Fox, Ralph H. Osaka Math. J. 10 (1958), 37-41

Congruence Classes of Knots

By R. H. Fox

Consider a solid torus V in 3-dimensional euclidean space S. An oriented simple closed curve on the boundary T of V is a meridian of V if it bounds in V but not on T, and it is called a *longitude* if it bounds in S-V but not on T. The fundamental group of T is a free abelian group of rank 2, and it has a basis consisting of elements aand b represented respectively by a meridian and a longitude. Any orientation preserving autohomeomorphism τ of V induces an automorphism $\tau_*: a \to a^{\pm 1}, b \to a^m b^{\pm 1}$ of $\pi(T)$ and τ is described up to homotopy by the automorphism τ_* that it induces. I shall call an autohomeomorphism τ a simple twist if the automorphism that it induces is $\tau_*: a \to a, b \to a^m b$.

If k is any simple closed curve in the interior of V then $\tau^m(k)$ is also a simple closed curve in the interior of V. Moreover if k is oriented and $\tau^m(k)$ is given its inherited orientation then the linking numbers L(k, a) and $L(\tau^m(k), a)$ are equal.

Let *n* and *q* be non-negative integers and κ and λ knot types. I shall say that κ and λ are congruent modulo *n*, *q*, and write $\kappa \equiv \lambda$ (mod *n*, *q*), if there are simple closed curves k_0, k_1, \dots, k_l , integers c_1, \dots, c_l , and solid tori V_1, \dots, V_l such that

- (1) V_i contains $k_{i-1} \cup k_i$ in its interior;
- (2) $\tau_i^{c_i^n}(k_{i-1}) = k_i$, where τ_i is a simple twist of V_i ;

(3) $L(k_{i-1}, a_i) = L(k_i, a_i) \equiv 0 \pmod{q}$, where a_i is represented by a meridian of V_i ;

(4) k_0 represents κ and k_1 represents λ .

Congruence modulo n, q is symmetric, reflexive and transitive. Congruence modulo 0, q is just equivalence, i.e. $\kappa \equiv \lambda \pmod{0, q}$ iff $\kappa = \lambda$. The well-known fact [1] that any knot projection may be normed so as to be the diagram of a trivial knot shows that any two knot types are congruent modulo 1, 0 and also congruent modulo 1, 2. It is not difficult to find distinct knot types that are congruent modulo 1, 1; on the other hand, to find knot types that can be shown to be incongruent modulo 1, 1 does not seem to be easy.

It would be interesting to know whether equivalence could be replaced by a set of congruences. The question is: Do there exist distinct knot types κ , λ such that $\kappa \equiv \lambda \pmod{n, q}$ for every n > 0 and $q \ge 0$?

The object of this note is to give a necessary condition for congruence modulo n, q. The condition, which is rather effective if n > 1, involves the Alexander polynomial $\Delta_{\kappa}(t)$ of a knot type κ , i.e. the Alexander polynomial [2] of the fundamental group of the complement of a simple closed curve k that represents κ . An Alexander matrix of κ , i.e. an Alexander matrix [2] of $\pi(S-k)$, is denoted by $A_{\kappa}(t)$, and $\sigma_n(t)$ denotes $(t^n-1)/(t-1)=1+t+t^2+\cdots+t^{n-1}$.

Theorem¹⁾. If $\kappa \equiv \lambda \pmod{n, q}$ then, for properly chosen $A_{\kappa}(t)$ and $A_{\lambda}(t)$,

$$A_{\kappa}(t) \equiv A_{\lambda}(t) \mod \sigma_{n}(t^{q})$$
,

hence

$$\Delta_{\kappa}(t) \equiv \pm t^{r} \Delta_{\lambda}(t) \mod \sigma_{n}(t^{q}),$$

(and similarly for the elementary ideals [2] of deficiency greater than 1).

Proof: We need consider only the case $l=1, c_1=1$, so that k represents κ and $\tau^n(k)$ represents λ . Presentations of the fundamental groups $\pi(S-k)$ and $\pi(S-\tau^n(k))$ may be obtained from the fundamental groups $\pi(S-V)$ and $\pi(V-k)$ and $\pi(V-\tau^n(k))$ by application of the van Kampen theorem [3]. This procedure yields presentations that are almost the same:

$$\pi(S-k) = (a, b, A, B, x_1, x_2, \dots : a = A, b = B, r_1 = 1, r_2 = 1, \dots)$$

$$\pi(S-\tau^n(k)) = (a, b, A, B, x_1, x_2, \dots : a = A, b = A^nB, r_1 = 1, r_2 = 1, \dots)$$

where a and b are represented by meridian and longitude of V, and A and B are represented by the same curves in (the closure of) S-V. The 1-dimensional homology groups of S-k and $S-\tau^n(k)$ are infinite cyclic; we denote ambiguously by t a generator of either group (selected so that one is carried into the other by τ^n). Then abelianization of $\pi(S-k)$ or $\pi(S-\tau^n(k))$ maps A into t^q (and B into 1). Hence

38

¹⁾ The theory can be generalized to links (which must be ordered and oriented). For links of multiplicity μ we replace q by (q_1, \dots, q_{μ}) where q_i is the linking number of the i^{th} component with a. Instead of $\sigma_n(t^q)$ we have $\sigma_n(t_1^{q_1}t_2^{q_2}\cdots t_{\mu}^{q_{\mu}})$.

Congruence Classes of Knots

		a	b	A	В	•	•••
$A_{\kappa}(t) =$	a = A	-1	0	1	0	0	
	b = B	0	-1	0	1	0	•••
	•	*	*	*	*	*	•••
	•	•	•	•	•	•	•••
	••	•	•	•	•	•	
		a	b	A	B	•	•••
$A_{\lambda}(t) =$	a = A	-1	0	1	0	0	•••
	$b = A^{n}B$	0	-1	$\frac{t^{nq}-1}{t^q-1}$	t ^{nq}	0	•••
	•	*	*	*	*	*	•••
	•	•	•	•	•	•	
	•	•	•	•	•	•	•••
refore							

The

$A_{\lambda}(t) - A_{\kappa}(t) =$	0	0	0	0	0	•••
	0	0	$\frac{t^{nq}-1}{t^q-1}$	$t^{nq} - 1$	0	•••
	0	0	0	0	0	•••
	•	•	•	•	•	•••
	•	•	•	•	•	
≡0 r	nod $\sigma_n(t^q)$	•				

The only congruence classes that are fairly easy to deal with experimentally are those for which $n \equiv 0 \pmod{2}$ and q = 0 or 2. Let us consider the repartition of the fifteen prime knots of not more than seven crossings (cf. the knot table [4]) into congruence classes modulo 2, 0 and modulo 2, 2.

The polynomial character of $\kappa \mod 2$, 0 is $\Delta_{\kappa}(t) \mod 2$. Each residue class has as principal representative a polynomial whose coefficients are all either 0 or 1. By experiment I find the following congruence classes mod 2, 0:

$0 \equiv 5_2 \equiv 6_1 \equiv 7_4 \equiv 7_5,$	$\Delta(t)\equiv 1$	(mod 2)
--	---------------------	---------

 $3_1 \equiv 4_1 \equiv 7_2 \equiv 7_3$, $\Delta(t) \equiv 1 + t + t^2$ (mod 2)

 $5_1 \equiv 6_2 \equiv 6_3 \equiv 7_6 \equiv 7_7$, $\Delta(t) \equiv 1 + t + t^2 + t^3 + t^4$ (mod 2)

7₁,
$$\Delta(t) \equiv 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 \pmod{2}$$

It was observed by Kinoshita that the non-amphicheiral knot 3_1 must be congruent mod 2, 0 to its reflexion, since it is congruent mod 2, 0 to the amphicheiral knot 4_1 .

The polynomial character of $\kappa \mod 2$, 2 is $\Delta_{\kappa}(t) \mod (1+t^2)$; its principal representative is a positive odd integer (since $\Delta(t)$ is symmetric and $\Delta(1) = 1$). By experiment I find the following residue classes mod 2, 2.

$0 = 3_1 = 5_1 = 6_2 = 7_1 = 7_3 = 7_5$,	$\Delta(t)\equiv 1$
$4_1 = 5_2 = 6_3$,	$\Delta(t)\equiv 3$
$6_1 = 7_2 = 7_6$,	$\Delta(t) \equiv 5$
$7_{4} \equiv 7_{7}$	$\Delta(t) \equiv 7$

The congucence mod 2, 2 of 7_4 and 7_7 was discovered by F. Hosokawa. I conclude with some examples of the experimental work involved.

(Received February 5, 1958)

Fig. 1

40

References

- J. W. Alexander: Topological invariants of knots and links. Trans. Am. Math. Soc. 30 (1928), 275–306, p. 299.
- [2] R. H. Fox: Free differential calculus II. The isomorphism problem of groups, Annals of Math. 59 (1954), 196-210.
- [3] P. Olum: Non-abelian cohomology and van Kampen's theorem, Annals of Math.
- [4] K. Reidemeister: Knotentheorie, Chelsea (1948).