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On the Ideal Boundaries of Abstract Riemann Surfaces1^

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary. Let {Rn}
(n = Q, 1, 2, ••-) be its exhaustion with compact relative boundaries 3Rn.

We proved the following

Theorem.25 Let R£Og and £OHB(OHDY\ Then R-R«eOAB(OAD).
We shall extend the above theorem.

Part I

Martin's topology.45 Let G(z, p{) be the Green's function with pole

at pi. Put K(z,pi)=—l^z' **' , where p0 is a fixed point. Suppose {pt}

is a divergent sequence of points. We call {p{} a fundamental sequence
determining an ideal boundary point, if {K(z, pi)} converges uniformly
in every compact domain of R. If {K(z, p{)} and {K(z, p / ) } determine
the same limit function, we say that {pi} and {p/} define the same
ideal boundary point. We denote by B the set of all the ideal boundary
points. We define the distance between two points p and q of R + B by

sup K(*>P) - K(z9q)
«€*V l + K(z,p) l + K(z,q

Let Kv.(z, p) be the lower envelope of superharmonic functions larger
than K(z,p) in υ f . Then R. S. Martin proved that limKv.(z, p)=K(z, p)

or =0 according as p is minimal55 or not, where Vi = E[z £R+B: &(z,p)

<1̂ ] and that the set of all non minimal points is an Fσ and every
t

1) The results of the present article were reported at the annual meeting held on 28,
May, 1957.

2) Z. Kuramochi: On the behaviour of analytic functions. Osaka Math. J. 7, 1955.
3) Og, OMP, OJΪB, OJID, OAB and O^D are the classes of Riemann surfaces on which

the Green's function, non constant positive, bounded, Dirichlet bounded, harmonic, bounded
analytic and Dirichlet bounded analytic function does not exist respectively.

4) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
5) If positive harmonic function U(z) has no positive function smaller than f/(z) except

its own multiples, we say that £/(£) is minimal. If K(z, p) is minimal, we say p is a minimal
point.
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positive harmonic function U(z) is represent able by a unique mass
distribution on B1 = B—B0.

6:>

Let R°° be the universal covering surface of R and map!?00 con-
formally onto ί|<Cl Let K(zyp) be a minimal function. Then K(zy p)
has angular limits almost everywhere on |£|=1. Then we have easily
the following.

Lemma. Let K(z, p) be a bounded minimal positive harmonic function.
Then K(z, p) has angular limit s = M= sup K(z,p) or = 0 almost every-
where on ξ\ — 1.

In fact, let F and Ff be sets on |l| =1 such that K(z, p) has angular
limits I>M— £ a.e. (almost everywhere) on F and has angular limits

between M— 2£ and 8 a.e. on F' for a positive number 8 -o
o

Then F is a set of positive measure, since K(z, p) is representable by
Poisson's integral. Now F' is a set of measure zero, because if it were
not so, construct a harmonic function U(ξ) such that U(ξ) has the same
angular limits as K(zy p) a.e. on F and 0 a.e. on CF (complementary set
of F). Then U(ξ) is a function in R and is not a multiple of K(z, p)
and K(zy p)^>U(z)^>0, which implies that K (z, p) is not minimal. This
is a contradiction. Hence by letting £ -> 0, K(zy p) has angular limits

K(z, p) a.e. on F and 0 a.e. on CF.

Theorem 1. The set of bounded minimal functions is enumerable.
Let K(z, pi) (/ = !, 2, •••) be a bounded minimal function such that

K(z, p^ has angular limits = M, a.e. on E{ and zero a.e. on CES on
1 1: |=1. Suppose mes (Ef /V£y)ΦO for iφj. Let U(z) be a harmonic
function such that U(z) has angular limits = min (M{ , My) on Eif\Ej and

zero on C(E, ΛE/) Then 0<ί/(*)</iΓ(*, A ), 0 <£/(*)< /Sfo />,.) and
is not a multiple of K(z, p{) or of K(z,pj). Hence K(zy pi) or K(z,
is not minimal, whence mes (EiΓ\Ej)=Q. On the other had, mes
and Σ mesFz ̂ 2τr. Hence we have the theorem. In the following we
call Ef the image of point p{.

Harmonic measure of a set with respect to Martin's topology.

Let F be a closed set. Put Fn=E[_z £R + B : δ(z, F) ^— ]. Let

Un,m(z) be a harmonic function in Rm-Fn such that ί/n,m(2)=0 on
3Rm-Fn and ί/w>w(^)=l on Rmf\Fn.

Put C/(^) =lim lim Unιtn(z) and call it the harmonic measure of the
m n

closed set F. We define the harmonic measure of a Borel set as usual.

6) See 4).
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Martin proved that the set of non minimal points is an Fσ of harmonic
measure zero.

Lemma 1. Let R be a Riemann surface which has an enumerably in-
finite number of bounded minimal functions K(z, p{) (z = l, 2, •••) and a
set (clearly G8 set) of Martin's boundary points of harmonic measure zero.
Then mes^Ei = 27r.

Suppose Σ mesEi<^2τr. Then we can construct a bounded positive
harmonic function U(z) in R such that U(z) has angular limits = 0 a.e.
on Σ#t and =1 a.e. on C(ΣEt ) Since U(z) is positive, U(z) is re-
presented by a unique mass distribution μ as follows : 1 ]> U(z) =

\ K(z, p}dμ(p)y where B1 is the set of minimal points. Now the mass
JBI
distribution μ has no mass at every pi9 since if U(z) has a positive mass

μ0 at piy U(z) must have angular limits μ^CiMi (cf- is a constant) a.e. on

Ef. Since μ is Borel measurable, there exists a closed set F in B— \J pi

such that U(z)^,U'(z)={' K(z,p)dμ'(pΓ>Q, where μ' is the restriction of
JF

μ on F. Let Hn be the set of bounded minimal points whose images

satisfy — >mes£,-I> - τ (« = 1, 2, •••). Then the number of points in
n w-t-1

Hn is finite and \JHn = \Jp{. Put Jn = E[_zeR+B: 8(z9HH)^,

I S(F, #„)]. Then (Bf\Jn)>F.

Denote by U'k,m(z) the lower envelope of positive super harmonic

functions in R larger than U'(z) in (R-Rjf\JH. Then since (/\Jn)^>F
n—i

and X is contained in F, U'k>m(z)=U'(z) for every w and &. Hence U'(z) =

lim U'ktm(z). On the other hand, clearly t/'(z) = Uk(z) = lim lim ί/Λ,m,m+ίU),
w w1 &

where Uk,m.m+i(z) is a harmonic function in Rm+i—((R—Rm)f\(Γ\Jn) such

that Ukιm,m+i(z) = U'(z) ond(f\Jnf\(R-RJ) and C/A.m.lil+ίU) = 0 on ̂ Rm+i-
k

(f\Jf\(R—Rnά) Let 6)^>WZim+l-(^) be a harmonic function in Rm+i— ((R—

^m)A(ΛΛ)) such that ωΛilliιm+ί(^) = l on (R-Rn) f\(j\Jn) and ω,ιW,w+/(^)

= 0 on 9#w+, -((#-#JΛ(ΛΛ)). Then limlimωΛ.m i > f i + ί(^=ωΛU) is
m •• *

smaller than the harmonic measure of an open set B—\JHn, because

the closed set (f\Jnf\B)(^B- \JHn. Hence the assumption that B- \J p{

is of harmonic measure zero implies lim a>k(z)=Q. On the other hand,
k

by sup t/'U^l, ωA?U)^ϋ7/(^>C//(<ε)>0 for every k. Hence limωk(z)
k

>0. This is a contradiction. Thus Σ mes E{ = 2π.
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Class HBN.7>

Theorem 2. A Riemann surface RζHBN, if and only if R has
N—l bounded minimal functions K(z, pf) (/ = !, 2, •••, JV—1) and a set of
boundary points of harmonic measure zero.

Suppose that R has N—l number of bounded minimal functions
K(z, pi) and a set of boundary points of harmonic measure zero. Let
U(z) be a bounded harmonic function in R. Then U(z) has angular
limits = constant a.e. on the image Ef of bounded minimal point pi9

because if there exist two subset E/ and E/' of Ef such that both E/ and
E" are of positive measure and U(z) has angular limits <^L—8 and
^>L-f£ on E/ and E/' respectively for a positive number £^>0, we can
prove that K(z, p{) is not minimal as before. Hence every bounded
harmonic function U(z) has a constant a.e. on E{. Hence by Σ mes Έ»
= 2τr, every U(z) is a linear form of K(z, p{) (/ = !, 2, ••• 9N— 1). On the
other hand, K(z, pf) and a constant are linearly independent. Hence
R 6 HBN. Next suppose R e HBN. Then we construct by linear trans-
formations a system of N—l independent harmonic functions Ui(z)
which have angular limits = 1 a.e. on E{ and =0 a.e. on CE, on | f |=l.
As above, we see easily that every Uf(z) is a multiple of a bounded
minimal function. Thus we have the theorem.

Let G be a non compact domain in R and let U(z) be a positive
harmonic function in G vanishing on 3G. Put Z7M(z)=lim Z7nU), where

n
Un(z) is the upper envelope of subharmonic functions in R smaller than
U(z) in Gf\(R—Rn). Let V(z) be a positive harmonic function in R. Put
Tgnβx(z)=limVn(z), where Vn(z) is the lower envelope of super harmonic

n
functions larger than V(z) in Gf\(R—Rn) and vanish on dGf\Rn. Then
we proved

Lemma 2.8) Let U(z) be a positive harmonic function in G vanishing
on dG.

If U.x(z)<°o9 then U(z) = inex(Uex(z)) .

Theorem 3. Let G be a non compact domain and let K(z, p) be a
bounded minimal function. If K'(zy p) =Kinex(z, />»0, then there exists
no analytic function of bounded type^ in G.

Suppose K'(z,p}<LM. Let ωn(z) be a harmonic function in Gf\Rn

such that ωn(z)=Q on ^Gf\Rn and ωn(z)=l on 3Rnf\G. Then ωn(z)^

7) HBN is the class of Riemann surfaces on which N number of linearly independent
bounded harmonic functions exist.

8) Z. Kuramochi: Relations between harmonic dimensions, Proc. Japan Acad. 30, 1954.
9) Z. Kuramochi: Dirichlet problem on Riemann surfaces, I, Proc. Japan Acad. 30, 1954.
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— 5* ]>0. Map the universal covering surface G°° of G conformally
M

onto \ξ\<^l. Then K(z, p) and ω(z) = lim ωn(z) have angular limits a.e.
n

on I ? | = 1. We call the set on which ω(z) has angular limits = 1 almost
everywhere the image / of the ideal boundary of G. Clearly 7 is a set
of positive measure. Since M^>K'(z, p)^>0, there exist two constant
M and δ and a set E such that Kf(z, p) has angular limits between M
and M—δ a.e. on E(<C/) of positive measure. If there exist two sets
E1 and E2 of positive measure such that K'(z, p) has angular limits
between M and M—δ a.e. on El and between M— 2δ and M—3δ on E2y

We can define a harmonic function U(z) in G such that U(z) = 0 on 9G
and Z7(z) has the same angular limits as K'(z, p) on El and zero on CEλ

Then U(zχK'(z,p) and t/fe) is not a multiple of Kr(zyp}. Hence by
Lemma 2, U'(z)=Uex(z)<iK'ex(zy p) = K(z, p) and .t/'fc) is not a multiple
of K(z, p), whence K(z9 p) is not minimal. This is a contradiction. Hence
K'(z,p} has angular limits = 0 or =M a.e. on /. Let A(z)=W be an
analytic function of bounded type. Then A(z) has angular limits a.e.
on /. Let {@ J be a sequence of triangulations of the w-lane such that
@M+1 is a subdivision of @Λ and becomes as fine as please, when n -» oo.
Denote by {Δ£} (ί = l, 2, ••-) the triangles of @n. The subset where

A(z) has angular limits contained in Δ£ will be denoted by E*n. Then
every El is lineary measurable. There exist at least two En, Efr such
that Ei

nf\Ei^ = Q in 7 and both mes£*>0 and mesE^>0. On the
contrary, suppose for every n there exists i(n) such that mesE*=mes7.

A(z) must be a constant contained in ΛΔ£ Then we can construct a
harmonic function U(z) in G such that U(z)=0 on 3G and has angular
limits = 1 on El

n and 0 on 7?*' almost everywhere. This U(z) is not a
multiple of Kf(z, p). Hence as above K(z, p) is not minimal. This is a
contradiction. Thus we have the theorem.

Theorem 4. Let v(p) be a neighbourhood of a bounded minimal point.

Then there exists no analytic function of bounded type in v(p).

Let Un(z) be a harmonic function in Rnf\υ(p) such that Un(z) =

K(z,p) on dv(p)f\Rn and UH(z)=0 on 3Rnf\v(p). Put V(z)=U(z) =
limC7M(^) in v(p) and V(z)=K(z,p) in R-v(p). Then V(z)= K (z,p).

« R+£-υ(/0

Suppose /f (0, p)=K(z, p). Then ίΓί̂ , ^) = / K(z, p*)dμ(pa). Since
R+B-V(p) R+B-V(P)

K(z, p) is harmonic in R, K(z,p)= f K(z, pa)dμ(pa). If μ is a point
J3-VCA)

mass , 7C(2, p)= K (z, p)=K(z, q) : q£ v(p), which implies p = q<£ v(p).
B-V(P)

This is a contradiction. Hence μ is not a point mass. We can find a
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closed set Fn with diameter <"— in Cv(p)1^ such that μ on Fn represents
Ho

a function Uf(z) which is not a multiple of K(z, p). Because every μn

on Fn represents a function Un(z) = cnK(zy p). Let n-^°°, then f\Fn = q
n

in cv(p). Then lim - - — ̂  - represents a function K(z, q) whichn total mass of μn

equales to K(zy p). This implies also ρ = q£v(p). Put U'(z) =
f K(z,pΛ)dμ(pJ. Then U'(z)<K(z, p) and I/'te) is not a multiple of
J HO

K(zy p). Hence K(z, p) is not minimal. Thus K(z,p) — K (z, p) =
R+B-vζp)

K'(z, p)~^>Q. Thus we have the theorem by Theorem 3.

Theorem 5. Let R be α Riemαnn surface such that R has an enu-

merably infinite number of bounded minimal functions K(zypf) (/ = !, 2, •••)
and a set of boundary points of harmonic measure zero. Let G be a non

compact domain such that 0<^ω(z)=limωn(z), where ωn(z) is a harmonic
n

function in Gf\Rn such that ωn(z)=0 on ^Gf\Rn and ωn(z)=l on

3Rnf\G. Then there exists no analytic function of bounded type in G.

Put Uf(z)= ^ . Then U4(z) has angular limits = 1 on E{sup K(z, pi]
and 0 on CE{ almost everywhere and by Lemma 1, Σ t/t (2) = l. Let

Vn(z) be a harmonic function in Gf~\Rn such that Vn(z) = Ui(z) on

G Γ\dRn and Vfa) =0 on ^GΓ\Rn. Put V'(z)=lim Vl

n(z). Then
n

= ω(z)^>0. Hence there exists at least one K(z, pi) such that Kr(z

Hence we have the theorem by Theorem 3.

Remark. The condition ω(z)^>0 in Theorem 5 cannot be replaced
by lim lim wn,n+ί(z)=w(z)~^>Q, where wn>n+i(z) is harmonic in Rn+i—(Gf\

(Rn+i-Rn)) such that wn,n+i(z)=l on d(Gf\(Rn+i-RJ) and wn,n+i(z)=0
on dRn+i—G. In fact, we constructed a Riemann surface I?115 with
positive boundary £θHP(^OHB(^}ϊNB such that R is a covering surface
over the W-plane and R is symmetric with respect to the real axis.
Let GU and GL be the parts of R lying over the upper and lower half
plane respectively. Then Gσ+GL = R. If we consider the above function

with respect to Gπ. Then clearly w(z)^>0. But the function ^ — ••

W=W(z) is a bounded analytic function on Gv. Hence w(z)^>Q is not
sufficient condition.

10) Cv(J>) means the complementary set of #(
11) See 2).
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Part II

Martin's topology .12) Let N(zy p) be a harmonic function in R—R(

with one logarithmic singularity at p such that N(z,p)=Q on dRQ and
N(z, p) has the minimal Dirichlet13:> integral over R—R0. Then we define
as in case of K(z, p) the ideal boundary points. All the ideal boundary
points is denoted by B. Put R=R—R0+B. Distance between two points
p and q is defined as

sup N(z,p) _ N(z,g}
- - l+N(z,p) l+N(z,p)KQ

Capacity of a closed set F in R. Put Fn = E\_z <E# : S(z, F) ^— ].

Let ωn(z) be a harmonic function in R—Fn such that ωn(z) = Q on dR09

ω(z) = l on Fn and <*>n(z) has the minimal Dirichlet integral (we abbreviate
by M.D.I.) over R—Fn. Then ωn(z)-*ω(z) in mean as n->^. We call

ω(z) C.P. (the capacitary potential) of F and I ^ ' ds the capacity of
Jθ#0 on

F. We proved that ω(z)^>0 implies sup ω(z) =1.10 The capacity of a
Zζ R

Borel set in R is defined as usual.

Capacity of the set of the ideal boundary determined by a non
compact domain G.

Let ωn(z) be a harmonic function in R—(Gf\(R—RJ) such that
ωΛ*)=0 on c>R0, ωn(z)=l on Gf\(R-RJ and ωn(z) has M.D.I, over
R-(Gf\(R-Rn)). Then ωn(z)-+ω(z) in mean. Then we call ω(z) C.P. of
the boundary (Bf\G) determined by G. Then we proved the following155

1) ω(z) superharmonic in15^ R and ω(z)^>0 implies sup 0(2) = 1.

2) The C.P. of the ideal boundary (Bf\Gf\G8) is zero, where Gδ =
E[_z£R: ωte)<l-S]: S>0.

3) There exist regular curves Cε such that \ -^^ ds = D(ω(z)) for
J^ε On

almost all Cε : (1>6>0).
4) ω(z) has M.D.I, among all functions with value ω(^) in R—Rv—G'

for every G'

12) Z. Kuramochi: Mass distributions on the ideal boundaries, II, Osaka Math. Journ,

8, 1956.

13) The Dirichlet integral is taken with respect to N(z, p) - log -.———.- in a neighbourhood

of p.
14) Z. Kuramochi: Mass distributions on the ideal boundaries, III in this volume.

15) See 11).
16) Let t/C-O be a positively harmonic function satisfying Z)(min(M, £7(2))<^c>o, if [/"(«)

^Uσ(z') for every compact or non compact domain G, we say Ϊ7(z) is superharmonic in R,

where £/£(»= Hm ί/^(z), E7^O)=min (M, ί/(«)) on 3G and C/^(^) has M.D.I, over G.
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Capacitary potential of the ideal boundary determined by G2 with
respect to G lβ

Let G^G2 be two non compact domains. Let ωn>n+i(z) be a harmo-
nic function in ((G^G^f\Rn^)-(G2l\(RH+i-R^) such that ωttttg+i(z)=0
on (dG,f\RH+i)9 ωn.n+i(z)=l on dG2f\(RH+i-RJ + (G2f\dRJ and

-ωn>n+i(z)=0 on VRH+if\(Gι-G2). If D(ωw,^.(^))<Mfor constant Mand

for every /. Then ωnιn+i(z)-*ωn(z) in mean and ωn(z)-*ω(z) in mean also.
We call C.P. of the ideal boundary (Bf\G2) determined by G2 with respect
to G x. Then we have the same properties 1), 2), 3) and 4) as above.

We proved the following facts in (II) n) : the value of N(z, q) (minimal
or not) at a minimal point (N(z, p) is minimal) is given by

N(P, 0) = if" lim \ N(Z> & ί N(Z>2τr»»->JK JCm OH

where M=supN(z, p) and Cm is a regular curve such that Cm=E[z€R:

S
o

—N(z, p)ds = 2τr. For non minimal point p(N(z9 p)
cmon

= I N(z, p<»}dμ(pa) : paeBJ, N(p, q) is given by I N(pΛ, q)dμ,(pΛ], where
J BI J BI

Bl is the set of minimal points.
1) N(z, q} is lower semicontinuous in R with respect to Martin's topology.

2) Let Vm(p) =E[z € R : N(z, p}>m~\ and vn(p} = E[z e R : S(z, ^)<— ]
n

and suppose p € R+B^ . Then NVmtp^(z, p)=N(z, p) for every m<^sup N(z, p)
and Nvjpι(z, p) =N(z, p) for every n.

3) For every Vm(p) : p£ R + Bly there exists a number n such that

4) // N(z, p) is bounded, p is minimal and N(z, p)=kω(z), where ω(z)
is C.P. of p. In this case, ω(p)=l and ω(z) is continuous at p by (3).

5)17) Let ω(z) be the function in (4). Then ω(z)<^1 for z^R—p.

Lemma 3. Let N(zy p) and N(z, q) (p φ q) be bounded minimal func-
tions. Let ω(z) be C.P. of p and put Gί_ι=E[z€R: ω(^)>l — δ]. Let
ωl~*(z) be C.P. of (Gj.sΛtf)- Then there exists a constant δ0 such that

ω*-*(z)=Q for δ<δ 0.

Let F be a closed set in R and let U(z) be a positive superharmonic
function in R vanishing on dR0. Let UFn(z) be the lower envelope of
superharmonic functions in R larger than U(z) in Fn = E[z£R: δ(z, F)

17) As for 5), see Theorem 4 in 14).
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^— ]. Then we proved183 that UFn(z) \ UF(z] and UF(z) is given by
tl

\FN(z,p)dμ(p). Since K(?)ΛGι-a)C>,M ω1-'(z)=Kω'(z), where ω'(z)

is C.P. of q. But sup ω1'5^) =1 = sup ω'(z) implies K= 1. Hence

Assume ω1'δ(^)>0 for δ>0. Then by letting S->0, ω(z)^ω'(z) and
<<>(#)I>a/(<7) — 1. This contradicts to the property (5). Hence we have
lemma.

Lemma 4. Let R—R0 be a Riemann surface with a finite number of
bounded minimal functions N(z, pf) (ί = l, 2, ••-,&) and a set of the ideal
boundary points (an open set) of capacity zero. We map the universal
covering surface (R—R0)°° of (R—R0) onto \ξ\<^ί. Consider ω,.(z), C.P. of
Pi in | fr |<[l. Then ωt(z) has angular limits a.e. on |£|=1. Denote by
Ei the set on which ω, (2) has angular limits = 1 almost everywhere. Then

mes 2 Ef = 2τt—rQ ,

^A^r^ r0 is the measure of the image of dR0.
Suppose mes 2 Ei<^2π— rQ. Then there exists a set H on |έr |=l

of positive measure in the complementary set of the sumΣE,. and the
image of ^R0 and a constant δ such that every ω{(z) has angular limits

— δ a.e. on H. Then there exists a closed set H'(^H such that
f-ίΓX^ and ωX^Xl — δ + 6 (ι = l, 2, ••- , jfe) in the intersection

of ( | f |>l — £) and the angular domain D containing endparts A(Θ) =

arg I?— £0|<— — £, ξ0 = eiθeH' for any given positive number £^>0.
zs

Let D7 be one component of D and let C7(f) be a harmonic function in
D7 such that C7(f)=l on Hf f\^Df and 17(1) =0 on ^Όf-Hr. Then
[/(!)> 0. On the other hand, there exists a constant αc by the property
(4) such that G[_Λ = E[z£R: ωt (^)>l — a\ is open by the lower semi-
continuity of ω{(z) and G{_Λ3pi.

Construct a harmonic function Wn>n+i(z) in Rn+i— RQ— (ΣGLJ such

that TF_+/(z)=l on (^+/-^)Λa(ΣGL.) and Wr

Λ. l i+f.te)=0 on
3Λ,H-/-ΣGί.β. Then Wn,n+i(z) t ΐ^» and ^MU) J, W(z)<ω(z), where
ω(^) is C.P. of a closed set (5— ΣGί_β). But the fact the open set
β— 2 A is capacity zero means that every closed set contained in
B— ̂ pi is of capacity zero. Hence 0 = ωCε)^ W(z) — 0. Now since

in DΆ£[|?|>l-6], the image of ΣGL* does not

18) See 11).
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intersect D' [\El\ξ\>l-6] for.«<— Hence Q = W(z)>U(ξ)>0.
Δl

This is a contradiction. Thus mesΣ^ = 2τr— r0.

Lemma 5. Let R—R0 be a Riemann surface in Lemma 4. Then every
a>i(z) has angular limits = L] a.e. on Ej (^ = 1, 2, ••-,&) and mes (E^Ej)
= 0 for i=\=j and mes E^O for every i.

ω^z) has angular limits = 1 a.e. on E{. Suppose there exist two set
Ef (C£* ) and E" (C^Ef) of positive measure on which ω£(2) has angular
limits>L and <^L— δ a.e. on £' and E" respectively for numbers L

and S>0. Put H^= E[z£R: ω,.(<r)>L-δ' (O<δ'< — ). Then since

mes£'>0, #Lδ'ΛGL* (=£[>£ # : ω/U)>l-α) determines a set of the
boundary of positive harmonic measure. On the other hand, by Lemma
3, there exist S0 and n0 such that C.P. of (Bf\G{_8 A(Σ "«(£*))<£ for

k^ΓJ

δ<^δ0 and n^>nQ for any given £>0, whence the harmonic measure of

ΦΛGί-βΛ(Σ "„(&))<*• Hence by Cap (β)=Cap (Σ A), harmonic
*Φy

measure of (Hi

L_ι'Γ\Bf\G}_ιΓ\pj)^lW(z)—8, where TF(^) is the harmonic
measure of (Hi_^ f\Bp\G{_8). Let £->0. Then the harmonic measure
of (H[Γ\Bf\Pj)^W(z).

Let cuff*. _δ,ovMc/,o('2') be the lower envelope of super harmonic functions

in R larger than ωt (z) in H*L_8' Γ\vn(pj) Γ\(R—Rm). Let m->oo and then

Λ-> oo. Then coHί Vn, ,(z) J ω*U) = ( N(z, p)dμ(p) =k<ύj (z). Now ω*(*)

J^^>(L— δ7)^^). Hence by mes^/^>0, tF(^) has angular limits = 1 a.e. on
E'. But G)J(Z) has angular limits = 1 a.e. on E', which implies ^>L — δr.
Hence by ω, (z) ̂  ω* (^) ̂  (L — δr) ωy (2:) , ω/ (z) has angular limits ;> L — δr

a.e. on Ej(^)E"). This contradicts to the assumption. Hence ωz.(z) has
angular limits = L] a.e. on .Bj.

Next suppose mes (E^E^^-O. Then both ω^z) and ωy(2f) have
angular limits = 1 a.e. on Ef+Ej9 whence mes (E{— Ej) =0 and <of(z) =
a)j(z). This contradicts to p£Φpj. Hence mes (E//°\jEy)=0.

Every ω^z) has Lj (<^1) a.e. on Ej. On the other hand, ω, (z) is
representable by Poisson's integral. Assume mes (£z ) — 0. Then ω,-(2)
^max(L5)<l. This contradicts to sup ωf(z) =1. Hence mes^^O

yΦί
for every /. Thus we have Lemma 5.

Lemma 6. Let R—R0 be a Riemann surface in Lemma 4 and let U(z)
be a Dirichlet bounded harmonic function vanishing on ^RQ . Then U(z) has
angular limit s= const ant a.e. on Eέ for every i.

Suppose there exist two sets E'(C^Ei) and E"(CE?) of positive measure
such that U(z) has angular limits ̂ >L + δ and <^L— δ a.e. on E/ and E"
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respectively for constants L and S>0. Put g=E\_z € R :

and GLt,=E[_zeR: ω, (*)>!-£'] (0<6'< — ). Since U(z) has angular
ΔJ

on E' and ω^z) has angular limits = 1 a.e. on Ei9 there
exists a closed set E*((^E') of positive measure such that both U(z)
and ω^z) converge uniformly in angular domain. Let D be an angular

domain containing endparts ^4(0)=arg £— ί:0K— — £' : £0eE*. Then

^there exists a number £0 such that DZQ = Df\E[\ξ\^>\ — £^ is contained

in the image of (GL8'A#) and the image of #'=£[> e£
does not intersect J9So. Hence the harmonic measure W'(z) of
f\g) with respect to Cg'=E[z€.R : £/(£)<lL-hδ] is positive, where
W'(z}= lim Mm W^,n+i(z) and W^,^,^) is harmonic in Rn+if\(Cg'-(R-Rn)

ί\gf\GLt')) such that TΓn

/. l l+ί^)=0 on 9^/ + 9^-(^AGί_ε') and
.̂̂ (^=1 on d((RΛ+i-RJΓ\(gf\G[_9>)). Now let ω*(*) be C.P. of

(gΓ\BΓ\G'L*') with respect to Cg'. Then ω*te)>PΓ/(z) and by the
Dirichlet principle

oo.

Next by Lemma 3, there exists 5 such

that Cap (G!_tΛΣί*) = 0 and Cap (GL.

=0 with respect to Cg', whence
*Φ»

Cap ( g f \ B ) with respect to C^x=
(gf\Piί\GL9) with respect to C^ =
(g[\pi) with respect to C '̂. Hence

0 Fig.

where ω(^) is C.P. of (gf\Pi) with respect to Cg'.
Let ω™n+i(z) be a harmonic function in Rn+i-RΌ— (υm(p{) Γ\Cg'f\

(Rn+i-Rn}) such that ω™n+i(z)=0 on aτ?0, ω^ll+ίte)=l on 3(ι/m(A) A*'

f\(RH+i-Rj) and ^±£(^=0 on VRH+i-(g' f\vm(pi)). Then ω-M+,(^)

->ω?U), ω?(2)->ωm(2) and ωw(2:) ->ω**(0) in mean, i.e. ω**(^) is C.P. of

(BΓ\PiΓ\gf). But ω**(*) has mass only at A ^m(A) =Pi Hence
m>0

ίΓω,.̂ ). But as above we see by mes E"^>0 and by supω**(2)=l,
we have

ω.(z) = ω**(z) > ω*U) > 0 . ( 1 )

Let Cβί (/ = !, 2) be regular curves of ω*(^) and let ω*+y(z) be a harmonic
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function in (Rn+j-R0)f\E[zeR: δχω*(2χδ2] with values δ. on Cδ.o jjj

and -^^(*)=Oon3£Λ+ίΛ£[*e*: S1<ω*te)<8a]. Then by property

(4), ω*+y(£)->α>*(z) and ω*(2)->ω*(2) in mean.

Vm(p)

Fig. 2

Apply the Green's formula

( ω™n^(z)j-ω*
Jcδl+cδ2 On

(2)

Γ d I d

. n j ^ l n+j

\ ω™n+j(z)^-ω$,n+j(z)ds. By the regularity of Cδ/ and by letting

-^oo, ^->oo and m->oo. Then by (2)

(3)

Since (CδlΛ^)>0 and ω. ̂ Xl in /?, ( ω,(*
Jcδl

— S0 for a number δ0^>0. On the other hand,

( f-ω*(z)ds
Jcδl9^

^) implies ωέ(z)
1 1 on Cδ2 as S2 f 1. But the right hand of (3) means that there exists
at least one point zr on Cδ2 such that ωg(z')<^l—δQ on every regular
curve Cδ2. This contradict to ωi(z)^>ω^(z) f 1 on Cδ2 as δ2 f 1. Hence
we have the lemma.

Theorem 6. Let R be a Rίemann surface with positive boundary.
Then ReHND19^ if and only if, the ideal boundary points of R—R0 consists

19) HDN is the class of Riemann surfaces on which N number of linearly independent
Dirichlet bounded harmoni ° functions exist.
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of N number of bounded minimal points pf (N(z9 pέ) is bounded minimal)
and a set of capacity zero.

Let U(z) be a Dirichlet bounded harmonic function in R. Let Un(z)
be a harmonic function in Rn—R0 such that Un(z)—U(z) on 31?0 and
Un(z)=Q on ^Rn. Then clearly Un(z) converges to a function U'(z) and
Z>(t/(*)-£7'(*))<oo. Put U*(z) = U(z)-U'(z). Then £/*(*) is uniquely
determined by U(z). Hence we have only to consider Dirichlet bounded
harmonic functions in R—R0 vanishing on ^R0 instead of Dirichlet
bounded harmonic functions in R.

Suppose that R—RQ is a Riemann surface in Lemma 4. Let U(z)
be a Dirichlet bounded harmonic function vanishing on 3R0. Then U(z)
is represented by Poisson's integral20) and by lemmata 4, 5, 6 U(z) has
angular limits = 0,- a.e. on Eέ. Hence U(z) is a linear form of N(z9 pf).
Cleary N(z, p{) are linearly independent, hence such a Riemann surface
€ HND. Next suppose R 6 HND. If the capacity of the set of boundary
points of capacity zero is positive, we can easily construct a infinite
number of Dirichlet bounded harmonic functions which are linearly
independent. Hence the capacity of the above set is zero. We see
easily that there are exact N number of bounded minimal functions
N(z, p^ in R—R0. Thus we have the theorem.

In another article contained in this volume21), we proved that every
minimal function N(z, p) = U(z, p) + V(z, p), where U(z, p) is representable
by Poisson's integral and V(z, p) is a generalized Green's function. Let

p be a minimal point of capacity zero and suppose limGCz, <?)—0 for
* *P

the Green's funtion G(z, q) (we say that p is regular for the Green's
function) and supN(z, p) = oo. Then V(z,p)=Q. In this case, let Un(z)
be a harmonic function in Rn—R0 such that Un(z)=min(M, N(z, p)) on
dR0 + c>Rn. Then clearly, Un(z)-* U(z)>Q and by the Dirichlet principle

D(U(z)) <2τtM. Put U(z, M) = U(z] and D(U(z, M)) =AM. Then we
sup U(z)

see easily AM\ 0 as M| °°. Let M{ (i = l, 2, ••-) be a sequence such that
AMi I 0. Since sup U(z, M{) = 1, each U(zyM{) are linearly independent.
Hence we have the following

Theorem 7. R G HND has no minimal point p of capacity zero (N(z, p)

is minimal and sup N(zy p) — oo) such that lim G(z, q) —0.
Z-+P

Corollary. // R has only regular boundary points for the Green's

20) Z. Kuramochi: On the existence of harmonic functions on Riemann surfaces. Osaka
Math. Journ. 7, 1955.

21) Z. Kuramochi: On harmonic functions representable by Poisson's integral.
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function, R € HND if and only if, the set of minimal functions consists of
exact N number of bounded minimal functions.

Theorem 8. Let G be a non compact domain and let N(zyp) (=κω(z))y

where ω(z) is C.P. of p) be a bounded minimal function and let U(z) be a
harmonic function in G such that U(z) = N(zyp) on 3G and U(z) has M.D.I.
over G. If N(zy p)^>U(z)y then there exists no Dίrίchlet bounded analytic
function in G.

Lemma 7. Let G and N(zy p) be as above. Then there exists a non
compact domain g such that (Bf\g[\vn(p)) is positive capacity with respect

to G.
Since U(z) has M.D.I, among all functions

with value N(z, p) on 3G, U(z) = U(G'y z}y where
U(G',z) = U(z) on 3G4-3G7 and [/(G7, z) has

Vn(p) M.D.I. over G—G' for every domain G'CIG.
Since N(z, p) = Nυn,p,(zy p)y N(zy p) = N(υn(p)y

(zyp)y where N(vH(p), zyp}=N(zyp) on ^G-vn(p)
+ @vn(p)f\G) and has M.D.I, over G—υn(p).
Put V(z) = N(zy p)-U(z) and g = E[_z € G : V(z)

^—]> where M=supV(z). Hence

V(z) = V(vH(p) AG, z) < V(vn(p) f\gy z)
< V(vn(p)f\Cgy z) <ί V(vn(p}[\Cgy z)

+ Mω'(vn(p)Γ\gyz)y

where V(S, z) is the function in G-S such that V(S, z) = V(z) on 3S + 3G
and V(S, z) has M.D.I, over G-S and ω'(vn(p)Γ\g, z) is the C.P. of
( g f \ v n ( p ) ) with respect to G.

Clearly D(ω'(vn(p] f\g, z)) £^-2D(U(z))<oo. If ω\vn(p)f\g, z) | 0, as

n-+°°. Then sup V(z) ^ —. This is a contradiction. Hence (gf\p) is

a set of positive capacity with respect to G.
Let ω(gf\py z) be C.P. of (gf\p) with respect to R-RQ. Then

ω(gf\p,Z)^>ω'(gf\p9Z)>Q9

whence sup ω(gf\p, z) — 1, but ω(g[\p,z) has no mass except at py

whence ω(g[\py z)=ω(z), where ω(^) is C.P. of p.

Lemma 8. Let G and g be domains in Lemma 7. If a Dirichlet
bounded analytic function W(z) exists in G. Then we can find a non com-
pact domain g' such that C.P. of (gf\g'Γ\p) with respect to G is positive
and as small as we please.
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Suppose a Dirichlet bounded analytic function W(z) in G. Let {@J
be a sequence of triangulation of the w-plane such that whose every

1

triangle {Δ£} has a diameter <— and @Λ+1 is a subdivision of @Λ and

becomes as fine as we please as n-^o°. The part of G whose image
lying on Δ£ consists of at most enumerably infinite number of component
GJJ O' = l,2, —) compact or not. Then G = Σ G>j. Let ω^(^) be C.P.

of (GXf\pΓ\g) with respect to G. TheiΓ'i] ω^(z)^ω'(gf\p9 *)>0,
whence there exists at least one component G£J such that ω'*j(£)^>0.
Suppose ω'nljo(z) >0. Let L be a compact and bounded arc on 3G such
that the projection of L has a positive distance δ from Δ*g•><>22) (G^j° lies no
Δ ^o). AS the way above mentioned
we can find two sequences

such that G5 lies on Δs, diameter of

Δ5<1- and C.P. ω,'(z) of (GsΓ\Pί\g)
o

with respect to G is positive.
Let I\ and Γ/ be two concentric

^circles such that the radius of Γ5 == — ,
1 4

radius of Γ/<^ — and 3Γ/ encloses Δs.
o

Let Fs(^) be a harmonic function in
Γ5-Γ/ such that Vs(w)=l on 3Γ/ and

Gs lies on Δ s

37(11;)

a^
+

Fig. 4

3F(ιι;)Vs(w) =0 on 9ΓS. Then we see Ks =

->0 as 5->oo. Suppose D(A(z))<^A. Then the area of the image of G

by w = A(z)<^A. Let ί^(n ) be a continuous function in the whole w-

plane such that Vs(w) = l in Γ/, V,(M;) is harmonic in Γ5— Γ/ and V,(«ι;)

^0 outside of Γ5. Let V8(z) be a continuous function in G such that

Vs(z)=V8(w(z)). Then since the image of L lies outside of Γ5, y5(2:)=0

on L and Fste) = l in Gs. Then

Let be a harmonic function in (Gf\Rm) — (vl(p)[\g[\Gs) such

22) If we take sufficienty small Δ, we can find L as above mentioned.
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f-\

that ω5.mι/(2)=0 on L, ωSι/,m(2)=l on d(vt(p) f\gf\Gs) and — ω5,mf/(*)
on

-0 on 9#m-(£Λ"/(£)ΛG5) Then

Clearly ω,ιlfli/(2) ;>ω5'(z)>0. Let m->°o and then /->oo, then α>5. „,,/(*)->

ω*(*)>ω/(*)>0 and Z)(ω*(*))=[ ^^ώ<^/Γs. Let 5-00, then
Jz, 3w

and further max 0 «min^-^). Hence

there exists a point z0 in a neighbourhood of L and a number s0 such
that

where ω'(z) is C.P. of (gf\p) with respect to G.
Let ω'/fc) be C.P. of (PΓ\gf\Gs) with respect to G. Then by the

Dirichlet principle

D(ω'(z)) ^ D(ω's'(z)) ^ D(ω*(2f)) ,

On the other hand, clear ω*(z)^ω"(z). Hence ω'(z0)^>ωϊ(
whence

Take G5 as ^r in the lemma, then we have the lemma. In the sequel
we denote ω"(z) by ω"(z) for simplicity.

Proof of the theorem.

Put D = E [ _ z £ R : ω'(z)-ω"(z)^—~\ and σ = E[z£R: ω'(z}-ω"(z)

Since ω'(^)=l in (gf\p) and ω/7(z)=l
o

in (grf\p) except at most capacity zero with respect to G by property
(2), CapΦΛ^^O with respect to G.

Whence Cap ((g'-D) A^)>0 with respect to G. ( 4 )

ω'(z) and ω"(z) are C.P.s of ( p f \ g ) and (pf\g') respectively. Then by
property (4) ω'(z) and ω"(z) have M.D.I, over D—(g[\vn(p)) among all
functions with values ω'(z) and ω"(z) on ^D + ̂ (g[\vn(p) f\D) respectively.
Hence ω'(z) — ω"(z) has also M.D.I, over D—(gf\vn(p)) amcng all func-
tions with value ω'(z)-ω"(z) on c>D+c>(DΓ\gf~\vn(p)). Let Vn(z) be a

harmonic function in D such that Vn(z) =mίn (ω'(z) — ω"(z), — ) on 3D-4-
3(gί\"n(P)) and yΛ(2f) has M.D.I, over D-(D' f\υn(p)). Let t^U) be a

harmonic function in Ώ-(Df f\ vn(p)) such that Vn(z)=l on a(D7 f\vn(p)) ,
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((g'-D)

Fig. 5

Vn(z)=Q on 3£> and VH(z) has M.D.I. Then

D(VH(z)) •D(ω'(z)-ω"(z))

by the maximum principle

0 < ω'(z)-ω"(z) < VH(Z) + MVn(z)

Let n->ooy if limVn(z)=Q, M=

tratiction.
Hence C.P. ω*(z) of (D' A^)>0 with respect to D.

CA

This is con-

. (5)
Let ω((g'—D)f\p,z) be C.P. of ((g'-D)f\p) in G. Then by (4)

and since sup ω((g'-D)Γ\p, z) =1 and (g' f\P~D)

where ω(^) is C.P. of />.
On the other hand, ω*(£)>0 and clearly ω*(

Hence as in Lemma 6, we can prove that there exists at least a
point zf such that ω((g'— D) f\p, z{)<^\ — δ0(δ0^>0) on every regular
curve Cδ of ω*(z) as δ t 1. This contradicts to ω((g'—D) f\p, z)=ω(z)
^>ω*(z). Hence we have the theorem.

Theorem 9. Let v(p) be a neighbourhood of a bounded minimal point
p. Then there exists no Dirichlet bounded analytic function in υ(p).

Let U(z) be a harmonic function in v(p) such that U(z)=N(z,p)
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on dv(p) and U(z) has M.D.I. over v(p). Then U(z)=NB_c*Pϊ(z> P)

Suppose U(z)=N(z,p). Then U(z)={ N(z,p)dμ(p). Then we can
JB-vίpϊ

as in Theorem 4 prove that there exist two positive mass distributions
μ>v and μ2 in cv (p) such that μ: and ^2 represent functions which are not

multiples of N(z,p). Hence N(z,p)-\N(z,p)dμ1(p)=\N(z9p)dμ2(p)>Q.

This contradicts the minimality 23) of N(zy p). Hence N(z, p)^>U(z). Hence
by Theorem 8, we have Theorem 9.

Theorem 10. Let G be a non compact domain in R E HND. If there
exists a non constant Dirichlet bounded harmonic function U(z) vanishing
on 9G, then there exists no Dirichlet bounded analytic function in G.

We can suppose that G(^R—R0. Then by Theorem 6, R—RQ has
N number of bounded minimal points. Map the universal covering surface
G°° onto |lr|<^l. Then U(z) is represented by Poisson's integral. Hence
there exists a set E of positive measure on | ξ \ = 1 such that U(z) has
angular limits >δ or <^— δ a.e. on E. We can suppose U(z)^>S on E.

Put G' = E[>el?: [/(*)>— ] and let ω*(z) be C.P. of (Bf\Gf) with

respect to G. Then

D(ω*(z)) < 4-D(U(z)) and by mes E> 0 , ω*(z) > 0 .
o2

Since by Theorem 6 Cap OB— Σ />,.)==() and Cap(β— ΣA ) with respect
to G = 0, Cap(G7ASA) with respect to G = Cap(Bf\G') with respect
to G.

Then there exists at least a point p{ such that Cap (G' A A) with
respect to G>0, whence C.P. ω(G'f\pi9z) of (G'A A) =*>,.(*) by

supω(G /AA^)=l Put ω**U)=ω(G/AA^) Next let 7U) be a
harmonic function in G such that V(z)—ω**(z) on 3G and V(z) has
M.D.I, over G. Then as in Theorem 6

f
Jc1

-
on Jc'j+c'g on

= V(z)'d(z)dS,

where Cx and C2 are regular curve of ω*(z). Then there at least a point

23) If £/(2r) has no functions V(z^ such that both FO)>0 and i7(«) - F(*)> 0 are

harmonic and superharmonic in R-RQ except its own multiples, we say that £/(z) is a mini-
mal function.
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2f on C2 such that V(zi)<^\ — S0 for a positive number δ0, whence V(z)
<X (2). Hence there exists at least a point pt such that N(z,pi) —
NCG(Z, A)>0, whence by Theorem 8, we have the theorem.

Part III

Suppose an analytic function w=f(z) in R. Let w0 be a point of
the w-plane. Then the part of R on w—w0\<^r consists of at most
enumerably infinite number of components. Such one component is

called a connected piece on \w—w0\<^r. Then

Theorem 11. Let R be a Riemann surface in Theorem 5, i.e., there
exists at most enumerably infinite number of bounded minimal functions
K(z, p^ and a set of boundary of harmonic measure zero. Then every
connected piece C on \w—wQ<^r covers W—WQ <^r except at most a set
of capacity zero.

Let G be a non compact domain such that f(G)=C. Suppose C
does not cover a set F (clearly closed) of positive capacity. Then there
exists a subset F' of F of positive capacity such that F'(^E[_\w—w0\<^
r'<^r~\. Then there exists a positive bounded harmonic function ω(w)
in C vanishing on w — WQ\ =r. Put ω(z) =ω(f(z)). Then ω(z) is bounded
harmonic function in G vanishing on 3G. Then by Theorem 6, there
exists no bounded analytic function in G. But \f(z) — wQ\<^r on G. This
is a contradiction. Hence we have the theorem.

Theorem 12. Let ReHND, and let C be a connected piece on \w—
w0 <^r. If the area of C is finite, C cover \w—wQ\<^r except at most a
set of capacity zero.

Suppose C does not cover a set of positive capacity. Then as in
Theorem 11, there exists a non constant positive bounded harmonic fun-
ction ω(z) in G vanishing on 3G. We map the universal covering surface
G°° onto |f |<O Then there exists a set E of positive measure such that
ω(z) has angular limits >δ0^>0 on E ίor a constant δ0. Now f(z)=w is
bounded in G. f(z) has angular limits a.e. on E. Then there exists a
number rf and a set E''(C^E) of positive measure such that f(z) has
angular limits in \w—wQ\<^r'<^r a.e. on Ef. Hence there exists a closed
set E" <^Ef of positive measure such that both ω(z) and f(z) converge

£
uniformly in angular domain. Put g=E[fZ£G: ω(z)^>—] f\E[_z£G:

Zj
\f(z) — w0\<^r'^\. Let Vn.n+i(z) be a harmonic function in Gf~\(Rn+i~
((Rn+i-Rn)f\g)) such that Vκ,n+i(z) = 0 on @G f\Rn+ί)+dRn+i-g and
Vn,n+i(z) = l on d(JRn+l-Rjf\g. Then lim lim Vn,n+i(z)>0. Next let

« i
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S(w) be a harmonic function in r'<^\w—wϋ\<^r such that S(w)=0 on
\w\=r' and S(w)=l on |w; |=r and S(w)^l in |w—^0|<V Then

max (IS(w) S(w) Let T(z) be a continuous function

in G such that T(z)=S(f(z)). Then D(T(z)}<^KDG(f(z)). Hence there
exists a harmonic function such that W(z)^>Q, W(z)=Q on 3G and
D(W(z)) <^D(T(z)) <KD(f(z)} by the Dirichlet principle. Hence by Theo-
rem 10, we have the theorem.
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