^{-1}\mathfrak{A}\mathfrak{L}$ of two-sided ideals \mathfrak{A} of Λ and those of Γ is one-to-one and preserves projectivity and finiteness, because $\mathfrak{L}^{-1}\mathfrak{A}\mathfrak{L} \approx \mathfrak{L}^{-1}\mathfrak{A}\mathfrak{A}\mathfrak{S}$.

From the similar regument to [4], Lemma 2.1 we have

Proposition 5. ([4], Proposition 2.2). Let Λ be an H-order in S. If $S=S_1\oplus\cdots\oplus S_n$, then $\Lambda=\Lambda_1\oplus\cdots\oplus\Lambda_n$ and Λ_i is an H-order in S_i , where the S_i 's are subring of S.

3. Inversible ideals in an H-order

Finally we shall consider two-sided ideals \mathfrak{A} in Λ such that $\mathfrak{A}^{-1} = \mathfrak{A}^{-1}\mathfrak{A} = \Lambda$. We call those ideals *inversible ideals* of Λ .

Proposition 6. Let Λ be a regular H-order in S satisfying (A_2') . If every maximal two-sided ideal in Λ is inversible, then Λ is a maximal or **der**.

Proof. We assume that there exists an ideal in Λ which is not inversible. Let \mathfrak{C} be a maximal one among ideals in Λ which are not inversible, and \mathfrak{N} be a maximal two-sided ideal containing \mathfrak{C} . Since Λ satisfies $(A_2'), \mathfrak{C} \oplus \mathfrak{N}^n$ for some *n*. Then $\mathfrak{C} \oplus \mathfrak{N}^{-1}\mathfrak{C} \oplus \Lambda$, because if $\mathfrak{N}\mathfrak{C} = \mathfrak{C}$, $\mathfrak{C} = \mathfrak{N}^n \mathfrak{C} \oplus \mathfrak{N}^n$. Thus, $\mathfrak{N}^{-1}\mathfrak{C}$ must be inversible, which is a contradiction.

Lemma 5. Let Λ be an H-order in S and \mathfrak{M} a maximal two-sided ideal. Then \mathfrak{M} is either inversible in Λ or idempotent.

Proof. Since $\mathfrak{C}(\Lambda^{\prime}(\mathfrak{M})) \supseteq \mathfrak{M}$, $C(\Lambda^{\prime}(\mathfrak{M})) = \Lambda$ or $= \mathfrak{M}$. If $C(\Lambda^{\prime}(\mathfrak{M})) = \Lambda$, then $\Lambda = \Lambda^{\prime}(\mathfrak{M})$. Hence, \mathfrak{M} is not idempotent by Theorem 2. Therefore, $D(\Lambda^{\prime}(\mathfrak{M})) = \Lambda$, which implies $\Lambda^{\prime}(\mathfrak{M}) = \Lambda$. Hence, \mathfrak{M} is inversible by Proposition 2. If $C(\Lambda^{\ell}(\mathfrak{M})) = \mathfrak{M}$ then \mathfrak{M} is idempotent by Theorem 2.

REMARK 1. Let Ω be a maximal order among similar orders to Λ and satisfy (A_2') and (A_3) . If Λ is an *H*-order in Ω which is similar to Λ , then the above idempotent and maximal two-sided ideals divide a unique maximal one among two-sided ideals of Ω in Λ by [2], Lemma 1.

Lemma 6. Let Λ be a regular H-order in S and \mathfrak{M} a maximal and idempotent two-sided ideal in Λ . Then $C(\Lambda^r(\mathfrak{M}))$ is also a maximal and idempotent two-sided ideal in Λ .

Proof. We set $\Gamma_1 = \Lambda^I(\mathfrak{M})$ and $\Gamma_2 = \Lambda^r(\mathfrak{M})$. From Corollary 1 to Theorem 2 we know that $\mathfrak{C} = C(\Gamma_2)$ is idempotent and that there are no orders between Γ_2 and Λ which is a finitely generated Λ -module. Hence, \mathfrak{C} is a maximal one among idempotent two-sided ideal. We assume that \mathfrak{C} is not a maximal ideal. Let $\mathfrak{N} \not \cong \mathfrak{C}$ be a maximal two-sided ideal in Λ . Then \mathfrak{N} is inversible by the above observation and Lemma 5. If $\mathfrak{N}^{-1}\mathfrak{C} = \mathfrak{C}$, then $\mathfrak{N}^{-1} \subseteq \Gamma_2$ by Theorem 2. Hence $\mathfrak{M} \subseteq \mathfrak{M} \mathfrak{N}^{-1} \subseteq \mathfrak{M} \Gamma_2 = \mathfrak{M}$. Therefore, $\mathfrak{M} = \mathfrak{M} \mathfrak{N} \subseteq \mathfrak{N}$, which implies $\mathfrak{M} = \mathfrak{N}$. It is a contradiction. Thus, we know $\mathfrak{C} \subseteq \mathfrak{N}^{-1}\mathfrak{C} \subseteq \Lambda$, and $\Lambda^I(\mathfrak{N}^{-1}\mathfrak{C}) = \Lambda^r(\mathfrak{N}^{-1}\mathfrak{C}) = \Lambda$. Therefore, $\mathfrak{N}^{-1}\mathfrak{C}$ is inversible in Λ and hence, so is \mathfrak{C} which is a contradiction.

By using the same argument as $\lceil 4 \rceil$, Theorem 5.3 we shall prove

Proposition 7. Let Λ be a regular H-order in S and $\{\mathfrak{M}_i\}_{i=1}^{i=1}$ a set of maximal and idempotent two-sided ideals in Λ such that $\Lambda^r(\mathfrak{M}_i) = \Lambda^l(\mathfrak{M}_{i+1})$ for all i. If all the \mathfrak{M}_i 's are distinct then $\Lambda^l(\mathfrak{N}_i) = \Lambda^l(\mathfrak{M}_1)$, $\Lambda^r(\mathfrak{N}_i) = \Lambda^r(\mathfrak{M}_i)$ for $\mathfrak{N}_i = \mathfrak{M}_1 \cap \mathfrak{M}_2 \cap \cdots \cap \mathfrak{M}_i$. If $\mathfrak{M}_1 = \mathfrak{M}_n$ for some n > 1, then $\mathfrak{N}_{n-1} =$ $\mathfrak{M}_1 \cap \cdots \cap \mathfrak{M}_{n-1}$ is an inversible two-sided ideal. Furthermore, if \mathfrak{A} is an inversible two-sided ideal in Λ , which is contained in \mathfrak{M}_i for some i, then $\mathfrak{A} \subseteq \mathfrak{M}_i \cap \cdots \cap \mathfrak{M}_r$ for any r > i.

Proof. We denote $\Lambda^{I}(\mathfrak{M}_{i})$ and $\Lambda^{r}(\mathfrak{M}_{i})$ by Γ_{i} and Γ_{i+1} . Let $\mathfrak{M} = \mathfrak{M}_{1} \cap \cdots \cap \mathfrak{M}_{i}$. We know from argument of [4], Corollary 1.9 that $\mathfrak{M}_{i}\Gamma_{i} = \Gamma_{i}$, $\Gamma_{i+1}\mathfrak{M}_{i} = \Gamma_{i+1}$. Since \mathfrak{M}_{j} is maximal, $\mathfrak{M} = \Sigma \mathfrak{M}_{p_{1}}\mathfrak{M}_{p_{2}}\cdots\mathfrak{M}_{p_{i}}$ where Σ runs through all elements of symmetric group S_{i} .

(*)
$$\Lambda \supseteq \mathfrak{M}_{j-1}\Gamma_j \supseteq \mathfrak{M}_{\Gamma_j} \supseteq \mathfrak{M}_{\rho_1} \mathfrak{M}_{\rho_2} \cdots \mathfrak{M}_{j-1} \mathfrak{M}_j \Gamma_j = \mathfrak{M}_{\rho_1} \cdots \mathfrak{M}_{\rho_{i-2}} \mathfrak{M}_{j-1}$$
 if $j \neq 1$.

Hence $\Gamma_{j} \subseteq \operatorname{Hom}_{\Lambda}^{t}(\mathfrak{N}, \Lambda)$ and $\tau_{\Lambda}^{t}(\mathfrak{N}) \supseteq \mathfrak{N}_{\Gamma_{j}} \supseteq \mathfrak{M}_{\rho_{1}} \cdots \mathfrak{M}_{\rho_{l-2}} \mathfrak{M}_{\mathcal{H}_{1}} \mathfrak{M}_{1} \mathfrak{M}_{1}$

66

³⁾ i means that the *j*th factor is omitted.

proposition. We may assume $\mathfrak{A} \subseteq \mathfrak{M}_1$. $\mathfrak{A} \Gamma_2 \mathfrak{A} \subseteq \mathfrak{M}_1 \Gamma_2 \mathfrak{A} \subseteq \mathfrak{M}_1 \mathfrak{A} \subseteq \mathfrak{A}$. Hence $\Gamma_2 \mathfrak{A} \subseteq \Lambda^r(\mathfrak{A}) = \Lambda$, which implies $\mathfrak{A} \subseteq C(\Gamma_2) = \mathfrak{M}_2$. Therefore, $\mathfrak{A} \subseteq \bigcap_{i=1}^r \mathfrak{M}_i$. Finally we assume that all the \mathfrak{M}_i 's are distinct. From the fact (*) we obtain $\tau_{\Lambda}^i(\mathfrak{A}) \supseteq \mathfrak{M}_1$. If $\tau_{\Lambda}^i(\mathfrak{A}) \neq \mathfrak{M}_1$, then $\tau_{\Lambda}^i(\mathfrak{A}) = \Lambda$. By replacing \mathfrak{A} by \mathfrak{A} in the above argument, we obtain $\bigcap \mathfrak{M}_i = \mathfrak{A} \subseteq D(\Gamma_1)$. On the other hand, $D(\Gamma_1)$ is a maximal two-sided ideal by Lemma 6. Hence, $\mathfrak{M}_i = D(\Gamma_1)$ for some *i*. Then $\Lambda^r(\mathfrak{M}_i) = \Gamma_1 = \Gamma_{i+1}$ and hence, $\mathfrak{M}_1 = \mathfrak{M}_{i+1}$, which is a contradication. Therefore, $\tau_{\Lambda}^i(\mathfrak{A}) = \mathfrak{M}_1$. Thus, we obtain $\Lambda^i(\mathfrak{M}) = \Lambda^i(\mathfrak{M}_1)$ by the similar argument to [4], Proposition 1.6, 2). Similarly, we have $\Lambda^r(\mathfrak{M}) = \Lambda^r(\mathfrak{M}_i)$.

Lemma 7. Let Λ be a regular H-order in S which satisfies (A_2') . Then every inversible two-sided ideal in Λ is contained in one of the following ideals: 1) maximal non-idempotent two-sided ideals, 2) $\mathfrak{N}=\mathfrak{M}_1 \cap \mathfrak{M}_2 \cap \mathfrak{M}_n$, where \mathfrak{M}_i 's are as in Proposition 7 and $\Lambda^r(\mathfrak{M}_n)=\Lambda^t(\mathfrak{M}_1)$.

Proof. Let \mathfrak{A} be an inversible ideal in Λ and \mathfrak{M} a maximal ideal containing \mathfrak{A} . If \mathfrak{M} is not idempotent, then $\mathfrak{M}_2 = C(\Lambda^r(\mathfrak{M}))$, $\mathfrak{M}_3 = C(\Lambda^r(\mathfrak{M}_2))$, \cdots are maximal. By Proposition 5 we know $\mathfrak{A} \subseteq \mathfrak{M} \cap \mathfrak{M}_2 \cap \cdots \cap \mathfrak{M}_r$. Since Λ satisfies (Λ_2'), we can find *n* such that $\mathfrak{M}_n = \mathfrak{M}_{n'}$ for some $n \leq n'$.

By \mathfrak{O} we shall denote either the maximal and non-idempotent ideals or \mathfrak{N} as in the Lemma 7, 2).

Theorem 3. ([4], Theorem 7.5). Let Λ be a regular H-order in S which satisfies (A_2') . Then the set of inversible two-sided ideals in Λ is uniquely written as a product of maximal ones among inversible ideals in Λ , which are commutative.

Proof. First we shall show that $\mathfrak{Q}_1\mathfrak{Q}_2=\mathfrak{Q}_2\mathfrak{Q}_1$. We may assume $\mathfrak{Q}_1 + \mathfrak{Q}_2$. $\mathfrak{Q}_1\mathfrak{Q}_2=\mathfrak{Q}_2\mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$. It is clear that $\mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$ is an inversible ideal in Λ . If \mathfrak{Q}_1 is maximal, then $\mathfrak{Q}_1 \oplus \mathfrak{Q}_2$ since if $\mathfrak{Q}_2 = \mathfrak{M}_1 \cap \cdots \cap \mathfrak{M}_i$ $\subseteq \mathfrak{Q}_1$, then $\mathfrak{M}_j = \mathfrak{Q}_1$. However \mathfrak{M}_j is not inversible, which is a contradiction. Since \mathfrak{Q}_1 is prime, $\mathfrak{Q}_1 \supseteq \mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$. Therefore, $\mathfrak{Q}_2\mathfrak{Q}_1 \supseteq \mathfrak{Q}_1\mathfrak{Q}_2$. If $\mathfrak{Q}_1 = \mathfrak{M}_1 \cap \cdots \cap \mathfrak{M}_i$, then $\mathfrak{Q}_1 \oplus \mathfrak{Q}_2$. Because if $\mathfrak{Q}_1 \supseteq \mathfrak{Q}_2$, then $\mathfrak{Q}_1 = \mathfrak{Q}_2$ by Proposition 5. Hence, we have as above that $\mathfrak{Q}_2\mathfrak{Q}_1 \supseteq \mathfrak{Q}_1\mathfrak{Q}_2$. Similarly we obtain $\mathfrak{Q}_1\mathfrak{Q}_2 \supseteq \mathfrak{Q}_2\mathfrak{Q}_1$. Since the set of \mathfrak{Q}_i 's consists of maximal ones among inversible ideals in Λ and Λ satisfies (A_2') , we can easily show that $\mathfrak{A} = \Pi \mathfrak{Q}_i^{e_i}$ for an inversible ideal \mathfrak{A}. The uniqueness of this expression is easily proved by making use of the same argument as above.

REMARK 2. We may replace (A_2') in Theorem 3 by a condition that Λ satisfies a minimal condition with respect to two-sided ideals in Λ con-

taining an inversible ideal.

OSAKA CITY UNIVERSITY

References

- [1] K. Asano: Arithmetische Idealtheorie in nichtkommutativen Ringen, Japanese J. Math. 16 (1936).
- [2] K. Asano and T. Ukegawa: Ergenzende Bemerkungen über die Arithmetik in Schiefringen, J. Inst. Polyt. Osaka City Univ. 3 (1952) 1-7.
- [3] M. Auslander and O. Goldman: Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
- [4] M. Harada: Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 272– 290.