Representation of Riemann Surfaces

By Zenjiro Kuramochi

The present paper is a continuation of the previous paper "On the ideal boundary of abstract Riemann surfaces" and its purpose is to investigate the covering properties of Riemann surfaces of some classes.

Let R be a Riemann surface and let $\{R_n\}$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$ $(n=1, 2, \cdots)$.

Class 0_{HAB} and 0_{HAD} . Let R' be a Riemann surface ($\subset R$) with compact relative boundary $\partial R'$. If there exists no non-constant harmonic function U(z) in R' such that U(z)=0 on $\partial R'$, sup $|U(z)|<\infty$ ($D(U(z))<\infty$) and the conjugate harmonic function of U(z) has vanishing periods along every dividing cut, we say $R'\subset 0_{HAB}(\subset 0_{HAD})$.

Class 0_{AB}^0 , 0_{ASD}^0 , 0_{ASD}^0 . If any non compact domain G of R with compact or non compact relative boundary ∂G tolerates no non-constant bounded, Dirichlet bounded or spherical area bounded analytic function with vanishing real part on ∂G , we say $R \in 0_{AB}^0$, 0_{AD}^0 or 0_{ASD}^0 respectively.

Theorem 1. The properties $R' \in \mathcal{O}_{HAB}$, \mathcal{O}_{HAD} and $R \in \mathcal{O}_{AB}^0$, \mathcal{O}_{AD}^0 , \mathcal{O}_{ASD}^0 are ones depending only on the ideal boundary.

Proof. Our assertion for $R \in \mathcal{O}_{AD}^0$, \mathcal{O}_{AB}^0 and \mathcal{O}_{ASD}^0 is evident. We shall prove for the other classes. Suppose $R' \notin \mathcal{O}_{HAB}$ or \mathcal{O}_{HAD} . Then there exists a harmonic function in R' such that U(z)=0 on $\partial R'$, every period of its conjugate function along a dividing cut is zero and $\sup |U(z)| < \infty$ or $D(U(z)) < \infty$. Let $R''(\subset R')$ be a Riemann surface with compact relative boundary such that R'' - R' is compact and $\partial R' \cap \partial R'' = 0$, where R'' may consist of a finite number of components. Let $V_n(z)$ be a harmonic function in $R'' \cap R_n$ such that $V_n(z) = U(z)$ on $\partial R''$, $\frac{\partial V_n(z)}{\partial n} = 0$ on $\partial R^n \cap R''$. Then $V_n(z)$ converges to a function V(z) in mean. It is clear that V(z) has the conjugate harmonic function with vanishing periods along every dividing cut. V(z) has M.D.I. (minimal Dirichlet integral) which is equal

¹⁾ Z. Kuramochi: On the ideal boundary of abstract Riemann surfaces: Osaka Math. 10, 1958.

to $\int_{-\infty}^{\infty} V(z) \frac{\partial V(z)}{\partial n} ds$ and $\sup |V(z)| < \infty$. We show that U(z) - V(z) is a nonconstant and satisfies the above conditions. On the contrary, suppose $U(z) \equiv V(z)$. Let $R'''(\subseteq R'')$ be a Riemann surface with compact relative boundary $\partial R'''$ such that $\partial R'' \cap \partial R''' = 0$ and R'' - R''' is compact. Then $\max_{z \in \partial R''} U(z) < \max_{z \in \partial R'''} U(z)$. On the other hand, by considering $U(z) (\equiv V(z))$ in R'', $\max_{z \in \partial R''} U(z) > \max_{z \in \partial R'''} U(z)$. This is a contradiction. Hence U(z) - V(z)is non-constant and it is clear that $\sup |U(z)-V(z)| < \infty$, if $\sup |U(z)| < \infty$ and $D(U(z)-V(z)) < \infty$, if $D(U(z)) < \infty$ and further the conjugate function of U(z) - V(z) has vanishing periods along every dividing cut. Next, let $R'' \notin 0_{HAD}$ or 0_{HAB} and let U(z) a non-constant harmonic function satisfying the above conditions. Then since both dist $(\partial R'', \partial R')$ and dist $(\partial R'', \partial R')$ $\partial R'''$) are positive, we can construct by Neumann's alternierendes Verfahren a harmonic function $U^*(z)$ in R' such that $U^*(z)$ is harmonic in R'-R''', $U^*(z)=0$ on $\partial R'$ and $U(z)-U^*(z)$ has M.D.I. over R'', whence $U^*(z)$ has the conjugate harmonic function with vanishing periods along every dividing cut and $\sup |U^*(z)| < \infty$ for $\sup |U(z)| < \infty$ and $D(U^*(z)) < \infty$ for $D(U(z)) < \infty$ respectively. We can prove that $U^*(z)$ is non-constant as above. Hence $R \notin O_{HAD}$ or O_{HAB} respectively.

The classes 0_{HAB} and 0_{HAD} are generalizations of 0_{AB} and 0_{AD} of Riemann surfaces of finite genus, in this case evidently $0_{AB}^{\circ} \subset 0_{AB} (=0_{HAB})$ and $0_{AD}^{\circ} \subset 0_{AD} (=0_{HAD})$ respectively. But in general cases, there exists a Riemann surface with positive boundary belonging to 0_{ASD}° and not belonging to 0_{HAD}° . For exmple, let $R-R_0$ be a Riemann surface with positive ideal boundary and with one ideal boundary component $\mathfrak p$ which has two different bounded minimal functions $N(z, p_1)$ and $N(z, p_2)$ (p_1 and p_2 lie on $\mathfrak p$) and let $R \subset HND^{(2)}$ (N=2). Then $U(z)=N(z, p_1)-N(z, p_2)=0$ on ∂R_0 , U(z) is harmonic in $R-R_0$, $D(U(z)) \subset 4\pi$ max (sup $N(z, p_1)$, sup $N(z, p_2)$) and U(z) has the conjugate harmonic function with vanishing periods along every dividing cut. Hence $R-R_0 \notin 0_{HAD}$. On the other hand, it is clear $R-R_0 \in 0_{AD}^{\circ}$. Similar facts occur for 0_{HAB} and 0_{HAB}° .

²⁾ HNB (HND) means a class of Riemann surfaces on which at most N number of linearly independent bounded (Dirichlet bounded) harmonic functions exist.

³⁾ Let 0_g be a class of Riemann surface with null-boundary. Let R be a Riemann surface $\in (H2D-0_g)$ and $\notin 0_{AD}^0$. Then there exists a non compact domain G in R such that a non constant Dirichlet bounded analytic function with vanishing real part on ∂G exists in G. Clearly there exists a non-constant Dirichlet bounded harmonic function vanishing on ∂G exists in G. Then in at least one of $G_1=G\cap v(p_1)$ and $G_2=G\cap v(p_2)$ there exists a Dirichlet bounded harmonic function vanishing on $\partial G_i(i=1.2.)$. Then by Theorem 10 (On the ideal boundary of Riemann surfaces) there exists no Dirichlet bounded analytic function, where $v(p_1)$ and $v(p_2)$ are neighbourhoods of p_1 and p_2 with respect to Martin's topology. This is a contradiction. Hence $R \in 0_{AD}^0$.

Hence we have the following

~~ means that there is no inclusion relation.

From the above example, we see that the properties $R \in O_{HAB}$, O_{HAD} , O_{AB}^{0} and O_{AD}^{0} , O_{ASD}^{0} depend not only on the *size of the ideal boundary but also on the complexity of the ideal boundary*. On the other hand, the properties $R \in O_{AB}^{(4)}$ or O_{AD} sometimes depend only on *geometrical structure of R*, for instance, the location of genus and branch points.

Exceptional set. \mathfrak{E}_0 (= set of capacity zero), \mathfrak{E}_{AB} , \mathfrak{E}_{AD} , \mathfrak{E}_2 (= set of areal measure zero). Let F be a closed set in the w-plane. If in the complementary domain of F, there exists no non-constant bounded (Dirichlet bounded) analytic function, we say $F \subset \mathfrak{E}_{AB}$ (\mathfrak{E}_{AD}). Clearly $\mathfrak{E}_0 \subset \mathfrak{E}_{AB} \subset \mathfrak{E}_{AD} \subset \mathfrak{E}_2$.

In the following, we suppose that an analytic function f(z) is defined in R or $R-R_0$ or non compact domain G of R, whose values fall on the w-plane.

1. Properties of connected pieces.

Let K; $|w-w_0| < r$ be a circle and let ψ be a connected piece over K. Suppose that an analytic function is defined in a non compact domain G with analytic relative boundary ∂G . We shall proved the following

Theorem 2.55 Let $R \in HNB(0 \le N \le \infty)$ and G be a non compact domain. If a connected piece ψ has no common points with the image of ∂G , then ψ covers K except at most a closed set of capacity zero.

If we apply the above theorem to smaller connected pieces, we have the following

⁴⁾ 0_{AB} (0_{AD}) means a class of Riemann surface on which there exists no non-constant bounded (Dirichlet bounded) analytic function.

⁵⁾ See 1).

Corollary. 6) Let n(w) be the number of times that w is covered by ψ . Then $n(w) = \sup n(w)$ ($\leq \infty$) except at most an F_{σ} of capacity zero.

Proof. Let $D_n = E[w \; ; \; n(w) \geq n]$. Then $D_1 \supset D_2 \supset D_3, \cdots$. Assume that the set $F = E[w \; : \; n(w) < \sup n(w)]$ is of positive capacity. Put $F_k = F \cap D_k$. Then $F = \sum F_k$. Hence since $\operatorname{Cap}(F_0) = 0$ by Theorem 2, there exists a number k such that $\operatorname{Cap}(F_k) \supset 0$. We can suppose, that F_k is closed. Then there exists a point $w^* \in F_k$ such that $\operatorname{Cap}(F_k \cap K') \supset 0$ for any small circle K' about w^* . Since $w^* \in F_k$, w^* is covered k times by ψ , so that there exist k discs $\psi_1^0, \psi_2^0, \cdots, \psi_k^0$ consisting of inner points. Since $1 \leq k \leq \sup n(w) - 1$, there exists another connected piece ψ^0 over K' except $\psi_1^0, \psi_2^0, \cdots, \psi_{k'}^0$. But ψ^0 does not cover $K' \cap F_k$, which contradicts Theorem 2. Hence we have the corollary.

Theorem 3.5 Let $R \in HND(0 \leq N \leq \infty)$ and let G be a non compact domain. If a connected piece ψ has no common points with $f(\partial G)$ and the spherical area of ψ is finite, then ψ covers K except at most a closed set of capacity zero.

Similarly as the corollary of Theorem 2, we have the following

Corollary. (a) Let n(w) be the number of times that w is covered by ψ . Then $n(w) = \sup n(w) < \infty$ except at most a closed set of capacity zero. Because $E[w: n(w) < \sup n(w)] = \sum_{i} \partial D_{i}$ is closed. Hance if ψ does not

cover a set of positive capacity, the spherical area of ψ must be infinite. Since K is bounded, the spherical area of ψ is infinite, if and only if the area is infinite. Therefore we consider only the area but spherical area.

Mean covering number $n^*(w')$. Put $\lim_{r\to 0} \frac{\int_{Kr} n(w) df}{\pi r^2} = n^*(w')$ and call $n^*(w)$ the mean covering number of w, where $K_r = E[w: |w-w'| < r]$.

Theorem 4. Let $R \in HND(0 \leq N \leq \infty)$ and let G be a non compact domain. If the area of a connected piece over a circle K is infinite, $\overline{D}_{\infty} = \overline{\bigcap D_n}$ is non empty, where $D_n = E[w: n(w) \geq n]$. Let $\Omega_1, \Omega_2, \cdots$ be components of the open set $K - \overline{D}_{\infty}$. Then $n(w) = \sup_{\Omega_i} n(w) = n^{\Omega_i} < \infty$ except at most a closed set of capacity zero in Ω_i and $n^*(w) = \infty$ at every point of \overline{D}_{∞} .

Proof. Let Ω be one of components and let $G_i = E\left[w \in \Omega, \text{ dist } (w, (\partial \Omega + \partial K)) > \frac{1}{i}\right]$. Then it is clear that $n(w) < \infty$ for every point w in G_i .

⁵⁾ See 1).

⁶⁾ These are pointed by K. Matsumoto without proof. Matsumoto: Remarks on some Riemann surface. Proc. Acad. Tokyo. 1958.

Hence $G_i = \sum_{j=1}^{\infty} H_j$, where $H_j = E[w : n(w) \le j]$. Then by Theorem of Baire, there exists a number j_0 such that H_{j_0} is dense in G_i . Hence by the lower semicontinuity of n(w), $G_i \subseteq H_{j_0}$, whence $\sup_{G_i} n(w) \le j_0 < \infty$. Hence the area of ψ over $G_i \leq j_0 \times$ area of $G_i < \infty$. Hence $n(w) = n^i$ in G_i except at most a closed set $F_i(=(\sum_{i=1}^{i} \partial D_i \cap \Omega))$ of capacity zero. Consider about G_{i+j} . Then $F_{i+j} = \sum_{k=1}^{i+j} \partial D_k$ is of capacity zero. Assume that $\sup_{k=1}^{i+j} n(w)$ $=n^{i} < n^{i+j} = \sup_{x \in \mathcal{X}} u(x)$. Since $F_{i+j}(>F_{i})$ is closed and totally disconnected, we can find two points ω_1 and ω_2 such that $\omega_1 \in G_i$, $\omega_2 \in G_{i+j}$, $n(\omega_1) < n(\omega_2)$ and both dist (ω_1, F_{i+j}) and dist (ω_2, F_{i+j}) are positive. Connect ω_1 with ω_2 by a curve L in $G_{i+j} - F_{i+j}$. Then L must intersect F_{i+j} . This is a contradiction. Hence $n^i = n^{i+j}$. Now since $\bigvee G_i = \Omega$, $\sup_i n(w) = n^{\Omega} < \infty$. Next assume $\bar{D}_{\infty}=0$. Then $\Omega_1=\Omega_2=$, \cdots and $\sup_{x}n(w)=n^{\Omega_1}<\infty$. This contradicts the infiniteness of the area of ψ . Thus $\bar{D}_{\infty} \pm 0$. By $\sup n(w) < \infty$ we have by Theorem 3 that $n(w) = n^{\alpha_i}$ except at most a closed set of capacity zero in Ω_i . Assume $n^*(w^*) < \infty$ at a point w^* of $ar{D}_{\scriptscriptstyle{\infty}}.$ Then there exists a circle $K_{\scriptscriptstyle{
m c}}\colon |w\!-\!w^*|{<}arepsilon$ such that the area of the part of ψ lying over K_{ϵ} is $<\infty$. Then by above mentioned $\sup n(w) < \infty$. This contradicts $w^* \in \overline{D}_{\infty}$ and $\sup n(w) = \infty$, whence $n^*(w)$ $=\infty$ at every point of \bar{D}_{∞} .

Theorem 5. Let $R \in \mathcal{O}_{AB}^0$ and G be a non compact domain. If a connected piece ψ has no common point with ∂G , then ψ cover $K: |w-w_0| < r$ except at most a closed set $F \in \mathfrak{E}_{AB}(=\partial D_1)$, $\sum_{n=0}^{\infty} \partial D_n$ is totally disconnected and $n(w) = \sup n(w) \le \infty$ except at most an F_{σ} ($= \sum_{n=0}^{\infty} \partial D_n$) $\subset \mathfrak{E}_2$. If $\sup n(w) < \infty$, F_{σ} reduces to a closed set.

Assume that ψ does not cover a set $F \subset \mathfrak{C}_{AB}$ in K. Then we can find a closed set F' in the interior of K with $F' \subset \mathfrak{C}_{AB}$. Hence we can construct a non-constant bounded analytic function $\varphi(w)$ with vanishing real part on ∂K in K-F'. Consider $\varphi(z)=\varphi(f(z))$ in $\Delta=f^{-1}(\psi)$ in K. Then $K \notin \mathcal{O}_{AB}^0$. This is a contradiction. Hence ψ covers K except a set $K \subset \mathfrak{C}_{AB}$. Assume that $K \subset \mathfrak{D}_{B_0}$ is not disconnected. Then there exists a number $K \subset \mathfrak{C}_{AB}$ is not disconnected. Then there exists a number $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Since $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$. Now there exists a point $K \subset \mathfrak{C}_{AB}$ is divided into some number of components by $K \subset \mathfrak{C}_{AB}$.

a small circle K_{ε} : $|w-w^*| < \varepsilon$. But $w^* \in \partial D_{n_0}$ implies that there exists another connected piece ψ_0 over K_{ε} which does not cover $\alpha \cap K_{\varepsilon}$. This contradicts that ψ_0 covers K_{ε} except a set $< \mathfrak{E}_{AB}$. Hence $\sum \partial D_n$ is totally disconnected. Next, assume that the measure of $E[w: n(w) < \sup n(w)]$ is positive. Put $F_k = F \cap D_k$. Then there exists a number n_0 such that mes $F_{n_0} > 0$. Hence by the method used in Theorem 2 we have that $E[w: n(w) < \sup n(w)]$ is a set of measure zero in replaceing capacity by measure.

Theorem 6. Let $R \in \mathcal{O}_{ASD}^0(\supset \mathcal{O}_{AD}^0)$ and G be a non compact domain and suppose that a connected piece ψ over a circle K has no common point with $f(\partial G)$.

1) If the area of ψ is finite, $\sum \partial D_n$ is totally disconnected and $\bar{D}_{\infty} = \overline{\bigcap D_n} = 0$ or $\bar{D}_{\infty} = K$. If $\bar{D}_{\infty} = K$, $\sup_{K} n(w) < \infty$ and $\bar{D}_{\infty} = 0$ and $n(w) = \sup_{K} n(w)$ except at most a closed set $< \mathfrak{E}_2$ and $n(w) \ge 1$ except at most a closed set $< \mathfrak{E}_{AD}$.

2) If the area of ψ is infinite, $\bar{D}_{\infty} = 0$ and $\sum \partial D_n$ is totally disconnected in Ω , $\sup_{\Omega} n(w) < \infty$, $\sup_{\Omega} n(w) = n(w)$ except a closed set $< \mathfrak{E}_2$ in Ω and $n(w) \ge 1$ except a closed set $< \mathfrak{E}_{AD}$ for $\sup_{\Omega} n(w) \ge 1$, where Ω is a component of $K - \bar{D}_{\infty}$.

Proof. Let the area of ψ be finite. On the contrary, suppose that $\sum \partial D_n$ is not disconnected, then there exists a number i_0 such that ∂D_{i_0} has a continuum α . Since $\alpha \subset \partial D_{i_0}$ and n(w) is lower semicontinuous, there exists a point w^* in $\alpha \cap \partial D_{i_0}$ such that $n(w) = \max n(w) \leq i-1$. Hence similarly as in Theorem 5, we can find a circle K_{ε} such that K_{ε} is divided into some number of components and a connected piece which does not cover any point of $\alpha \cap K_{\varepsilon}$. We can find at least one connected piece ψ_0 such that $(K_{\epsilon}$ -projection of ψ_0) has an open set. Hence we can construct an analytic function $\varphi(w)$ in $(K_{\varepsilon} \cap \text{proj } \psi_{\circ})$ such that $\operatorname{\it Re} \, arphi(w) = 0$ on the periphery of K_{ε} and $\left| \frac{d arphi(w)}{dw} \right| < M$ in (proj ψ_{\circ}). Consider $\varphi(z) = \varphi(f(z))$ in $\Delta = f^{-1}(\psi_0)$. Then $D(\varphi(z)) < M^2 \times \text{area of } \psi$. Hence $R \notin \mathcal{O}_{AD}^0$. This is a contradiction. Hence $\sum \partial D_n$ is totally disconnected. Suppose $\bar{D}_{\infty} + K$. Then there exists an open set G in $K - \bar{D}_{\infty}$. Put $G_j = E\left[w \leqslant G : \text{dist } (w, \partial G + \partial K) > \frac{1}{j}\right]$ and $F_i = E\left[w : n(w) \leq i - 1\right]$. Then $G_j = \sum F_i$. Hence there exists an F_{i_0} such that F_{i_0} is dense in G, whence $G_j \subset F_{i_0}$. Hence $\sup n(w) = n_0 < \infty$. Put $n(w^*) = n_0$ in G_i . We show $\sup_{\kappa} n(w) = n_0$. On the contrary, suppose that there exists a point w^{**} in $K-G_i$ such that $n_1=n(w^{**})>n_0$. Since $\sum_{i=0}^{n_1} \partial D_i$ is also closed and

totally disconnected and $\sum_{n_0+1}^{n_1} \partial D_i \cap G_i = 0$ and clearly $w^* \notin \sum_{i=0}^{n_0} \partial D_i$, we can connect w^* with w^{**} by a curve L in $K - \sum_{i=0}^{n_1} \partial D_i$. This implies $n(w^*) \ge n(w^{**}) = n_1$. This is a contradiction. Hence $\sup_{K} n(w) = n_0$ and $\bar{D}_{\infty} = 0$. We shall show that ψ covers K except at most a closed set $C \otimes_{AD} = 0$. Assume that ψ does not cover a set $F \subset C \otimes_{AD} = 0$. Then we can easily construct an analytic function $\varphi(w)$ in $K - F'(F' \subset F)$ and $F' \cap \partial K = 0$ such that $Re \varphi(w) = 0$ on ∂K and $D(\varphi(w)) < \infty$. Put $\varphi(z) = \varphi(f(z))$. Then $D(\varphi(z)) \le n_0 D(\varphi(w))$. Hence $R \notin O_{AD}^0$. This is a contradiction. Hence ψ covers K except at most a closed set $C \otimes_{AD} = 0$. Assume that $E[w: n(w) < n_0]$ is of positive measure. Then we can find as Theorem 5 a small circle K_{ε} and a connected piece ψ_0 over K_{ε} which does not cover a set of positive measure in K. This contradicts that ψ_0 covers except at most a closed set $C \otimes_{AD} = 0$.

Assume that the area of ψ is infinite. Let Ω be one of components of $K-\bar{D}_{\infty}$. Then we can prove as above that $\sup_{\Omega} n(w) < \infty$ in Ω . Hence similarly $\sup_{\Omega} n(w) = n(w)$ except a closed set $<\mathfrak{E}_2$ in Ω and $n(w) \geq 1$ except for a closed set $<\mathfrak{E}_{AD}$ for $\sup_{\Omega} n(w) \geq 1$.

We consider the topological properties of \bar{D}_{∞} .

Theorem 7. Let $R \in O_{AD}^0(\supset HND)$. If \bar{D}_{∞} is not empty and $\sup_i n\Omega_i \leq n_0$ (specially the number of components of $K - \bar{D}_{\infty}$ is finite), then \bar{D}_{∞} is a closed domain, whence \bar{D}_{∞} is not non dense locally, where $n\Omega_i = \sup_i n(w)$.

Assume $\bar{D}_{n_0+1} - \bar{D}_{\infty} \neq 0$, then there exist a point w_0 and a neighbourhood $v(w_0)$ of w_0 such that $v(w_0) \subset \bar{D}_{n_0+1} - \bar{D}_{\infty}$ and $\sup_{v(w_0)} n(w) \geq n_0 + 1$. On the other hand, by $\overline{v(w_0)} \cap \bar{D}_{\infty} = 0$, $v(w_0)$ is contained in a component of $K - \bar{D}_{\infty}$. This contradicts $n_0 + 1 > \sup_i n\Omega_i \geq \sup_{v(w_0)} n(w)$. Hence $\bar{D}_{n_0+1} = \bar{D}_{n_0+2} = \bar{D}_{n_0+3}$. Clearly $\bar{D}_{\infty} = \overline{\cap D}_n \subset \bar{D}_{n_0+1} = \bar{D}_{n_0+2}$. We show $\bar{D}_{\infty} > \bar{D}_{n_0+1}$. Let $w \notin \bar{D}_{\infty}$. Then there exists a neighbourhood $v(w_0)$ such that $v(w_0) \cap \bar{D}_{\infty} = 0$ and $v(w_0) \subset K - \bar{D}_{\infty}$, whence $\sup_{v(w_0)} n(w) \leq n_0$ and $v(w_0) \in D_{n_0+1}$. Hence $\bar{D}_{\infty} = \bar{D}_{n_0+1}$. Now since D_{n_0+1} is an open set, \bar{D}_{∞} is a closed domain and is not non dense locally.

Corollary. Let $R \in O_{AD}^0$ ($\supset HND$) and $\bar{D}_{\infty} \neq 0$. Then \bar{D}_{∞} consists of continuum components. $\bar{n}(w) = \infty$ for every point w of \bar{D}_{∞} , where $\bar{n}(w^*) = \lim_{r \to 0} (\sup_{v_r} n(w)) : v_r(w) = E[w : |w - w^*| < r]$. Hence if every component γ_i of \bar{D}_{∞} is non dense in an open set G, every point of $\bar{D}_{\infty} \cap G$ is an accumulation point of $\bar{D}_{\infty} \cap G = \sum \gamma_i$.

Assume that \bar{D}_{∞} is totally disconnected in an open set G. We can find another open set $G'(\subset G)$ such that $\partial G' \cap \bar{D}_{\infty} = 0$, $\partial G'$ is contained in some Ω and $\sup_{\Omega = \bar{D}_{\infty}} n(w) < \infty$. Hence by Theorem 7, $G \cap \bar{D}_{\infty}$ is not non dense locally. This is a contradiction. Hence \bar{D}_{∞} consists of only continuum components. Next suppose that \bar{D}_{∞} is non dense locally with $\bar{n}(w') < \infty : w' \in \bar{D}_{\infty}$. Then by the upper semicontunuity of $\bar{n}(w)$, we can find a neighbourhood v(w) such that $\sup_{v(w)} n(w) < \infty$ and $v(w) \cap \bar{D}_{\infty}$ is non dense. Hence also by Theorem 7, \bar{D}_{∞} is not non dense locally. This is also a contradiction. Hence $\bar{n}(w) = \infty$ for $w \in \bar{D}_{\infty}$. Suppose that w is not an accumulation point of $\sum \gamma_i$. Then there exists an open set G such that $G \cap \bar{D}_{\infty}$ is composed of a finite number of components, whence $\bar{n}(w) < \infty$ at $w \in (G \cap \bar{D}_{\infty})$. This contradicts the above mentioned. Hence every point of $\bar{D}_{\infty} \cap G$ is an accumulating point of $\bar{D}_{\infty} \cap G = \sum \gamma_i$.

3. Behaviour of Riemann surfaces.

Let S be the w-Riemnn sphere. We consider S instead of a circle. Then we have by theorems mentioned before

Theorem 8. Let $R \in NHB(0 \le N \le \infty)$. Then $n(w) = \sup n(w) (\le \infty)$ except at most an F_{σ} of capacity zero. If $R \notin O_{\sigma}$, then $\sup n(w) = \infty$.

Theorem 9. Let $R \in HND(0 \leq N \leq \infty)$. Then $\sup_{\Omega_i} n(w) = n_{\Omega_i}(w) < \infty$ in Ω_i except at most a closed set of capacity zero, where $\Omega_1, \Omega_2, \cdots$ are components of $C\bar{D}_{\infty}$. $n^*(w) = \infty$ at every point of \bar{D}_{∞} . If $R \notin 0_g$, then $\bar{D}_{\infty} \neq 0$.

Theorem 10. Let $R \subset \mathbb{O}^0_{AB}$. Then $n(w) = \sup n(w) (\leq \infty)$ except at most a totally disconnected set of areal measure zero and R covers at least once except a closed set (\mathfrak{G}_{AB}) .

Theorem 11. Let $R \in \mathcal{O}_{AD}^0$. If the spherical area of $R < \infty$ (clearly $D(f(z)) = \infty$), $\bar{D}_{\infty} = S$ or $\bar{D}_{\infty} = 0$. $n(w) = \sup_{\Omega_i} n(w) < \infty$ except at most a closed and totally disconnected set of areal measure zero in every component Ω_i of $S - \bar{D}_{\infty}$ and $n(w) \ge 1$ except a closed set C_{AD} in Ω for Ω such that $\sup_{\Omega} n(w) > 0$. If the spherical area of R is infinite, $\bar{D}_{\infty} = 0$.

Theorem 11'. Let $R \in O_{ASD}^0$. Then $\bar{D}_{\infty} \neq 0$ and R has the same properties as in Theorem 11.

⁷⁾ See Theorem 4 and Theorem 8 of on the ideal boundary of Riemann surfaces

⁸⁾ Z. Kuramochi: Analytic functions in the neighbourhood of the ideal boundary, Proc. Acad. Tokyo, 1957.

3. Behaviour of Riemann surfaces with compact relative boundaries.

The properties $R \in 0_{HAD}$ and 0_{HAB} depend on a neighbourhood of the ideal boundary. It is suitable to consider them in a Riemann surface with compact relative boundary ∂R . Let $\{R_n\}$ be its exhaustion with compact relative boundary $\{\partial R_n\}$ $(n=1, 2, \cdots)$.

Class 0_{HAD} and 0_{HAB} . Let f(z) be a non-constant analytic function of AD (analytic Dirichlet bounded) or AB (analytic bounded) in R. This implies $R^* \notin HND - 0_g$ ($HND - 0_g$), where R^* is made of R by adding a compact set R_0 to R so that $R^* = R + R_0$ has no relative boundary.

Hence in this case $R \subset 0_{HAD}$ or 0_{HAB} depends chiefly on the size of the ideal boundary.

Theorem 12. Let $R \in \mathcal{O}_{HAD}(\mathcal{O}_{HAB})$ be a Riemann surface with compact relative boundary ∂R . Suppose that R is represented as a covering surface over the w-plane by a non-constant function f(z) of AD(AB). Then $n(w) = \sup_{\Omega_i} n(w) < N < \infty$ except a closed and totally disconnected set $< \mathfrak{C}_2$. $n(w) \ge 1$ except a closed set $< \mathfrak{C}_{AD}(\mathfrak{C}_{AB})$ in Ω_i for $\sup_{\Omega_i} n(w) \ge 1$, where $\Omega_1, \Omega_2, \cdots$ are components of the complementary set of $f(\partial R)$.

R-maximum principle. Let g(z) be a non-constant function of AD(AB) in R-F, where $R\in 0_{HAD}$ and F is a compact set. Then by Theorem 1 $Re\ g(z)=U(z)$, where U(z) is a harmonic function in R-F such that $U(z)=Re\ g(z)$ on $\partial F+\partial R$ and U(z) has M.D.I. Hence the R-maximum principle is valid.

$$\max_{\partial R} Re(g(z)) \geq \sup_{R} Re(g(z)) > \inf_{R} Re(g(z)) \geq \min_{\partial R} Re(g(z)).$$

Let w_1 be a point such that dist $(w_1, f(R)) > \delta > 0$. Then $\varphi(z) = \frac{a - f(z)}{w_0 - f(z)} e^{i\theta}$ is of AD(AB). Hence R-maximum principle is also valid for $\varphi(z)$.

G-maximum principle. Let G be a non compact domain in R ($\in 0_{HAD}$). Let g(z) be a function of AD in R. Then Re g(z) has M.D.I. over G among all functions with value Re g(z) on ∂G . In fact, if there were another harmonic function V(z) in G such that V(z) = Re g(z) on ∂G and D(V(z)) < D(g(z)). Then by the Dirichlet principle

$$D(g(z)) \geqq D_G(V(z)) + D_{R-G}(g(z)) \geqq D(g'(z)).$$

where g'(z) is obtained by alternierendes Verfahren from V(z) and g(z). This contradicts that G(z) has M.D.I. Hence $Re\ g(z) = \lim U_n(z)$, where $U_n(z)$ is a harmonic function in $R_n \cap G$ such that $U_n(z) = Re\ g(z)$ on $\partial G \cap R_n$ and $\frac{\partial U_n(z)}{\partial n} = 0$ on $\partial R_n \cap G$. Hence

$$\sup_{\partial G} Re(g(z)) \geq \sup_{G} Re(g(z)) > \inf_{G} Re(g(z)) \geq \inf_{\partial G} Re(g(z)).$$

It is an essential condition for the validity of G-maximum principle for $Re\ g(z)$ in non compact domain G that g(z) is of AD not only in G but also in a neighbourhood of the ideal boundary of R. i.e. in the complementary set of a compact set F.

- 1) f(R) is bounded and we can suppose that the number of components Ω_1 , Ω_2 , \cdots of $Cf(\partial R)$ is finite. In fact, put $\varphi(z)=e^{i\theta}\,f(z)(2\pi>\theta\geq 0)$. The by the R-maximum principle, f(R) is bounded. By a little deformation of ∂R , we can suppose that ∂R is analytic and f(z) is analytic on ∂R . Hence the number of $\{\Omega_i\}$ is finite. Denote by Ω_∞ the one containing the point at infinity. Then we see by the R-maximum principle with respect to $\varphi(z)=e^{i\theta}\,\frac{1}{f(z)-w_0}$ that $\overline{f(R)}\cap\Omega_\infty=0$.
- 2) Put $D_n=E[w:n(w)\geq n]$. Then ∂D_n is totally disconnected in Ω . Let Ω be one of $\{\Omega_i\}$ such that $\sup n(w)\geq 1$. First, we shall show that $\Omega-D_n-\partial D_n=0$. On the contrary, assume $\Omega-D_n-\partial D_n=g>0$. Then ∂D_n has a continuum α . Let $p\in \operatorname{int}\alpha$ and $V_\delta(p)$; $|w-p|<\delta$ be a circle such that $V_\delta(p)-\alpha$ is divided into components ϕ_1,ϕ_2,\cdots of number ≥ 2 . Let ϕ_1 be one of component such that $\phi_1\subset D_n$ and ϕ_2 be another component contained in $\subset CD_n$. Put $G=f^{-1}(\psi_1)$, where ψ_1 is a connected piece over ϕ_1 . Then G is a non compact domain in R. Let $V_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{6}$ and let $w'\in (V_{\frac{\delta}{\delta}}(p)\cap \phi_2)$. Then there exists a point w'' in $(\alpha\cap V_{\frac{\delta}{\delta}}(p)):V_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{6}$ and let $w'\in (V_{\frac{\delta}{\delta}}(p)\cap \phi_2)$. Then there exists a point w'' in $(\alpha\cap V_{\frac{\delta}{\delta}}(p)):V_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{6}$ and let w'=0 such that $|w'-w''|=\operatorname{dist}(w',\alpha)$. Let $v_{\frac{\delta}{\delta}}(w'')\cap v_{\frac{\delta}{\delta}}(p):|w-w''|<\frac{\delta}{10}$. Then $v_{\frac{\delta}{\delta}}(w'')\cap D_m$ is open, where $n-1\geq m\geq 0$. Hence there exists a point w in $v_{\frac{\delta}{\delta}}(w'')$ such that $n(w^*)=\max n(w)\leq n-1:w\in (v_{\frac{\delta}{\delta}}(w'')\cap CD_n)$. Let $v_{\frac{\delta}{\delta}}(w'')\cap v_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{2}$. We fix w^* and w^* and w. Since $v_{\frac{\delta}{\delta}}(w'')\cap v_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{2}$. We fix w^* and w^* and w. Since $v_{\frac{\delta}{\delta}}(w'')\cap v_{\frac{\delta}{\delta}}(p):|w-p|<\frac{\delta}{2}$ (this is contained in the set $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ is compact. Put $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ is compact in and $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ is compact. Put $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ is compact in and $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ in $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$. Consider $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$. Then by the $v_{\frac{\delta}{\delta}}(p):|w-p|=\frac{\delta}{2}$ is $v_{\frac{\delta}{\delta}}(p):|v_{\frac{\delta}{\delta}}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}(p):|v_{\frac{\delta}{\delta}($

$$\sup_{\partial c} \operatorname{Re} \varphi(z) \geq \sup_{c} \operatorname{Re} \varphi(z) .$$

On the other hand, by $|w^*-w^{**}| = \text{dist } (w^*, \alpha) \leq \text{dist } (w^*, (\partial \phi_1 - \alpha)).$ $\sup_{\varphi} \operatorname{Re} \varphi(z) > \sup_{\partial \varphi} \operatorname{Re} \varphi(z).$

This is a contradiction. Hence G=0 i.e. D_n is dense in Ω , if $(D_n \cap \Omega) = 0$. Next we shall show that ∂D_n is totally disconnected in Ω . On the contrary, assume that ∂D_n has a continuum α . Let $p \in \text{int } \alpha$ and $V_{\delta}(p)$ as above, (i.e. $V_{\delta}(p) - \alpha$ consists of some number (≥ 2) components). Then there exists a point w' in $V_{\delta}(p) \cap \partial D_n$ such that $n_0 = n(w') = \max n(w)$ $(w \in V_{\delta}(p))$ $(\alpha) \leq n-1$. Then there exists a circle $\overline{K}_{\varepsilon}(w'): |w-w'| \leq \varepsilon$ such that there exist compact connected pieces over $\bar{K}_{\varepsilon}(w')$ consisting of *n* leaves. Since D_n is dense and n(w') < n, there exist at least one connected pieces ψ_1, ψ_2, \cdots over $\overline{K}_{\varepsilon}(w)$ which do not cover every point α . Hence ψ_{ε} composed of at least two components $\psi_{1,1}, \psi_{1,2}, \cdots$. Hence every $\psi_{1,i}$ has its projection of the shape of the moon with eclips. If α is not a straight line, we can find at least a $\psi_{1,i}$ and w^* in Ω_{∞} and $w^{**} \in \alpha$ such that dist (w^* , proj $\psi_{i} = \operatorname{dist}(w^*, w^{**}) : w^{**} \in \alpha$. Consider $\varphi(z) = \operatorname{Re} \frac{1}{f(z) - w^*} e^{i\theta}$ in $\Delta = f^{-1}(\psi_{1,i})$. Then $\varphi(z) \in AD$ in R. Hence we have a contradiction by the G-maximum principle, where $G=f^{-1}(\psi_{1i})$. Similarly, if α is a straight line. Hence ∂D_n has no continuum.

3) $\sup_{\Omega} n(w) < \infty$. Let Ω be one of $\{\Omega_i\}$ such that $\partial\Omega \cap \partial\Omega_{\infty} \neq 0$. Since f(z) is analytic on ∂R , we can find a point w_0 in Ω in a neighbourhood of $\partial\Omega_{\infty}$ such that dist $(w_0, f(R')) > 0$, where R' is obtained from R by a little changing of ∂R . Because f(R') is contained in the domain enclosed by $f(\partial R')$. Hence there exists a number $n(w_0) < \infty$ and a small circle $K_{\varepsilon}: |w-w_0| < \varepsilon$ such that every connected piece over K_{ε} is compact, whence there exists a constant δ_0 such that dist $(w_0, \partial D_m \geq \delta_0 > 0)$ for every m.

Assume that there exists a point w' in Ω such that $m=n(w')>n(w_0)$. Then $\sum_{i=1}^{m} \partial D_i$ is closed and totally disconnected. We can connect w' with w_0 by a curve L in $\Omega - \sum_{i=1}^{m} \partial D_i$. This implies $n(w_0) \ge n(w')$. This is a contradiction. Hence $\sup_{\Omega} n(w) < \infty$. Let Ω_2 be another domain such that $\partial \Omega_2 \cap \partial \Omega = 0$. Then we have similarly $|\sup_{\Omega_2} n(w) - \sup_{\Omega} n(w)| < \infty$. But the member of $\{\Omega_i\}$ is finite. Thus $\sup_{\Omega} n(w) < N$.

4) $n(w) \ge 1$ except at most a closed set $\subset \mathfrak{E}_{AD}$, if $\sup_{\Omega} n(w) \ge 1$. Assume that there exists a closed set $F \subset \mathfrak{E}_{AD}$. Then there exists a point $w_0 \in F$ such that $(K \cap F) \subset \mathfrak{E}_{AD}$ for any small circle K. Since $\sum_{i=1}^{K} \partial D_i$ is totally disconnected, we can find a simply connected domain H with analytic relative boundary ∂H such that $\partial H \cap (\sum_{i=1}^{K} \partial D_i) = 0$. Hence we can construct a function g(w) of AD with vanishing real part on ∂H . Now a connected piece $\Delta(\subset R)$ over H has compact relative boundary. Since

 $D(g(z)) \leq \sup n(w) \times D(g(z)) < \infty$, $R \notin 0_{HAD}$. This is a contradiction. Hence $n(w) \geq 1$ Ω except a set $\subset \mathfrak{E}_{AD}$.

5) Similarly as Theorem 6, we can prove that $n(w) = \sup n(w)$ except a set $\subset \mathfrak{C}_2$ by using the total disconnectedness of $\sum_{i=0}^{\infty} \partial D_i$ and $\sup n(w) < \infty$. Let $R \in \mathcal{O}_{HAB}$ and $f(z) \in AHB$. In this case $Re\ f(z) \equiv U(z)$, where U(z) is a harmonic function in R such that $U(z) = Re\ f(z)$ on ∂R and U(z) has $\text{M.D.I.} = \int_{\partial R} U(z) \frac{\partial U(z)}{\partial n} ds$ by the regularity of f(z) on ∂R . Because $\sup |U(z) - Re\ f(z)| < \infty$ implies $U(z) \equiv Re\ f(z)$ in $R \in \mathcal{O}_{HAB}$. Hence $D(f(z)) < \infty$. Hence we have the same results except 4) which is replaced by $n(w) \geq 1$ in Ω except a set $\subset \mathfrak{C}_{AB}$, $\sup n(w) \geq 1$ in Ω .

Class $R \in \mathcal{O}_{AD}^0$ or \mathcal{O}_{AB}^0 . In these classes the G-maximum principle for g(z) holds for non compact domain G under the condition $g(z) \in AD$ only in G. From this point of view $R \in \mathcal{O}_{BA}^0(\mathcal{O}_{AB}^0)$ is stronger than $R \in \mathcal{O}_{HAD}(\mathcal{O}_{HAB})$. Hence we have more simply and similarly as Theorem 7

Theorem 13. Let $R \in O_{AD}^0(O_{AB}^0)$ with compact relative boundary ∂R . Then the same facts as Theorem 12 hold.

From theorem 12 and 13, $\sum_{i=1}^{N} \partial D$: $(N = \sup n(w))$ is closed and totally disconnected. We have

Corollary. Let $f(z) \in AD(AB)$ be a non constant function in $R \in 0_{AD}^0$ or 0_{HAD} $(0_{AB}^0$ or $0_{HAB})$ with compact relative boundary ∂R . Then f(z) tends to a point as z tends to every boundary component.

(Received March, 23, 1959)