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Representation of Riemann Surfaces

By Zenjiro KURAMOCHI

The present paper is a continuation of the previous paper “On the
ideal boundary of abstract Riemann surfaces®” and its purpose is to
investigate the covering properties of Riemann surfaces of some classes.

Let R be a Riemann surface and let {R,} be its exhaustion with
compact relative boundaries {9R,} (=1, 2, ---).

Class Oy 45 and Ogap. Let R be a Riemann surface (C R) with compact
relative boundary OR’. If there exists no non-constant harmonic function
U(z) in R’ such that U(z)=0 on 9R’, sup |U(z)|< e (D(U(2))< ) and
the conjugate harmonic function of U(z) has vanishing periods along every
dividing cut, we say R’ C O0gxas(C Ogap).

Class 0%z, 0%, 0%sp. If any non compact domain G of R with com-
pact or non compact relative boundary 9G tolerates no non-constant
bounded, Dirichlet bounded or spherical area bounded analytic function
with vanishing real part on 9G, we say R€0%g, 0%, or 0%, respectively.

Theorem 1. The properties R’ € 0yap, Opap and R€0%5, 0%, 0%sp
are ones depending only on the ideal boundary.

Proof. Our assertion for R€0%,, 0%z and 0%, is evident. We shall
prove for the other classes. Suppose R’ ¢ Oyap Or Ogap. Then there exists
a harmonic function in R’ such that U(z)=0 on 9R’, every period of its
conjugate function along a dividing cut is zero and sup |U(z)|< e or
D(U(z))< oo. Let R”(CZR’) be a Riemann surface with compact relative
boundary such that R”—R’ is compact and R’ /\OR” =0, where R’ may
consist of a finite number of components. Let V,(z) be a harmonic function

in R”/\R, such that V,(z)=U(z) on 9R”, ?igi@.?):o on @R"\R”. Then
V.(2) converges to a function V(z) in mean. It is clear that V(z) has
the conjugate harmonic function with vanishing periods along every

dividing cut. V(2) has M.D.I. (minimal Dirichlet integral) which is equal

1) Z. Kuramochi: On the ideal boundary of abstract Riemann surfaces: Osaka Math. 10,
1958,
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o .

to S V(2)- g’g—z—)—ds and sup | V(2)|< o>. We show that U(z)— V(z) is a non-
aR//

constant and satisfies the above conditions. On the contrary, suppose

U(z)=V (2). Let R”(CR"”) be a Riemann surface with compact relative
boundary 9R’” such that 9R” /\9R"’=0 and R”—R'" is compact. Then
max U(z)<rer;g,)/(/ U(z). On the other hand, by considering U(z)(=V(z))

2€QR’’
in R”, n%aRx U(z) > n%ax U(2). This is a contradiction. Hence U(z)— V(2)
2¢QR’’ 2¢R’!

is non-constant and it is clear that sup |U(z)— V(2)|< e, if sup |U(2)|< oo
and D(U(z)— V(2))< e, if D(U(2))<_ o and further the conjugate function
of U(z)— V(2) has vanishing periods along every dividing cut. Next, let
R” ¢ Ogyap or Oyap and let U(z) a non-constant harmonic function satisfy-
ing the above conditions. Then since both dist (9R”, 9R’) and dist (9R”,
9R’") are positive, we can construct by Neumann’s alternierendes Verfahren
a harmonic function U*(z) in R’ such that U*(2) is harmonic in R'—R"”,
U*(z)=0 on 9K’ and U(z)— U*(z) has M.D.I. over R, whence U*(z) has
the conjugate harmonic function with vanishing periods along every
dividing cut and sup |U*(z)|< oc for sup|U(z)|< oo and D(U*(z))< oo
for D(U(z))< oo respectively. We can prove that U*(z) is non-constant
as above. Hence R¢ Oyap or 0.5 respectively.

The classes Oyap and Oy,, are generalizations of 0,5 and 0,4, of
Riemann surfaces of finite genus, in this case evidently 0%5C 045(=0x45)
and 0%, 0,,(=0x4p) respectively. But in general cases, there exists a
Riemann surface with positive boundary belonging to 0%s, and not
belonging to Og,,. For exmple, let R—R, be a Riemann surface with
positive ideal boundary and with one ideal boundary component p which
has two different bounded minimal functions N(z, p,) and N(z, p,) (p, and
p, lie on p) and let RCHND? (N=2). Then U(z)=N(z, p,)— Nz, p.)=0
on 9R,, U(z) is harmonic in R—R,, D(U(z))< 4= max (sup N(z, p,),
sup N(z, p,)) and U(z) has the conjugate harmonic function with vanishing
periods along every dividing cut. Hence R—R,#O0gx.p. On the other
hand, it is clear R—R, € 0%,®. Similar facts occur for Oy, and 0yap.

2) HNB (HND) means a class of Riemann surfaces on which at most N number of
linearly independent bounded (Dirichlet bounded) harmonic functions exist.

3) Let 0, be a class of Riemann surface with null-boundary. Let R be a Riemann surface
€ (H2D—-0;) and €0%;. Then there exists a non compact domain G in R such that a non
constant Dirichlet bounded analytic function with vanishing real part on 0G exists in G.
Clearly there exists a non-constant Dirichlet bounded harmonic function vanishing on 0G exists
in G. Then in at least one of G;=G(v(p,) and G,=G "\ v(p,) there exists a Dirichlet bounded
harmonic function vanishing on 0G;(1=1.2.). Then by Theorem 10 (On the ideal boundary
of Riemann surfaces) there exists no Dirichlet bounded analytic function, where »(p,) and
v(p;) are neighbourhoods of p, and p, with respect to Martin’s topology. This is a contra-

diction, Hencc R€0%j.
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Hence we have the following

T 0 T Oy
HND
C
Onp - Orap
< |
0y \V) \VERRV \Vj \V,
-
Ons - Onas
< /s
HNB

T 0k C Oas

~~~~ means that there is no inclusion relation.

From the above example, we see that the properties R € Ozxu5, Ogan,
0%5 and 0%,, 0%, depend not only on the size of the ideal boundary but
also on the complexity of the ideal boundary. On the other hand, the pro-
perties R€0,; or 0,, sometimes depend only on geometrical structure
of R, for instance, the location of genus and branch points.

Exceptional set. &, (=set of capacity zero), €, 5, C,4p, &, (=set of
areal measurve zevo). Let F be a closed set in the w-plane. If in the
complementary domain of F, there exists no non-constant bounded
(Dirichlet bounded) analytic function, we say FC &,5 (€,p). Clearly
@()(@AB(@AD(@z-

In the following, we suppose that an analytic function f(z) is defined
in R or R—R, or non compact domain G of R, whose values fall on the

w-plane.

1. Properties of connected pieces.
Let K; |w—w,|< 7 be a circle and let Y» be a connected piece over

K. Suppose that an analytic function is defined in a non compact domain
G with analytic relative boundary 9G. We shall proved the following

Theorem 2.> Let REHNBO<N< ) and G be a non compact do-
main. If a conmected piece  has no common points with the image of
OG, then r covers K except at most a closed set of capacity zevo.

If we apply the above theorem to smaller connected pieces, we have

the following

4) 045 (04p) means a class of Riemann surface on which there exists no non-constant
bounded (Dirichlet bounded) analytic function.
5) See 1).
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Corollary.® Let n(w) be the number of times that w is covered by .
Then n(w)=supn(w) (< o) except at most an F, of capacity zero.

Proof. Let D,=E[w; n(w)=n]. Then D, >D,>D,,--. Assume
that the set F=E[w: n(w)< sup n(w)] is of positive capacity. Put F, =
FN\D,. Then F=>F,. Hence since Cap (F,)=0 by Theorem 2, there
exists a number k such that Cap (F,)>0. We can suppose, that F, is
closed, Then there exists a point w* €F, such that Cap (F,/\K') >0
for any small circle K’ about w*. Since w* € F,, w* is covered k times
by 4, so that there exist k discs y}, 3, ---, ¥/} consisting of inner points.
Since 1<k< supn(w)—1, there exists another connected piece ° over
K’ except ), Y3, -+, ¢¥%. But ° does not cover K’'/\F,, which con-
tradicts Theorem 2. Hence we have the corollary.

Theorem 3. Let REANDOSN< ) and let G be a non compact
domain. If a connected piece < has no common points with f(OG) and the
spherical area of r is finite, then < covers K except at most a closed set
of capacity zero.

Similarly as the corollary of Theorem 2, we have the following

Corollary.” Let n(w) be the number of times that w is covered by .
Then n(w)= sup n(w)< oo except at most a closed set of capacity zero.
Because Elw: n(w)< supn(w)]=>)9D; is closed. Hance if  does not

cover a set of positive capacity, the spherical area of r must be infinite.

Since K is bounded, the spherical area of + is infinite, if and only
if the area is infinite. Therefore we consider only the area but spherical
area.

SS n(w)df
Mean covering number n*(w’). Put lim £~

70

the mean covering number of w, where K,=FE[w: |w—w'|<r].

=n*w’) and call #*(w)

Ty’

Theorem 4. Let REHND(O<XN< ) and let G be a non compact
domain. If the avea of a commected piece over a circle K is infinite,

D.=/N\D, is non empty, where D,=E[w: n(w)=n]. Let Q,, Q,, - be
components of the open set K—D.,. Then n(w)= sup m(w)=n%<co except at

most a closed set of capacity zero in Q; and n*(w)= oo at every point of D...
Proof. Let Q be one of components and let G,~=E[w €Q, dist (w, (02

+8K))>%]. Then it is clear that n(w)< o for every point w in G;.

5) See 1).
6) These are pointed by K. Matsumoto without proof. Matsumoto: Remarks on some
Riemann surface. Proc. Acad. Tokyo. 1958.
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Hence G,~=i H,, where H;=E[w: n(w)=<7]. Then by Theorem of Baire,

there exists a number j, such that H; is dense in G;. Hence by the
lower semicontinuity of n(w), G;<H,,, whence sup n(w)<j,< co. Hence"
Py

the area of 4r over G;< joxarea of G;< . Henée n(w)=n’ in G; except
at most a closed set F; (—(2 oD;N\)) of capacity zero. Consider about
G;.;. Then F;, ;= Z}aDk is of capacity zero. Assume that sup n(w)
=ni<ni*/= sup w(w). Since F;, (DF)) is closed and totally dlsconnected

Git+j
we can find twojpoints o, and o, such that o, €G;, 0, €G,,;, n(e,)< n(w,)
and both dist (w,, F;, ;) and dist (e,, F;, ;) are positive. Connect o, with
w, by a curve L in G;.;—F;,;. Then L must intersect F;,,. This is a
contradiction. Hence #ni=ni"/. Now since \J/G;=2, sgp n(w)=n2<_co.

Next assume D.=0. Then Q,=Q,=, - and supn(w)=n%<co. This
K

contradicts the infiniteness of the area of . Thus D.==0. By
sup n(w)< oo we have by Theorem 3 that n(w)=#n% except at most a

closed set of capacity zero in ;. Assume #*(w*)< oo at a point w* of
D.. Then there exists a circle KE: |w—w*|<& such that the area of
the part of + lying over K, is < o. Then by above mentioned

sup n(w)<_co. This contradicts w* € D., and sup #(w)= o, whence n*(w)
Ke K
=oo at every point of D. .

Theorem 5. Let R€0%; and G be a non compact domain. If a con-
nected piece " has no common point with OG, then  cover K: |lw—w,|<7»

except at most a closed set F € § ,5(=9D,), i oD, is totally disconnected and
n(w)= sup n(w) = o except at most an F, (=>9D,)E,. If supn(w)<_ oo,
F, reduces to a closed set.

Assume that 4 does not cover a set F_€,; in K. Then we can
find a closed set F’ in the interior of K with F'{€,;. Hence we can
construct a non-constant bounded analytic function ®(w) with vanishing
real part on 9K in K—F’. Consider ®(2)=®(f(2)) in A=f"'(4) in R.
Then R¢0%5. This is a contradiction. Hence 4 covers K except a set
E,p5. Assume that >)9D; is not disconnected. Then there exists a
number 7, such that 9D, has a continuum «. Let @’ be a point of «
such that a circle K;: |w—w'|< 8 is divided into some number of com-
ponents by «. Since sup n(w)<mn,—1 and since n(w) is lower semiconti-

nuous, there exists a point w* in K; such that n(w*)=max n(w). Now
KgMao

there exist connected pieces r,, 4r,, --+ , Jr; consisting of inner points over
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a small circle K, : |w—w*|< & But w*€9D, implies that there exists
another connected piece 4, over K, which does not cover «/\K,. This
contradicts that +, covers K, except a set C &,,. Hence 39D, is totally
disconnected. Next, assume that the measure of E[w : n(w)<sup n(w)]
is positive. Put F,=F/\D,. Then there exists a number », such that
mes F, >0. Hence by the method used in Theorem 2 we have that
Elw: n(w)<supn(w)] is a set of measure zero in replaceing capacity
by measure.

Theorem 6. Let R€0%,( >0%,) and G be a non compact domain and
suppose that a commected piece  over a civcle K has no common point
with f(9G).

1) If the area of r is finite, 339D, is totally disconnected and D..—/\D,=0
or D.=K. If D.==K, supn(w)< o and D.=0 and n(w)=sup n(w) except
K
at most a closed set €, and n(w)=1 except at most a closed set € ,;.
2) If the area of Vr is infinite, D..==0 and 39D, is totally disconnected
in Q, sup n(w)< oo, s%p m(w)=n(w) except a closed set &, in Q and n(w)=1
Q

except a closed set C G 4p, for supn(w)=1, where Q is a component of K—D...
o :

Proof. Let the area of Y be finite. On the contrary, suppose that
>'9D, is not disconnected, then there exists a number 7, such that 9D;
has a continuum «. Since @ 9D, and n(w) is lower semicontinuous,
there exists a point w* in «/\9D, such that n(w):m:lx nw)<<i—1.

Hence similarly as in Theorem 5, we can find a circle K, such that K,
is divided into some number of components and a connected piece which
does not cover any point of «/\K,. We can find at least one connected
piece ¥, such that (K.—projection of ) has an open set. Hence we
can construct an analytic function ®(w) in (K./\proj ) such that

Re®(w)=0 on the periphery of K, and |"%})")‘<M in (proj ).

Consider 9(2)=9(f(2)) in A=f"'(yr,). Then D(p(z))< M*xarea of
Hence R¢0%,. This is a contradiction. Hence 319D, is totally dis-
connected. Suppose D.=K. Then there exists an open set G in K—D.,.

Put G,:E[w(G: dist (w, aG+8K)>%—-] and Fi—E[w: nw)<i—1].

Then G,= >1F;. Hence there exists an F; such that F; is dense in G,
whence G, F;. Hence supmn(w)=n,<_co. Put n(w*)=n, in G;. We

show sup n(w)=mn,. On the contrary, suppose that there exists a point
K

w** in K—G; such that n,=n(w**) >n,. Since :Yl_]aD,- is also closed and
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totally disconnected and nZlaDi[\G,:O and clearly w* ¢ :V‘: oD;, we can

ot n
connect w* with w** by a curve L in K~21 9D. This implies n(w*)=
n(w**)=n,. This is a contradiction. Hence sup n(w)=#n, and D.=0. We
K

shall show that +» covers K except at most a closed set C €,,. Assume
that +» does not cover a set F{_€,,. Then we can easily construct an
analytic function ®(w) in K—F/(F'CF and F’/\9K=0) such that
Re p(w)=0 on 9K and D(p(w))< . Put @(z)=9(f(z)). Then D(®(2))
<n,D(®Pw)). Hence RZ0%,. This is a contradiction. Hence + covers
K except at most a closed set C € ,,. Assume that E[w : n(w)<n,] is of
positive measure. Then we can find as Theorem 5 a small circle K, and
a connected piece v, over K, which does not cover a set of positive
measure in K. This contradicts that <, covers except at most a closed
set &4y, because €,,GE,.

Assume that the area of 4 is infinite. Let Q be one of components
of K—D... Then we can prove as above that sgp n(w)< oo in Q. Hence

similarly sup n(w)=n(w) except a closed set C &, in £ and n(w)=1 except
Q
for a closed set € ,, for sup n(w)=1.
Q

We consider the topological properties of D...

Theorem 7. Let R€0%,(OHND). If D.. is not empty and sup nQ; <n,

(specially the number of components of K—D.. is finite), then D. is a closed
domain, whence D. is not non dense locally, where nQ;=supn(w).
Q-

Assume D, ,—D..==0, then there exist a point w, and a neighbour-
hood v(w,) of w, such that »(w,) D, ,—D. and supn(w)=n,+1. On

o _ 2%y
the other hand, by o(w,) /\D..=0, v(w,) is contained in a component of
K—D.. This contradicts #,+1>>sup#»Q,= sup#n(w). Hence 5,,0+,
i v(wy)

=D,,=D,,. Clearly D.=N\D, D, =D, .,. We show D.>D, .,.
Let w¢D.. Then there exists a neighbourhood »(w,) such that (w,) ND..
=0 and wv(w,)K—D., whence supn(w)=n, and w,¢D,,.,. Hence

v(wo)
D.=D,,,. Now since D, ., is an open set, D., is a closed domain and
is not non dense locally.

Corollary. Let R€0%, (ODHND) and D.==0. Then D. consists of
continuum components. n(w)=oco for every point w of D., where n(w*)
= lim (sup n(w)) : v, (w)=E[w: |w—w*|<r]. Hence if every component

70 vy
v; of D. is non dense in an open set G, every point of D.N\G is an
accumulation point of D.N\G="v;.
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Assume that D, is totally disconnected in an open set G. We can
find another open set G’'(<_G) such that G’ \D.=0, 9G’ is contained in
some 2 and sup n(w)< co. Hence by Theorem 7, G ND. is not non

Q—Doo
dense locally. This is a contradiction. Hence D. consists of only con-
tinuum components. Next suppose that D. is non dense locally with
n(w')<oco: w €D.. Then by the upper semicontunuity of #(w), we can
find a neighbourhood »(w) such that §31)3 n(w)< oo and v(w) N\D.. is non

dense. Hence also by Theorem 7, D. is not non dense locally. This is
also a contradiction. Hence #(w)=cc for w€D... Suppose that w is not
an accumulation point of >'v;. Then there exists an open set G such that
GN\D.. is composed of a finite number of components, whence #(w)<_ oo
at we(GN\D.). This contradicts the above mentioned. Hence every
point of D, /N\G is an accumulating point of D N\G=3v;.

3. Behaviour of Riemann surfaces.

Let S be the w-Riemnn sphere. We consider S instead of a circle.
Then we have by theorems mentioned before

Theorem 8. Let RENHB(O<N< ). Then n(w)= supn(w)(= o)
except at most an F, of capacity zero. If REOQ,, then supn(w)=co.

Theorem 9. Let R€ HND(O=N=c0). Then supn(w)=ngw)< oo
Q.

in Q; except at most a closed set of capacity zero, zt;here 2,0, - are
components of CD... n*(w)= oo at every point of D... If R¢ 0, then D..==0.

Theorem 10. Let R 0%5. Then n(w)= supn(w)(== o) except at
most a totally disconnected set of aveal measure zevo and R covers at least
once except a closed set C & ,p.

Theorem 11. Let R€0%,. If the spherical area of R< oo (clearly
D(f(z))=), D..=S or D..=0. n(w)=supn(w)<_co except at most a closed
Q

(]

and totally disconnected set of areal measure zero in every component ;
of S—D.. and n(w)=1 except a closed set CC,, in Q for Q such that
supn(w) >0. If the spherical area of R is infinite, D.=0.

Q

Theorem 11V. Let R€0%s,. Then D.=0 and R has the same pro-
perties as in Theorem 11.

7) " See Theorem 4 and Theorem 8 of on the ideal boundary of Riemann surfaces
8) Z. Kuramochi: Analytic functions in the neighbourhood of the ideal boundary, Proc.
Acad. Tokyo, 1957.
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3. Behaviour of Riemann surfaces with compact relative boundaries.

The properties R € 04,4, and Op,p depend on a neighbourhood of the
ideal boundary. It is suitable to consider them in a Riemann surface with
compact relative boundary 9R. Let {R,} be its exhaustion with compact
relative boundary {9R,} (n=1, 2, ---).

Class Oy,p and Oy,45. Let f(2) be a non-constant analytic function
of AD (analytic Dirichlet bounded) or AB (analytic bounded) in R. This
implies R* ¢ HND—O0, (HND—O0,), where R* is made of R by adding a
compact set R, to R so that R*=R+ R, has no relative boundary.

Hence in this case R Oyap or Oyup depends chiefly on the size of
the ideal boundary.

Theorem 12. Let R €04,4p(0na5) be a Riemann surface with compact
relative boundary OR. Suppose that R is represented as a covering surface
over the w-plane by a non-constant function f(2) of AD(AB). Then n(w)
= sup n(w)< N< oo except a closed and totally disconnected set G,.

mw)=1 except a closed set G, ,(CLp) in Q; for supn(w)=1, where
Q;

Q,, Q,, -+ are components of the complementary set of f(OR).

R-maximum principle. Let g(z) be a non-constant function of AD(AB)
in R—F, where R€04,, and F is a compact set. Then by Theorem 1
Re g(2)=U(z), where U(z) is a harmonic function in R—F such that
U(z)=Re g(z) on O9F+9R and U(z) has M.D.I. Hence the R-maximum
principle is valid.

max Re(g(2)) = sup Re(g(2)) — inf Re(g(2)) = min Re(g(2)) -

Let w, be a point such that dist (w, f(R))>6_>0. Then ®(2)
:wi:';%%ei" is of AD(AB). Hence R-maximum principle is also valid

—
for @(2).

G-maximum principle. Let G be a non compact domain in R ( € Og4p).
Let g(2) be a function of AD in R. Then Re g(z) has M.D.I. over G among
all functions with value Re g(z) on ©G. In fact, if there were another
harmonic function V(2) in G such that V(z)=Reg(z) on 9G and
D(V(2))<_D(g(z)). Then by the Dirichlet principle

D(g(2)) == Do(V(2)) + Dr_c(g(2)) = D(g’(2)) .

where g’(z) is obtained by alternierendes Verfahren from V(z) and g(z).
This contradicts that G(z) has M.D.I. Hence Re g(z)=lim U,(z), where
U,(2) is a harmonic function in R,/ \G such that U,(z)=Re g(z) on 9G/\R,

and 9%’;7(2—)20 on 9R,N\G. Hence
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sup Re(g(2)) = sup Re (g(2)) > irglf Re(g(2)) = igf Re(g(2)) .

It is an essential condition for the validity of G-maximum principle for
Re g(2) in non compact domain G that g(z) is of AD not only in G but
also in a neighbourhood of the ideal boundary of R. i.e. in the comple-
mentary set of a compact set F.

1) f(R)is bounded and we can suppose that the number of components
Q,,Q,, - of CF(OR) is finite. In fact, put @(2)=e® f(2)(2r >>0=0). The
by the R-maximum principle, f(R) is bounded. By a little deformation
of OR, we can suppose that OR is analytic and f(z) is analytic on OR.
Hence the number of {Q;} is finite. Denote by Q. the one containing
the point at infinity. Then we see by the R-maximum principle with

respect to P(z)=ei® - that F(R)N\Q..=0.

fz )

2) PutD,=E[w:n(w) g n]. Then 9D, is totally disconnected in 2. Let

Q be one of {Q;} such that supn(w)=1. First, we shall show that Q—D,,
Q

—9oD,=0. On the contrary, assume Q—D,—9D,=g >0. Then 9D, has

a continuum «@. Let p€ int @ and Vi(p); |w—p|< 8 be a circle such that
Vs(p)— « is divided into components ¢,, ¢,, --- of number =2. Let ¢, be
one of component such that ¢, D, and ¢, be another component con-
tained in < CD,. Put G=f"'(y,), where +, is a connected piece over ¢,.

Then G is a non compact domain in R. Let Vs( P Jw— p|<—r— and let
w E(Vs( p) N\¢,). Then there exists a point w” in (N Vs( ) Vs (p)
|w— p|<~— such that |w' —w”|=dist (w’, ®). Let vl_s_d(w ) lw w”(< S
Then v’fo(w//) N\D,, is open, where —1=m=0. Hence there exists a pomt
w* in vl% (w”) such that nw(w*)=maxn(w)<n—1: wE€ (01% w”’YN\CD,). Let
w** be a point in « such that |w*—w**| =dist (w*, @). Then w** € Vs(p):
Iw—p(<—g. We fix w* and w** and G. Since n(w*)=max n(w)zz
wE(v,l%(w”) /N\CD,), there exists a small circle K.: |w—w*|<¢& (this is
contained in the set E[w : n(w)=mn,]) such that every connected piece v,

Y,y oo, ¥,y over K, is compact. Put A,=f"'(4y;). Then >} A; is compact
in and >YA,N\G=0, ¢(z)_—1—w--e"’ (0= —arg|lw*—w**|) is AD in
R— Z‘,A Consider ®(2) in G. Then by the G-maximum principle

sup Re ¢(2) = sup Re ¢(2) .
On the other hand, by |w*—w**|=dist (w*, a)<dist (w*, (9, —®)).

sup Re (2) > sup Re ¢(2) .
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This is a contradiction. Hence G=0. i.e. D, is dense in &, if (D,/\Q)=0.
Next we shall show that 9D, is totally disconnected in 2. On the contrary,
assume that 9D, has a continuum «. Let p€ int @ and Vj(p) as above,
(i.e. Vs(p)—a consists of some number (=2) components). Then there
exists a point w’ in Vs(p)/\OD, such that n,=#n(w’)=max n(w) (w € Vs(p)
N\a@)<n—1. Then there exists a circle K. (w’) : |w—w’|< & such that there
exist compact connected pieces over K.(w’) consisting of # leaves. Since
D, is dense and n(w’)<n, there exist at least one connected pieces v, Y., ---
over K., (w) which do not cover every point «. Hence 4, composed of
at least two components , ,, ¥, ,, ---. Hence every 4, ; has its projection
of the shape of the moon with eclips. If « is not a straight line, we
can find at least a v, ; and w* in 2, and w** €a such that dist (w*,

proj vr,;) = dist (w*, w**): w** € «. Consider @ (2)= Re e’ in

1
F@—w*
A=f"YY, ;). Then ¢(2) €AD in R. Hence we have a contradiction by
the G-maximum principle, where G=f"'(vy,;). Similarly, if « is a straight
line. Hence 9D, has no continuum.

3) supn(w)< co. Let Q be one of {,} such that 9Q/\29Q_=0. Since
f(2) is anglytic on 9R, we can find a point w, in 2 in a neighbourhood
of Q. such that dist (w,, f(R’)) >0, where R’ is obtained from R by a
little changing of 9R. Because f(R’) is contained in the domain enclosed
by f(OR’). Hence there exists a number #(w,)< oo and a small circle
K.: |lw—w,|< ¢ such that every connected piece over K, is compact,
whence there exists a constant 8, such that dist (w,, 9D,,=8, >0 for
every m.

Assume that there exists a point @’ in  such that m=n(w’) _>n(w,).
Then ﬁ]aDi is closed and totally disconnected. We can connect w’ with

w, by a curve L in Q—ﬁ oD;. This implies n(w,)=n(w’). This is a
contradiction. Hence sup n(w)< co. Let Q, be another domain such that
Q

00,MN\2Q:=-0. Then we have similarly [sup n(w)—-ssl)lp n(w)| < . But
Qp
the member of {2,} is finite. Thus sup n(w)<N.

4) n(w)=1 except at most a closed set C & ,,,, if supn(w)=1. Assume
Q
that there exists a closed set Fq_€¢,,. Then there exists a point w, € F

such that (KN\F){_€,, for any small circle K. Since §‘_,9D,- is totally
disconnected, we can find a simply connected domain H with analytic

N
relative boundary 9H such that 9H/\(>19D;)=0. Hence we can con-
struct a function g(w) of AD with vanishing real part on 9H. Now a
connected piece A(CR) over H has compact relative boundary. Since
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D(g(2))<sup n(w) X D(g(2))< oo, R¢044p. This is a contradiction.
Hence n(w)=1 Q except a set CE,,.

5) Similarly as Theorem 6, we can prove that n(w)=sup n(w) except a
N
set @, by using the total disconnectedness of >19D and sup n(w)< co.

Let R€0,45 and f(z) € AHB. In this case Re f(z)=U(z), where U(z)
is a harmonic function in R such that U(z)=Re f(z) on OR and U(2)

has M.D.I.= SU(z)ag’(iz)ds by the regularity of f(z) on 9R. Because

oR
sup |U(z)—Re f(2)|< oo implies U(z)=Re f(z) in R€0y,3. Hence
D( f(2))< co. Hence we have the same results except 4) which is replaced
by n(w)=1 in Q except a set C E, 5, supn(w)=1 in Q.
Q

Class R€0%, or 0%;. In these classes the G-maximum principle for
£(2) holds for non compact domain G under the condition g(z) € AD only
in G. From this point of view R € 05%(0%5z) is stronger than R € 0;,p(0ga5)-
Hence we have more simply and simlarly as Theorem 7

Theorem 13. Let R€0%,(0%5) with compact relative boundary OR.
Then the same facts as Theorem 12 hold.

From theorem 12 and 13, f}aD: (N=sup n(w)) is closed and totally
disconnected. We have

Corollary. Let f(2) € AD(AB) be a non constant function in R€0%,
07 Ogap (0%g or O ap) with compact relative boundary OR. Then f(2) tends
to a point as z tends to every boundary component.
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