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On the Ideal Boundaries of Abstract Riemann Surfaces”

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary. Let {R,}
(r=0,1, 2, --2) be its exhaustion with compact relative boundaries 9R,.
We proved the following

Theorem.z) Let R ¢ Og and € OHB(OHD)Q). Then R-‘ RO G OAB(OAD)'
We shall extend the above theorem.

Part 1
Martin’s topology.® Let G(z, p;) be the Green’s function with pole

at p;. Put K(z, p,-)———GG‘((%’j;)—), where p, is a fixed point. Suppose {p;}

is a divergent sequence of points. We call {p;} a fundamental sequence
determining an ideal boundary point, if {K(z, p;)} converges uniformly
in every compact domain of R. If {K(z, p,)} and {K(z, p/)} determine
the same limit function, we say that {p;} and {p/} define the same
ideal boundary point. We denote by B the set of all the ideal boundary
points. We define the distance between two points p and ¢ of R+B by

sup Kz, p) _ Kz 9)
«r, |1+K(z, p) 1+K(z, q)

== 3(1’) q) .

Let K,(z, p) be the lower envelope of superharmonic functions larger
than K(z, p) in v;. Then R.S. Martin proved that lim K,,(z, p) =K(z, p)
or =0 according as p is minimal® or not, where v;=E[z€R+B: 3(z, p)

g}] and that the set of all non minimal points is an F, and every

1) The results of the present article were reported at the annual meeting held on 28,
May, 1957.

2) Z. Kuramochi: On the behaviour of analytic functions. Osaka Math. J. 7, 1955.

3) Og, Omp, Oup, Oup, Oygp and Oy4p are the classes of Riemann surfaces on which
the Green’s function, non constant positive, bounded, Dirichlet bounded, harmonic, bounded
analytic and Dirichlet bounded analytic function does not exist respectively.

4) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.

5) If positive harmonic function U(z) has no positive function smaller than U(z) except
its own multiples, we say that U(z) is minimal. If K(z, p) is minimal, we say p is a minimal
point.
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positive harmonic function U(z) is representable by a unique mass
distribution on B,=B—B,.”

Let R~ be the universal covering surface of R and map R con-
formally onto |£|< 1. Let K(z, ) be a minimal function. Then K(z, p)
has angular limits almost everywhere on |§|=1. Then we have easily
the following.

Lemma. Let K(z, p) be a bounded minimal positive harmonic function.
Then Kz, p) has angular limits=M=sup K(z,p) or =0 almost every-
where on |E|=1.

In fact, let F and F’ be sets on |£|=1 such that K(z, p) has angular
limits > M—¢& a.e. (almost everywhere) on F and has angular limits

between M—2¢& and & a.e. on F’ for a positive number & (0<8<1%4).

Then F is a set of positive measure, since K(z, p) is representable by
Poisson’s integral. Now F’ is a set of measure zero, because if it were
not so, construct a harmonic function U(§) such that U(§) has the same
angular limits as K(z, p) a.e. on F and 0 a.e. on CF (complementary set
of F). Then U() is a function in R and is not a multiple of K(z, p)
and K(z, p)_>U(z)_>0, which implies that K(z, p) is not minimal. This
is a contradiction. Hence by letting €—0, K(z, p) has angular limits
=M=sup K(z, p) a.e. on F and O a.e. on CF.

Theorem 1. The set of bounded minimal functions is enumerable.

Let K(z, p;) (i=1,2,---) be a bounded minimal function such that
K(z, p;) has angular limits=M, a.e. on E; and zero a.e. on CE; on
|€|=1. Suppose mes (E;\E,-=0 for i==j. Let U(z) be a harmonic
function such that U(z) has angular limits=min (M;, M) on E;/\E; and
zero on C(E;\E;). Then 0<_U(2)<_Kl(z, p:), 0<_ U()<_Kl(z, p,) and U(2)
is not a multiple of K(z, p;) or of Kz, p;). Hence K(z, p;) or K(z, p),)
is not minimal, whence mes (E;/\E;) =0. On the other had, mes E;>0
and > mes E;<27. Hence we have the theorem. In the following we
call E; the image of point p;.

Harmonic measure of a set with respect to Martin’s topology.

Let F be a closed set. Put F,=E[z€R+B: S(z,F)g%]. Let

U,..2) be a harmonic function in R,—F, such that U,,(2) =0 on
OR,,—F, and U, ,(2)=1 on R,N\F,.
Put U(2) =lim lim U, ,,(2) and call it the harmonic measure of the

closed set F. We define the harmonic measure of a Borel set as usual.

6) See 4).
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Martin proved that the set of non minimal points is an F, of harmonic
measure Zzero.

Lemma 1. Let R be a Riemann surface which has an enumerably in-
finite number of bounded minimal functions Kz, p;) (=1,2,---) and a

set (clearly G; set) of Martin’s boundary points of harmonic measure zero.
Then mes >\ E; =2,

Suppose >} mes E;< 27. Then we can construct a bounded positive
harmonic function U(z) in R such that U(z) has angular limits=0 a.e.
on >YE; and =1 ae. on C(3)E,). Since U(2) is positive, U(2) is re-
presented by a unique mass distribution g as follows: 1 >U(2)=

S K(z, p)du(p), where B, is the set of minimal points. Now the mass

dlstrlbutlon # has no mass at every p;, since if U(z) has a positive mass
# at p;, U(z) must have angular limits we;M; (c; is a constant) a.e. on
E;. Since g is Borel measurable, there exists a closed set F in B—\Jp;

such that U(z)gU’(z)=SFK(z, pydup' (p)=>0, where p’ is the restriction of
p# on F. Let H, be the set of bounded minimal points whose images
satisfy %>mes Eigﬁ (n=1,2,--+). Then the number of points in
H, is finite and \JH,=\Up;. Put J,=E[z2€R+B: 8z, H)=
38, H)1. Then (BAJ)DF.

Denote by Uj,(2) the lower envelope of positive superharmonic
functions in R larger than U’(z) in (R—R,) ,[i\l]”' Then since (f\],,))F
and ¢’ is contained in F, U}, ,(2) =U’(2) for eV(;ry m and k. Hence U’(z)=
lim Uf,,(2). On the other hand, clearly U’(z) = U,(z) —-hm lim Uk mom+i(2),
where U, ,..;(2) is a harmonic function in R,,.;,— ((R— R )[\([\] ) such
that U, .i(2)=U"(2) on d(/\J,/\(R—R,)) and Uy, ,+:(2)=0 on OR,,.;—
(f\]/\(R—Rm)). Let w,,, »+:(2) be a harmonic function in R,,.,— ((R—
R,) N(/\J.) such that e, ms(2) =1 on (R—R)/N\(/\J,) and wsmmei(2)
=0 on OR,.—((R—R,)N\(/\]). Then lim i 1 s(2) = 04(2) 8
smaller than the harmonic measure of an open set B-- \jH,,, because

the closed set (/\ J.N\BYB— \/H,,. Hence the assumption that B—\J/ p;
is of harmonic measure zero implies lim w,(z) =0. On the other hand,
k

by sup U(2)<1, w,(2) = U/ (2) >U’(2) >0 for every k. Hence lim v,(2)
k
0. This is a contradiction. Thus >} mes E; =2=.
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Class HBN.”

Theorem 2. A Riemann surface Re€ HBN, if and only if R has
N—1 bounded minimal functions Kz, p;) (i=1,2,---,N—1) and a set of
boundary points of harmonic measure zero.

Suppose that R has N—1 number of bounded minimal functions
K(z, p;) and a set of boundary points of harmonic measure zero. Let
U(z) be a bounded harmonic function in R. Then U(z) has angular
limits=constant a.e. on the image E; of bounded minimal point p;,
because if there exist two subset E;/ and E;” of E; such that both E; and
E;/ are of positive measure and U(z) has angular limits < L—¢& and
>L+¢ on E;/ and E;” respectively for a positive number §_>0, we can
prove that K(z, p;) is not minimal as before. Hence every bounded
harmonic function U(z) has a constant a.e. on E;. Hence by > meskE;
=2, every U(2) is a linear form of K(z, p;) (=1,2,---, N—1). On the
other hand, K(z, ;) and a constant are linearly independent. Hence
R e¢HBN. Next suppose R € HBN. Then we construct by linear trans-
formations a system of N—1 independent harmonic functions Uj;(2)
which have angular limits=1 a.e. on E; and =0 a.e. on CE; on |§|=1.
As above, we see easily that every U;(z) is a multiple of a bounded
minimal function. Thus we have the theorem.

Let G be a non compact domain in R and let U(2) be a positive
harmonic function in G vanishing on 2G. Put U,,(2) =lim U,(2), where
U,(2) is the upper envelope of subharmonic functions in nR smaller than
Uz) in GI\\R—R,). Let V(2) be a positive harmonic function in R. Put
Tipex(2) =1im V (2), where V,(z) is the lower envelope of superharmonic

functions lgrger than V(2) in G/\(R—R,) and vanish on 9G/\R,. Then
we proved

Lemma 2. Let U(z) be a positive harmonic function in G vanishing
on 9G.

If U.2)<oeo, then U =,,.(U.@).

Theorem 3. Let G be a non compact domain and let Kz, p) be a
bounded minimal function. If K'(z, p) =K,,..(2, p) >0, then there exists
no analytic function of bounded type” in G.

Suppose K'(z, p) <M. Let w,(2) be a harmonic function in GN\R,
such that »,(2) =0 on 9G/\R, and v,(2) =1 on 9R,/\G. Then w,(2)=

7) HBN is the class of Riemann surfaces on which N number of linearly independent
bounded harmonic functions exist.

8) Z. Kuramochi: Relations between harmonic dimensions, Proc. Japan Acad. 30, 1954.

9) Z. Kuramochi: Dirichlet problem on Riemann surfaces, I, Proc. Japan Acad. 30, 1954.
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(4
IS%-@>O. Map the universal covering surface G* of G conformally

onto |£|< 1. Then K(z, p) and w(2)=lim w,(2) have angular limits a.e.

on |£|=1. We call the set on which (2) has angular limits=1 almost
everywhere the image I of the ideal boundary of G. Clearly I is a set
of positive measure. Since M _>K'(z, p) >0, there exist two constant
M and & and a set E such that K’(z, p) has angular limits between M
and M—3& ae. on E(CI) of positive measure. If there exist two sets
E, and E, of positive measure such that K’(z, p) has angular limits
between M and M—38 a.e. on E, and between M—26 and M—368 on E,,
We can define a harmonic function U(z) in G such that U(z) =0 on 9G
and U(z) has the same angular limits as K'(z, p) on E, and zero on CE,
Then U(z)< K'(z, p) and Ulz) is not a multiple of K’(z, p). Hence by
Lemma 2, U'(z)=U,,(2)<K’,,(2, p) =K(z, p) and U’(z) is not a multiple
of K(z, p), whence K(z, p) is not minimal. This is a contradiction. Hence
K'(z, p) has angular limits=0 or =M a.e. on I. Let A(z)=W be an
analytic function of bounded type. Then A(z) has angular limits a.e.
on I. Let {&,} be a sequence of triangulations of the w-lane such that
&,.: is a subdivision of &, and becomes as fine as please, when #— oo,
Denote by {Af} (1=1,2, ---) the triangles of &,. The subset where
A(z) has angular limits contained in Al will be denoted by Ef. Then
every E} is lineary measurable. There exist at least two E}, E{ such
that E;N\Ey =0 in I and both mes E;”>0 and mes E{>0. On the
contrary, suppose for every n there exists i(») such that mes Ef=mes I.
A(z) must be a constant contained in N\Aj;. Then we can construct a
harmonic function U(z) in G such that U(z) =0 on 9G and has angular
limits=1 on E! and 0 on E}’ almost everywhere. This U(z) is not a
multiple of K’(z, p). Hence as above K(z, p) is not minimal. This is a
contradiction. Thus we have the theorem.

Theorem 4. Let v(p) be a neighbourhood of a bounded minimal point.
Then there exists no analytic function of bounded type in v(p).

Let U,(2) be a harmonic function in R, N\v(p) such that U,(z)=
K(z, p) on Sw(p) \R, and U,(z)=0 on OR,N\uv(p). Put V(z)=U(2) =
li”m U.(2) in v(p) and V(2) =K(z, p) in R—v(p). Then V(z2) = Km(z, D).

Suppose K 0(5-, p)=Kl(z, p). Then K(z, p)= [ (If(z, Pm)d,"'(ﬁa;)- Since
R+B-v R+B-v($)
K(z, p) is harmonic in R, Kz, p)= f( , Kz, py)dp(p,). If p is a point
B-v(p)
mass , Kz, p) =B_Iv{m<z, P)=Kiz, q) : q £ v(p), which implies p=g ¢ v(p).

This is a contradiction. Hence p is not a point mass. We can find a
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closed set £, with diameter < in Cuv(p)'® such that p# on F', represents

a function U’(z) which is not a multlple of K(z, p). Because every p,
on F, represents a function U,(2) =c,K(z, p). Let n— oo, then [n\F,,zq

in cv(p). Then lim P represents a function K(z, g) which
» total mass of w,

equales to K(z, p). This implies also p=gq¢v(p). Put U’(z) =
S K@z, pydp(p,). Then U'()< Klz, p) and U’(z) is not a multiple of

Fny

K(z, p). Hence K(z, p) is not minimal. Thus K(z, p)——R K (z p) =

+B-v(p)

K'(z, p) >0. Thus we have the theorem by Theorem 3.

Theorem 5. Let R be a Riemann surface such that R has an enu-
merably infinite number of bounded minimal functions K(z, p;) (=1,2, )
and a set of boundary points of harmonic measure zero. Let G be a non
compact domain such that O<m(z)=lz;m ,(2), where ©,(2) is a harmonic

Sunction in GN\R, such that o,(2)=0 on 9G/\R, and o,(2)=1 on
OR,N\G. Then there exists no analytic function of bounded type in G.
Put U,-(z)=—K(Z’—p"). Then U;(z) has angular limits=1 on E;
sup K(z, p;)
and 0 on CE; almost everywhere and by Lemma 1, > U;(z)=1. Let
Vi(z) be a harmonic function in G/\R, such that Vi(z)=U;(z) on
GN\°R, and V/(z) =0 on 9§GN\R,. Put Vi(z)zlinm Vi(z). Then 3 Vi(2)

=w(2) >0. Hence there exists at least one K(z, p;) such that K'(z, p;) 0.
Hence we have the theorem by Theorem 3.

Remark. The condition w(2) >0 in Theorem 5 cannot be replaced
by lim lim w, ,;(2) =w(2) >0, where w,,.;(2) is harmonic in R,,;—(G/\

(R,.;—R,)) such that w, ,.;(z)=1 on 2(GN\(R,,,—R,)) and w, ,.;(z)=0
on 9R,.;—G. In fact, we constructed a Riemann surface R with
positive boundary € OppC Oy HNB such that R is a covering surface
over the W-plane and R is symmetric with respect to the real axis.
Let Gy and G, be the parts of R lying over the upper and lower half

plane respectively. Then Gy+G,=R. If we consider the above function

1
W+i®
W=W(z) is a bounded analytic function on G,. Hence w(z) >0 is not
sufficient condition.

with respect to Gy. Then clearly w(z)”>0. But the function

10) Cuv(p) means the complementary set of v(p).
11) See 2).
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Part 11

Martin’s topology.””> Let N(z, p) be a harmonic function in R—R,
with one logarithmic singularlity at p such that N(z, p) =0 on 2R, and
N(z, p) has the minimal Dirichlet® integral over R—R,. Then we define
as in case of K(z, p) the ideal boundary points. All the ideal boundary
points is denoted by B. Put R=R—R,+B. Distance between two points
p and ¢q is defined as

Nz p) _ Nz q |_s
zeSRIIJPRo 1+N(z, p) 1+N(z, p) l ® a -

Capacity of a closed set F in R. Put F,=E[z<cR: 8(z, F) g_%].

Let »,(2) be a harmonic function in R—F, such that e,(2)=0 on 2R,
o(2)=1 on F, and o,(2) has the minimal Dirichlet integral (we abbreviate

by M.D.I.) over R—F,. Then e,(2)—>®(2) in mean as n—c. We call
o(z) C.P. (the capacitary potential) of F' and S %0 (2) ds the capacity of
R, In

F. We proved that w(2) >0 implies sup w(z) =12 The capacity of a
2Z€R
Borel set in R is defined as usual.

Capacity of the set of the ideal boundary determined by a mon
compact domain G.

Let o,(2) be a harmonic function in E—(G[\(R—R,,)) such that
®.(2)=0 on 9R,, ©,(2)=1 on GN\(R—R,) and ,(2) has M.D.I. over
R—(GN\(R—R,)). Then v,(z) —>w(z) in mean. Then we call o(z) C.P. of
the boundary (B/\G) determined by G. Then we proved the following™

1) ®(2) superharmonic in™ R and (2) >0 implies 21}) w(2)=1.

2) The C.P. of the ideal boundary (B/\G/\Gs) is zero, where G;=
E[z€R: w(2)<1—08]: 6>0.
3) There exist regular curves C, such that S .

almost all C,: (1>>&>0).
4) ©(z) has M.D.I. among all functions with value ©(z) in R—R,—G’
for every G’ DG.

9w(2)

. %n ds=D(w(2)) for

12) Z. Kuramochi: Mass distributions on the ideal boundaries, II, Osaka Math. Journ,
8, 1956.

13) The Dirichlet integral is taken with respect to N(z, p)—log 12%5[ in a neighbourhood
of p.

14) Z. Kuramochi: Mass distributions on the ideal boundaries, III in this volume.

15) See 11).

16) Let U(2) be a positively harmonic function satisfying D(min (M, U(2))< e, if U(2)
>Uq(2) for every compact or non compact domain G, we say U(z) is superharmonic in R,
where Ur;.(z)=l}im U¥(2), U¥(2)=min (M, U(z)) on 9G and UX(z) has M.D.I. over G.
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Capacitary potential of the ideal boundary determined by G, with
respect to G,.

Let G, DG, be two non compact domains. Let w,, ,.;(2) be a harmo-
nic function in ((G,—G,) /\R,.,)— (G,N\(R,.;—R,)) such that o, ,.;(2)=0
on (OG,N\R,.,), ®,...2d)=1 on 9G,N\(R,,,—R,)+(G,N\°R,) and
%w,,_,,+,.(z) —00n @R,.,N\(G,—G,). If D(w,,..(2)< M for constant M and
for every 7. Then o, ,.;(2) = ®,(2) in mean and ,(z) = »(2) in mean also.
We call C.P. of the ideal boundary (B/\G,) determined by G, with respect
to G;,. Then we have the same properties 1), 2), 3) and 4) as above.

We proved the following facts in (II)'”: the value of N(z, ¢) (minimal
or not) at a minimal point (N(z, p) is mlnlmal) is given by

N(p, q) =2%r,1i+ms Niz, 95 N(z pds,

where M=sup N(z, p) and C,, is a regular curve such that C,,=FE[z€R:
N(z, p)=m] and S EN(Z, p)ds=2=. For non minimal point p(N(z, p)
C,

m

=S Nz, pa)dp(pa) : pa€ B), N(p, g) is given by SB N(pa, @)dp(p,), where

B, is the set of minimal points. B
1) Nz, q) is lower semicontinuous in R with respect to Martin’s topology.

2) Let V,(p)=E[2€R: Nz, p)>m] and v,(p)=E[2€ R : 8(z, p)< %]

and suppose p € R+B,. Then Ny, (2, p)=N(z, p) for every m<_sup N(z, p)
and N, 5z, p) =NIz, p) for every n.
3) For every V,(p): p€R+B,, there exists a number n such that

V() D (RN v,(D) .

4) If Nz, p) is bounded, p is minimal and N(z, p) =kw(2), where »(2)
is C.P. of p. In this case, o(p) =1 and »(2) is continuous at p by (3).
5" Let o(2) be the function in (4). Then »(2)<1 for z€ R—p.

Lemma 3. Let N(z, p) and N(z, q) (p=Fq) be bounded minimal func-
tions. Let o(z) be C.P. of p and put G,_s=E[2€R: o(2)>1—05]. Let
“%(2) be C.P. of (G,_s/\q). Then there exists a constant 3, such that

0 %2) =0  for 8<3,.

Let F be; a closed set in R and let U(z) be a positive superharmonic
function in R vanishing on ©R,. Let Ug/(2) be the lower enyelope of
superharmonic functions in R larger than U(z) in F,=E[z€R: 8(z, F)

17) As for 5), see Theorem 4 in 14).
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;%]. Then we proved® that Ug,(2) | Ur(z) and Ug(z) is given by

SFN(z, pap(p). Since (v,(q) /N\G,_s) Cv,(q), o' %(2)=Ko'(z), where ’(2)
is C.P. of ¢g. But sup o' %(z) =1=sup »’(2) implies K=1. Hence

0(2) = (1—98)w'%(2) = (1—9)w'(z) .

Assume ®'%(z) >0 for 6>>0. Then by letting 6 >0, »(2)>w’(z) and
o(@)=w’(g)=1. This contradicts to the property (5). Hence we have
lemma.

Lemma 4. Let R—R, be a Riemann surface with a finite number of
bounded minimal functions N(z, p;) (=1,2, ---,k) and a set of the ideal
boundary points (an open set) of capacity zevo. We map the universal
covering surface (R—R,)” of (R—R,) onto |§|< 1. Consider »;(z), C.P. of
p; in |E|<1. Then w;(2) has angular limits a.e. on |E|=1. Denote by
E; the set on which ;(2) has angular limits=1 almost everywhere. Then

mes >\ E, =2z —vr,,

where v, is the measure of the image of OR,.

Suppose mes >3 E;<27—r,. Then there exists a set H on |§|=1
of positive measure in the complementary set of the sum > E; and the
image of 9R, and a constant & such that every o;(z) has angular limits
<1—38 a.e. on H. Then there exists a closed set H'<H such that
mes (H—H')< & and ;(g)<1—8+¢& (1=1,2,---,k) in the intersection
of (|€|>>1—¢€) and the angular domain D containing endparts A(6) =

argl§—§o|<%—8, §,=e®c H' for any given positive number &>0.

Let D’ be one component of D and let U(§) be a harmonic function in
D’ such that UE)=1 on H’/\2D’ and U(#)=0 on 9D’'—H’. Then
U)>0. On the other hand, there exists a constant @ by the property
(4) such that Gi_,=E[z€R: v;(2)>>1—a] is open by the lower semi-
continuity of w;(z) and Gi_,3 p;.

Construct a harmonic function W, ,.;(2) in R,.,—R,—(3G{_,) such

that W,,(2)=1 on (R,,—R)N3(ZGi ) and W,.,..(z)=0 on OR,+
oR,.,—>\Gi_4. Then W, . ;(2)t W,(2) and W, (2) | W(z)<w(z), where
o(z) is C.P. of a closed set (B—>1Gi_,). But the fact the open set
B—>] p; is capacity zero means that every closed set contained in
B—> p; is of capacity zero. Hence 0=w(2)= Wi(z)=0. Now since
0 (2)<1—8+¢ in D'N\E[|§|>>1—¢&], the image of Y Gi_, does not

18) See 11).
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intersect D’ N\E[|§|°>1—¢&] for a<%_ Hence 0=W{(z) >U() >0.

This is a contradiction. Thus mes > E;,=27—7,.

Lemma 5. Let R—R, be a Riemann surface in Lemma 4. Then every
w;(2) has angular limits=L} a.e. on E; (j=1,2, .-+, k) and mes (E;\E)
=0 for i==j and mes E;”>0 for every i.

;(z) has angular limits=1 a.e. on E;. Suppose there exist two set
E'(CE;) and E”(CE;) of positive measure on which w;(z) has angular
limits>L and < L—¢ a.e. on E’ and E” respectively for numbers L

and 80, Put H' y—E[2€R: w,(z)>L—¥ (0<3/<%). Then since

mes E’>0, Hi_ ¢ N\Gi_,(=E[2€R: w;(2) >1—«a) determines a set of the
boundary of positive harmonic measure. On the other hand, by Lemma
3, there exist 8, and 7, such that C.P. of (BN\Gi_s/ N\ (X v,(p,)) <& for

ki
80< 8, and n_>n, for any given & >0, whence the harmonic measure of

(B[\G{_sf\(k; v,(p))< 6. Hence by Cap (B)=Cap (X} p;), harmonic

measure of (H}_y \B/N\G{_s/\p;) =W (z)—¢&, where W(z) is the harmonic
measure of (Hi y/\B/\Gi_;). Let €—0. Then the harmonic measure
of (HiN\BN\p;) =W (z).

Let C"Hé_amvn(p,-)(z) be the lower envelope of superharmonic functions
in R larger than o;(2) in Hi_ y N\v,(p; \(R—R,). Let m—>co and then
n—oco. Then eyi ., (2) | 0*(2) = SP.N(z, Pldp(p) =kw;(2). Now w*(2)

>(L—9&)W(z). Hence by mes E’ >0, W(z) has angular limits=1 a.e. on
E’. But ;(2) has angular limits=1 a.e. on E’, which implies k>=L—d".
Hence by ;(2) =0*(2) =(L—9&)w,(2), w;,(z) has angular limits >L—&
a.e. on E;(DE"”). This contradicts to the assumption. Hence w,;(z) has
angular limits=L} a.e. on E;.

Next suppose mes (E;/\E;)>0. Then both ;(z2) and ;(z) have
angular limits=1 a.e. on E;+E;, whence mes (E,—E,)=0 and o;(z2)=
w;(z). This contradicts to p,==p;. Hence mes (E;N\E;)=0.

Every o;(2) has Lj(<(1) ae. on E;. On the other hand, o;(2) is
representable by Poisson’s integral. Assume mes (E;)=0. Then w,(2)
gmf.x (L) <1. This contradicts to sup e;(z)=1. Hence mes (E;) >0

ik

for every ¢. Thus we have Lemma 5.

Lemma 6. Let R—R, be a Riemann surface in Lemma 4 and let U(2)
be a Dirichlet bounded harmonic function vanishing on OR,. Then U\(z) has
angular limits=constant a.e. on E; for every i.

Suppose there exist two sets E/(CE;) and E”(CE;) of positive measure
such that U(z) has angular limits >L+6 and < L—3$ a.e. on E’ and E”
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respectively for constants L and 6 >0. Put g=E[z€eR: Ulz)< L—56+¢"]
and Gi_y=E[zeR: w;(z) >1-¢"] (0<8’<%). Since U(z) has angular
limits >L+6 on E’ and w;(z) has angular limits=1 a.e. on E;, there

exists a closed set E*(CE’) of positive measure such that both U(z)
and w,(2) converge uniformly in angular domain. Let D be an angular

domain containing endparts A(f)=arg |E—&,|< g— —&: &, €eE*. Then

there exists a number & such that D, =D/N\E[|§|>>1—¢&,] is contained
in the image of (Gi_//\g) and the image of g’=FE[z€R: U(z) >L+3d]
does not intersect D,,. Hence the harmonic measure W’(z) of (B/\Gi_y
Ng with respect to Cg’=E[z€eR: U(z) <L+6] is positive, where
W'(z)= li”m lim W, ,.;(2) and W, ,.,(2) is harmonic in R,,;/\(Cg’'—(R—R,)
NgNGiy) such that Wy, (2) =0 on 9g’+0°R,.,—(gN\Giy) and
Wi .i(2)=1 on O(R,.,—R)IN\(ENGi_ ). Now let w*(z) be CP. of
(gN\BNGi_y) with respect to Cg’. Then o*(z)_>W’(z) and by the
Dirichlet principle

Dio*(z)) < X

Next by Lemma 3, there exists & such
that Cap (Gf_ef\éi_‘,pk)z——o and Cap (G§_.
ki

N 23 p) =0 with respect to Cg’, whence

ki

Cap (g/\B) with respect to Cg’= Cap
(gN\p; N\Gi_) with respect to Cg’=Cap
(gN\p:) with respect to Cg’. Hence

0<W'(z) < 0*(2) = 0(2) . Fig. 1

where w(z) is C.P. of (g/\p;) with respect to Cg’.

Let o?,.;(2) be a harmonic function in R,,;—R,— (v,.(p;) \Cg’ N
(R,.;—R,)) such that oy, ;(2)=0 on 9R,, wn,.;(2)=1 on O, (p;)N\g’
NRyi=Ry) and “%nsi(z)=0 on OR,,—(g'Nun(p)). Then oy,
—op(2), or(2) > 0™(2) and 0™ (2) > o**(2) in mean, ie. o**(2) is C.P. of
(BN\p:N\g’). But o**(z) has mass only at '[; v,,(9;) =p;. Hence o**(2) =

Ko,(z). But as above we see by mes E”>0 and by sup o**¥(2)=1,
we have

0;(2) = o**(2) > o*(2) >0. (1)

Let Cs; (i=1, 2) be regular curves of »*(2) and let o, ;(2) be a harmonic
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function in (R,,;—R)N\E[z2€R: ,<w*(2)<3,] with values &; on Cs,
w;,in—f-j

(%]
and — ~(2)=0on OR,.;N\E[z€R: 8, < w*(2)<8,]. Then by property
), 0¥ ;(2) > w¥(2) and of(z) >o*(z) in mean.

m
Oy 41 (2)

aRn aRu 1

Fig. 2
Apply the Green’s formula
[, o oresa Zotsads = ofis@) Somu@ds.  (2)
Cs;+Csy on " C5,+Cs, on
But S 3co'” (2)ds=0, whence S ®r (Z)Ew* (2)ds =
CS,-r-\R,than s 7 CoyRyy s on mntd -

O p ,(z)agnm,’lf,,,+ s(2)ds. By the regularity of C;; and by letting

SCssz,H.j

j—>o0, m—>oco and m— . Then by (2)

Qo*, . )
SCSlmi(z)a—n(z)ds = 8082mi(z)5ﬁm*(z)ds . (3)

Since (Cs,/\R)>0 and w;(2)<1 in R, S w,-(z)a%m*(z)ds<s a—a o*(2)ds

Cs Cs:9m
—38, for a number 8,”>0. On the other hand, o*(2)< w;(z) implies o,;(2)
$1 on Cs, as 6,11. But the right hand of (3) means that there exists
at least one point 2’ on C;, such that ;(2’)<1—38, on every regular
curve C;,. This contradict to e;(2) >w*(z)11 on C;, as 8,1 1. Hence
we have the lemma.

Theorem 6. Let R be a Riemann surface with positive boundary.
Then Re HND™ if and only if, the ideal boundary points of R— R, consists

19) HDN is the class of Riemann surfaces on which N number of linearly independent
Dirichlet bounded harmoni © functions exist.
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of N number of bounded minimal points p, (N(z, p,) is bounded minimal)
and a set of capacity zero.

Let U(2) be a Dirichlet bounded harmonic function in R. Let U,(2)
be a harmonic function in R,—R, such that U,(z)=U(z) on 9R, and
U,z)=0 on 9R,. Then clearly U,(z) converges to a function U’(z) and
D(U(z)—U’(2))< 0. Put U*(z)=U(z)—U’(z). Then U*(z) is uniquely
determined by U(z). Hence we have only to consider Dirichlet bounded
harmonic functions in R—R, vanishing on ©R, instead of Dirichlet
bounded harmonic functions in R.

Suppose that R—FK, is a Riemann surface in Lemma 4. Let U(z)
be a Dirichlet bounded harmonic function vanishing on 9R,. Then U(2)
is represented by Poisson’s integral’® and by lemmata 4, 5, 6 U(z) has
angular limits=ga; a.e. on E;. Hence U(z) is a linear form of Niz, p;).
Cleary N(z, p;) are linearly independent, hence such a Riemann surface
€ HND. Next suppose R€ HND. If the capacity of the set of boundary
points of capacity zero is positive, we can easily construct a infinite
number of Dirichlet bounded harmonic functions which are linearly
independent. Hence the capacity of the above set is zero. We see
easily that there are exact N number of bounded minimal functions
N(z, p;) in R—R,. Thus we have the theorem.

In another article contained in this volume®”’, we proved that every
minimal function N(z, p) =U(z, p) + V(z, p), where U(z, p) is representable
by Poisson’s integral and V(z, p) is a generalized Green’s furction. Let

p be a minimal point of capacity zero and suppose lim G(z, g)=0 for
Z>p

the Green’s funtion G(z, q) (we say that p is regular for the Green’s

function) and sup N(z, p) =oo. Then V(z, p)=0. In this case, let U, z2)

be a harmonic function in R,—R, such that U,(z) =min (M, N(z, p)) on
9R,+9R,. Then clearly, U,(z) - U(z) >0 and by the Dirichlet principle

D(U@) <2«M. Put Uz, M)=—YE _ and D\U(z, M) =A,. Then we
sup U(z2)

see easily A, ) 0 as M1 . Let M, (i=1, 2, --) be a sequence such that
Apm; L 0. Since sup Uz, M;) =1, each Ulz, M;) are linearly independent.

Hence we have the following

Theorem 7. R € HND has no minimal point p of capacity zero (N(z, p)
is minimal and sup N(z, p) = co) such that lim G(z, q) =0.
zZp

Corollary. If R has only regular boundary points for the Green’s

20) Z. Kuramochi: On the existence of harmonic functions on Riemann surfaces. Osaka

Math. Journ. 7, 1955.
21) Z. Kuramochi: On harmonic functions representable by Poisson’s integral.
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Sunction, R € HND if and only if, the set of minimal functions consists of
exact N number of bounded wminimal functions.

Theorem 8. Let G be a non compact domain and let N(z, p) (=rw(2)),
where »(2) is C.P. of p) be a bounded minimal function and let U(2z) be a
harmonic function in G such that U(z)=N\z, p) on G and U{z) has M.D.IL.
over G. If Nz, p) >U(2), then there exists no Dirichlet bounded analytic
Sunction in G.

Lemma 7. Let G and Nz, p) be as above. Then there exists a non

compact domain g such that (B/\g/\v,(p)) is positive capacity with respect
to G.

Since U(z) has M.D.I. among all functions

\ with value N(z, p) on 9G, U(z) = U(G’, z), where

UG, 2)=U(z) on 9G+9G" and U(G’, z) has

wm(p MDI over G—G’ for every domain G'CG.

Since N(z, p) = Nv,,5(2, p), Nz, p) = N(v,(p),

(z, p), where N(v,(p), 2z, p)=N(z, p) on OG—uv,(p)

+@uv,(p) \G) and has M.D.I. over G—uv,(p).

Put V(z) =N(z, p)—U(z) and g=E[z€G: V(2)

g%[], where M=sup V(z). Hence

G V(Z) = V(Un(p) [\G’ Z) é V(Un(p) [\g» Z)
<V, (p)\Cg, 2) <V(v,(p)\Cg, 2)
+ Mo'(v,(p) N\ &, 2),
where V(S, z) is the function in G—S such that V(S, z) =V(z) on 9S+9G
and V(S, z) has M.D.I. over G—S and o'(v,(p)/\g, 2) is the CP. of
(g N\v,(p)) with respect to G.

Clearly D(o'(v,(p)[\&, 2)) g%zD(U(Z))<°°- If o' v,(p)\g 2 |0, as

n—co. Then sup V(z) gJ—‘ZJ This is a contradiction. Hence (g/\p) is

Fig. 3

a set of positive capacity with respect to G.
Let w(g/N\p, 2) be C.P. of (g/\p) with respect to R—R,. Then

w(@N\p,2) =Zo'tgN\p, 2 >0,
whence sup w(g/N\p, 2) =1, but o(g/\p, 2) has no mass except at p,
whence o(g/\p, 2) =w(z), where w(z) is C.P. of p.

Lemma 8. Let G and g be domains in Lemma 7. If a Dirichlet
bounded analytic function W(z) exists in G. Then we can find a non com-
pact domain g’ such that C.P. of (g/\g' \D) with respect to G is positive
and as small as we please.
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Suppose a Dirichlet bounded analytic function W(z) in G. Let {&,}
be a sequence of triangulation of the w-plane such that whose every
triangle {A}} has a diameter <— and &,,, is a subdivision of &, and
becomes as fine as we please as #— . The part of G whose image

lying on Af consists of at most enumerably infinite number of component
GY (j=1,2,---) compact or not. Then G= 3)G!. Let »i’(z) be C.P.

n,4,J

of (G¥N\pNg with respect to G. Then 3 o'¥(2) =w’(gN\p, 2) >0,
whence there exists at least one component G.’ such that o'i’(z) >0.
Suppose io70(z)>0. Let L be a compact and bounded arc on 9G such
that the projection of L has a positive distance & from Ajoe*» (Gjo’ lies no
Ajolg),  As the way above mentioned
we can find two sequences

Gﬁgh > Gl > Gz > 63 P
ARDA DA DA,
such that G, lies on A,, diameter of
A< L and CP. 0/ of G.N\N\g)
with respect to G is positive.
Let T, and I'Y be two concentric

circles such that the radius of I‘s—_—%,

radius of Fs’<l and 9I') encloses A;.
S L Gs lies on As

Let V (w) be a harmonic function in Fig. 4
I'.—I'/ such that V(w)=1 on 29I'/ and

V.w)=0 on 9I';. Then we see K; =max(‘
—0 as s—>co. Suppose D(A(z))< A. Then the area of the image of G
by w=A(z)< A. Let V,w) be a continuous function in the whole w-
plane such that V,w)=1 in '/, V,(w) is harmonic in I';—I/ and V. (w)
=0 outside of 1';. Let f/s(z) be a continuous function in G such that
V.(z)=V.(w(z)). Then since the image of L lies outside of I';, V,(z) =
on L and V,(2)=1 in G,. Then

taV(w) >(w=u+z’v)

Dg[V.(2)] < AK,.
Let w,,,,(2) be a harmonic function in (G/\R,)— (v,(p) \gN\G, such

22) If we take sufficienty small 4, we can find L as above mentioned.
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that ,,,,;(2)=0 on L, w,,;,.(2)=1 on 9, (p)\g/\G,) and %ws,m,,(z)
=0 on 9R,—(gN\v,(p)\G,). Then

D[, »(2)] <D[V,(2)] < AK,.

Clearly w,,,,(2) =,/ (2)>0. Let m— co and then /— oo, then w,,,, ,(2)—
o¥(2) >w0/(2) >0 and D(co;"(z))=g N (z)ds <AK,. Let s—co, then
L

S am“(z)ds—>0 and further max “’? (z)’ -0 (<minam (z)) Hence
L n €L on

there exists a point 2z, in a neighbourhood of L and a number s, such
that

0¥ (2,) > o'(2,) for s>s,,

where »’(z) is C.P. of (g/\p) with respect to G.
Let w7(z) be CP. of (p/\g/N\G,) with respect to G. Then by the
Dirichlet principle

D (0'(2)) = D(0](2)) = D(0¥(2)),
On the other hand, clear o¥(2) >o0/(2). Hence o'(z) >w¥(z,) > 05 (2,),
whence
0 < wf(2) < o'(2) .

Take G, as g’ in the lemma, then we have the lemma. In the sequel
we denote i (2) by »’/(z) for simplicity.
Proof of the theorvem.

Put D=E[z€ER: o' (2)—0"(2) == ] and D'=E[z€R: o' (2)—o"(2)

M) (M=sup (o' (2) —0’'(2)). Smce o’(2)=1 in (g/\p) and «”(2) =1
in (g N\Dp) except at most capacity zero with respect to G by property
(2), Cap (DN\p)=0 with respect to G.

Whence Cap ((g’— D) N\ p) >0 with respect to G. (4)

®’(2) and o”(2) are C.P.s of (p/\g) and (p/\g’) respectively. Then by
property (4) o’(2) and »”(2) have M.D.I. over D—(g/\v,(p)) among all
functions with values »’(z) and »”/(2) on 9D+ 9(g/\v,(p) [\ D) respectively.
Hence o’(2)—w’/(2) has also M.D.I. over D—(g/\v,($)) amcng all func-
tions with value o’(2)—o”(2) on 9D+9(DN\gN\v,(p). Let V,(2) be a
harmonic function in D such that V,(z) =min («’(2) — 0’/ (2), %) on 9D+

d(gN\v.(p) and V,(z) has M.D.I over D— (I’ N\v,(p). Let V,(2) be a
harmonic function in D— (D’ N\v,(p)) such that V,(2) =1 on (D’ N\v,()),
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(u((gl"‘D) n pr Z)

G
Fig. 5
V.(2)=0 on 2D and V,(2) has M.D.I. Then
D(V,(2)) < -2 D('(2)—0”(2)

oM
by the maximum principle

0< 0'(2)—w"(2) <V, (2) +MV,(2) .

Let n— oo, if 1limV,(2) =0, M=sup (w’(z)—m”(z))ggg!. This is con-
tratiction.
Hence C.P. o*(2) of (D’/\p) >0 with respect to D. (5)

Let o((g’—D)/N\p, 2) be CP. of ((g’—D)N\p) in G. Then by (4)
o((g’—D)N\p, 2) >0 and since sup o((g’—D)/\p, 2) =1 and (g’ \p—D)
b,

((g’=D) [\ b, 2) = 0(?),

where (z2) is C.P. of p.
On the other hand, »*(z) >0 and clearly o*(2)<w(2).

Hence as in Lemma 6, we can prove that there exists at least a
point z; such that w((g’—D)N\p, 2;,)<1—86,(6, >0) on every regular
curve C; of w*(2) as 61 1. This contradicts to o((g’—D)/N\p, 2)=w(2)
>o*(z). Hence we have the theorem.

Theorem 9. Let v(p) be a neighbourhood of a bounded minimal point
p. Then there exists no Dirichlet bounded analytic function in v(p).
Let Uiz) be a harmonic function in v(p) such that U(z) =N(z, p)
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on 9v(p) and U(z) has M.D.I over v(p). Then U(z) =Nz _cuplz, D).
Suppose U(z) =N(z, p). Then U(z)=g . N(z, p)dp(p). Then we can
D

as in Theorem 4 prove that there exist two positive mass distributions
w#, and @, in cv(p) such that p, and g, represent functions which are not

multiples of N(z, p). Hence Nz, p)—SN(z, p)d,mp):SN(z, D)y p) 0.

This contradicts the minimality™ of N(z, p). Hence N(z, p) >U(z). Hence
by Theorem 8, we have Theorem 9.

—v

Theorem 10. Let G be a non compact domain in R€ HND. If there
exists a non constant Dirichlet bounded harmonic function U(2) vanishing
on OG, then there exists no Dirichlet bounded analytic function in G.

We can suppose that G R—R,. Then by Theorem 6, R—R, has
N number of bounded minimal points. Map the universal covering surface
G~ onto |£|< 1. Then Ulz) is represented by Poisson’s integral. Hence
there exists a set E of positive measure on |£|=1 such that U(z) has
angular limits™>& or <’—& a.e. on E. We can suppose U(z) >6 on E.

Put G'—E[z€R: U(z)>%] and let o*(z) be CP. of (BN\G) with
respect to G. Then

D(w*(2)) < %D(U(z)) and by mes E >0, o*(z) >0.

Since by Theorem 6 Cap (B—3 p;)=0 and Cap (B—3>]p,) with respect
to G=0, Cap (G'\X}p;) with respect to G=Cap (B/\G’) with respect
to G.

Then there exists at least a point p; such that Cap (G’'/\p;) with
respect to G_>0, whence CP. o(G' N\ p;, 2) of (G'N\p;) = w;(z) by
sup o(G'N\p;, 2)=1. Put o**(2) =0w(G’'N\p;, 2). Next let V(z) be a
harmonic function in G such that V(z) =«**(2) on 9G and V(z) has
M.D.I. over G. Then as in Theorem 6

SGI_ICZV(Z)—a—n— (2)ds = SCIMZ w*(2) é;V(Z)ds
DX . Dew*
SC,V(*” op D= SOZV@ 5 Qs

where C, and C, are regular curve of »*(z). Then there at least a point

23) If U(z) has no functions V{(z) such that both V(2)>0 and U(z)- V(2)>0 are

harmonic and superharmonic in R— R, except its own multiples, we say that U(z) is a mini-
mal function.
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z; on C, such that V(z;,)<1—3§, for a positive number 8,, whence V(z)
< w;(2). Hence there exists at least a point p; such that N(z, p;)—
Nce(z, p;) >0, whence by Theorem 8, we have the theorem.

Part III

Suppcse an analytic function w=f(z) in R. Let w, be a point of
the w-plane. Then the part of R on |w—w, < 7 consists of at most
enumerably infinite number of components. Such one component is

called a connected piece on |w—w,|< 7. Then

Theorem 11. Let R be a Riemann surface in Theorem 5, i.e., there
exists at most enumerably infinite number of bounded minimal functions
K(z, p;) and a set of boundary of harmonic measure zero. Then every
connected piece C on |w—w,|< r covers |\w—w,|< r except at most a set
of capacity zero.

Let G be a non compact domain such that f(G)=C. Suppose C
does not cover a set F (clearly closed) of positive capacity. Then there
exists a subset F’ of F of positive capacity such that F/C E[ |w—w,|<C
r’<r]. Then there exists a positive bounded harmonic function o(w)
in C vanishing on |w—w,!=7. Put «(2) =w(f(2)). Then »(2) is bounded
harmonic function in G vanishing on 9G. Then by Theorem 6, there
exists no bounded analytic function in G. But |f(2) —w,|< 7 on G. This
is a contradiction. Hence we have the theorem.

Theorem 12. Let R< HND, and let C be a connected piece on |w—
w,|<r. If the area of C 1s finite, C cover |w—w,|< r except at most a
set of capacity zero.

Suppose C does not cover a set of positive capacity. Then as in
Theorem 11, there exists a non constant positive bounded harmonic fun-
ction o(2) in G vanishing on 9G. We map the universal covering surface
G~ onto |£|< 1. Then there exists a set E of positive measure such that
»(2) has angular limits ~>6, >0 on E for a constant §,. Now f(z)=w is
bounded in G. f(2) has angular limits a.e. on E. Then there exists a
number 7’ and a set E'(CE) of positive measure such that f(z) has
angular limits in |w—w,|<#’< 7 a.e. on E’. Hence there exists a closed
set E”C E’ of positive measure such that both w(z2) and f(z) converge

uniformly in angular domain. Put g=FE[z€G: w(z)>g] NE[z€eG:
| f(2)—w,|<7"]. Let V,,.;(2) be a harmonic function in GN\(R,,;,—

((Rn+i_Rn) [\ g)) SuCh that Vn, n+i(z) = 0 on (aG[\Rn—H) +8Rn+i_g and
Vanii()=1 on 9(R,,;—R,)/\g. Then limlimYV,, (2)>>0. Next let
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S(w) be a harmonic function in #'<Jw—w,|< 7 such that S(w)=0 on
|lw| =7’ and Sw)=1 on |w|=r and S(w)=1 in |[w—w,|<#’. Then
S (w)

max (

) <K: w=u-+iv. Let T(2) be a continuous function

in G such that T( 2)=S(f(2)). Then D(T(2))<KD¢(f(2)). Hence there
exists a harmonic function such that W(z) >0, W(z)=0 on 9G and
D(W(z)) < D(T(2)) < KD(f(z)) by the Dirichlet principle. Hence by Theo-
rem 10, we have the theorem.

(Received March 20, 1958)





