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Congruence Classes of Knots

By R. H. Fox

Consider a solid torus V in 3-dimensional euclidean space S. An
oriented simple closed curve on the boundary T of V is a meridian of
V if it bounds in V but not on 7T, and it is called a longitude if it
bounds in S—V but not on 7. The fundamental group of T is a free
abelian group of rank 2, and it has a basis consisting of elements a
and b represented respectively by a meridian and a longitude. Any
orientation preserving autohomeomorphism = of V induces an automor-
phism 74 : a—a*', b—a"b** of =(T) and T is described up to homotopy
by the automorphism 7, that it induces. I shall call an autohomeomor-
phism = a simple twist if the automorphism that it induces is 74: a—a,
b—>ab. The automorphism induced by 7™ is 7} : a—a, b—a”b.

If £ is any simple closed curve in the interior of V then 7™(k) is
also a simple closed curve in the interior of V. Moreover if k is oriented
and *™(k) is given its inherited orientation then the linking numbers
L(k, a) and L(v™(k), a) are equal.

Let » and ¢ be non-negative integers and x and A knot types. I
shall say that « and M are comngruent modulo n, q, and write L=\
(mod #, g), if there are simple closed curves k,, &, ---, k,, integers ¢,, ---,
¢;, and solid tori V,, .-+, V, such that

(1) V; contains k;_,Vk; in its interior ;

2) Ti"(k;_,) =k;, where v; is a simple twist of V;;

(3) L(k;_,, a;)=L(k;, a)=0 (mod q), where a; is represented by a
meridian of V;;

(4) k, represents « and k, represents \.

Congruence modulo #, ¢ is symmetric, reflexive and transitive. Con-
gruence modulo 0, ¢ is just equivalence, i.e. k=X (mod 0, q) iff k=A.
The well-known fact [1] that any knot projection may be normed so
as to be the diagram of a trivial knot shows that any two knot types
are congruent modulo 1,0 and also congruent modulo 1, 2. It is not
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difficult to find distinct knot types that are congruent modulo 1, 1; on
the other hand, to find knot types that can be shown to be incongruent
modulo 1, 1 does not seem to be easy.

It would be interesting to know whether equivalence could be re-
placed by a set of congruences. The question is: Do there exist distinct
knot types #, A such that x=\ (mod #, ¢) for every #_>0 and ¢>07?

The object of this note is to give a necessary condition for con-
gruence modulo #, g. The condition, which is rather effective if n_>1,
involves the Alexander polynomial A _(#) of a knot type «, ie. the
Alexander polynomial [2] of the fundamental group of the complement
of a simple closed curve k that represents . An Alexander matrix of
«, i.e. an Alexander matrix [2] of »(S—k), is denoted by A.(f), and
o,(f) denotes (t"—1)/(t—1)=1+t++ -+ +1"",

Theorem”. If k=X (mod n, q) then, for properly chosen A.(f) and
A}\(t)’

A(f) = A\(#)  mod o,
hence
Af) = A mod o, (29 ,
(and similarly for the elementary ideals [2] of deficiency greater than 1).

Proof : We need consider only the case /=1, ¢,=1, so that k&
represents « and T”(k) represents A. Presentations of the fundamental
groups 7(S—k) and #(S—7"(k)) may be obtained from the fundamental
groups 7#(S—V) and =(V—Fk) and =(V—="(k)) by application of the van
Kampen theorem [3]. This procedure yields presentations that are
almost the same:

7(S—Fk) =(a b A B, x,, x,,-: a=A, b=B, r,=1, r,=1, --)
‘w(S—r*k))=(a, b, A, B, x,, x,,---: a=A, b=A"B, r,=1, r,=1, -+

where @ and & are represented by meridian and longitude of V, and A
and B are represented by the same curves in (the closure of) S—V. The
1-dimensional homology groups of S—k and S—="(k) are infinite cyclic;
we denote ambiguously by ¢ a generator of either group (selected so that
one is carried into the other by 7”). Then abelianization of #(S—k) or
7(S—7"(k)) maps A into #? (and B into 1). Hence

1) The theory can be generalized to links (which must be ordered and oriented). For
links of multiplicity x we replace ¢ by (¢, -+, gn) where ¢; is the linking number of the sth
component with «. Instead of o,(#) we have o,(#%1£,92 -+ fuit).
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a b A B .
A= a=A -1 0 1 0 0
b=RH 0 —1 0 1 0
E3 E 3 £ E S b
| a b A B
A= a=A —1 0 1 0 0
= A" —1 =1l e
b= A"B 0 1 1 t 0
. * * * * *
Therefore
A\(t)— A = i 0 0 0 0 0
=1 .
0 0 i ¢ 1 O
0 0 0 0 0

=0 mod (29 .

The only congruence classes that are fairly easy to deal with
experimentally are those for which #=0 (mod 2) and ¢=0 or 2. Let
us consider the repartition of the fifteen prime knots of not more than
seven crossings (cf. the knot table [4]) into congruence classes modulo
2, 0 and modulo 2, 2.

The polynomial character of x mod 2, 0 is A.(f) mod 2. Each residue
class has as principal representative a polynomial whose coefficients are

all either O or 1. By experiment I find the following congruence classes
mod 2, 0:

0=5,=6,=7,=7, A())=1 (mod 2)
3=4,=7,=1,, Ay =1+t+1 (mod 2)
5 =6,=6,=7,=7,, At)=1+t+++1 (mod 2)
7., A =1+t+E+EP++P+1° (mod 2)
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It was observed by Kinoshita that the non-amphicheiral knot 3,
must be congruent mod 2, 0 to its reflexion, since it is congruent mod 2, 0
to the amphicheiral knot 4,.

The polynomial character of « mod 2, 2 is A(f) mod (1+1#); its
principal representative is a positive odd integer (since A(f) is symmetric
and A(l) =1). By experiment I find the following residue classes

mod 2, 2.

0=3,=5=6,=7=7=1,, Alty=1
41252563» A(t)—ES
612722—:—76’ A(t)ES
=1, A =T

The congucence mod 2, 2 of 7, and 7, was discovered by F. Hosokawa.
I conclude with some examples of the experimental work involved.

(Received February 5, 1958)
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