Congruence Classes of Knots

By R. H. Fox

Consider a solid torus V in 3-dimensional euclidean space S. An oriented simple closed curve on the boundary T of V is a meridian of V if it bounds in V but not on T, and it is called a longitude if it bounds in $S-V$ but not on T. The fundamental group of T is a free abelian group of rank 2, and it has a basis consisting of elements a and b represented respectively by a meridian and a longitude. Any orientation preserving autohomeomorphism τ of V induces an automorphism $\tau_{*}: a \rightarrow a^{ \pm 1}, b \rightarrow a^{m} b^{ \pm 1}$ of $\pi(T)$ and τ is described up to homotopy by the automorphism τ_{*} that it induces. I shall call an autohomeomorphism τ a simple twist if the automorphism that it induces is $\tau_{*}: a \rightarrow a$, $b \rightarrow a b$. The automorphism induced by τ^{m} is $\tau_{*}^{m}: a \rightarrow a, b \rightarrow a^{m} b$.

If k is any simple closed curve in the interior of V then $\tau^{m}(k)$ is also a simple closed curve in the interior of V. Moreover if k is oriented and $\tau^{m}(k)$ is given its inherited orientation then the linking numbers $L(k, a)$ and $L\left(\tau^{m}(k), a\right)$ are equal.

Let n and q be non-negative integers and κ and λ knot types. I shall say that κ and λ are congruent modulo n, q, and write $\kappa \equiv \lambda$ $(\bmod n, q)$, if there are simple closed curves $k_{0}, k_{1}, \cdots, k_{l}$, integers c_{1}, \cdots, c_{l}, and solid tori V_{1}, \cdots, V_{l} such that
(1) V_{i} contains $k_{i-1} \cup k_{i}$ in its interior ;

(3) $L\left(k_{i-1}, a_{i}\right)=L\left(k_{i}, a_{i}\right) \equiv 0(\bmod q)$, where a_{i} is represented by a meridian of V_{i};
(4) k_{0} represents κ and k_{l} represents λ.

Congruence modulo n, q is symmetric, reflexive and transitive. Congruence modulo $0, q$ is just equivalence, i.e. $\kappa \equiv \lambda(\bmod 0, q)$ iff $\kappa=\lambda$. The well-known fact [1] that any knot projection may be normed so as to be the diagram of a trivial knot shows that any two knot types are congruent modulo 1,0 and also congruent modulo 1,2 . It is not
difficult to find distinct knot types that are congruent modulo 1,1 ; on the other hand, to find knot types that can be shown to be incongruent modulo 1,1 does not seem to be easy.

It would be interesting to know whether equivalence could be replaced by a set of congruences. The question is: Do there exist distinct knot types κ, λ such that $\kappa \equiv \lambda(\bmod n, q)$ for every $n>0$ and $q \geq 0$?

The object of this note is to give a necessary condition for congruence modulo n, q. The condition, which is rather effective if $n>1$, involves the Alexander polynomial $\Delta_{\kappa}(t)$ of a knot type κ, i.e. the Alexander polynomial [2] of the fundamental group of the complement of a simple closed curve k that represents κ. An Alexander matrix of κ, i.e. an Alexander matrix [2] of $\pi(S-k)$, is denoted by $\boldsymbol{A}_{\kappa}(t)$, and $\sigma_{n}(t)$ denotes $\left(t^{n}-1\right) /(t-1)=1+t+t^{2}+\cdots+t^{n-1}$.

Theorem ${ }^{1)}$. If $\kappa \equiv \lambda(\bmod n, q)$ then, for properly chosen $\boldsymbol{A}_{\kappa}(t)$ and $\boldsymbol{A}_{\lambda}(t)$,

$$
\boldsymbol{A}_{\kappa}(t) \equiv \boldsymbol{A}_{\lambda}(t) \quad \bmod \sigma_{n}\left(t^{q}\right),
$$

hence

$$
\Delta_{\kappa}(t) \equiv \pm t^{r} \Delta_{\lambda}(t) \quad \bmod \sigma_{n}\left(t^{q}\right),
$$

(and similarly for the elementary ideals [2] of deficiency greater than 1).
Proof: We need consider only the case $l=1, c_{1}=1$, so that k represents κ and $\tau^{n}(k)$ represents λ. Presentations of the fundamental groups $\pi(S-k)$ and $\pi\left(S-\tau^{n}(k)\right)$ may be obtained from the fundamental groups $\pi(S-V)$ and $\pi(V-k)$ and $\pi\left(V-\tau^{n}(k)\right)$ by application of the van Kampen theorem [3]. This procedure yields presentations that are almost the same :

$$
\begin{aligned}
& \pi(S-k)=\left(a, b, A, B, x_{1}, x_{2}, \cdots: a=A, b=B, r_{1}=1, r_{2}=1, \cdots\right) \\
& \pi\left(S-\tau^{n}(k)\right)=\left(a, b, A, B, x_{1}, x_{2}, \cdots: a=A, b=A^{n} B, r_{1}=1, r_{2}=1, \cdots\right)
\end{aligned}
$$

where a and b are represented by meridian and longitude of V, and A and B are represented by the same curves in (the closure of) $S-V$. The 1-dimensional homology groups of $S-k$ and $S-\tau^{n}(k)$ are infinite cyclic ; we denote ambiguously by t a generator of either group (selected so that one is carried into the other by $\left.\tau^{n}\right)$. Then abelianization of $\pi(S-k)$ or $\pi\left(S-\tau^{n}(k)\right)$ maps A into t^{q} (and B into 1). Hence

[^0]| | | a | b | A | B | - | ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{A}_{\boldsymbol{\kappa}}(t)=$ | $a=A$ | -1 | 0 | 1 | 0 | 0 | ... |
| | $b=B$ | 0 | -1 | 0 | 1 | 0 | ... |
| | - | * | * | * | * | * | ... |
| | - | - | - | - | - | - | ... |
| | -• | - | - | - | - | - | ... |
| | | a | b | A | B | - | ... |
| $\boldsymbol{A}_{\lambda}(t)=$ | $a=A$ | -1 | 0 | 1 | 0 | 0 | \cdots |
| | $b=A^{n} B$ | 0 | -1 | $\frac{t^{n q}-1}{t^{q}-1}$ | $t^{n q}$ | 0 | ... |
| | - | * | * | * | * | * | ... |
| | - | - | - | - | - | - | ... |
| | - | - | . | . | . | - | ... |

Therefore

$\boldsymbol{A}_{\lambda}(t)-\boldsymbol{A}_{\kappa}(t)=$	 0 0 0 0 0 \cdots 0 0 $\frac{t^{n q}-1}{t^{q}-1}$ $t^{n q}-1$ 0 \cdots 0 0 0 0 0 \cdots \cdot \cdot \cdot \cdot \cdot \cdots \cdot \cdot \cdot \cdot \cdot \cdots
	$\equiv 0 \bmod \sigma_{n}\left(t^{q}\right)$.

The only congruence classes that are fairly easy to deal with experimentally are those for which $n \equiv 0(\bmod 2)$ and $q=0$ or 2 . Let us consider the repartition of the fifteen prime knots of not more than seven crossings (cf. the knot table [4]) into congruence classes modulo 2,0 and modulo $2,2$.

The polynomial character of $\kappa \bmod 2,0$ is $\Delta_{\kappa}(t) \bmod 2$. Each residue class has as principal representative a polynomial whose coefficients are all either 0 or 1 . By experiment I find the following congruence classes $\bmod 2,0$:

$$
\begin{array}{lll}
0 \equiv 5_{2} \equiv 6_{1} \equiv 7_{4} \equiv 7_{5}, & \Delta(t) \equiv 1 & (\bmod 2) \\
3_{1} \equiv 4_{1} \equiv 7_{2} \equiv 7_{3}, & \Delta(t) \equiv 1+t+t^{2} & (\bmod 2) \\
5_{1} \equiv 6_{2} \equiv 6_{3} \equiv 7_{6} \equiv 7_{7}, & \Delta(t) \equiv 1+t+t^{2}+t^{3}+t^{4} & (\bmod 2) \\
7_{1}, & \Delta(t) \equiv 1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6} & (\bmod 2)
\end{array}
$$

It was observed by Kinoshita that the non-amphicheiral knot 3_{1} must be congruent $\bmod 2,0$ to its reflexion, since it is congruent mod 2,0 to the amphicheiral knot 4_{1}.

The polynomial character of $\kappa \bmod 2,2$ is $\Delta_{\kappa}(t) \bmod \left(1+t^{2}\right)$; its principal representative is a positive odd integer (since $\Delta(t)$ is symmetric and $\Delta(1)=1$). By experiment I find the following residue classes $\bmod 2,2$.

$$
\begin{array}{ll}
0 \equiv 3_{1} \equiv 5_{1} \equiv 6_{2} \equiv 7_{1} \equiv 7_{3} \equiv 7_{5}, & \Delta(t) \equiv 1 \\
4_{1} \equiv 5_{2} \equiv 6_{3}, & \Delta(t) \equiv 3 \\
6_{1} \equiv 7_{2} \equiv 7_{6}, & \Delta(t) \equiv 5 \\
7_{4} \equiv 7_{7}, & \Delta(t) \equiv 7
\end{array}
$$

The congucence $\bmod 2,2$ of 7_{4} and 7_{7} was discovered by F. Hosokawa. I conclude with some examples of the experimental work involved.
(Received February 5, 1958)

Fig. 1

References

[1] J. W. Alexander : Topological invariants of knots and links. Trans. Am. Math. Soc. 30 (1928), 275-306, p. 299.
[2] R. H. Fox: Free differential calculus II. The isomorphism problem of groups, Annals of Math. 59 (1954), 196-210.
[3] P. Olum : Non-abelian cohomology and van Kampen's theorem, Annals of Math.
[4] K. Reidemeister: Knotentheorie, Chelsea (1948).

[^0]: 1) The theory can be generalized to links (which must be ordered and oriented). For links of multiplicity μ we replace q by $\left(q_{1}, \cdots, q_{\mu}\right)$ where q_{i} is the linking number of the i th component with a. Instead of $\sigma_{n}\left(t^{q}\right)$ we have $\sigma_{n}\left(t_{1} q_{1} t_{2} q_{2} \cdots t_{\mu}{ }^{q} \mu\right)$.
