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Mass Distributions on the Ideal Boundaries of Abstract
Riemann Surfaces, III

By Zenjiro KURAMOCHI

In the previous paper we defined a function N(z, p) and ideal
boundary points and studied some properties of superharmonic functions
in Ry but the mass distributions are only slightly discussed. In the
present article, we rewrite pages from 174 to 176 of IP in more precise
form and continue the previous work. We use the same notations and
definitions as in II.

Theorem 1. Let p be a minimal point and v(p) be a neighbourhood
of p. Let VM(z) be a harmonic function in v(p] such that VM(z) =
min(M, N(z, p)) on 3v(p) and VM(z) has M.D.L over v(p). Put V(z) =
Urn VM(z) : Mf = sup N(z, p). Then N(zy p) - V(z) = N'(z, p)>0 and N'(z, p)

M=M'

has the same properties as N(z,p).
Suppose supN(z,p) = oo9 i.e. p is of capacity zero. Assume F(2) =

N(z,p). Then N(z,p)— \ N(z,q)dμ(q). Since N(z, p) is harmonic in
p B-»CA)

Ry V(z) = I N(z,q)dμ(q). If μ is a point mass, N(z, p) = N(z, q) : q£
B-v(P)

v(p), which implies p — q£v(p). This is a contradiction. Hence μ is not

a point mass. Therefore there exist two positive mass distributions μl

and μ2 such that μ=μλ+μ2 and both Vί(z)= \N(z, q)dμl(q) and V2(z) =

\N(z, q)dμz(q) are not multiples of N(z, p). Because, if every μ{ presents

a multiple of N(z,p) and whose kernel £f tends to a point q<£v(p).

Then lim ——Ί—^ ?— represents N(z, p) =N(z9 q) : q £ v(p). This is
, =oo total mass oί μ^

also a contradiction. Therefore N(zyp) — V1(z) O>0) and V^z) OO) are
superharmonic in Ry whence N(z,p) is not minimal. Hence V(z)<^N(z,p).
Next we show that V(z) has no mass at p in any canonical mass distri-
bution2). To the contrary, suppose V(z) has a positive mass at p. Then

1) Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour.,
8, 1956.

2) At present we cannot prove the uniqueness of canonical mass distributions.
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V(z)=KN(z,p) + U(z), where 0<^<O and U(z) is super harmonic in R.
Then U(z) = (l — K)N(z,p) on ^v(p) and superharmonic, whence VR_v^p^(z)
<V(z). Now VM(z) has M.D.I, over v(p) with value VM(z) = min(M,
on dv(p)y hence

and

whence

i.e.

But

V(z) = \ιmV^v lim
M=™

= V(z) = y p)

V(z) = KV(z) + UR^P

p) and UR_vίp-)(z) <U(z). Hence

= KN(zy p} + U(z) > KV(z) + UR_t

in

in

= V(z) .

This is a contradiction. Hence V(z) has no mass at p.
Put N'(z,p)=N(z,p)-V(z). Then N'(z,p) = Q

υ(p)^^ on dv(p). Let G'M — £[2 Gl? : JV'te, ̂ )^M] and
let v'(p) be a neighbourhood of p such that

;/>). Then

, 9)

ί)

Fig. 1

In page 158 (II), we proved that if p is of capacity
zero, V(z)—Vp(z) is superharmonic. If Vp(z)^>Qy

then V(z) has a positive mass at p. This is a
contradiction. Hence Vp(z)=0.

Since N'(z,p)=M on d(v(p)r\CG'M) and /> is of capacity zero,

Jim N0><;p)nc</M(z> P) ̂ Jim (Mω(v'(p), z) + Vv'^(z)) = 0 ,

where ω(^(^), 2:) is C.P. (equilibrium potential) of ^(^).

Hence AΓ(^, p) <y/lim Njt^έM(zy p) <, N(z, p) , whence

ΛΓ(^, p) = Nυ'tp^c?M(zy p) < Nυ><.p >(z, p) ̂  N(z, p),

N(z, P) = Nv',p^G'M(zy p) ̂  N*M(z, P) ^ N(z, p) .

(1)

( 2 )

Suppose S(^v(p) and let *Vgf(^) be a harmonic function in v(p) — S such
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that *y^U)=min(M, V(z)) on ^S^v(p) and has M.D.I, over v(p)-S.
Then by the definition of V(z), we have V(z) = lim * V™ (z) and, for

jtr=oo

N(z,p) we have by (1) and (2) the following

M(z, p) = N'(z, p) ,

where

, P) = N(z, p) and Km

(z, p) is a harmonic function in v(p\ — (v'(p)r\G'M) such
that N'y^n&^z, p) = min (M, N'(z, p)) on dυ(p) +d(ι/(p) r\ G'M) and
N'ycp^G'M(z, p) has M.D.I, over v(p) — (v'(p)r\G'M). Hence we have the
following

Property 1. N'jιp^έM(z, p) =N'j^z, p) =N'</M(z, p) = N'(z, p).

As in page 153 (II) N'</M(z, p} =lim N*&M^Rn(z, p) and N*</Mr,RH(z, p)

= limN'ntm(z, p), where N'n,m(z9p) is a harmonic function in Rm—R0—

(G'Mr\R^ (m^>n) such that N'ntfn(z>p)^=N'(zyp)

on G'Mr\Rn> —N' n ι f n (z,p) = Q on ^Rm. Let Vn(z)

be a harmonic function in v(p) such that Vn(z)
= NG'MΓ,Rn(z,p) on dv(p) and Vn(z) has M.D.I,
over v(p). Then FΛ(^) =lim nVm(z), where nVm(z)

m

is a harmonic function in v(p)r\Rn such that

nVm(z)=V(z) on ^v(p)r\Rn and —«Vm(2f)=0 on

37?mr\z;(^).
Since M=N(z,p)-V(z)=N'(z, p) on aCx

M,
«GV. = E[_zeR: Nn>m(z, p)-nVm(z) > M-δ) 5
(!?„ n G7

M = E [af € I?: ^Vfe, j>) - 7 (*) > M]) for
sufficiently large number m(£, n) for any given
positive number 8 and n.

Since 2^ ( ^NH.m(z, p)ds = ( ^Nn,m(z, p)ds\
j on J on

5 J

( j-(NH,m(z,p)-nVm(z))
J on

Thus ^5_wC'Λ,_t

Let w -> oo and w

let £->0. Then
Then {Nn,m(z,p)-n Vm (z) }-^{N(z,p)- V(z) } and

(min (M, N'(z, p)) <, 2πM.
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O ^Λ

On the other hand, since -~Nn>m(z, p) =— -nVm(z) =0 on ^Rnr\v(p)ydn on

, NΛ(z,p)-HV(z)) ^ D«p,_m<sM_9(NH.m(z9p)-HVm(z))

Hence DϋC/0(min (Λf, JV'(*, ^)) ̂  (2* -8) (M-£). Thus we have

Property 2. D^Onin (M, TV'fc, p)) = 2πM, M< oo .

Now N(z, p) has the same properties 1 and 2 as N(z,p). Therefore
we can use N'(z,p) in stead of N(zyp) in R. As in case of supN(z,p)
= oo we have next.

If sup N(z, p)<^ co and minimal, we have more easily the properties
1 and 2.

Another definition of the value of a superharmonic function at a
minimal point.

In the previous paper, we defined the value of a superharmonic
function U(z) at a minimal point p by

U(P) = lim i ( U(z)j^N(z,p)ds*
MtM'Vjt J d/2

where Mx = suρ JV(^, )̂ and CM=E[z e 1? : ΛΓ(2:, ^>) =M] is regular i.e.

(j-N(z9p)ds = 2*.
J awCM

Above definition is inconverient in the sense as follows : every regular
curve CM encloses a neighbourhood v(p) but v(p) des not necessarily contain
the set E[z£R: N(z,p)^>M~] for any large number M. In the above
definition U(p) depends on a larger set than v(p). It is better to define
U(p) on the behaviour of U(z) in v(p). Therefore we shall give more
useful definition of U(p). N'(z,p) in v(p) in Theorem 1 has the pro-
perties. We can prove as in case of N(z, p) that there exists a set E
in the interval (0, M) (M=supN'(z, p)) such that mesE = 0 and E$δ

implies that C& = E[_zeR: N'(zyp)=δ~] is regular i.e. ( ~N'(z,p)ds
j on

Theorem 2. Let U(z) be a superharmonic function in R and let v(p)
be a neighbourhood of p. Let N'(z, p) be the function in Theorem 1.

3) In II we defined for N(z, />), but the same facts hold for £/(*). It is easily seen that

= \ N(p, tfXα(tf), where C/(«)= \ N(ztp')du.(q)t i.e., μ is a canonical distribution of U(z*).
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Then U*(z)= lim — ί U(z)^-N'(z, p)ds exists and

where

U(P) = U*(P) ,

' = sup N'(z, p) and Cβ is a regular curve of N'(z,p).

Lemma 1. Let U(z) be a harmonic function in Rr\E[z eR: N(z,
(=V(p}) with continuous boundary value on oV(p). Then

U(P) = U*(P).

Suppose CΛ = E\_z e R: N(z, p) = a\
and Cβ = E[z£R: N'(z,p)=β'] are re-
gular. Let Un(z) be a harmonic function
in Rnr\ V(p) such that U*(z) = min(U(z), S)

on 3V(p)r\Rn and —U£(z)=Q on 3Rn

A V(p). Then U£(z)-+Us(z) in mean and
Us(z) f U(z) as S->oo.

Let Vn(z) be a harmonic function in
v(p)r\Rn such that V^fc) =min(L, ΛΓ(^,^))

on Rnr\dv(p) and τ^F^(2:)=0 on ^Rn^on
v(p). Then Vίfe) ->VL(z) in mean and (̂̂  t V(z). Let N%(zyp) be a
harmonic function in (Z? [z € J? : JV(2f, />) > ct] — £ [z e Λ : N'(z, p)^>β~]r\Rn

such that N£(z,p)=a on CΛr\Rn, NZ(z, p) =β+ V%(z) on Cβn#M and

— N % ( z , p ) — Q on 37?wr\ (£[^GJ??: 7V(£, ^)^><^3~~ ̂ C^ ̂ ^: N'(z, p)^>β~]).

Then N%(z,p)-VZ(z)=N'Z(z,p) and Nf;(z, p)-*NL(z, p), N'ϊ(z9p)-+
N'n(z, p) in mean and ^fe Λ f ΛΓ(ar, ί), N/zΌz, ̂ ) f ^te, P).
Now it is proved (similarly as page 151 (II)) that Ca and C& are also

S
o

Z7(2) ~-N%(z, p)ds ->
on

Fig. 3

and -
on

U(z)-N'L(z, p)ds.
on

Apply the green's formula to U*(z) and N%(z,p) in E[>e#: A/ΓU,^)>α]
-ι (ί). Then

3^

3^

3n

By \ — U n ( z ) d s =
J 3n

3_

OΉ



124 Z. KURAMOCHI

ί V*(z)j-NΪ{z,p)ds = \ (NΪ(z,p)
j σn J oncΛr^Rn dittos, 3

Next

!
TJS(y\\ l^^[y ti\ — V^(?\ i //o— \ (N^ί? h\^J11 \Λ j I ~ J. T γι \/C } _£/j ~— r yj \Λ y I tiΌ I \J- T ^ \< ^ ^^/

O)} <^Rn (Co +dv(.P)ϊ f~^ RH

-Vί(z))j-US(z)ds.
an

By ( ^[/κ

s(2)=0,
j on

J w 3^ n n J w 3^

But ( V^(z)~U^(z)ds= ( US(z)~V£(z)ds, hence the term on
J on J c7^

the left hand side of (4) = the term on the right hand side of (3).
Since Q<^Un(z) <S and by the regularity of CΛ and C0, we have by
letting #-»oo and then L->oo and then S->°o? we have

[/(*) r= f U(z)^N(z,p)ds= ( U(z)-^N'(z,p)ds= U*(p) .

Proof of the theorem. Let U(z) be superharmonic in R. In every
V(p)=E[z£R: N(z,p)>a\ there exists a v(p)cV(p). Let ί7F(2:) be a
* —
harmonic function in Rr\V(p)^ with value C/F(2) = U(z) on 3V(^) and

•56- _

let Uv(z) be harmonic in Rr\v(p) with value C/"(^) = U(z) on
Then U°(z)£Uv(z). Hence by Lemma 1

^U*V(P). (5)

Clearly UGβ (p) = ( U(z) ^- Nf (z, p)ds<( U(z) ̂  N' (z, p) ds< UGβ' (p) for
J on J on
cβ cβ,

regular C3 and Cy (β<^βf) by the superharmonicity of U(z)y where

Gβ = ElzeR: N'(zy p)>β^. Hence lim ( U(z)f-N'(z,p)ds exists. We
β^M' J on

cβ

4) If Z7(«)= lim UM(z*), we say ί/(«) is *harmonic in G, where ί/jκ"(2') = (min (M, t/(z))

on 3G and UM(z} has M.D.I, over G.
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define U*(z) by this limit. Thus

U(p) < U*(p) .

Next we show U(p)^U*(p). We suppose £/*(£) <oo. Then by
definition of U*(p), there exist v(p), N'(zyp) and a regular curve C of
N'(zyp) for any given positive number 8 such that

U*(p) -£ < — J U(z) j~N'(z, P)ds .

Let UA(z) be the lower envelope of super harmonic functions in
R larger than U(z) on A. Then by the superharmonicity of U(z)y

clusters at the ideal boundary as M t sup N(z, p). Therefore we can find
a number n0 and M such that

U*(p)-2e^±- { U(z)~N'(zyp)ds (n:>n0)
2πcAκn

 dn

and (R—Rn() ^ VM(p) for the same £>0.
Since (Cv(p)r\Rn)cCv(p) + CVM(p) UCvCp^

Rn(z) < Ucrtpi+cvtfpΛ*) ^nd U*(p) — 2£<
-i r 3

Uc*p>+cvifp)(*) 3- N'(*, P) ds for
t

every VM(p) such that V^c^C (R—Rj
Now N'(z,p) = N(z,p)-V(z), where V(<r)
is harmonic in Rr\v(p) such that F(#)
= N(z,p) on dv(p), i.e. F(^) =NCvcp^(z,p)

in 0(0). Hence NCVj^j)+c*p-)(z, P) t

Hence the niveau curve C / = jE^€J?:
N(z,p)-NcvMcp )+c*p>(z,P)=k'] tend to
JBC^f 6 7?: M^, />) - V(s) = A?] and further,

^(N(z,p)-NcVΆfp>+c*p>(*>P)) on C x tends to j-N'(z,p) on C as Mf

?, ̂ ). Hence there exists M'^>M such that

Fig. 4

± J
cr\κ

1

U*(p)-3δ <ς± f
£τt J

(N(z, p) - , p)}ds ,
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where C* =E\_z e R : N(z, p) -Nc«p>+cv „'<*(* J>) = *]•
Next suppose υ(p) + TV 5 VM* 5 TV'(M">M') and FM" =£;[> €

and 3FM" is regular. Then similarly it is proved that

1 Γ 7^

~- \ UCυίp >+CVM, (z) — (N(z, p) - NcAp>+cv,s (z, P) ) ds

^

PΪ-Mcv'i*, P))ds ,

where C* and C" are regular niceau curves of N(z, p) — NCv(p)+cv^/(z, p)

and N(z, p) —NCVM"(z> P) respectively. Since N(z, P) — NcVM"(z, P) =
N (z, p) - M" . Hence by letting £ -» 0 , the last term of ( 7 ) =

i f U(z)j-N(z,p)£U(p),
2τr )„ 3n

whence U(p) = U*(p) .

In case U*(p) = °°, we can prove similarly.

Properties of functiontheoretic equilibrium potential.

Let G be a non compact domain in R—R0 and let ωn>n+i(z) be a
harmonic function in Rn+i—(Gr\ (Rn+i—Rn)) such that ωnιn+i(z) =0 on 3/?0,

ωHιΛ+i(z)=l on d(Gr\(RH+i-RJ) anά^(z)=0 on dRH+i-G. Then
on

it is proved (pp, 145 and 154) that ωHιn+i(z) -*ωn(z) in mean as i-*oo
and ωΛ(z)->ω(£) in mean as n->°° and that ω(^) is superharmonic func-
tion in R. We call ω(z) the (functiontheoretic) equilibrium potential of
the ideal boundary (Br\G) determined by G. Let F be a closed set.

Put Fm = E[z£R: δ(z, F) ̂ —] and ωm(z) C.P. (equilibrium potential) of
YYl

Fm. Then ωm(z)-*ω(z) in mean.

Lemma 2. // ω(z), C.P. of (Gr\B) determined by G is not zero,
supω(z)=l.< Put Gδ = E[_z£R:ω(zχi-δ'], δ>0. Then (Br\Gr\Gδ) is

of capacity zero.
Since G>n(z)-+ω(z) in mean, ω(z)=a>'n(z), where a>'H(z) is a harmonic

function in R-R0-((R-Rn) r\G) such that ω'H(z)=ω(z) on 3(Gr\(R—RJ)
and <*>'H(z) has M.D.I.55 Suppose sup ω(^) <K<^1. Let <*>'H.H+i(z) be a

harmonic function in Rn+i—R0—(Gr\(R—Rn)) such that o/w ιn+i(z) =

on θ^o + θίGnίie-ΛJ) and :|-ω/

llll+f(^)=0 on 3̂ +,— G. Then
on

5) We abbreviate minimal Dirichlet integral by M.D.I.
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Let i -> oo and n -> °o . Then

Kω(z) > ω'Λ(*) = ω(z) ,

whence ω(z)=0. This is a contradiction.
Next let ωδ(^) be C.P. of (B^Gr\G8). Then ω*(z) <ω(z) and sup ωδ(z)

*6(r δ

<1 — δ. This implies ωδ(2)=0. Hence we have Lemma 2.
Let ω(z) be C.P. of closed set F. Then ω(z) is super harmonic in R

and the value of ω(z) is defined in R(=(R±B)) (see Theorem 1) and it
is proved that ω(z) is lower semicontinuous in R. (see II).

Theorem 3. Let F be a closed set of positive capacity and let ω(z)
be C.P. of F. Then ω(z) = l except at most an Fσ of capacity zero.

Lemma 3. Let ω(z) be C.P. of F of positive capacity. Then sup ω(z)
Z£J?

= 1.
Since F= f\Fm and Fm can be considered as a non compact domain, it is

m^o

clear sup ω(z)=l for every «, but our assertion is not clear. If F has
z€Fm

a closed subset F' of F of positive capacity in R, our assertion is trivial.
Hence we suppose FcB. Put Gκ = E[_z£R: ω(^)</iΓ<l]. Then Gκr\R
is an open set. Let G'κ be a component of Gκ. Assume that Gκ has a
positive distance from 31?0, then ω(z)<^K in G'κr\R and ω(z) =K on ^Gr

κ

r\R. But by the superharmonicity of ω(z), ω(z):>H(z)=K, where H(z) is
*
harmonic in Rr\G'κ such that H(z)~K on ^Gf

κr\R and f/fe) has M.D.I.
On the other hand, ω(z)<^K in G'κ, whence ω(z)=K in Gκ. But ω(^)
is a non constant is R. This is a contradiction. Hence GV has a subset
of 3Jf?0 as its boundary. Now Q<^ω(z)<^£ in a neighbourhood of 37?0

for any positive number £^>0. Therefore Gr

 κ has 3jf?0 in its boundary
which implies that Gκ consists of only one component.

Assume ω(p)=K(<^l) and that p(£R+B^) has a positive distance
from Gκ. Then there exists a neighbourhood v(p)dCGκr\R. Then

-
2τr

G

by the non-constancy of ω(^) in R. Hence every point p^(R + Bί) such
that ω(p)=K is a limit point of a sequence {z;} (Zf£GK).

Let pe(R+B,) such that ω(p)=K. Then P^GKcGK+8 (closure of
Gκ+8), where Gκ+8 = E[zeR: ω(z)<^K+δ^\ for any given positive number
δ>0. Since ω(z) is lower semicontinuous, there exists a neighbourhood
v(p) (C.Fm) such that ω(z)^>K—β: z^v(p) for any given positive number
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(8)

o

--N'(zy p)ds^>τr. Then

CN

This is acontradittion for £<^ — . Hence we have the following assertion.
o

Let peBt + R with ω(p)—K<^l. Then for any δ^>0, we can find a
υ(p) in Fm such that whose N'(z, p) satisfies the following condition

j j-N'(z,p)dsϊ>* (9)
CΓ^Gκ+δ

for every regular curve C of N'(z, p).
Put Hκ = E{_z e R : G*(z)<*KT\. Then Hκ is closed by the lower semi-

continuity of ω(z). Then Fr\HK is also closed. We show that Fr\HK is
a set of capacity zero. Let ωm(z) be a super harmonic function in R—R0

such that ωm(z)=Q on 3jR0, ωm(z)=l on Fmr\GK+8r\(R—RJ and ωw(>ε)
has M.D.I. Then ωm(z) -> ω' (z) , where ω'(z) is C.P. of the boundry deter-
mined by Γ\Fmί\Gκ+δ (w = l, 2, ). Hence by Lemma 2, ω'(z)=Q.

m->1 f 3 1
Choose a sequence mίym2, ••• such that I -^^(z)ds< — . Then

dw 2

= ]

and

*(2f) = 00 as z tends to F inside of

Let p^(Fr\Hκr\Bl). Then ω*(^)^ — f ω*(z)lj-N'(z, p) whence by
2τr J 9^2τr

6

(9) ω*(^) = oo and the lower semicontinuity of

lim ω*^) = oo

.β0 (set of non minimal points) is a sum of closed sets of capacity zero.
We can construct as above a superharmonic function &>**(?) such that

lim ω**z):=oo.
B0

Proof of Lemma 3. Suppose ω (z) <>K<^1. Then lim

ω**(z))=oo for any 6>0. Put Δ9 = E[zeR: 8(ω*(z)+ω**(z)) ^2].
Then Δε is also closed and Δ8nF = 0, which implies dist (Δε,F)>rfβ]>0.
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Put Fdt = E[_zeR: δfo F)^rfJ. Let α>8(z) be C.P. of.F r f β. Then

£(ω*(z)+ω**(z)) ^ ωe(z) ^ ω(z) .

By letting £-*0. We have ω (*)=().
This a contradiction. Hence supω(2)=l.

z£F

Proof of Theorem 3. Let ωk(z) be C.P. of Ek = E[z£(Rr\F) : ω(z) <

1 — — 1 (* = 1, 2, •-)• Then <*>k(z)<*ω(z), whence sup ωk(z)<LI — — . Hence
k *tnk k

by lemma 3 Ek is a set of capacity zero. Then E= \J Ek is an Fσ of
*>o

capacity zero.

Theorem 4. L0£ ω(#) be C.P. 0/ # closed set F of positive capacity.
R—F consists at most enumerably infinite number of domains. Let G be
one containing 3RQ in its boundary. Then ω(z)<^l in G except at most
capacity zero.

Since ω(z) is harmonic in R—F, ω(z)<]l in Gr\R. Suppose p is a
point in (BrλGr\Bj).^ Then there exists a neighbourhood v(p) such that
υ(p) C G. Then

because ω(^) is non constant harmonic in G— F, i.e. ω(z) has M D.I. over
v(p). On the other hand, BQ is a set of capacity zero. Hence we have
the theorem.

Mass distribution on R. We have seen that N(z, p) and N'(z, p)
have the essential properties of the logarithmic potential : lower semi-
continuity in R, symmetry and superharmonicity in the sense as follow :

for every υ(p) of p£R + B19 where,~
2τr J on

C

N'(z, p) is the function in v(p) in Theorem 1. But there exists a fatal
difference between our space and the euclidean space, that is, in our
space there may exist points of BQ where we cannot distribute any true
mass. A distribution μ on BQ may be called a pseudo distribution in the
sense that μ can be replaced, by Theorem 8 of II, by a canonical

distribution on B±+R without any change of U(z) = \ N(z, p)dμ(p).

Hence it is sufficient to consider only canonical distributions.

6) G is open with respect to Martin's topology, whence G may contain points of the ideal

boundary.
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Energy integral I(μ) of a canonical mass distribution on Ri B1 is
defined as

I(μ)=\\N(q,p)dμ(p)dμ(q).

* —
Capacity (potentialtheoretic) of a closed set F in R is defined by

-t
, where μ is a canonical distribution of Fr\(R + B1) of total mass

inf
unity.

subset FLemma 4. Cap (F)>0 implies Cap (F)>0 for
of R.

In fact, if Cap(F)>0, there exists C.P. of F such that ω(z)=ωF(z)
and ωF(z) is represented by a mass distribution μ> on F. ^V^ae+BpCz) ̂
ωF(#) ^o)FrΛ<iR^B^(z) + ωBo(z). But ^(2)—0 by Theorem 8 in (II), hence
ω(z) —ωFrλCR+B^(z) and ω(z) is represented by a canonical distribution on

S
o
—~(z)ds. Since supω(z)
on

= 1, /(/*)<°° This implies Cap(F)>0.

Theorem 5. Let μ be a canonical distribution on a closed set F of
capacity zero such that its potential U(z) = UF(z)^>0. Then sup U(z) = oo.

It is clear sup U(z) = oo, but our assertion is not so clear. Suppose

sup U(z] <IM Let p be a point in

r\F, Then

— ( U(z)~N'(z, p)ds < M

for every regular curve of N'(z,p}.
Let plyp2y ••• ,pi be points in

and put £>λ = E[z e /? : Σ cfN(z, p{)
where cz >0 and Σ^ — total mass of μ.

Let UDλ(z) be a harmonic function in Z>λ

such that UD*(z) = U(z) on 3Z)λ and ί/^x^)
has M.D.I, over Z)λ. Then [7^(0)

S
o
-̂ Σ ciN(z, pi}ds <^2π^

uγi
λ

Fig. 5

έi
where Γg. is a regular curve of N(z9 p{) and contained in Z>λ. By the
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continuity of N(z9 p) there exists a linear form Σ c\N(z9 pk): pk € Fn
(R+BJ such that U(z)- Σ c\N(z, pk) |<£ : z6Rm for any given Rm and
£^>0. Hence there exists a sequence {/7y(2)} of the above linear form

such that U, (z)-+U(z) inR-R0. Now UΛz)-+U(z) implies — J7 (2)-* — U(z)
on on

in R and C^ = E\z e Λ : £/,-(£) — λ] tends to Cλ = E\z € 1? : U(z) = λ]. Then
by Fatou's lemma

S o Γ /•-)

U(z)—Uj(z)ds^ \ U(z)-~U(z)ds, for every λ (10)
3^ J 3n

^Λ λ

On the other hand, U(z) — UF(z) = UDλ(z) implies C7(z)=λω(z), where
ω(,ε) is C.P. of Dλ. Hence for almost all λ

S
o

^— U(z)ds = total mass of μ9on

whence lim j U(z) j- U(z)ds = ^ (11)

(10) contradicts to (11). Hence we have the theorem.
At present, we cannot prove the uniqueness of canaonical mass

distribution but we shall prove

Theorem 6. Let U(z) be a superharmonic function in R such that

U(z) = UF(z). Then U(z)= { N(zyp)dμ(p). The mass distribution μ

cannot be replaced by any other canonical distribution on Fr such that
dist (Fy F')>0 without any change of U(z).

As for the part of μ on R, the uniqueness of mass distribution is clear.
We suppose both F and F' are contained in B. We cover F by a finite

number of closed discs Sι,S2> ••• > S. 0 with diameter <<—. Put μ = μ^ +

μ2+ -•• +μio, where μ{ is the restriction of μ on §,.. Hence there exist

μ, and g, such that ^N(z9p)dμi(p) = ^N(z9 p)dμi(p)J^>0. We denote

8, and μ{ by ̂  and ̂  respectively. As above we chosse g2 and μ2 such

that Λ>0, dia g^c^X-ί and ̂ ( j^, p)dμ2(p)^ = \N(z, p)dμ2(p)>0.

{ 1 α?2

^1 and Sι5δ2'
 such that Γ\τ$i=p£m{) .

(R + B^r\Fy where mf is the total mass of /*,. Since ( \N(z, p ) d μ i ( p ) )
Γ 1 Γ F/V

= \N(zyp}dμi(p)y —\N(z,p)dμy is represented by a mass distribution
J ΎYl: J
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μf on F'. There exists a subsequence {μ*^} such that {/**/} converges

to μ* on F'. On the other hand, l-^'l tends to a point mass N(zy p) .

Hence

, ί) - J N(z9 q)dμ*(q) : dist (F', p)>0.
Ff

Now we can prove as in Theorem 1 that N(z, p) is not minimal. This

is a contradiction. Hence we have the theorem.

Lemma 5. Let μ be a mass distribution and let μc be its canonical

distribution (on R + BJ, i.e, ^N(z, p)dμ(p)= ( N(z,p}dμc(p). Then I(μ) =
R R+B1

I(μc) Hence I(μ) does not depend on a choise of particular distribution.

Suppose p and and q are not minimal. Then N(z, p) = \ N(z, cί)dμp(oc)

and N(z, q)= N(z, β)dμg(β), where a and βeR + B,. * (12)

Then I(μ) = \\N(p, q) dμ(p] dμ(q) = \\\ N(ce, q) dμp(a) dμ(p) dμ(q)
q p Oύ

= ( ( ( ( N(a, β) dμp(a) dμq(β] dμ(p) dμ(q) = ( ( N(β> a) \ dμp(a) dμ(p)
q P Λ β <* β p

x j dμq(β) dμ(q) = J j N(a, β) dμ(a) dμ(β) = I(μc),
q <* β

because (12) means that a unit mass on p is replaced by μp(a) on a,

whence \ dμp(oή dμ(p) = dμ(a) and 1 dμq(β) dμ(q) = dμ(β).
p

Lemma 6. If μn-^μy then I(μ) < lim/(/Q.

I(μ) = lim f ί NM(p, q} dμ(p] dμ(q] <, lim lim ((N M (p , q) dμ(p] dμ(q)

^ lim ((N(p, q) dμ(p) dμ,(q) = lim I(μn).
n=oo JJ n = oo

Theorem 7. (Fundamental theorem 1). Let F be a closed set in R
of positive ^capacity. Then there exists a unit mass canonical distribution
μ on F (on Fr\(R + B^)) whose energy integral is minimal and its potential
U(z) satisfies the following conditions:

1) U(z) 2> V in F except at most a set of ^capacity zero.
2) U(z) <V in F* (kernel of μ).
3) U(z)^,Vω(z)
4) U(z)=V on F*r\R
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where V=I(μ) and ω(z) is C.P. of F.
In our space, the potential N(z, p) is continuous in R—p and lower

semicontinuous in R but N(z, p) is not necessarily continuous in R —p
and the continuity principle cannot be proved. Therefore we cannot
prove the above theorem in usual manner.

Let {μn} be a sequence of canonical distributions on F such that
Ifan) I V, where V is the infinimum of energy integrals of all canonical
distributions on F of total mass unity. Put μ = lim μn. Then by Lemma

n

6, I(μ) =V. If μ is not canonical, we replace by a canonical distribution
μc Then also by Lemma 5, ϊ(μc)=γ. Assume that there exists a

closed set g in CF such that ί N(z, p)dμ"(p)>0, where μ" is the re-
ft

striction of μc on S Then μ" cannot be replaced by any canonical
distribution on F by Theorem 6. Hence every canonical distribution
which is equivalent to μ has a positive mass on g. This contradicts to
μ = lim μn . Hence such μc has no mass except on F. Thus there exists

n

a canonical distribution μ of total mass unity on F such that I(μ) = V.
Let F* be the kernel of the distribution μ. Then clearly F* C F

and closed. By symmetry of N(p, q)y I(μ) = ( U(p)dμ(p) and C7(*)^ V-θ

on F*, because /(/*)— F. Hence there exists a point pQ£F* such that
U(p0)^>V—£ and there exists a neighbourhood t>(A) such that U(z)^>
V—£ (z£v(p0)) by the lower semicontinuity of U(z) and that the restric-
tion of μ in v(p0) has a positive mass m in fl(A) Assume U(z) <LV— 28

#
on a set F' of positive capacity in F. We define a new canonical mass
distribution μ on F' whose energy integral is finite and whose total
mass is m. Define another distribution σ as follows :
σ= —μ on v(p0), σ = μ on Ff and σ = 0 outside of v(p0) and F '.
Then μ + hσ^>0 for A<1 and the total mass is unity. Then the variation

SI = I(μ + hσ)- I(μ) ^ 0 and

Sl=2h ( U(p)dμ(p)+h2I(σ)<2h

This is a contradiction for sufficiently small h. Hence by letting £->0,
we have (1).

Put F' = ElzeF: U(z) <F-f]. Then F' is closed and Cap (F7)=0
and the restriction of μ' on Ff has no mass, because I(μ') <>I(μ) ^V.
Hence μ has no mass on a set E\_z£F: U(z)<^V+£} for any
Next assume μ has a positive mass m on a set E[_z£F: t7
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Then /(/*)> F. This also a contradiction. Hence by letting £->0, U(z)
— V where the mass is distributed. Thus U(z)=V on F* by the lower
semicontinuity of U(z), whence we have (2).

R— F consists of at most enumerably infinite number of domains
G!, G2, ••-, where G^ is the domain containing dR0 in its boundary. At
first, consider U(z) in G l β U(z)=V on F* except at most a set F' of
*
capacity zero (by Lemma 4, capacity zero). Hence the exists a super -
harmonic function ω*(z) in R (as in Theorem 3) such that lim ω*(z) = °°.

z+p£f'

Hence as in case of Lemma 3, U(z)^Vω(z) in G l β Let G2 be one of
other domains. Then 9G2CF. 3G2r\R consists of continum boundary
Γ. (ί = l,2, — ) and others Γ*. Put G2 + Γ*=G2*. Then G2* is also a
domain. Since for every point ^GΓ^nJ?, there exists a neighbourhood
fl(^) which is conformally equivalent to a disc in the £-plane. Hence
the continuity principle is valid in v(p), whence U(z)^.V on ^{r\R.
Then by the superharmonicity of U(z)9 U(z)^UCG2^(^)::=V in G2*, whence
U(z)^Vω(z) in G2, because ω(^) is clear ly = V in G2. Hence in every G{

(i = 394y.. ) U(z)^>Vω(z). U(z)'>1V on F except a set capacity zero.
Similarly as in Lemma 3, U(z)^,Vω(z). By considering sequences fa} :
Z f ^ R which clusters at B, we have U(z)^.Va>(z) in B. Thus we have
U(z)^>Vco(z) in R and we have (3). Clearly by the continuity principle,
U(z)=V on Fr\R. Hence we have (4).

We know the property of U(z) very little, i.e. at present we don't
know whether U(z) is bounded in R or not. We shall prove the next

Theorem 8. (Fundamental theorem 2)

U(z) Ξ= Vω(z) in R and

= D(U(z)) = D(Vω(z)) =V.

Lemma 7. Let U(z) be a function in Theorem 7. Put Ga=E[z£R: U(z)

>V+a} (β>0) and G*=E[_z£R: δ(^,F*)<— ]. Then gn = Gar\G* is
n

open. Let ωgn(z) be C.P. of gn. Then limωgn(z)=Q.

Let {S, } be a sequence of closed subsets of gn such that g,. f gn.
Let ω®i(z) be C.P. of gz. Then ω^ί(^) t ω^(-ε) in mean (see page 154,
II). Hence ω*»(z)_ is superharmonic in R. Put H^E[_zeR: ω^ (^) = l]
and Hn = E\_z£R: ω?»(z) = ϊ]. Then Hi and Hn are closed. Clealy by

Theorem 3 and 4 ωft. fc) =ωHί(z), where ωH«(^) is C.P. of ίβ. By the

superharmonicity of ω^(^), ω^w(^)^ω^«(^), where ω^w(2:) is C.P. of Hn.
On the other hand, ω^i(z) <ωHn(z) for every /. Hence ωgn(z) > ωHn(z).

ThUS ^ "»
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Clearly ω8n(z)^>ωgn(z) (gn is the closure
of gn). By (4) of Theorem 7, F*r^gnr\
R = 0. Hence the complementary set
Cgn °f §n consists of only one component
containing 3f?0 in its boundary. Hence

by Theorem 4 ω*»(z) <,ω*«(zXl in Cgn

except at most a subset of Cgn of capa-
city zero, whence Hn C gn except a subset
of Hu of capacity zero.

Next ω8n(z) j ωe(z)(g= Γ\gJ in mean
n^L

as rc-^oo and #„ | # and HCgnCF*.
Assume «/fc)>0. Then ωg(z)=l on ff
except a subset of if of capacity zero,
whence by Theorem 4 there exists at least a point z0£F* such that
ω*(zj=l. Since /OF*,

and U(z) ^, (V+a)ω*(z) ,

C7(^0) ^(V+ά): z0eF*.

Fig. 6

— ]. Hence
n

where F* = £[> e # : δ(^, F*

This contradicts to (2) of Theorem 7. Hence ωg(z)=Q.

Lemma 8. Put GN=E[z£R: U(z)>N]. Then Urn UGN(Z) = 0.
jy=oo

By the superharmonicity of U(z), U(z) ^ NOG* (z) , where ωG^) is C.P.
of G .̂ Hence lim ωG&(z) ^=0. i.e. r\GN=G8 is a set of capacity zero.

A* = o° * »

Assume lim UG^(z) = Ϊ7*(z)>0. Then f/*^) is represented by a cano-
^V = oo

nical distribution /** on Gδ and the kernel k* of /** is closed and
CG δ . Hence &* is a set of capacity zero and U*k* (z) =U*(z). Suppose
dist (F*, ^*)>0. Then by Theorem 6, μ* cannot be replaced by a
distribution of F*. On the other hand, U(z) —Uk*(z) is superharmonic
(see p. 158, II), whence U(z) has μ* on &*, which implies k*cF*. Now
by Theorem 5, sup U$* (z) — &°. Hence there exists a point ZQ in k* C F*

Z£.F*

for any large number Λ^ such that

This contradicts to (2) of Theorem 7. Hence U*(z)=Q.
Proof of theorem 8. Let UG^(z) be function in Lemma 8. Then

there exists a number N such that UGJT(ZO)<^£ for given number
and a point z0. Put Gδ == £[>e £ : f/U)>Vr+S] and F* = E[

] and gn=F*r\GIί. Let and be C.P. of gn and
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F? respectively. Then since F* C F? ,

[7(2) = £/F*(z) < δ+ Vω*ί(

Let w-»oo. Then Mu*"(z)-»-0, by Lemma 8, Hence

(2 ) +ε .

Then by letting θ— >0 and then δ^O, we have

U(z0) ^ Vωiz,) .

On the other hand, U(z)^Vω(z), hence we have U(z)=Vω(z) and

D(U(z)) = D(F«(2)) = F2^ ( ~ (z)ds - 72D(ω(2)) =V =

By Theorem 8 we have the following

Corollary. Cap (F) =Cap (F), and

Cap (F) > 0 implies Cap (F) > 0 .
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