A NOTE ON TRANSITIVE PERMUTATION GROUPS OF DEGREE p

 $\mathbf{B}\mathbf{y}$

Noboru ITO

Dedicated to Kenjiro Shoda on his sixtieth birthday

Let p and q be odd prime numbers such that p=2q+1. Let Ω be the set of symbols $1, \dots, p$ and let $\mathfrak B$ be an insoluble transitive permutation group on Ω . Then by a famous theorem of Burnside $\mathfrak B$ is doubly transitive on Ω . In particular the order of $\mathfrak B$ is divisible by q. Let $\mathfrak D$ and $Ns\mathfrak D$ denote a Sylow q-subgroup of $\mathfrak B$ and its normalizer in $\mathfrak B$. Moreover let $\mathfrak B$ be the maximal subgroup of $\mathfrak B$ consisting of all the permutations of $\mathfrak B$ each of which fixes the symbol 1 and let $LF_2(n)$ denote the linear fractional group over the field of n elements.

Now the purpose of this note is (i) to give a proof for an unpublished result of Wielandt in 1955:

Theorem 1. If \mathfrak{D} is imprimitive on $\Omega - \{1\}$, then \mathfrak{G} is isomorphic to $LF_2(7)$ with p=7, and (ii) to prove the following theorem:

Theorem 2. If $Ns \mathbb{D}$ has order 2q, then \mathfrak{G} is isomorphic to either $LF_2(7)$ with q=3 or $LF_2(11)$ with q=5.

§ 1. Proof of Theorem 1.

1. Let $\mathfrak P$ and $Ns\mathfrak P$ denote a Sylow p-subgroup of $\mathfrak P$ and its normalizer in $\mathfrak P$. We assume that $Ns\mathfrak P$ has order px. If x=1, then by the splitting theorem of Burnside $\mathfrak P$ contains a normal subgroup of index p. Hence $\mathfrak P$ is normal in $\mathfrak P$. Since $\mathfrak P$ is transitive on $\mathfrak P$, we have that $\mathfrak P=1$ and $\mathfrak P=\mathfrak P$. Then $\mathfrak P$ is soluble against our assumption. If x=2, let p be an involution in p is odd, p is an odd permutation. Let $\mathfrak P$ be the subgroup of $\mathfrak P$ consisting of all the even permutations of $\mathfrak P$. Then the index of $\mathfrak P$ in $\mathfrak P$ equals two. Since $\mathfrak P$ is insoluble, $\mathfrak P$ is also

^{*} Supported partially by N.S.F. contract G-9654.

214 N. Ito

insoluble. But we have that $Ns\mathfrak{P} \cap \mathfrak{G}^* = \mathfrak{P}$. This is a contradiction as before. If x = 2q, then by a theorem of Wielandt ([5], (27.1)) \mathfrak{G} is triply transitive on \mathfrak{Q} . Hence \mathfrak{P} is doubly transitive and necessarily primitive on $\mathfrak{Q} - \{1\}$. This is against our assumption. Hence we can assume that x = q.

- 2. \mathfrak{G} is simple. Otherwise let \mathfrak{N} be a proper normal subgroup (± 1) of \mathfrak{G} . Then since \mathfrak{G} is doubly transitive on \mathfrak{Q} , \mathfrak{N} is transitive on \mathfrak{Q} . Therefore \mathfrak{N} contains \mathfrak{P} . Using Sylow's theorem we have that $\mathfrak{G}=Ns\mathfrak{P}.\mathfrak{N}$. Therefore we have that $\mathfrak{P}\subseteq Ns\mathfrak{P}\cap\mathfrak{N}\subseteq Ns\mathfrak{P}$. Since $Ns\mathfrak{P}:\mathfrak{P}=q$ is a prime number, we have that $Ns\mathfrak{P}\cap\mathfrak{N}=\mathfrak{P}$. This implies the solubility of \mathfrak{N} and \mathfrak{G} as before. This contradiction shows the simplicity of \mathfrak{G} .
- 3. The order of $\mathfrak D$ is q and the cycle structure of every element (± 1) of $\mathfrak D$ consists of two q-cycles. Otherwise $\mathfrak D$ contains a q-cycle. Then by a classical theorem of Jordan $\mathfrak B$ must be the alternating group of degree p, which is obviously triply transitive on $\mathfrak D$. This is a contradiction as before.
- 4. Let \Re be the subgroup of \Im consisting of all the permutations of \Im each of which fixes each of the symbols 1 and 2. Now since \Im is imprimitive on $\Omega \{1\}$, \Re is not a maximal subgroup of \Im . Let \Re be a maximal subgroup of \Im containing \Re . Since $\Im : \Re = 2q$ two cases arise: (i) $\Re : \Re = q$ and $\Im : \Re = 2$ and (ii) $\Re : \Re = 2$ and $\Im : \Re = q$.
- 5. Case (i). Since \mathfrak{M} has index two in \mathfrak{H} and is intransitive on $\Omega - \{1\}$ $\Omega - \{1\}$ is divided into two domains of transitivity Ω_1 and Ω_2 of \mathfrak{M} each of which has length q. Let $Cs\mathfrak{Q}$ denote the centralizer of \mathfrak{Q} in \mathfrak{G} . Then we have that $Cs\mathfrak{Q} = \mathfrak{Q}$, because otherwise $Cs\mathfrak{Q}$ must contain a 2q-cycle, which is an odd permutation against the simplicity of \mathfrak{G} . Now using Sylow's theorem we can assume that \mathfrak{Q} is contained in \mathfrak{S} . Then $\mathfrak Q$ is contained in $\mathfrak M$ and we have that $\mathfrak S=Ns\mathfrak Q.\mathfrak M$, whence follows that $Ns\mathfrak{Q}:\mathfrak{M}\cap Ns\mathfrak{Q}=2$. Let \mathfrak{T} be a Sylow 2-subgroup of $Ns\mathfrak{Q}$. Then $\mathfrak T$ is cyclic, because of $Cs\mathfrak Q=\mathfrak Q$. Anyway we have that $\mathfrak T \neq 1$. Let Tbe a generator of \mathfrak{T} . Then since \mathfrak{T} is not contained in \mathfrak{M} , T must permute Ω_1 with Ω_2 . Hence we have that $\alpha(T)=1$, where $\alpha(X)$ denotes the number of symbols of Ω which are fixed by a permutation X of \mathfrak{G} . If T is an involution, then the cycle structure of T consists of q transpositions and T must be an odd permutation, contradicting the simplicity of \mathfrak{G} . Hence the order of T, say 2^{τ} , is greater than two. Now we have that $\alpha(T^t) \leq 3$ for $T^t \neq 1$ (t is an integer.), because otherwise T^t fixes at least two symbols of either Ω_1 or Ω_2 . This means that T^t is commutative with the elements of Ω , which is a contradiction since $Cs\mathfrak{D} = \mathfrak{D}$. Since $2q \equiv 0 \pmod{4}$ the cycle structure of T must contain a transposition. Hence if t is even and $T^t \neq 1$ we have that $\alpha(T^t) = 3$.

Therefore the cycle structure of T consists of one transposition and $(2q-2/2^{\tau})2^{\tau}$ -cycles. Since T must be an even permutation, we have that $2q-2/2^{\tau}$ is odd. Anyway we obtain the following equality:

$$(I) 2q = 2 + 2^{\tau}(2q - 2/2^{\tau}),$$

where $(2q-2/2^7)$ is an odd number. On the other hand, T is contained in $Ns\mathfrak{Q}$ and $Cs\mathfrak{Q} = \mathfrak{Q}$. Therefore we obtain the following congruence:

$$q \equiv 1 \pmod{2^r}.$$

(I) and (II) give us a contradiction. Hence the case (i) cannot occur. 6. Case (ii). Since $\mathfrak{M}: \mathfrak{R}=2$, the length of the domain Γ of transitivity of \mathfrak{M} containing the symbol 2 of Ω must be two. Let us assume that Γ consists of two symbols 2 and 3 of Ω . Then since \mathfrak{R} is normal in $\mathfrak{M}, \mathfrak{R}$ must fix also the symbol 3. Now let Φ denote the set of symbols of Ω which are fixed by \mathfrak{R} . Then the length f of Φ is at least three. By a theorem of Witt ([5], (9.4)) the normalizer $Ns\mathfrak{R}$ of \mathfrak{R} in \mathfrak{G} is doubly transitive on Φ . In our case then $Ns\mathfrak{R}$ clearly has order f(f-1). Since f(f-1) must divide 2pq and f is smaller than p, we must have that f=q and f-1=2. Thus we obtain that q=3 and p=7. Now it is easy to show that \mathfrak{G} is isomorphic to $LF_2(7)$.

§ 2. Proof of Theorem 2.

If $Ns\mathfrak{D}$ is cyclic, then \mathfrak{B} contains by the splitting theorem of Burnside a normal subgroup \mathfrak{R} of index q. Since $Ns\mathfrak{P} \cap \mathfrak{R}$ has order at most 2p, \mathfrak{R} and \mathfrak{B} must be soluble as before in § 1.1 against our assumption. Hence $Ns\mathfrak{D}$ must be a dihedral group of order 2q. Therefore Theorem 2 is a special case of the following

Theorem 3. Let n be an integer such that n=2q+1, where q is an odd prime number. Let Ω be the set of symbols $1, \dots, n$ and let $\mathfrak G$ be an insoluble doubly transitive permutation group on Ω . Let $\mathfrak Q$ be a Sylow q-subgroup of $\mathfrak G$ and $Ns\mathfrak Q$ be the normalizer of $\mathfrak Q$ in $\mathfrak G$. If $Ns\mathfrak Q$ is a dihedral group of order 2q, then $\mathfrak G$ is isomorphic to either $LF_2(7)$ with q=3 or $LF_2(11)$ with q=5.

Proof of Theorem 3.

1. \mathfrak{G} is simple. Otherwise let \mathfrak{N} be a maximal normal subgroup (± 1) of \mathfrak{G} . If \mathfrak{N} contains \mathfrak{D} , then we have that $\mathfrak{N} \cap Ns\mathfrak{D} = \mathfrak{D}$, since $Ns\mathfrak{D}: \mathfrak{D}=2$ and by Sylow's theorem $(Ns\mathfrak{D})\mathfrak{N}=\mathfrak{G}$. Hence by the splitting theorem of Burnside \mathfrak{N} contains a normal subgroup \mathfrak{N}^* of index q. Since $Ns\mathfrak{D}$ is a dihedral group of order 2q, every element (± 1) of \mathfrak{N}^*

216 N. Ito

is not commutative with any element (± 1) of $\mathfrak D$. Therefore $\mathfrak R^*$ is nilpotent by a theorem of Thompson [4]. Then $\mathfrak R$ and $\mathfrak B$ become soluble against our assumption. If the order of $\mathfrak R$ is prime to q, then let us consider the subgroup $\mathfrak R\mathfrak D$. Again by a theorem of Thompson $\mathfrak R$ becomes nilpotent. Let $\mathfrak R^*$ be a minimal normal subgroup of $\mathfrak B$ contained in $\mathfrak R$. Since $\mathfrak B$ is doubly transitive on $\mathfrak Q$, every normal subgroup (± 1) of $\mathfrak B$ is transitive on $\mathfrak Q$. Therefore $\mathfrak R^*$ must be an elementary abelian p-group for some prime number p and we have the following factorisation of $\mathfrak B: \mathfrak B=\mathfrak R^*\mathfrak D$, $\mathfrak R^*\cap \mathfrak D=1$, where $\mathfrak D$ denotes the maximal subgroup of $\mathfrak B$ consisting of all the permutations of $\mathfrak B$ each of which fixes the symbol 1. Since $\mathfrak R$ is nilpotent, $\mathfrak R^*$ is contained in the center of $\mathfrak R$. Since $\mathfrak D$ does not contain any normal subgroup (± 1) of $\mathfrak B$, we have that $\mathfrak R\cap \mathfrak D=1$ and $\mathfrak R=\mathfrak R^*$. On the other hand, since $\mathfrak B$ is insoluble, $\mathfrak D$ must be insoluble. Moreover since $\mathfrak R$ is also a maximal normal subgroup of $\mathfrak B$, $\mathfrak D$ is simple. Let $p^{\mathfrak p}$ be the order of $\mathfrak R$. Then we have the equality

$$n=2q+1=p^{\nu}$$
.

Since $\mathfrak D$ is insoluble, we have that ν is greater than one. Hence we have that p=3 and $q=\frac{1}{2}(3^{\nu}-1)$. In particular we have that ν is greater than two. Then $\mathfrak D$ is isomorphic to a subgroup of the ν -dimensional special linear group $SL_{\nu}(3)$ over the field of three elements. But then $Ns\mathfrak D$ has order $\nu q > 2q$ [3]. This is a contradiction. Hence $\mathfrak D$ must be simple.

- 2. In the first place let us assume that $\mathfrak D$ is imprimitive on $\Omega-\{1\}$. Let $\mathfrak R$ be the subgroup of $\mathfrak C$ consisting of all the permutations each of which fixes each of the symbols 1 and 2 of Ω . Then $\mathfrak R$ is not a maximal subgroup of $\mathfrak D$. Let $\mathfrak M$ be a maximal subgroup of $\mathfrak D$ containing $\mathfrak R$. Since $\mathfrak D: \mathfrak R=2q$, we have two cases: (i) $\mathfrak D: \mathfrak M=2$, $\mathfrak M: \mathfrak R=q$ and (ii) $\mathfrak D: \mathfrak M=q$, $\mathfrak M: \mathfrak R=2$.
- 3. Case (i). Using Sylow's theorem we can assume that $\mathfrak Q$ is contained in $\mathfrak Q$. Then $\mathfrak Q$ is contained in $\mathfrak M$. Hence by Sylow's theorem we have that $(Ns\mathfrak Q)\mathfrak M=\mathfrak Q$. Since $Ns\mathfrak Q:\mathfrak Q=2$, we have then that $Ns\mathfrak Q\cap\mathfrak M=\mathfrak Q$. By the splitting theorem of Burnside $\mathfrak M$ contains a normal subgroup of index q, which necessarily coincides with $\mathfrak R$. Since $\mathfrak Q$ is transitive on $\mathfrak Q-\{1\}$, we have that $\mathfrak R=1$. Then it is easy to show the solubility of $\mathfrak G$ against our assumption. Thus Case (i) cannot occur.
- 4. Case (ii). If $\mathfrak D$ is simple, then by a previous result ([2], Theorem II) $\mathfrak D$ becomes primitive on $\Omega \{1\}$. Hence in our case $\mathfrak D$ cannot be simple. Let $\mathfrak R$ be a maximal normal subgroup of $\mathfrak D$. If the order of $\mathfrak R$ is divisible by q, then $\mathfrak R$ has index two in $\mathfrak D\mathfrak R \cap Ns\mathfrak D = \mathfrak D$, because $Ns\mathfrak D$ is a dihedral group of order 2q and we have that $\mathfrak D = \mathfrak R Ns\mathfrak D$ by Sylow's theorem. Now by the splitting theorem of Burnside $\mathfrak R$ contains a normal

subgroup \mathfrak{N}^* of index q. Since \mathfrak{D} is transitive on $\Omega - \{1\}$ \mathfrak{N}^* is semitransitive on $\Omega - \{1\}$ ([5], 11). Hence the length of domains of transitivity of \mathfrak{N}^* from $\Omega - \{1\}$ equals two and \mathfrak{N}^* is an elementary abelian 2-subgroup. Let us consider the subgroup $\mathfrak{D}\mathfrak{N}^*$. Since $Ns\mathfrak{D}$ is a dihedral group of order 2q, every element (± 1) of \mathfrak{N}^* is not commutative with any element (± 1) of \mathfrak{D} . Hence we see in particular that the order of \mathfrak{N}^* is congruent to 1 modulo q.

Since \mathfrak{G} is simple and $Ns\mathfrak{Q}$ is a dihedral group of order 2q, we see, using a method of Brauer-Fowler ([2], §1.3), that there is only class of conjugate involutions in \mathfrak{G} . Now let us consider the subgroup $Ns\mathfrak{Q}$. Every element of $Ns\mathfrak{Q}$ of order q has a cycle structure consisting of two q-cycles. Then it is easy to show that every involution in $Ns\mathfrak{Q}$ fixes just three symbols of Ω .

Since $\mathfrak{M}: \Re=2$, the length of the domain Γ of transitivity of \mathfrak{M} containing the symbol 2 of Ω must be two. Let us assume that Γ consists of two symbols 2 and 3 of Ω . Then since \Re is normal in \mathfrak{M}, \Re must fix also the symbol 3. Let \mathfrak{T} be a Sylow 2-subgroup of \Re . Then \mathfrak{T} must be semi-regular on $\Omega-\{1,2,3\}$ ([5], §4). Therefore the order of \mathfrak{T} is a divisor of 2q-2. Since the orders of \mathfrak{T} and \mathfrak{N}^* are same, we see that the order of \mathfrak{T} equals q+1 and that 2q-2=q+1. Thus we obtain that q=3. Now it is easy to show that \mathfrak{G} is isomorphic to $LF_2(7)$.

If the order of $\mathfrak R$ is prime to q, then as before (see No. 1 of this proof) by a theorem of Thompson [4] $\mathfrak R$ itself becomes a nilpotent, therefore, an elementary abelian 2-group and the order of $\mathfrak R$ is congruent to 1 modulo q. If $\mathfrak R$ has index q in $\mathfrak S$, then we must have that $Ns\mathfrak Q=\mathfrak Q$ against our assumption. Since the factor group $\mathfrak S/\mathfrak R$ is simple, the order of $\mathfrak S/\mathfrak R$ is divisible by 4. Hence the order of $\mathfrak R$ is at most a half of that of $\mathfrak T$. Thus we obtain an absurd inequality $q-1 \geq q+1$.

- 5. So we can assume that $\mathfrak P$ is primitive on $\Omega-\{1\}$. Then $\mathfrak P$ is simple. Otherwise let $\mathfrak R$ be a proper normal subgroup (± 1) of $\mathfrak P$. Since $\mathfrak P$ is primitive on $\Omega-\{1\}$, $\mathfrak R$ is transitive on $\Omega-\{1\}$. Hence the order of $\mathfrak R$ is divisible by 2q. Since $Ns\mathfrak Q$ is a dihedral group of order 2q and $\mathfrak P=\mathfrak R Ns\mathfrak Q$ by Sylow's theorem, we must have that $\mathfrak P:\mathfrak R=2$ and $\mathfrak R\cap Ns\mathfrak Q=\mathfrak Q$. Then by the splitting theorem of Burnside $\mathfrak R$ contains a characteristic subgroup $\mathfrak R^*$ of index q. If $\mathfrak R^* = 1$, then the order of $\mathfrak R^*$ is divisible by 2q. Therefore we obtain that $\mathfrak R^* = 1$, which implies the solubility of $\mathfrak B$ against our assumption.
- 6. If $\mathfrak D$ is doubly transitive on $\Omega-\{1\}$, then by a previous result ([2], Theorem I), $\mathfrak D$ is isomorphic to $LF_2(r)$ with 2q=r+1, and hence only the identity element of $\mathfrak D$ fixes at least three symbols of $\Omega-\{1\}$. Therefore $\mathfrak D$ is triply transitive on Ω and only the identity element fixes

218 N. Ito

at least four elements of Ω . Now using a theorem of Gorenstein-Hughes [1] we obtain that $2q+1=2^{\nu}+1$. This is a contradiction, since q is an odd prime number.

7. If \mathfrak{D} is not doubly transitive on $\Omega - \{1\}$, then also by a previous result ([2], Theorem II) \mathfrak{D} is isomorphic to the icosahedral group with q=5. Thus we have obtained that n=11 and the order of \mathfrak{D} is 660. Now it is easy to show that \mathfrak{D} is isomorphic to $LF_2(11)$.

University of Illinois and Nagoya University

(Received April 6, 1962)

Bibliography

- [1] D. Gorenstein and D. R. Hughes: Triply transitive groups in which only the identity fixes four letters, Illinois J. Math. 5 (1961), 486-491.
- [2] N. Ito: On transitive simple permutation groups of degree 2p, Math. Z. 78 (1962), 453-468.
- [3] N. Ito: A note on $SL_r(q)$, to appear in Arch. d. Math.
- [4] J. Thompson: Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581.
- [5] H. Wielandt: Permutationsgruppen, Vorlesungsausarbeitungen von J. André, Tübingen, 1955.