ON CERTAIN QUADRATIC FORMS RELATED TO SYMMETRIC RIEMANNIAN SPACES

By
Soji KANEYUKI and Tadashi NAGANO

In his recent works [8] [9], Matsushima investigates the Betti numbers of a certain type of compact locally symmetric riemannian manifolds and he shows that lower dimensional Betti numbers of such a manifold can be determined if we know that certain quadratic forms are positive definite. In order to verify the last condition, it is sufficient to compute the minimal eigenvalue of a linear transformation Q which is defined in terms of the curvature tensor of the manifold. Let M be the universal covering manifold of the manifold in question. In the case that M is an irreducible symmetric bounded domain in \boldsymbol{C}^{n}, the eigenvalues of Q were computed by Calabi-Vesentini [4] and Borel [2], and Betti numbers are given by Matsushima himself. In the paper [7], the authors have treated the case that the compact form of M is a group manifold. The purpose of the present paper is to study the eigenvalues of Q for the case which remains to be treated, i.e. the case that M is a non-compact irreducible symmetric riemannian manifold not isomorphic to a bounded domain in \boldsymbol{C}^{n}. Applying the results of Matsushima, we see that the p-th Betti number b_{p} of the compact locally symmetric space treated here is equal to that of the compact form of M if the ratio $p / \operatorname{dim} M$ is sufficiently small; in particular, b_{1} vanishes in most cases. Our results give also informations about the Betti numbers of G / Γ where G is a semi-simple Lie group without compact simple factors and Γ is a discrete subgroup of G with compact quotient space G / Γ.

It is our pleasure to acknowledge Prof. Y. Matsushima for his valuable suggestions and having given us a chance to read his maniscripts of [8] [9] before publication.

§ 1. Preliminaries.

The notations settled in this section will be used throughout this paper. We denote by \mathfrak{g} a real semi-simple Lie algebra and by $\mathscr{\rho}_{g}$ the Killing form of \mathfrak{g}, Let \mathfrak{f} be a subalgebra of \mathfrak{g}. We say that the pair
($\mathfrak{g}, \mathfrak{f}$) is a symmetric pair, if the vector space \mathfrak{g} admits a direct sum decomposition $g=\mathfrak{f}+\mathfrak{m}$ such that $[\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}$ and $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{f}$, By the symmetric square $\mathfrak{m} \vee \mathfrak{m}$ we mean the vector space of the symmetric tensors belonging to $\mathfrak{m} \otimes \mathfrak{m}$. The restriction of $\varphi_{\mathfrak{g}}$ to \mathfrak{m} is a nondegenerate inner product on m , and this gives rise to non-degenerate inner products on $\mathfrak{m} \otimes \mathfrak{m}$ and $\mathfrak{m} \vee \mathfrak{m}$, which are denoted by $\langle,\rangle_{\mathfrak{m}} \otimes_{\mathfrak{m}}$ and $\langle,\rangle_{(\mathrm{g}, \mathrm{f})}$ respectively. For brevity we write \langle,$\rangle instead of \langle,\rangle_{(\mathrm{g}, \mathrm{f})}$. We define a linear endomorphism Q of the tensor space $\mathfrak{m} \otimes \mathfrak{m}$ by the formula

$$
\begin{equation*}
\langle Q(X \otimes Y), Z \otimes U\rangle_{\mathfrak{m} \otimes \mathfrak{m}}=\rho_{\mathfrak{g}}([Y, U],[Z, X]) \tag{1.1}
\end{equation*}
$$

for any $X, Y, Z, U \in \mathrm{~m}$, The subspace $\mathrm{m} \vee \mathrm{m}$ is stable under Q, and we shall denote also by Q the restriction of Q to $\mathfrak{m} \vee \mathfrak{m}$. It is obvious that Q is a self-adjoint operator on $\mathfrak{m} \vee \mathfrak{m}$ with respect to the inner product \langle,$\rangle . Now, following Matsushima [9], we define a quadratic forms$ $H^{r}(r=1,2, \cdots)$ on $\mathrm{m} \vee \mathrm{m}$ by putting

$$
\begin{equation*}
H^{r}(\xi)=\frac{b_{(\mathrm{g}, \mathrm{f})}}{r}\langle\xi, \xi\rangle+\langle Q \xi, \xi\rangle \tag{1.2}
\end{equation*}
$$

for any $\xi \in \mathfrak{m} \vee \mathfrak{m}$, where

$$
\begin{equation*}
2 b_{(\mathrm{g}, \mathfrak{p})}=\operatorname{Min}_{X \in \mathfrak{p}}\left\{1+\mathscr{\varphi}_{\mathfrak{f}}(X, X) ; \mathscr{\rho}_{\mathfrak{g}}(X, X)=-1\right\} \tag{1.3}
\end{equation*}
$$

and $\mathcal{\rho}_{\mathrm{f}}$ is the Killing form of \mathfrak{f}. Matsushima [8] defines also a quadratic form H on $\mathfrak{m} \vee \mathrm{m}$ which coincides with H^{1} in the case that \mathfrak{g} is non-compact simple and \mathfrak{f} is a compact semi-simple Lie algebra. In the following, we shall write Q, H^{r}, H also as $Q_{(\mathrm{g}, \mathrm{t})}, H_{(\mathrm{g}, \mathrm{f})}, H_{(\mathrm{g}, \mathrm{f})}$ respectively; if g is a non-compact simple Lie algebra, \mathfrak{f} means always the subalgebra corresponding to a maximal compact subgroup of the adjoint group of \mathfrak{g}. The theorems of Matsushima are now stated as follows:

Theorem A ([8] Theorem 1). Let G be a semi-simple Lie group, all of whose simple factors are non-compact. Suppose that, for each simple factor G_{i} of G, the quadratic form $H_{\left(\mathfrak{g}_{i}, \mathfrak{r}_{i}\right)}$ associated to the Lie algebra g_{i} of G_{i} is positive definite. Let Γ be a discrete subgroup of G with compact quotient space G / Γ. Then the first Betti number of G / Γ is equal to 0.

Theorem B ([9] Theorem 1 and $\S 9$). Let M be a simply connected, irreducible symmetric riemannian manifold which is non-compact and noneuclidean. Let G be the identity component of the group of all isometries of M. Let $\mathrm{\Gamma}$ be a discrete subgroup of G with compact quotient G / Γ and without element of finite order different from the identity, so that 1 is a
discontinuous group of isometries of M with compact quotient M / Γ. Let M_{u} be the compact form of M. If the quadratic form $H^{r}(\mathrm{~g}, \mathrm{f})$ is positive definite, then the r-th Betti number b_{r} of M / Γ is equal to the r-th Betti number $b_{r}\left(M_{u}\right)$ of M_{u}.

We shall see when the quadratic forms $H_{(\mathrm{g}, \mathrm{f})}$ and $H_{(\mathrm{g}, \mathrm{f})}$ are positive definite for a real non-compact simple Lie algebra g. In the case that the center of \mathfrak{f} is not trivial, this question is already discussed by Matsushima [8] [9]. We shall therefore confine ourselves to the case that the center of \mathfrak{f} reduces to (0) so that \mathfrak{f} is a compact semi-simple algebra. We know that $H=H^{1}$ in this case. Thus our results on H^{r}, given in §4, are sufficient to apply Theorems A and B for this case.

In order that the quadratic form H^{r} is positive definite, it is necessary and sufficient that the absolute value of the minimal eigenvalue of Q is strictly smaller than $\frac{b_{(\mathrm{g}, \mathrm{f})}}{r}$. Now, under the assumption that g is non-compact simple and \mathfrak{f} is semi-simple, the value $b_{(\mathfrak{g}, \mathfrak{f})}$ is computed as follows :
(a) If \mathfrak{f} is simple, then we have by [8]

$$
\begin{equation*}
b_{(\mathrm{g}, \mathrm{f})}=\frac{\operatorname{dim} \mathrm{m}}{4 \operatorname{dim} \mathfrak{f}} \tag{1.4}
\end{equation*}
$$

(b) When $\mathfrak{f}^{\mathfrak{E}}$ is semi-simple and has the same rank as \mathfrak{g},

$$
\begin{equation*}
2 b_{(\mathrm{g}, \mathrm{f})}=\operatorname{Min}\left\{1-\varphi_{\mathrm{g}}\left(\alpha_{g}, \alpha_{g}\right) / \mathscr{\varphi}_{\mathrm{f}}\left(\alpha_{k}, \alpha_{k}\right) ; \alpha \text { is a root of } \mathfrak{f}^{c}\right\} \tag{1.5}
\end{equation*}
$$

where α_{g} or α_{k} is the contravariant representative of α with respect to the Killing form of \mathfrak{g} or \mathfrak{f} respectively.
(c) $\left(A_{3}, D_{2}\right)$ and ($D_{l}, B_{q} \times B_{l-q-1}$) are the only symmetric pairs for which \mathfrak{f} is semi-simple and is not of the same rank as \mathfrak{g}. One finds

$$
\begin{align*}
2 b & =\frac{3}{4} \text { for } \quad(\mathfrak{g}, \mathfrak{f})=\left(A_{3}, D_{2}\right) \\
2 b & =\frac{p}{2(l-1)} \text { for } \quad(\mathfrak{g}, \mathfrak{f})=\left(D_{l}, B_{q} \times B_{l-q-1}\right), \quad \text { and } \quad p<l, \tag{1.6}
\end{align*}
$$

where $p=2 q+1$

§ 2. Relation with the group manifold.

Given a symmetric pair ($\mathfrak{g}, \mathfrak{f}$) with non-compact simple g and compact \mathfrak{f}, we wish to compare the minimal eigenvalue of $Q_{(\mathcal{g}, \mathfrak{\ell})}$ with that of Q for symmetric pair $\left(\mathfrak{g}_{u} \times \mathfrak{g}_{u}, \mathfrak{g}_{u}\right)$. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ be the Cartan decomposi-
tion. Denoting by g^{c} the complexification of \mathfrak{g}, the space $\mathfrak{g}_{u}=\mathfrak{f}+\sqrt{-1} \mathfrak{m}$ is also a compact simple subalgebra of g^{c}. The pair ($\left.g_{u}, f\right)$ is also a symmetric pair, the compact form of ($\mathfrak{g}, \mathfrak{f}$). By an obvious identification $\sqrt{-1} \mathfrak{m} \vee \sqrt{-1} \mathfrak{m}=\mathfrak{m} \vee \mathfrak{m}$, one obtains the equality $Q_{(\mathrm{g}, \mathrm{t})}=-Q_{\left(\mathrm{g}_{u}, \mathrm{t}\right)}$ directly from the definition (1.1). In order to verify that $H_{(g, f)}^{r}$ is positive definite it is thus sufficient to show that $b_{(\mathrm{g}, \mathrm{r})} / r$ is strictly greater than the maximal eigenvalue of $Q_{\left(g_{u}, f\right)}$. Let σ be the injective homomorphism of g_{u} into $\mathrm{g}_{u} \times \mathrm{g}_{u}$ defined by $\sigma(X)=(X, X)$ for any $X \in \mathrm{~g}_{u}$. We define another injection $\tau: \mathrm{g}_{u} \rightarrow \mathrm{~g}_{u} \times \mathrm{g}_{u}$ by $\tau(X)=(X,-X) / \sqrt{2} ; \tau$ is isometric with respect to the Killing forms. The pair ($\mathrm{g}_{u} \times \mathrm{g}_{u}, \sigma\left(\mathrm{~g}_{u}\right)$), briefly denoted by \mathfrak{n}, is a symmetric pair with the Cartan decomposition $\mathfrak{g}_{u} \times \mathrm{g}_{u}$ $=\sigma\left(\mathrm{g}_{u}\right)+\tau\left(\mathrm{g}_{u}\right)$

Lemma 2.1. The notations being as above, if $\kappa\left(\right.$ resp. $\left.\kappa_{u}\right)$ is the maximal eigenvalue of $Q_{\left(\mathrm{g}_{\mu}, \mathfrak{t}\right)}$ (resp. $Q_{\mathfrak{u}}$), then we have the inequality: $\kappa \leqslant 2 \kappa_{u}$

Proof. If $\tau \vee \tau ; \mathrm{g}_{u} \vee \mathrm{~g}_{u} \rightarrow \tau\left(\mathrm{~g}_{u}\right) \vee \tau\left(\mathrm{g}_{u}\right)$ denotes the mapping naturally induced by τ and if π denotes the orthogonal projection of $(\tau \vee \tau)\left(\mathrm{g}_{u} \vee \mathrm{~g}_{u}\right)$ onto $(\tau \vee \tau)(\mathfrak{m} \vee \mathfrak{m})$ then one obtains

$$
\pi \cdot Q_{\mathfrak{H}} \cdot(\tau \vee \tau)=\frac{1}{2}(\tau \vee \tau) Q_{\left(\mathrm{g}_{u}, \mathrm{t}\right)}
$$

In fact, one has

$$
\begin{aligned}
& 2\left\langle Q_{\mathfrak{u}}(\tau(X) \vee \tau(X)), \tau(Y) \vee \tau(Y)\right\rangle_{\mathfrak{u}} \\
& =2 \varphi_{\mathfrak{g}_{u} \times \mathfrak{g}_{u}}([\tau(X), \tau(Y)],[\tau(Y), \tau(X)]) \\
& =\varphi_{\mathfrak{g}_{u} \times \mathfrak{g}_{u}}(\tau([X, Y]), \tau([Y, X])) \\
& =\varphi_{\mathfrak{g}_{u}}([X, Y],[Y, X]) \\
& =\left\langle Q_{\left(\mathfrak{g}_{u}, \mathfrak{f}\right)}(X \vee X), Y \vee Y\right\rangle_{\left(\mathfrak{g}_{u}, \mathfrak{f}\right)} \\
& =\left\langle(\tau \vee \tau) \cdot Q_{\left(\mathfrak{g}_{u}, \mathfrak{t}\right)}(X \vee X), \tau(Y) \vee \tau(Y)\right\rangle_{\mathfrak{u}}
\end{aligned}
$$

for any $X, Y \in \mathfrak{m}$. For any eigenvector ξ of $Q_{\left(g_{\mu}, \mathfrak{r}\right)}$ corresponding to κ, one therefore finds

$$
\begin{aligned}
& 2 \kappa_{u}\langle\xi, \xi\rangle_{\left(\mathrm{g}_{u}, \mathfrak{f}\right)}=2 \kappa_{u}\langle(\tau \vee \tau)(\xi),(\tau \vee \tau)(\xi)\rangle_{\mathfrak{u}} \\
& \geqslant 2\left\langle Q_{\mathfrak{u}}((\tau \vee \tau)(\xi)),(\tau \vee \tau)(\xi)\right\rangle_{\mathfrak{u}} \\
& =\left\langle Q_{\left(\mathrm{g}_{u}, \mathfrak{r}\right)}(\xi), \xi\right\rangle_{\left(\mathrm{g}_{u}, \mathrm{f}\right)}=\langle\kappa \xi, \xi\rangle_{\left(\mathrm{g}_{u}, \mathfrak{f}\right)}=\kappa\langle\xi, \xi\rangle_{\left(\mathrm{g}_{u}, \mathfrak{f}\right)}
\end{aligned}
$$

 is the highest root of g_{u}

For the proof, see [7].

It follows from the above arguments that $H_{(\mathrm{g}, \mathrm{t})}$ is positive difinite if $b_{(\mathrm{g}, \uparrow)}>\mathcal{P}_{\mathrm{g}_{u}}(\vartheta, \vartheta)$. The table I gives the values $b_{\left(\mathrm{g}, \mathrm{t}_{\mathrm{t}}\right.}$ and ${\rho_{\mathrm{g}_{u}}(\vartheta, \vartheta) \text { for }}$ all symmetric pairs ($\mathfrak{g}, \mathfrak{f}$) with non-compact simple \mathfrak{g} and compact semisimple f. We get then.

Lemma 2.3. The quadratic form $H_{(\mathrm{g}, \mathrm{f})}$ is positive definite for all $\left(\mathrm{g}_{u}, \mathfrak{f}\right)$ except for the cases AII ($l=2,3$), BII, DII, CII $(p=1,2)$, GI, or FII.

Table I.

	$\left(\mathrm{g}_{u}, \mathfrak{f}\right)$	$b_{(\mathrm{g}, \mathrm{F})}$	$2 \kappa_{u}=\varphi_{\mathrm{g}_{u}}(\vartheta, \vartheta)$
A I	$\begin{array}{ll} \left(A_{l}, \mathrm{~B}_{l / 2}\right) & l \geqslant 2 \\ \left(A_{l}, D_{(l+1) / 2}\right) & l \geqslant 3 \end{array}$	$(l+3) / 4(l+1)$	$1 /(l+1)$
A II	$\left(A_{2 l-1}, C_{l}\right)$	$(l-1) / 4 l$	$1 / 2 l$
B I	$\begin{array}{r} \left(B_{l}, D_{p} \times B_{l-p}\right) \\ \quad \stackrel{-1}{-1} \geqslant p \geqslant 2 \end{array}$	$\operatorname{Min}\left(\frac{p}{2 l-1}, \frac{2 l-2 p+1}{2(2 l-1)}\right)$	$1 /(2 l-1)$
D I	$\begin{gathered} \left(D_{l}, D_{p} \times D_{l-p}\right) \\ l \geqslant 2 p \geqslant 4 \\ \left(D_{l}, B_{p} \times B_{l-p-1}\right) \\ l-1 \geqslant 2 p \geqslant 2 \end{gathered}$	$\frac{p / 2(l-1)}{(2 p+1) / 4(l-1)}$	$\} 1 / 2(l-1)$
B II	$\left(B_{l}, D_{l}\right)$	$1 / 2(2 l-1)$	$1 /(2 l-1)$
D II	$\left(D_{l}, B_{l-1}\right)$	1/4(l-1)	$1 / 2(l-1)$
C II	$\left(C_{l}, C_{p} \times C_{l-p}\right) \quad 2 p \leqslant l$	$p / 2(l+1)$	$1 /(l+1)$
E I	$\left(E_{6}, C_{4}\right)$	7/24	
E II	$\left(E_{6}, A_{1} \times A_{5}\right)$	1/4	\} $1 / 12$
E IV	$\left(E_{6}, F_{4}\right)$	1/8	
E V	$\left(E_{7}, A_{7}\right)$	5/18	\} $1 / 18$
E VI	$\left(E_{7}, A_{1} \times D_{6}\right)$	2/9	
E VIII	$\left(E_{8}, D_{8}\right)$	4/15	
E IX	$\left(E_{8}, A_{1} \times E_{7}\right)$	1/5	
G I	$\left(G_{2}, A_{1} \times A_{1}\right)$	1/4	1/4
F I	$\left(F_{4}, A_{1} \times C_{3}\right)$	5/18	
F II	$\left(\mathrm{F}_{4}, \mathrm{~B}_{4}\right)$	1/9	\} $1 / 9$

§ 3. The exceptional cases

In this section we shall determine the eigenvalues of $Q_{(\mathrm{g}, \mathrm{e})}$ for the exceptional cases in lemma 2.3 by the method employed in [7]. Given a symmetric pair ($\mathfrak{g}, \mathfrak{f}$), we write ρ for the linear isotropy representation
$\rho(X)=a d(X) \mid \mathrm{m}, X \in \mathfrak{f}$. We may extend ρ and Q to a representation of \mathfrak{f}^{c} on \mathfrak{m}^{c} and to an endomorphism of $\mathfrak{m}^{c} \vee \mathfrak{m}^{c}$ respectively, which will be denoted by the same letters. Q commutes with $\rho \vee \rho$, the restriction of $\rho \otimes \rho$ to $\mathfrak{m}^{c} \vee \mathfrak{m}^{c}$. Let $\rho \vee \rho=\rho_{1}+\cdots+\rho_{s}$ be the decomposition of $\rho \vee \rho$ into irreducible representations. The highest weights $\Lambda_{(i)}$ of ρ_{i} are assumed to be in the order $\Lambda_{(i)}>\cdots>\Lambda_{(s)}$ with respect to some ordering: this assumption will be satisfied in the following cases. Each subspace W_{i} of $\mathrm{m}^{c} \vee \mathrm{~m}^{c}$ spanned by the weight vectors of $\Lambda_{(i)}$ is stable under Q. We write $(\operatorname{Tr} Q)_{i}$ for the trace of Q restricted to W_{i}. We know in [7] that Q is represented by a scalar matrix in the irreducible invariant subspace of $\mathrm{m}^{c} \vee \mathrm{~m}^{c}$ corresponding to ρ_{i}. If κ_{i} denote the unique eigenvalue of Q restricted to the subspace, then

$$
\begin{equation*}
(\operatorname{Tr} Q)_{i}=\sum_{1 \leq j \leq i} m_{j}\left(\Lambda_{(i)}\right) \kappa_{j} ; \tag{3.1}
\end{equation*}
$$

where $m_{j}\left(\Lambda_{(i)}\right)$ is the multiplicity of the weight $\Lambda_{(i)}$ in ρ_{j}.

$$
\begin{equation*}
m_{1}\left(\Lambda_{(1)}\right)=1 \quad \text { and so } \quad(\operatorname{Tr} Q)_{1}=\kappa_{1} \tag{3.1}
\end{equation*}
$$

Moreover, if g is compact simple, which will be the case in the sequel, one has

$$
\begin{equation*}
\operatorname{Tr} Q=(\operatorname{dim} \mathfrak{m}) / 4, \operatorname{dim} \mathfrak{m}=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{f}^{\mathfrak{f}} \tag{3.2}
\end{equation*}
$$

(3.3) $-1 / 2$ is an eigenvalue with multiplicity one of Q. These formulas (3.1) to (3.3) are given in [7] and will be used to compute the eigenvalues of Q. Hereafter a representation and its highest weight will be denoted by the same letter.
(I) The case of $A I I:\left(\mathfrak{g}_{u}, \mathfrak{f}\right)=\left(A_{2 l-1}, C_{l}\right) l \geqslant 2$

First we try to find the highest weight of ρ and its weight vector: For an arbitrary square matrix X of degree $2 l$, we divide X into four parts

$$
X=\left(\begin{array}{ll}
A_{X} & B_{X} \\
C_{X} & D_{X}
\end{array}\right)
$$

where $A_{X}, B_{X}, C_{X}, D_{X}$ are square matrices with complex coefficients of degree $l . \mathrm{g}^{c}$ is the Lie algebra $\mathfrak{g l}(2 l, \boldsymbol{C})=\left\{X ; \operatorname{Tr}\left(A_{X}+D_{X}\right)=0\right\}$. If J denotes a $(2 l, 2 l)$-matrix such that $A_{J}=D_{J}=0$ and $B_{J}=-C_{J}=E$ ($=$ the unit matrix), \mathfrak{f}^{c} is $\left\{X \in \mathfrak{Z l}(2 l, \boldsymbol{C}) ;^{t} X J+J X=0\right\}$. Hence the orthogonal complement \mathfrak{m}^{c} of \mathfrak{t}^{c} consists of the matrices Y such that ${ }^{t} Y J-J Y=0$, or eqivalently, such that B_{Y}, C_{Y} are skew-symmetric matrices and one has ${ }^{t} A_{Y}=D_{Y}$. An element X of \mathfrak{f}^{c} operates on m^{c} by $Y \in \mathrm{~m}^{c} \rightarrow \rho(X) Y=[X, Y]$ $=X Y-Y X$. On the other hand, the identity representation of \mathfrak{f}^{c} operating
on $\boldsymbol{C}^{2 l}$ naturally induces a representation ρ^{\prime} on $\boldsymbol{C}^{2 l} \wedge \boldsymbol{C}^{2 l}$ which we take as the space of skew-symmetric matrices of degree $2 l ; \rho^{\prime}(X) Z=X Z+Z^{t} X$, $Z=$ skew-symmetric. $\rho^{\prime}\left(\mathfrak{f}^{c}\right)$ leaves J invariant, and ρ^{\prime} is irreducible on the space \mathfrak{n} of skew-symmetric matrices which are orthogonal to J. This irreducible representation, denoted also by ρ^{\prime}, has the highest weight $\Lambda_{2}=\lambda_{1}+\lambda_{2}$ if a Cartan subalgebra of \mathfrak{f}^{c} consists of diagonal matrices, H, and a base $\left(H_{i}\right)$ is so chosen that $H=\sum \lambda_{i} H_{i}$ in case that the (i, i)-element of A_{H} is λ_{i}, If $\alpha(Y)$ denotes the skew-symmetric matrix $-Y J$ for any Y in $\mathfrak{m}^{c}, \alpha ; \mathfrak{m}^{c} \rightarrow \mathfrak{n}$ is an isomorphism of $\mathfrak{f}^{c}-$ modules. Thus the highest weight of ρ is also Λ_{2}, as was shown by E. Cartan. Let $e_{i}=(0, \cdots, 1, \cdots, 0)$ be the element of $\boldsymbol{C}^{2 l}$ whose elements are all zero except that the i-th equals one, and $W \in \mathfrak{n}$ be the skewsymmetric matrix corresponding to $e_{1} \wedge e_{2}$, or equivalently such that $A_{W}=E_{12}-E_{21}$ and B_{W}, C_{W}. and D_{W} are zeros. Then W and therefore $W J$ is clearly the weight vector corresponding to Λ_{2}. For brevity we write X for $W J$. The transposed ${ }^{t} X$ is a weight vector of $-\Lambda_{2}$. By (3.1)', we obtain $\kappa_{1}=(\operatorname{Tr} Q)_{1}=\left\langle Q(X \otimes X),{ }^{t} X \otimes{ }^{t} X\right\rangle /\left\langle X \otimes X,{ }^{t} X \otimes{ }^{t} X\right\rangle$, which is computed with (1.1). Thus we find

$$
\kappa_{1}=\varphi_{\mathrm{g} c}\left(\left[X,{ }^{t} X\right],\left[{ }^{t} X, X\right]\right) / \mathscr{P}_{\mathrm{g} c}\left(X,{ }^{t} X\right)^{2}=1 / 4 l
$$

With the method in [7], $\Lambda_{2} \vee \Lambda_{2}$ turns out to be decomposed into two (resp. three) irreducible representations for $l=2$ (resp. 3). This fact, combined with (3.1) to (3.3), gives the eigenvalues of Q. Assume $l=3$, for instance. The three irreducible components of $\Lambda_{2} \vee \Lambda_{2}$ are $2 \Lambda_{2}, \Lambda_{2}$ and Λ_{0} ($=$ the trivial representation of degree 1). The degree of $2 \Lambda_{2}$ and Λ_{2} are 90 and 14 respectively. Hence we have $7 / 2=\operatorname{dim~m} / 4=\operatorname{Tr} Q$ $=90 \kappa_{1}+14 \kappa_{2}+\kappa_{3}$, where $\kappa_{1}=1 / 12$ as above and $\kappa_{3}=-1 / 2$ by (3.3). This shows $\kappa_{2}=-1 / 4$. So κ_{1} is the largest eigenvalue of Q (as in the other cases). Since $b_{(\mathrm{g}, \mathrm{t})}$ equals $1 / 6$, for ($\mathfrak{g}, \mathfrak{f}$) whose compact form is $\left(A_{5}, C_{3}\right)$, $b_{(\mathrm{g}, \mathrm{f})}$ exceeds κ_{1} and eventually $H_{(\mathrm{g}, \mathfrak{f})}$ is positive definite in this case.
(II) The case of $C I I:\left(\mathfrak{g}_{u}, \mathfrak{f}\right)=\left(C_{l}, C_{p} \times C_{l-p}\right)(p=1,2) . \quad \rho$ is $\Lambda_{1}\left(C_{p}\right)$ $\otimes \Lambda_{1}\left(C_{l-p}\right)$ and $\rho \vee \rho$ decomposed into the irreducible components shown in the first column of the following table.

$2 \Lambda_{1}\left(C_{p}\right) \otimes 2 \Lambda_{1}\left(C_{l-p}\right)$	$\kappa_{1}=1 / 2(l+1)$
$\Lambda_{2}\left(C_{p}\right) \otimes \Lambda_{2}\left(C_{l-p}\right)$	$\kappa_{2}=-1 / 2(l+1)$
$\Lambda_{0}\left(C_{p}\right) \otimes \Lambda_{2}\left(C_{l-p}\right)$	$\kappa_{3}=-(p+1) / 2(l+1)$
$\Lambda_{2}\left(C_{p}\right) \otimes \Lambda_{0}\left(C_{l-p}\right)$	$\kappa_{4}=-(l-p+1) / 2(l+1)$
$\Lambda_{0}\left(C_{p}\right) \otimes \Lambda_{0}\left(C_{l-p}\right)$	$\kappa_{5}=-1 / 2$

For $p=1,-1 / 2(l+1)$ and $-(l+p+1) / 2(l+1)$ must be omitted. Since $b_{(\mathrm{g}, \mathrm{f})}=1 / 2(l+1)$ for $p=1$ and $b_{(\mathrm{g}, \mathrm{f})}=1 /(l+1)$ for $p=2$, we see that $H_{(\mathrm{g}, \mathrm{r})}$ is non-negative but not positive definite for $p=1$ and positive definite for $p=2$.
(III) The case of $G I:\left(\mathrm{g}_{u}, \mathfrak{f}\right)=\left(G_{2}, A_{1} \times A_{1}\right)$

$$
\begin{aligned}
& \rho=\Lambda_{1}\left(A_{1}\right) \otimes 3 \Lambda_{1}\left(A_{1}\right) \\
& \rho \vee \rho=2 \Lambda_{1} \otimes 6 \Lambda_{1}+2 \Lambda_{1} \otimes 2 \Lambda_{1}+\Lambda_{0} \otimes 4 \Lambda_{1}+\Lambda_{0} \otimes \Lambda_{0}
\end{aligned}
$$

and the eigenvalues of $Q_{\left(\mathrm{g}_{u}, \mathrm{r}\right)}$ are $1 / 4,-1 / 6,-1 / 4,-1 / 2$. Hence $H_{(\mathrm{g}, \mathrm{r})}$ is non-negative but not positive definite.
(IV) The case of $F I I:\left(\mathrm{g}_{u}, \mathfrak{f}\right)=\left(F_{4}, B_{4}\right)$

$$
\begin{aligned}
& \rho=\Lambda_{4}\left(B_{4}\right) \\
& \rho \vee \rho=2 \Lambda_{4}+\Lambda_{1}+\Lambda_{0}
\end{aligned}
$$

The eigenvalues of Q are $1 / 18,-5 / 18,-1 / 2$. Therefore $H_{(\mathrm{g}, \mathrm{f})}$ is positive definite.
(V) The case of $B D I I:\left(\mathfrak{g}_{u}, \mathfrak{f}\right)=\left(B_{l}, D_{l}\right)$ or $\left(D_{l}, B_{l-1}\right)$. The symmetric Riemannian space $B D I I$ is of the constant negative curvature. Since $A I I \quad(l=2)=A_{3} / C_{2}=D_{3} / B_{2}, A I I(l=2)$ is contained in this case. If $\operatorname{dim}(B D I I)=n$, we know $b_{(\mathrm{g}, \mathrm{f})}=1 / 2(n-1)$ from Table I. On the other hand, the curvature tensor of the space of constant curvature is given by

$$
R_{i j k l}=K\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right)
$$

From this relation and the fact that the Ricci tensor is ($-1 / 2$)-times metric tensor, we have $K=\frac{1}{2(n-1)}$. Therefore we see from the definition of $Q_{(\mathrm{g}, \mathrm{f})}$ that

$$
\begin{aligned}
H_{(\mathrm{g}, \mathrm{f})}(\xi) & =\frac{1}{2(n-1)} \sum_{i, l} \xi_{i l} \xi^{i l}+\frac{1}{2(n-1)}\left[\left(\sum_{i, l} g_{i l} \xi^{i l}\right)^{2}-\sum_{i, l} \xi_{i l} \xi^{i l}\right] \\
& =\frac{1}{2(n-1)}\left(\sum_{i, l} g_{i l} \xi^{i l}\right)^{2}
\end{aligned}
$$

Hence $H_{(\mathrm{g}, \mathrm{f})}$ is non-negative but not positive definite.
Remark. For each symmetric pair (g_{u}, \mathfrak{f}) such that g_{u} is simple and \mathfrak{f} is of the same rank and semi-simple or simple, the system of the fundamental roots of \mathfrak{f}^{c} is obtained from the diagram of the fundamental
simplex of g_{z}^{c} by omitting a vertex which we denote by the black vertex (cf. Borel-Siebenthal [3]). We can check case by case that the highest weight of the linear isotropy representation of \mathfrak{f}^{c} coincides with the root $-\alpha$ where α is the root which corresponds to the black vertex.

§4. The Main Theorem.

In the following, we shall use the notation set down by Berger [1] for each simple Lie group.

Theorem 4.1. The quadratic form $H_{(\mathrm{g}, \mathrm{r})}$ is positive definite for the following values of r :
(i) if G is a complex simple Lie group with rank l,

type of G	r	type of G	r
A_{l}	$r<\frac{l+1}{2}$	E_{6}	$r \leqslant 5$
B_{l}	$r \leqslant l-1$	E_{7}	$r \leqslant 8$
C_{l}	$r<\frac{l+1}{2}$	E_{8}	$r \leqslant 14$
D_{l}	$r \leqslant l-2$	F_{4}	$r \leqslant 4$
		G_{2}	$r \leqslant 1$

(ii) if G is a real non-compact simple Lie group,

type of G	r	type of G	r
$\mathrm{SL}(l, \boldsymbol{R})$	$r<\frac{l+2}{4}$	E_{7}^{1}	$r \leqslant 4$
$\mathrm{SU}^{*}(2 l)$	$r<\frac{l-1}{2}$	E_{7}^{2}	$r \leqslant 3$
$\mathrm{SO}^{\mathrm{i}}(2 l+1)$	$r<\operatorname{Min}\left(\frac{i}{2}, \frac{2 l-i+1}{2}\right)$	E_{8}^{1}	$r \leqslant 7$
$\mathrm{SO}^{\mathrm{i}}(2 l)$	$r<\frac{i}{2} \leqslant \frac{l}{2}$	E_{8}^{2}	$r \leqslant 5$
$\mathrm{Sp}^{\mathrm{i}}(l)$	$r<i \leqslant \frac{l}{2}$	G_{2}^{*}	$r<1$
E_{6}^{1}	$r \leqslant 3$	$\mathrm{~F}_{4}^{1}$	$r \leqslant 2$
E_{6}^{2}	$r \leqslant 2$	$\mathrm{~F}_{4}^{2}$	$r \leqslant 1$
E_{6}^{4}	$r \leqslant 1$		

Proof. If G is complex simple we have $b_{(\mathrm{g}, \mathrm{r})}=1 / 4$ by [7]. And we know by lemma 2.2 the value of κ_{u}. (i) is a direct consequence of these facts. Next we consider the case of more general symmetric pairs ($\mathfrak{g}, \mathfrak{f}$) with semi-simple \mathfrak{f}. If \mathfrak{f} is of the same rank, we can easily calculate
the maximal eigenvalue κ of $Q_{\left(\mathrm{g}_{\mu}, \mathrm{f}\right)}$, using the method explained in §3, and we obtain $\kappa=2 \kappa_{u}$ for all cases other than $B I I, D I I, C I I$ and $F I I$. As for $B I I, D I I, C I I$ and $F I I$, we have $\kappa=\kappa_{u}$. If \mathfrak{f} is not of the same rank, the computation of κ is very complicated but we know by Lemma 2.1 that $\left(b_{(\mathfrak{g}, \mathfrak{r})} / r\right)-2 \kappa_{u}>0$ implies $\left(b_{(\mathrm{g}, \mathfrak{r})} / r\right)-\kappa>0$. (ii) is an immediate consequence of these facts.

Using Theorem 4.1. and Theorem B, we have the following
Corollary. Let G be a non-compact simple Lie group, K a maximal compact subgroup of G and Γ be a discrete subgroup of G without non-trivial element of finite order. Suppose that the quotient space G / Γ is compact. Then the r-th Betti number $b_{r}(K \backslash G / \Gamma)$ of a compact lacally symmetric space $K \backslash G / \Gamma$ equals the r-th Betti number $b_{r}\left(M_{u}\right)$ of the compact form M_{u} of $K \backslash G$ for the values of r which satisfy the condition in Theorem 4.1.

\S 5. Betti numbers of G / Γ.

As a corollary of Theorem 4.1, we get
Theorem 5.1. Let G be a connected semi-simple Lie group, each of whose simple factors is non-compact and not locally isomorphic to any of $S L(2, \boldsymbol{C}), S U^{1}(n), S O^{1}(n), S p^{1}(n), G_{2}^{*}$. Let Γ be a discrete subgroup with the compact quotient space G / Γ. Then the first Betti number of G / Γ vanishes.

Proof. From the results of Matsushima [8] and of [7] and the consideration in $\S \S 2$ and 3 , the quadratic form H of each simple factor of G is positive definite. Therefore we see from Theorem A in §1 that $b_{1}(G / \Gamma)=0$.

Theorem 5.2. Let G be a complex simple Lie group with rank l and Γ be a discrete subgroup with the compact quotient space G / Γ. Let $b_{i}(G / \Gamma)$ be the i-th Betti number of G / Γ. Then
(1) $b_{2}(G / \Gamma)=0$, if $l \geqslant 4$ or if $G=B_{3}$.
(2) $b_{3}(G / \Gamma)=2$ and $b_{4}(G / \Gamma)=0$, if $G=A_{l}(l \geqslant 8), B_{l}(l \geqslant 5), C_{l}(l \geqslant 8)$, $D_{l}(l \geqslant 6), E_{6}, E_{7}, E_{8}$ or F_{4}.
(3) $b_{5}(G / \Gamma)=1$ or 2 if $G=A_{l}(l \geqslant 10) ; b_{5}(G / \Gamma)=0$ if $G=B_{l}(l \geqslant 6), C_{l}$ $(l \geqslant 10), D_{l}(l \geqslant 7), E_{6}, E_{7}$, or E_{8}.

Proof. Suppose that Γ has elements of finite order. Then we know in Selberg [10] that there exists a normal subgroup Γ_{0} of Γ with finite index which contains no non-trivial element of finite order. Since G / Γ_{0} is a finite covering of G / Γ, it is sufficient for $b_{r}(G / \Gamma)=0$ to show that $b_{r}\left(G / \Gamma_{0}\right)=0$, Hence we can suppose without loss of generality that Γ
contains no non-trivial element of finite order. Let K be a maximal compact subgroup of $G . G / \Gamma$ is a principal fibre bundle over a compact locally symmetric space $K \backslash G / \Gamma$ with structure group K. From the hypothesis for the rank of G and from theorem 4 .1, we see $b_{i}(K \backslash G / \Gamma)$ $=b_{i}(K)=0$ for $0<i<3$, since K is simple. Hence, by Serre [11], the following exact sequence of real cohomology groups associated to the above principal bundle is valid for the dimension $\leqslant 5$, since the structure group K is connected.

$$
\begin{align*}
& 0 \rightarrow H^{1}(K \backslash G / \Gamma) \rightarrow H^{1}(G / \Gamma) \rightarrow H^{1}(K) \rightarrow H^{2}(K \backslash G / \Gamma) \rightarrow H^{2}(G / \Gamma) \tag{5.1}\\
& \rightarrow H^{2}(K) \rightarrow \cdots \rightarrow H^{5}(K \backslash G / \Gamma) \rightarrow H^{5}(G / \Gamma) \rightarrow H^{5}(K)
\end{align*}
$$

(i) is a direct consequence of the above facts.

As for (2), we see from the hypothesis for the rank of $G b_{4}(K \backslash G / \Gamma)$ $=b_{4}(K)=0$, since K is simple (For the Betti numbers of compact simple Lie groups, see for instance [5], [6]). On the other hand, $H^{3}(K \backslash G / \Gamma)$ $\cong H^{3}(K) \cong \boldsymbol{R}$. Therefore we get $H^{3}(G / \Gamma) \cong \boldsymbol{R}+\boldsymbol{R}$ from (5.1), which implies (2).

Using the above exact sequence, we know by the similar method that the later half of (2) and (3) are valid.

Theorem 5.3. Let G be a non-compact real simple Lie group and Γ be a discrete subgroup of G with compact quotient space G / Γ. Then the second Betti number $b_{2}(G / \Gamma)$ of G / Γ equals zero if the type of G is E_{6}^{i} $(i=1,2), E_{7}^{i}(i=1,2,3), E_{8}^{i}(i=1,2)$ or F_{4}^{1}, or if G is classical and satisfies the following conditions:

type of G	l	txpe of G	l
$\mathrm{SL}(l+1, \boldsymbol{R})$	$l \geqslant 6$	$\mathrm{SO}^{\mathrm{i}}(2 l)$	$\frac{l}{2} \geqslant \frac{i}{2}>2$
$\mathrm{SU}^{*}(2 l)$	$\frac{l+1}{2} \geqslant i \geqslant 5$	$\mathrm{SO}^{*}(2 l)$	$l \geqslant 7$
$\mathrm{SU}^{\mathrm{i}}(l+1)$	$\mathrm{Sp}(l, \boldsymbol{R})$	$l \geqslant 7$	
$\mathrm{SO}^{\mathrm{i}}(2 l+1)$	$\operatorname{Min}\left(\frac{i}{2}, \frac{2 l+1-i}{2}\right)>2$	$\mathrm{Sp}^{\mathrm{i}}(l)$	$\frac{l}{2} \geqslant i \geqslant 3$

Proof. We can suppose without loss of generality that Γ contains no non-trivial element of finite order. Let K be a maximal compact subgroup of G. First we consider the case where $K \backslash G$ has no complex structure. For this case, the first and the second Betti numbers of compact form M_{u} of $K \backslash G$ equal zero. From the hypothesis on G, we have $b_{i}(K \backslash G / \Gamma)=b_{i}\left(M_{u}\right)=0$ for $0<i<3$. We have $b_{i}(K)=0$ for $0<i<3$, since K is semi-simple. Therefore we get $b_{2}(G / \Gamma)=0$ by the exact
sequence (5.1). In the case where $K \backslash G$ has a complex structure, we know by Matsushima [9] that $H^{1}(G / \Gamma)=0, H^{2}(K \backslash G / \Gamma) \cong H^{2}\left(M_{u}\right) \cong \boldsymbol{R}$. On the other hand, we have $H^{2}(K)=0$. Therefore the exact sequence (5.1) are valid for the dimension <3, from which we obtain $H^{2}(G / \Gamma)=0$.

Osaka University
University of Tokyo
(Received August 8, 1962)

Bibliography

[1] M. Berger: Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup. 74 (1957), 85-177.
[2] A. Borel: On the curvature tensor of the hermitian symmetric manifolds, Ann. of Math., 71 (1960), 508-521.
[3] A. Borel and J. Siebenthal: Les sous-goupes fermés de rang maximum des groupes de Lie clos, Comm. Math. Helv. 23 (1949), 200-221.
[4] E. Calabi and E. Vesentini: On combact locally symmetric kähler manifolds, Ann. of Math. 71 (1960), 472-507.
[5] C. Chevalley: The Betti numbers of the exceptional simple Lie groups, Proc. Internat. Congress Math. Cambridge, Mass., 1950, Vol. 2, 21-24.
[6] H. Samelson: Topology of Lie groups, Bull. Amer. Math. Soc. 58 (1952), 2-37.
[7] S. Kaneyuki and T. Nagano: On the first Betti numbers of compact quotient spaces of complex semi-simple Lie groups by discrete subgroups, Sci. Papers Coll. Gen. Ed. Univ. Tokyo. 12 (1962), 1-11.
[8] Y. Matsushima: On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces, Ann. of Math. 75 (1962), 312-330.
[9] Y. Matsushima: On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. J. 14 (1962), 1-20.
[10] A. Selberg: On discontinuous groups in higher-dimentional symmetric space, Proceedings of Bombay Conference on Analytic Functions 1960.
[11] J. P. Serre: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.

