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Let p and ¢ be odd prime numbers such that p=2¢+1. Let Q be
the set of symbols 1, -, p and let @ be an insoluble transitive permuta-
tion group on Q. Then by a famous theorem of Burnside & is doubly
transitive on Q. In particular the order of ® is divisible by ¢g. Let Q
and NsQ denote a Sylow g-subgroup of & and its normalizer in ®.
Moreover let © be the maximal subgroup of & consisting of all the
permutations of & each of which fixes the symbol 1 ard let LF,(%) denote
the linear fractional group over the field of # elements.

Now the purpose of this note is (i) to give a proof for an unpublished
result of Wielandt in 1955 :

Theorem 1. If © is imprimitive on Q— {1}, then & is isomorphic to
LF7) with p=1, ,
and (ii) to prove the following theorem :

Theorem 2. If NsQ has order 2q, then & is isomorphic to either
LF(7) with ¢q=3 or LF,(11) with q=>5.

§1. Proof of Theorem 1.

1. Let 3 and Ns*®¥B denote a Sylow p-subgroup of & and its normal-
izer in @. We assume that NsP has order px. If x=1, then by the
splitting theorem of Burnside & contains a normal subgroup of index
p. Hence 9 is normal in . Since ® is transitive on Q, we have that
=1 and 8=9P. Then © is soluble against our assumption. If x=2,
let / be an involution in Ns¥3. Then the cycle structure of J consists
of ¢ transpositions. Since ¢ is odd, J is an odd permutation. Let &%
be the subgroup of & consisting of all the even permutations of &.
Then the index of &* in & equals two. Since & is insoluble, &* is also

* Supported partially by N.S.F. contract G-9654.
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insoluble. But we have that NsPN&*=9P. This is a contradiction as
before. If x=2g, then by a theorem of Wielandt ([5], (27. 1)) & is triply
transitive on Q. Hence 9 is doubly transitive and necessarily primitive
on Q— {1}. This is against our assumption. Hence we can assume that
x=q.

2. & is simple. Otherwise let : be a proper normal subgroup (==1)
of @. Then since & is doubly transitive on Q, R is transitive on Q.
Therefore M contains P. Using Sylow’s theorem we have that &= NsP.N.
Therefore we have that PENsPNRENsB. Since NsP: P=gq is a prime
number, we have that NsBNN=P. This implies the solubility of N and
& as before. This contradiction shows the simplicity of &.

3. The order of Q is ¢ and the cycle structure of every element
(==1) of Q consists of two g-cycles. Otherwise Q contains a g-cycle.
Then by a classical theorem of Jordan & must be the alternating group
of degree p, which is obviously triply transitive on . This is a con-
tradiction as before.

4. Let & be the subgroup of & consisting of all the permutations
of & each of which fixes each of the symbols 1 and 2. Now since 9
is imprimitive on Q— {1}, ® is not a maximal subgroup of ©. Let M
be a maximal subgroup of  containing ®. Since 9:8=2¢ two cases
arise: (i) M:8=¢ and H:M=2 and (ii) M :8=2 and O: M=q.

5. Case (i). Since I has index two in © and is intransitive on
Q— {1} Q—{1} is divided into two domains of transitivity Q, and Q, of
I each of which has length ¢. Let CsQ denote the centralizer of L in
®. Then we have that CsQ =2, because otherwise CsQ must contain
a 2g-cycle, which is an odd permutation against the simplicity of &.
Now using Sylow’s theorem we can assume that Q is contained in .
Then Q is contained in 9 and we have that 9= NsQ. I, whence follows
that NsQ : M NsQ=2. Let € be a Sylow 2-subgroup of NsQ. Then
T is cyclic, because of CsQ=_. Anyway we have that ¥==1. Let T
be a generator of & Then since ¥ is not contained in M, T must
permute Q, with Q,. Hence we have that «(7)=1, where a(X) denotes
the number of symbols of Q which are fixed by a permutation X of &.
If T is an involution, then the cycle structure of 7T consists of ¢ trans-
positions and T must be an odd permutation, contradicting the simplicity
of &. Hence the order of T, say 27, is greater than two. Now we
have that a(T*) <3 for T*==1 (¢ is an integer.), because otherwise 7
fixes at least two symbols of either Q, or Q,. This means that 7°¢ is
commutative with the elements of L, which is a contradiction since
CsQ=2. Since 2¢==0 (mod 4) the cycle structure of 7 must contain a
transposition. Hence if ¢ is even and 7%==1 we have that a(7?%)=3.
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Therefore the cycle structure of 7T consists of one transposition and
(29—2/2")2-cycles. Since T must be an even permutation, we have
that 29—2/2" is odd. Anyway we obtain the following equality :

(1) 29 = 24+27(2¢9—-2/27),

where (2¢—2/27) is an odd number. On the other hand, T is contained
in NsQ and CsQ=9%. Therefore we obtain the following congruence :

(II) g=1 (mod 27).

(@) and (I) give us a contradiction. Hence the case (i) cannot occur.

6. Case (ii). Since M :8{=2, the length of the domain I of transi-
tivity of ¢ containing the symbol 2 of O must be two. Let us assume
that T' consists of two symbols 2 and 3 of Q. Then since & is normal
in M, & must fix also the symbol 3. Now let ® denote the set of symbols
of Q which are fixed by & Then the length f of ® is at least three.
By a theorem of Witt ([5], (9. 4)) the normalizer Ns® of & in @ is doubly
transitive on ®. In our case then Ns& clearly has order f(f—1). Since
f(f—1) must divide 2p¢ and f is smaller than p, we must have that
f=q and f—1=2. Thus we obtain that ¢=3 and p=7. Now it is easy
to show that ® is isomorphic to LF,(7).

§2. Proof of Theorem 2.

If NsQ is cyclic, then & contains by the splitting theorem of Burnside
a normal subgroup N of index ¢. Since NsP N has order at most 2p,
N and & must be soluble as before in §1.1 against our assumption.
Hence NsQ must be a dihedral group of order 2q. Therefore Theorem 2
is a special case of the following

Theorem 3. Let n be an integer such that n=2q+1, where q is an
odd prime number. Let Q be the set of symbols 1,--- ,n and let & be an
insoluble doubly transitive permutation group on Q. Let Q be a Sylow
q-subgroup of & and NsQ be the normalizer of O in &. If NsQ is a
dihedral group of order 2q, then & is isomorphic to either LF7) with ¢=3
or LF,(11) with q=5.

Proof of Theorem 3.

1. & is simple. Otherwise let ¢ be a maximal normal subgroup
(==1) of &. If M contains 1O, then we have that N NsQ=2, since
NsQ : Q=2 and by Sylow’s theorem (NsQ)3t=@®. Hence by the splitting
theorem of Burnside 9t contains a normal subgroup t* of index gq.
Since NsQ is a dihedral group of order 2¢, every element (==1) of *
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is not commutative with any element (s=1) of Q. Therefore MN* is
nilpotent by a theorem of Thompson [4]. Then 9 and & become soluble
against our assumption. If the order of 9 is prime to ¢, then let us
consider the subgroup L. Again by a theorem of Thompson N becomes
nilpotent. Let * be a minimal normal subgroup of ® contained in 9.
Since & is doubly transitive on Q, every normal subgroup (Z=1) of &
is transitive on Q. Therefore * must be an elementary abelian p-
group for some prime number p and we have the following factorisa-
tion of &:G=N*H, N*N H=1, where $ denotes the maximal subgroup
of & consisting of all the permutations of & each of which fixes the
symbol 1. Since 9t is nilpotent, 9* is contained in the center of N.
Since  does not contain any normal subgroup (==1) of &, we have that
NNH=1 and N=N*. On the other hand, since & is insoluble,  must
be insoluble. Moreover since 9 is also a maximal normal subgroup of
&, © is simple. Let p” be the order of M. Then we have the equality

n=2q+1=p".

Since 9 is insoluble, we have that v is greater than one. Hence we have
that p=3 and ¢=3%(3"—1). In particular we have that » is greater than
two. Then © is isomorphic to a subgroup of the r-dimensional special
linear group SL.(3) over the field of three elements. But then NsQ has
order vg >2¢q [3]. This is a contradiction. Hence & must be simple.

2. In the first place let us assume that  is imprimitive on Q— {1}.
Let & be the subgroup of & consisting of all the permutations each of
which fixes each of the symbols 1 and 2 of Q. Then & is not a maximal
subgroup of . Let I be a maximal subgroup of  containing &. Since
D:8=2q9, we have two cases: (i) D:IM=2, M:8=4q and (ii) H:M=gq,
Mm:K=2.

3. Case (i). Using Sylow’s theorem we can assume that Q is con-
tained in ©. Then Q is contained in M. Hence by Sylow’s theorem we
have that (NsQ)M=9. Since NsQ:Q=2, we have then that NsQ M
=2. By the splitting theorem of Burnside 92t contains a normal sub-
group of index ¢, which necessarily coincides with & Since 9 is transi-
tive on Q— {1}, we have that £=1. Then it is easy to show the
solubility of ® against our assumption. Thus Case (i) cannot occur.

4. Case (ii). If 9 is simple, then by a previous result ([2], Theorem
II) © becomes primitive on Q— {1}. Hence in our case 9 cannot be
simple. Let 3 be a maximal normal subgroup of . If the order of N
is divisible by ¢, then 9 has index two in N NsQ =9, because NsQ
is a dihedral group of order 2g and we have that 9=NNsQ by Sylow’s
theorem. Now by the splitting theorem of Burnside @ contains a normal
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subgroup %* of index ¢. Since © is transitive on Q— {1} N* is semi-
transitive on Q— {1} ([5], 11). Hence the length of domains of transitivity
of W* from Q— {1} equals two and N* is an elementary abelian 2-sub-
group. Let us consider the subgroup Q*. Since NsQ is a dihedral
group of order 2g, every element (s=1) of * is not commutative with
any element (s=1) of X2. Hence we see in particilar that the order of
N* is congruent to 1 modulo q.

Since ® is simple and NsQ is a dihedral group of order 2g, we
see, using a method of Brauer-Fowler ([2], §1.3), that there is only class
of conjugate involutions in ®. Now let us consider the subgroup NsZ.
Every element of NsQ of order ¢ has a cycle structure consisting of
two g-cycles. Then it is easy to show that every involution in NsQ
fixes just three symbols of Q.

Since M :R=2, the length of the domain I' of transitivity of I
containing the symbol 2 of Q must be two. Let us assume that I con-
sists of two symbols 2 and 3 of Q. Then since & is normal in I, &
must fix also the symbol 3. Let T be a Sylow 2-subgroup of & Then
T must be semi-regular on Q— {1, 2, 3} ([56], §4). Therefore the order
of T is a divisor of 29—2. Since the orders of ¥ and 9t* are same, we
see that the order of ¥ equals ¢+1 and that 2¢—2=¢g-+1. Thus we
obtain that ¢=3. Now it is easy to show that & is isomorphic to LF,(7).

If the order of M is prime to ¢, then as before (see No. 1 of this
proof) by a theorem of Thompson [4] 9 itself becomes a nilpotent,
therefore, an elementary abelian 2-group and the order of % is con-
gruent to 1 modulo ¢. If M has index ¢ in 9, then we must have that
NsQ =92 against our assumption. Since the factor group /M is simple,
the order of /N is divisible by 4. Hence the order of M is at most
a half of that of . Thus we obtain an absurd inequality ¢—1=¢+1.

5. So we can assume that © is primitive on Q— {1}. Then 9O is
simple. Otherwise let N be a proper normal subgroup (==1) of . Since
9 is primitive on Q— {1}, N is transitive on Q— {1}. Hence the order
of M is divisible by 2¢. Since NsQ is a dihedral group of order 2¢
and 9 =NNsQ by Sylow’s theorem, we must have that $::M=2 and
NN NsQ=2. Then by the splitting theorem of Burnside 9 contains a
characteristic subgroup M* of index ¢. If M*==1, then the order of I*
is divisible by 2g. Therefore we obtain that 9t*=1, which implies the
solubility of & against our assumption.

6. If © is doubly transitive on Q— {1}, then by a previous result
([2], Theorem I), © is isomorphic to LF,r) with 2¢ =7+1, and hence
only the identity element of © fixes at least three symbols of Q— {1}.
Therefore & is triply transitive on Q and only the identity element fixes
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at least four elements of Q. Now using a theorem of Gorenstein-Hughes
[1] we obtain that 2¢+1=2"+1. This is a contradiction, since ¢ is an
odd prime number.

7. If  is not doubly transitive on Q— {1}, then also by a previous
result ([2], Theorem II) © is isomorphic to the icosahedral group with
g=5. Thus we have obtained that #=11 and the order of & is 660.
Now it is easy to show that & is isomorphic to LF,(11).
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