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Alexander Polynomials as Isotopy Invariants, II

By Shin'ichi KINOSHITA

Introduction

In this paper we shall consider the Alexander polynomials of linear
graphs and closed surfaces, which may not be connected, in the 3-sphere
S3. The former have been already studied in [2] and in § 1 the fact of
§5 in [2] will be generalized. This result will be used in §§2-3. In
§ 2 we shall define the Alexander polynomial, more explicitly a system of
the Alexander polynomials, of a closed surface in S3. This Alexander
polynomial contains some arbitrary constants, and the number of it will
be discussed in § 3.

§ 1.

Let L be a linear graph with integral coefficients in S3. Suppose
further that dL = Q. Let tf0 and a^ be the number of vertices and edges
of \L\ respectively. Then we have

a0-a1 = μ-ply (1)

where μ is the number of components and p1 is the 1-dimensional Betti
number of L\ respectively.

Now let p be a normal projection of \L in a suitably chosen plane
E2. Further let 5 be the number of crossing points of p ( \ L \ ) and r the
number of regions of E2 divided by p ( \ L \ ) . Then we have

(a0-s)-a1 + r = 2. (2)

From (1) and (2) it follows that

l+A-/* = r-(s+l). (3)

The Alexander polynomial of L is calculated from the matrix

where R{ is a defining relation and x} is a generator of F(S3— \L\Y\

1) See [2].
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From a normal projection of |L| given above, we can obtain the gener-
ators and defining relations of F(S3— \L\). Actually they are seen to
consist of r generators and s+1 defining relations by the method of [2].
Then from (3) it follows that

Δ^, •••,/„) and Δ«*>(f)

are equal to 0, if 0^d<^r— (s+l) = l+p1 — μ. Thus we have the following

Theorem 1. Let L be a linear graph with integral coefficients in S3.
Further suppose that 3L = 0. Let μ be the number of components of \L\
and p1 the \-dimensional Betti number of \ L \ . Then if Q^d<^l+p1 — μ,
Δαo(A> ••• ,fμ) and Δcrf)(f) are all equal to 0.

Hence it is natural to say that Δcl+Ί-'A>(f1, •-• ,ίμ) and Δ<1+*ι-w(f) are
Alexander polynomials of L. From now on we shall consider only
Alexander polynomials of the type ΔCfi?)(/).

§ s\
Δ.

New let M be a closed surface in S3 which may not connected. Further
let Afi,M 2, ••• ,Mμ be components of M and gf the genus of M, (ί = 1, 2, ••• ,μ).

Put £(M) = Σ&. Then M divides S3 into μ + 1 regions C0, Q, ••• , Cμ.
i = l

For each Cz we can define the Alexander polynomial as follws : Suppose
that the boundary of C, consists of M f l, ••• , Mz v and that gil9 ••• , g are

vι J ^ *

genera of them respectively. Put £'" = Σέίί Then clearly p1(Ci) = gi.
y=ι ;

Now we consider F(C, ). If ^ is a homomorphism of F(CZ )/[F(CZ ), F(C, )]
into the infinite cyclic group Z, then we have a sequence of homomorphisms

X - > F(Cf ) - > F(Q/[F(Q, F(C,.)3 -̂ -> Z.

From this we can define by the usual way the Alexander polynomial
Δcl+*'"~v«°(fί). Since φ is arbitrary, we have actually a family of Alexander
polynomials Δ£.+*'"~V(f). If / moves from 0 to μy then we have a system
of Alexander polynomials

{Δ '̂ -V(ί)}. ( 4 )

From now on we shall say that (4) is the Alexander polynomial of M.

REMARK. This definition of the Alexander polynomial of M can be
naturally extended to the case, where an ^-dimensional manifold lies in
the (w + l)-dimensional sphere Sn+1.

It is proved by R. H. Fox [1] that each Ct is homeomorphic to a
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complementary region of a suitably chosen linear graph |L, |. The
1-dimensional homology group of S3 — |L, | is a free abelian group with
p λ ( \ L i \ ) generators. From this it is easy to see that the Alexander
polynomial Δ^+*''~vι0(f) of Q is. a polynominal with at most p{( L i \ ) = gi

arbitrary constants.2^ Thus the Alexander polynomial (4) of the closed
surface M has at most 2g(M) arbitrary constants. These illustrate also
the way to calculate the Alexander polynomial of a given closed surface.

§ O
O.

Using the notation of § 2, we shall now prove the following

Theorem 2. Let M be a closed surface which may not be connected.
Then the number of arbitrary constants of the system of Alexander poly-
nomials of M is at most 2g(M) — l for every

Proof. It is proved by R. H. Fox [1] that a closed surface M in S3

can be deformed to a system of 2- spheres by a sequence of suitably
chosen cuts, which are done along the disk D whose interior int D is
disjoint from N3) and whose boundary bdD lies on a component, say
N!, of positive genus and is not homotopic to 0 on Nλ. Our proof will
be done by induction on the minimal number n(M) of these cuts used
for this purpose.

If n = l, then our theorem is trivial. Now we assume that our theorem
is true for n^k — 1. Suppose n(M) = k. Then M can be deformed to a
closed surface N by a cut along a disk D described above, where n(N)
= k—l. It occurs two cases.

The first case is that bd D is homologous to 0 on M. In this case
g(M) = g(N). Suppose that bάD lies on M, and that M1 is the boundary
of C0 and C1 . Further suppose that int D lies in C0 . Then int D divides
C0 into two regions C00 and C01. Now let Δg^°°-^(ί), Δg ̂ Mf) and
Δgo

+*°-μo>(f) be Alexander polynomials of C00, C01 and C0 respectively. Then
it is easy to see that g°0+g01 = g° and μ00 + μQl = μ0 + l. Furthermore it
follows from the construction of M and N that

Thus the number of arbitrary constants of Δg**0-^/) is equal to the
sum of that of ^g°°~μ^(t) and A(c0^

01~M*).
Now we shall consider Q. Let Eλ be a region of SZ — N which con-

tains C l β Let Δ^*1-*!̂ ) and Δ^*1-^*) be Alexander polynomials of C,

2) Arbitrary constants are integers.
3) N is a closed surface which appears while M is deformed to a system of 2-spheres,
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and E1 respectively, where gl = hl and μ1 = ι>1 — 1. From the construction
of M and N it is easy to see that

where /(£) is a polynomial. Then the number of arbitrary constants of
Δg '̂-^ίί) is equal to or smaller than that of Δgι

+*1-"ι>(f). Thus our proof
of the first case is complete.

The second case is now that bdD is not homologous to 0 on M.
In this case g(M) = g(N) + l. Suppose that bdD lies on Ml and int D
lies in C0. Then C0 is homeomorphic to a complementary region of a
linear graph which is the join0 of a circle and another linear graph
whose complementary region is homeomorphic to C0—D. Then we can
see directly that the number of arbitrary constants of the Alexander
polynomial of C0 is at most g°— 1. Therefore the number of arbitrary
constants of the Alexander polynomial of M is at most 2g(M) — 1. Thus
our proof is complete.

As an application of Theorem 2 we have the following fact. Let M
and TV be for instance two connected closed surfaces with the same genus
g in Si and Sf respectively, and let C be a complementary regions of M

and E that of N respectively. Further suppose that Alexander polynomials
of C and E have g arbitrary constants respectively. Then from our
theorem 2 it follows that C and E do not make a ^-sphere by any iden-
tification of M and N.
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4) Suppose that A is a point on S2 which lies in S3. Let \L±\ and \L2\ be two linear
graphs such that \Lι\ r^S2=A and \L2\r^S2=A. Further let IL^-A and \L2\ -A be contained
jn the different components of S3 - S2. Then | L} | ̂  | L21 is said to be a Join of | L; | and | L21




