
Osaka Mathematical Journal
Vol. 7, No. 1, June, 1955.

On the Homogeneous Linear Partial Differential
Equation of the First Order

By Takashi KASUGA

§ 1. Introduction

In this paper, we shall treat the following partial differential
equation

without the usual condition of the total differentiability on the solution

For early contributions by R. Baire and P. Montel to this problem
in the special case n = 1, cf. Baire [1], Montel [6]. Our method is
entirely different from theirs and gives more general results even for
the case « = 1, cf. Kasuga |jΓ[. Also notwithstanding Baire's statement15

in his paper, it seems to us that their methods cannot be generalized
to the case n^>~L immediately.

We have not yet succeeded in treating the more general non-
homogeneous partial differential equation

g|+ ΣJ /μ(*>JΊ> ••• ,Λ,*)g^-==£(*,Λ, ••• ,yn> *)

in a similar way, except for the case « = 1. For this case, cf. Kasuga
[5].

1. In this paper, we shall use for points in Rn, Rn+1 or Rn+2 and
for their functions, abbreviations such as :

y = (Λ, - > yj > (χ y) = (χ> Λ » - > y») >

and if φκ(x, ξ 97) = <pλ(#, ?, ^, ••• , ηn) λ = 1, ••• , n are H functions of
(χ> ξ 17),

1) Cf. Baire [1], p. 120.
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; η)) = Z(X, φ^X, ξ \ <η)y ••• , φn(X, ξ \ η ) ) .

Also we use the following notations :
For sets of points A, B in Rm (m = l,2, ••• ,«-f-l),

^4 = closure in ί?w of A, A° == interior in 7?m of A

^4*:=: boundary in Rm of A, ^4 B = intersection of A and By

A[_x~] = the set of the points (y19 ••• , JΛ) in 7?w such that for a fixed x

( x , y i , - , y n ) £ A , i f AC^"+ I

For two points y' = (y^ - , Λ0 , y = W, ... , ̂ ) in #w,

In this paper, the so-called degenerated intervals are also included,
when we use the word "interval" (open, closed, or half -open). Thus
the interval a<^x<^a or the interval a<^x<La will mean degenerated
interval which is empty or is composed of only one point respectively.
Similarly for the interval a<Lx<^a or

2. In the following, we shall denote by G a fixed open set in Rn+l,
by fλ(x \y) λ = l, ••• , n n fixed continuous functions defined on G which
have continuous 3/λ/3jju, λ, μ=l, ••• ,n.

Under the above conditions, we shall consider the partial differential
equation

|+Σ/^;.)|μ = o. (2.D

With (2. 1), we shall associate the simultaneous ordinary differential
equations

^=Λ(*;j>) λ = l , - , w . (2.2)

The continuous curves representing the solutions of (2. 2) which
are prolonged as far as possible on both sides in an open subset D of
G, will be called characteristic curves of (2. 1) in D. Through any
point (ξ η) in Z), there passes one and only one characteristic curve in
D2\ We represent it by

2) Cf, Kamke [3], §16, Nr. 79, Satz 4,
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a(ξ\η\D), β ( ξ ] η \ D ) may be — oo? +00 respectively. Sometimes we
abbreviate it as C(ξ\η\D). If an interval (open, closed or half -open) is
contained in the interval a(ξ\η D)<^x<^β(ξ η\D)y then we say that
C ( ξ ] η \ D ) is defined for that interval. Also when a property holds for
the portion of C(ξ η\D) which corresponds to the values of x belonging
to an interval, we say that C ( ξ ] η \ D ) has the property for this interval.

We shall use the following properties of C(ξ η D) and φλ(x, ξ \ η \ D )
often without special reference.

As we can easily see from the definition of C ( ξ \ η \ D ) y ( ξ \ η )
£C(ξ\η\D) and if (*' /) 6 C(ξ η\D), then C ( ξ \ η \ D ) = C(x'\y D) and

so ( ξ ; * ι ) £ C ( x ' ; y \ D ) .
In terms of the functions φλ, this means :

and if y = φ(x', ξ\η\D)y then

a(ξ',η D) = a(x' ,y D) = a , β ( ξ ; η\D) = β(x' ,y\D) = β

and

φ(x,ξ\η\D) = φ(x,x'\y'\D) for a < x < β ,

especially

Also C(ξ ]η\Dj^C(ξ] η/D2), if D^D2 and (ξ;η)zD2.

We denote by D* the set of the points (x, ξ\rj) in Rn+2 such that
(ξ]<r/)eD and <*(£ η \ D)<^x<^β(ξ η D). D* is the domain of definition
of the functions φx(x,ξ\η\D). D* is open in Rn+23\ The functions
φ\(x>£\ίn\D) are continuous and have continuous partial derivatives
with respect to all their arguments on D*.0

A continuous function z(x y) defined on G will be called a quasi -
solution of (2. 1) on G, if it has dz/dx, 3z/9yλ λ = l, ••-,«, except at most
at the points of an enumerable set in G and satisfies (2. 1) almost every-
where in G. Here dz/dxy dz/dy need not necessarily be continuous.

On the other hand, a continuous function z (x y) defined on G will
be called a solution of (2. 1) on G in the ordinary sense, if it is totally
differentiate and satisfies (2. 1) everywhere in G.

3. We shall prove the following three theorems in § 3, § 4.

3) Cf. Kamke [3], §17, Nr. 84, Satz 4.

4) Cf. Kamke [3], §17, Nr. 84, Statz 4 and §18, Nr. 87, Satz 1?
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Theorem 1. A quasi -solution z(x y) of (2.1) on G is constant on
any characteristic curve of (2.1) in G.

Theorem 2. // for a fixed number £co), the family of all the charac-
teristic curves C ( ξ ™ \ η \ G ) such that */e G[fco:>], covers G and ψ(η) = ψ
(Viy '" > Vn) is a totally differentiate function defined on G\_ξ^~\, then
there is one and only one quasi -solution z(x y) of (2.1) on G such that
z(ξw η) = ψ(η) on G[P}] and this quasi -solution z(x y) is also a solution
of (2. 1) on G in the ordinary sense.

Theorem 3. I f n = 1, any quasi-solutiσn of (2. 1) an G is also a
solution of (2. 1) on G in the ordinary sense.

REMARK 1. For the case w = l, the proof of Theorem 1 can be
partly simplified, cf. Kasuga [4].

REMARK 2. In Theorem 1, the condition on z(z y) that it has
dz/dx, dz/dyλ λ = l, ••• , n except at most at the points of an enumerable
set in G, cannot be replaced by the condition that it has dz/dx,
^z/^y\ λ = l, •••,# almost everywhere in G, as the following example
shows it.

EXAMPLE. G: 0<#<1 0<O<1,
the differential equation is

and a function z ( x 9 y ) is defined by

on G

where ψ(x) is a continuous singular function not constant on the interval
0<:.A;<:1 as given in Saks [8] p. 101.

Then z ( x , y ) is continuous on G, has dz/dx, dz/dy almost every-
where in G and satisfies the differential equation almost everywhere in
G. But z(xy y) is not constant on any characteristic curve y = constant.

§ 2. Some Lemmas

In this § , the notations are the same as in § 1 and we assume that
z(x y) is a quasi-solution of (2.1) on G.

4. Set K and Some Lemmas. We denote by K the set of the
points ( ξ \ η ) of G such that z(x y) is constant on the portion of the
characteristic curve C ( ξ \ η \ G ) contained in a neighbourhood of ( ξ \ η ) .
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Lemma 1. // a characteristic curve C(ξ\η\G) is defined for an
interval I (open, closed, or half-open) and is contained in K for the open
interval 7°, the interior of 7, then z(x y) is constant on the portion of
C(ξ η G) for the interval 7.

Proof. By the definition of K, we easily see that z(x \y) is constant
on the portion of C ( ξ \ η \ G ) for the open interval 7°. Then Lemma 1
follows from the continuity of z(x y) and φλ(x, ξ\η G) λ = l, ~ yn.

Lemma 2. Denote by D an open subset of G, and denote by D0 the
set of the points ( ξ \ η ) of D such that z(x y) is constant on the charac-
teristic curve C(ξ\η\D). Then D0 is closed in 7).

Proof. If C(£c o );τ7c o ) D) where (I*05 η™) e D, is defined for a closed
interval a0<Lx <β0, then C ( ξ ; η \ D ) where (ξ η) is sufficiently close to
(ίc(0 97C(0), is also defined for the interval <x0<:χ<:β0 and

φκ(X, ξ η D) -> φ>(X, ξ™ η™ \ D) λ = 1, - , Λ

uniformly in the interval (*0<Lx<LβQ as (ξ 97) -> (P} τjw)5\ From this
and by the continuity of z ( x \ y ) , we easily see that 7)0 is closed in 7>,
q.e.d.

Lemma 3. Let D be an open subset of G. If ,

\fκ(x ;jO-Λ(* JO I ̂  M\\ y-y || λ = 1, -. , n (4. 1)

for every pair of points (x y), (x y) G D with the same x coordinate and
if C(ξ\η\D) and C(ξ\η\D) where ( ξ \ η ) , (ξ\η\£D, are both defined for
an interval a0<Lx<Lβ0 containing ξ (<x0<Lξ <Lβ0), then

\\φ(X,ξ\η\D)-φ(Xyξ\η D) \\ = ± \ φμ(x, ξ η \ D)- φ^(Xy ξ η \ D) \

<\\ϊ-η\\exp(nM\x-ξ\) (4.2)

and

\φλ(X, ξ \η\D)-φx(x,ξ\η\

x{exρ(«M|Λr-f |)-l} λ = !,-,» (4.3)

for a0^x^β0.

Proof. We abbreviate φ^x, ξ\η\D) and φλ(x, ξ η\D) as φκ(x] and
φλ(x) respectively.

By (4. 1) and (2. 2), we have

5) Cf. Kamke [3], §17, Nr. 84, Satz 4,
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\φ>?(x)-<pΔx)\^M\\φ(x)-φ(x)\\ λ = !,-,« (4.4)

for <x0<Lx^β0, so that

\φμ(x)-φ,,.(x)\

for ^o^ ^^/^o Hence by a theorem on differential inequalities6^ taking
account of <x0^ξ<Lβ0 and ηλ = φλ(ξ), ηλ = φλ(ξ) (λ = l, ••• , w), we obtain

|| φ(x)-φ(x) || ̂  || ^-^ || exp (nM\x-ξ\) (4. 5)

for a0<x<iβ0. Thus (4.2) is proved.

By (4.4), (4.5), we get

\Φ>!(x}-φ>!(x}\<M\\η-η \\e*v (nM\x-ξ\) λ = l, ... ,«

for α'0 <ix <Lβ0. Hence, again taking account of a0 <:ξ <^β0 and η^ =

η\ = ψχ(ξ) (λ = l, •••,«), we have

(nM\ x-ξ\)dx

ξ\)-l} λ = 1, .- ,»

for ^o^^^/^o Thus (4.3) is also proved.

§ 3. Proof of Theorem 1.

In this § , the notations are the same as in § 1 and § 2 and we
assume that z ( x \ y ] is a quasi -solution of (2.1) on G.

5. Set F and Domain Q. We denote by F the set G—K G. Evidently
F is closed in G and K^G-F.

If F is empty, that is G = K, we can conclude by Lemma 1 that
z ( x \ y ) is constant on any characteristic curve in G and Theorem 1 is
established.

Therefore we suppose in the following that FΦO and we want to
show that such supposition leads to a contradiction.

Proposition 1. There is a positive number N and a (n-{-\.)-dimensional
open cube Q:\x—a\<^L, \yλ—bx\<^L λ = l, ,« (L^>0) such that

(a b) 6 F

6) Cf. Kamke [3], §17, Nr, 85, Hilfssatz 3 and Satz 5,
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and such that

h\N

:\k,\N (5.1)

whenever (x y) e F (?
(x + h jy + &)e Q, where k —

Fig. 1

Proof. We denote by
H the at most enumerable
set consisting of the points
of G at which z(x y) is not
derivable with respect to x
and with respect to j\
λ = l, ••• yn simultaneously.

If a point (ξco) ^co)) of
G has an open neighbour-
hood V such that every
point of V belongs to K
except at most (ίc(0 ??co))
itself, then by Lemma 1 z(x\y) is constant on C(ξ^\η V) where η is
any point of V[£C(0] except η™ and so by Lemma 2, z(x y) is also
constant on C(£cw ηw \ V), that is, (ξ™ η™) e K. Hence the set F which
is closed in the open set G, has no isolated point.

Therefore F is a Gδ set in Rn+l without isolated point and so
every point of F is a condensation point of F7'\ Thus since F is not
empty by the supposition and H is at most enumerable, F—H is not
empty and

F-H^F (5.2)

Also the non-empty F—H is a Gδ set in Rn+1 since F is a Gδ set
in 7?w+1 and H is at most enumerable. Hence F—H is of the second
category in itself by Baire's theorem85.

On the other hand, if we denote by Fm for each positive integer
m, the set of the points (x y) of G such that

\ z ( x , y l 9 (5.3)

7) Cf. Hausdorff [2], p. 138.
8) Cf. Hausdorff [2], p. 142.
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whenever \ h \ , \kκ\<l/m and (x + h;y)eG, (xyyly •••, r^A + ̂ A+i, — ,
yn)£G λ = l, •••,«, then the union of the sets Fm covers F— H by the
definition of H and each of the set Fm is closed in G by the continuity
of z(x y).

Therefore there must exist a positive integer N and a (n + ί)-
dimensional open cube Q: \x—a\<^Ly \yλ— £λ|<L λ = l, •••,»
such that (a b)ζF-H(^F and

N. (5.4)

Also we can take L sufficiently small so that

(5.5)

(5.6)

since G is open in Rn+1.
By (5. 4), (5. 6) and by observing that Q is open in Rn+l and FN is

closed in G, we have

so that by (5. 2).

F OF.Q.

Hence by (5.5), (5.6) and by the definition of FN, the inequalities (5. 3) for
w^Nhold whenever (x; y)e F Q and (x + h;y)ζ Q, (x,y19 •••, Vι-19yλ + kλ,
y\+ι> •", V Λ ) 6 Q λ = l, ••-, «. This completes the proof of Proposition 1.

In the following, Q, L, (# 6) and N have the same meanings as in
Proposition 1.

6. Domains Q19Ωl,Gl and Set F. fλ and 3/λ/9jμ λ, μ = l, — ,«

are defined and continuous on Qc^G. Hence there is a positive number
MO such that

I Λ I , |3/λ/9yμ|<M0 λ , / Λ = l,...,« on Q. (6.1)

Then we can easily prove

IΛ(* jO-Λ(* Λ I ̂  ̂ o II j?-y 11 (6. 2)

for any pair of points (x j>)> (x \ y) £ Q with the same x coordinate.
We take a positive number Lx such that

exp (2n2M0L1) < 2 (6. 3)

L. (6.4)

We denote by f^ the w-dimensional open cube: \ηλ— bί,\<^L1 λ — 1,
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• -.,« and by Q, the (w 4- l)-dimensional open parallelepiped : \x~a\<L19

|j\~AI<L λ = l, - , Λ . By (6.4) LX<L and so

By (6.4), τjλ+L1MQ^bλ+Ly ^-L.M^^b^-L λ=l, — ,« whenever
i^eίV Hence the characteristic curves C(a\η\Ql) where 97 eί^, are

defined just for the in-
terval \x—a\<^Lί since y

IΛKAΓo λ = l,-,» on --Q

by ί6-1)-
We denote by Gl the

portion of Q! covered
by the family of all
the characteristic curves
C(a\η\Qι) where ^GίV
Then by the properties of

v

Fig. 2

as stated in § 1. 2, obser-
ving that Ω! is open in
Rn

y we easily prove that
G, is open in Rn+1 and
the characteristic curves
C(ξ\ η GJ where (ξ 97)
6 G!, are defined just for
the interval x—a\<^Ll.

We denote by F the
set of the points η of Ωx

such that C(a\η\Gl) has
at least one point in com-
mon with F. F is not
empty since (a b)eF and
b = (bλ, , bn) G Oj. Now
we prove

Proposition 2. F°, £//£
interior of F in Rn, is not
empty.

Proof. Suppose, if
possible, that F° = 0.

If η eίli — F, then C^ ^IGJ is contained in K by the definition of
F and so by Lemma 1 z ( x \ y ) is constant on C(a\η\G,). Hence by

Fig. 3
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Lemma 2, z(x\y) is constant on any C(a;η\G1) such that η£ ί^—F Q.

But Ω!—.F Ωj — βj, since jF° = 0 by supposition and ί̂  is open in Rn.
Therefore z(x y) is constant on any C(a\η Gt) such that ^eί^

and so by the definition of K.G^K since Gl is covered by the family
of all the characteristic curves C(a η \ Gj where 97 G Ωj.. Hence, observing
that G1 is open in Rn+l, we have

F = G c- G G- G11

But this is a contradiction since (# b) e F
proved.

Thus Proposition 2 is

7. Domains Ω2 , G2 . By Proposition 2, F° is not empty. Hence we
take a point b^ = (b?\ - , b™) eF°.

Then we can construct a domain O2 in Rn defined by

such that

Evidently

*?: \\η-b^\\<L2 (L2>0) (7.1)

Ω2 C F (7. 2)

<Ω2 C
 βι (7. 3)

since F^Q by the definition of F.
We denote by G2 the portion of Q1 covered by the family of all

the characteristic curves C(a\η\Qλ) where η£Ω 2. In the same way as
in the case of G1, we easily prove that G2 is open in Rn+1 and so G2[jt;]

Fig. 4
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is open in Rn for any x in the interval \x—a\<^L^. Also C ( ξ ] η \ G 2 )
where (ξ\η)ζG2, is defined just for the interval \x—a\<^Ll. Evidently
by (7.3) and the definition of G19 G2,

Proposition 3. C(ξ\η\G2) where (ζ\η)£G2y has at least one point
in common with F G2.

Proof. If (ξ\η)£G2 and ̂  = φ(a, ξ η G2), then ^Gίl, and
C(f 5 1 7 G2) = C(«;ί7c w G,) by the definition of G2. Then by (7.2) and
the definition of F, Proposition 3 follows.

Proposition 4. // \ξ—a\<^L1, then

G\ξ~\ ̂  (G2[F])» , f A* boundary in Rn of G2[F| . (7. 4)

Further if \ξ--a\<Lι and η£(G2{ξ~\)b, then

££l\, the boundary in Rn of O2.

Proof. We consider the continuous mapping Sίξ of Ox onto
defined by

That 21 € maps ί2x onto G^f] follows from the definition of G x.
By the properties of Cd ί/IGj and 9>λ(Λr, f η\G^ as stated in

§ 1. 2, we easily see that Sίξ is one to one and bicontinuous and Sl̂ 1 is
represented by

Ί-xpfaξ ηlGj (7.5)

We have

Sί,(Ώ2) - G2[f ] (7. 6)

by (7. 3) and the definition of G2. Hence again taking account of (7. 3),

by the continuity of 2Iξ we have ^(4)C<^?Ϊ

On the other hand, since Γ22 is closed and bounded in Rn

y its

continuous image §ίg(Ω2) is closed in R n and so, taking account of (7. 6),

we have

Therefore 3le(^) = (yTl. Hence by (7. 6), (7. 3), and
observing that ί!2,G2[Fl are both open in Rn, we get Sί

From this, taking account of the representation (7.5) of
Proposition 4 follows.
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8. Classes Sλ, Sα:ι and Operations Tλ, T, Tu\ We take two
points (xf /), (#7 y') of 7?M+1 with the same x coordinate such that
(*';/) eF G2, (*';/) eG2 and further (*',Λ', -, yjU,^/, X+1, •••, yM')e G2.
In the following, we denote the class of all such ordered pairs
{(*';/), (*';j>')} of points of Rn+1 by Sλ (λ = l, •-,«). If we put
^-(V/, •-,rλ

/-ι,Λ/,X+ 1,-,rΛ then (* ' ; jK)eG 2 .
Now there is the nearest x to x' in the interval |Λ;— a\<^Lλ such

that either (*, φ(x, x/ j J 7 |G 2 ))G F G2 or (x, <p(x, x' 3>'\G2))e F G2, since
by Proposition 3 each of the continuous curves C(x';y'\G2) and
C(#7; 3J7 |G2) which are just defined for the interval \x—a\<^Ll and are
contained in G2, has at least one point in common with F G2 which is
closed in G2 . We denote such x by x". If incidently two such x exist,
then we take as x" the one on the right side of x'.

Now we distinguish two cases

i) If (a", φ(x", x'\ y'\G2))£F G2, then we put

y" = φ(x",x!\y'\Gά and y" = φ(x", x' y'\G2) .

ii) If (x",φ(x",x'\y'\G2))£F G2 and so by the definition of x",
(x", φ (x", x' ^ I G2)) € F G2 , then we put

y" = φ(χ"y x' J> G2) and y» = φ(x", Xf y' \ G2) .

In any case, (x" /') e F G2 and (x" j;77) e G2 .

We denote by Tλ (λ = l, ••• , n) the above operation which assigns
to every (ordered) pair {(x' /), (x1 y')} of points of Rn+1 belonging to
the class Sλ, an (ordered) pair {(x" /7), (*";j;/7)} of points of Rn+1

with the same x coordinate such that (x" y") e F G2 and (^x/ y") e G2 .

Also we write Γλ{(*' /), (xf j?0} = {(x" I /0> (̂  j?77)}-
If {(x" /O, (^7/ /)} e Sμ, we can apply Tμ again on {(x" /O, (x" I y")}

Proposition 5. // {(xf /), (x' y')} G Sλ αwJ if we put {(x" /')>

-f- N || /-/ || (8.

Proof. We put $' = (y/, ••• , yjLuΛ7, yί+1, ••• , y/). Then (*' y')
e F. G2(^F Q and (jtx ^ 7) € G2 C Q since {(ΛX /), (xf j?7)} 6 Sλ . Hence
by Proposition 1 (5.1), if we put z' —

N\yλ'-yλ'\<N\\y'-y'\\. (8.2)

By the definition of 7\ ,
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/' = φ(χ», x';y'\G2) ( y" = φ(x", x' y'\G2)or < (8.3)
y" = φ(X», χ> y \ G2) ( y" = φ(χ», x' y' \ G2)

On the other hand, each of C(xr y'\G2) and C(x'\J'\G2) has no
point in common with F for the interval x'<^x<^x" or x"<^x<^x' by
the difinition of Tλ so that they are contained in K for the interval
*"O<X or Λ'<.rO". Therefore by Lemma 1 and (8.3)

( z" = z(x" /') = z(x' y') = z'

( z" = z(x" y") = z(x'; y') = zf

or
z" = z(x" /O = z(x'\ y') = z'

z" = z(x" y") = z ( x f y') = z1

so that
\z'r-z"\ = \z'-y\. (8.4)

By (8. 4), (8. 2) we have

\z'-zf\^\z'-Z'\ + \z'-z'

q.e.d.

We denote by Tμ 7\ the operation which assigns to a pair
{(*';/), (Λ' JV')} of points of Rn+\ the pair T^T^x' /), ( x ' \ y ' ) } } of
points of Rn+l if

{(*' /), (x' j?7)} € Sλ and Γλ {(^ /), (x' j?0} € S,

and similarly for products of any number of operations jΓλ(λ = l, ••• , n).
n m

We put T=fn TH_ι ~— T2 Tι and Tm=T T» — .T (T° = identity

operator) for any non-negative integer m and Tu> = Tv T v_ x

for any non-negative integer / if l — mn + vy 0<iy^«--l and m, v =
negative integer (if v = ΰy TUί = Tm).

We denote by Su> (/>0) the class of all the pairs {(*';/),
of points of Rn+1 on which we can apply the operation Tαj

and by S^ the class of all the pairs {(x' /), (x' y')} such that
(xr /) G F. G2 and (jc7 j;7) G G2. We regard Sco:j as the domain of defini-
tion of the identity operator TCO:J = Γ°.

In the following, we put

M, = exp (2n2M0L1) -1 (8.5)

M2 = exp (2nM0L1), (8. 6)
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then by (6. 3)

1>M1>0. (8.7)

Also

M2>1. (8.8)

Proposition 6. // {(*co) /0)), (x^ y^)} e Su> where l =
— l;>yl>0 and m, » = non-negative integer, and if we put Ttl'}{(xw jyc(υ),

\\ /0)-/°> \\ (8. 9)

Proof. In the following lines, we shall prove by induction on /
more precise results,

II /n-/D II ̂  Ml Mr || $«»-?<» II (8. 10)

and

\y^-y,\<^(Ml~M^)Mΐ\\y^-y^\\ for v>λ:>l (8.11)
n

whenever

(8.9) follows from (8.10) since Λf^Aζ-f-l by w-1^^^0 and
(8.5), (8.6).

For / = 0, T^l}— T^ = identity operator and m = u = Q. Hence here
(8. 10) and (8. 11) are trival.

Now we assume that (8.10), (8.11) are true for l = l' = m'n + ι>/ and

let {(*co);/0)), Uco);j;co))} eSc//+l:j(CSc/0). Then {(*c/0;//0), (*c/0;jfc'0)} eS,+1

since Γc//+13=Γv,+1.Γ
c//:ι. Also {(*α/+1);/l/+1>), (jccι/+1); j;^1^} — ̂ ^^^^ ;̂

/..Co^x / rco) . Λ ϊ C o ) \ \ _ 7^ //rα / : ) va/:>\ ( rW> ΰW>\\y )> (x >y )ι — * s+ι\\χ >y )> \χ >y ;/•
Then by the definition of 7V+1, (6.2), Lemma 3 (4.2) and (8.6),

taking account of #α/+1)— *αo|<^2L1, we have

exp (nM0 \ xw+»-xw \)^\\ y^-y^ II exp (2nM0L1) = M2 \\ y^-y^ \\

and so by (8.10) for / = /',

|| ̂ ^+υ_y^i) n ^ M^Mr || j;^-/0^ || . (8. 12)

Also by the definition of Γ,/+1, (6.2), Lemma 3 (4.3) and (8.6),
we have
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+ - '"-

Σ

+

and so by (8,10) and (8.11) for / = /',

— (M-l)x ||j»αo-/IO|| for wΞ>λ^ιl λφv'

— (Aζ-lJxΛflί 'Λfr ||j>co)-/w || = — (Mr^-MΓWf ||/w-/w ||
Ύl tl

for i/^λ^l. (8.13)

Again by the definition of Tv+1, (6.2) and Lemma 3 (4. 3), we have

,
μ = 1

){exp(wM0|^
α"°-Λ:αo|)-l}

and so by (8.10) for / = /',

~
If w-2^^>0, then (8.12), (8.13), (8.14) prove (8.10), (8.11) for

l — l' + l since l' + l = nm' + v'-f l, «— l^^ + l^l in this case.
If ϊ/ = w.-l, then l' + l = n(m' + 1). In this case, by (8.13), (8.14),

we obtain

ll/ί/+1)-/z/+Ό II - Σ

since M^'1^! for n^μ^l and M1 = MS— 1 by (8.8), (8.5), (8.6). This
proves (8.10) for l = Γ + l in the case v' = n— 1. In this case (8.11)
for / — /' + ! is trivial, since then there is no λ for which it should be
established.

Thus (8. 10), (8. 11) are proved for any non-negative integer / and
so the proof of Proposition 6 is completed.

9. Further on the operation
In the following we put
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M3 = nM2(l + M1)(l-M1Γ
1. (9.1)

By (8. 7), (8. 8), M3 is positive.

Proposition 7. // {(*co5 /w), (xm yίm)} 6 S"3 /or a non-negative
integer I and if we put

= φ (a, x^ /» I G2) ,

. (9.2)

Proof. By the definition of TCί:ι,

/*J = <p(jfp\ jf*-» j>c*-» I G2) or jcw = ̂ (Λ;^3, *<*-» j^"15 1 G2)

for p = l, ••• ,1. Hence

y<P>=ή*-ι> or -c« = -w-ι> ^ = 1 > . . . > / f

so that
|| ̂ _-v-» i i = I, ^w.^cw ii or || ̂ w_^-» || = 0

for /> = 1,.-,/.
Therefore

II η("-ηm II ̂  Σ I I ^"-9C* " II + II ̂ ro->7CM II < Σ II ̂ -^ II (9. 3)
3?=i p=0

By (6.2) and Lemma 3 (4.2), we obtain

<ί j ; - | exp

for ί = 0,-,/, (9.4)

since [a-x^K^L, and >/]̂  = exp (nM^) by (8.6). Similarly by (6.2)
and Lemma 3 (4. 2), we have

H^.yo) H ^ H -co).,^) i i^xpίwMol^-αD^VΛξ II ̂ 0W° II - (9.5)

On the other hand, by Proposition 6, if p = qn + s> n — l:>s;>0
q, s — non-negative integer, then

I/0 )-/0 )ll for j> = 0, - ,/. (9.6)

By (9. 4), (9. 5), (9. 6), we obtain

| ̂ -^w || for /> = 0, - 7 / . (9. 7)
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By (9.3), (9. 7), taking account of (8.7) and (9.1), if l =
n — l l>yl>0 and my v = non-negative integer, then we get

nm— i wra+v

II ?n-η™ [I <: Σ II η™-*,™ II + Σ II η^-η^ II

m-l

nM2(M1 + l)(

In the following we put

M4 = nN(\ + AζXl-Aζ)-1 (9. 8)

By (8. 7), M4 is positive.

Proposition 8. L^ί £/?£ premises and the notations be the same as in
the proposition 7 and further let

/*>) and z^ = z (x™ y<») for p = 0, - - - , / ,

then

I zco)-2co) I ̂  M4 I I y*»-yP> || + I z™-afn I . (9. 9)

Proof. We use the same notations as in the proof of Proposition 7.

If / = 0, (9.9) is obvious by M4^>0. Hence we suppose Γ>0 in
the following lines.

By Proposition 5,

-y^ \\ for p = 0, - , /-I , (9. 10)

Adding the inequalities (9. 10) for p^= 0, ••• , /— 1 side by side, we obtain

^co)_^co) _ | g C / > _ 2 C / ) | ̂  ̂  g || yW-fV \\ . (9. 11)
ί>=0

On the other hand, by Proposition 6,

|/«-y« || for p = Q, -,l,

where q is determined for p as in Proposition 7 (9. 6). Hence m, v
being determined for / as in the definition of Tίn,

Σ

(9. 12)
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since n-l^u^Q and 0<M1<1 by (8.7).
By (9. 11), (9. 12), taking account of (9. 8), we obtain finally

q.e.d.

10. Domain O,, G3. We put

M5 = 1+2(M1 + 1)M2 + 2M3 . (10. 1)

By (8.7), (8.8), (9.1), M5>1. Hence if we take a positive number L3

such that

L3M5<L2, (10.2)

then

L 3<L 2. (10.3)

Now we take a domain ί23 in Rn defined by

*?: \\ri-V" \\<L>. (10.4) y

Then by (7. 1), (10. 3), (10. 4),

(7. 3),

C Ώ2 C ΩI . 5)

We denote by G3 the /^"
portion of Q1 covered by the n2 ΩS

family of all the character- V_^
istic curves C(a η \ Q) where

^GO 3 . In the same way as
in the cases of G1, G2, we

easily prove that G3 is open
in Rn+1, and C(ξ η \ G3) where
(ξ 97) e G3, is defined just for
the interval \x—a\<^L1. By (10.5) and the definitions of G;, G2, G3,

Fig. 5

Proposition 9. // (Λ:CO) /0)) 6 F G3 and (xw j/co)) 6 G3 , then {(*co) /°5),

(xw jyco))} G Sc/:ι for any non-negative integer I.

Proof. We use the same notations as in the Proposition 7 and 8.

We prove Proposition 9 by induction on /. For / = 0, Proposition
9 is obvious by the definition of S^ and G3C^G2. We assume that
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Proposition 9 is true for / = /'. Then if (*co) /0)) e F G3 and (#co) /0)) e G3 ,
the pair {(*αo /zo), (*αo jyαo)} = TC//;J{(Λ:CO), /0)), (*co) /0))} is uniquely
determined and (xao /zo) e F G2 and (xao j;α/)) e G2 by the definition of
p:/θφ

Let /' = m'w -f i/, w — 1 i> i/ :> 0 and m', i/ = integer. Then we put
j»czθ _ fv α / ) ... v ( z / ) ιl(^/;) ι;(z/) ... i/z'Λ Tf ι)αo <^ ^7 Γ rαol that IQj — vri > ••• > V v / , JVv+i > JVv/+2 > •*• > V« -11 JV ^ ̂ L^ J > ΐnaτ is,
(Λ:α o;^α o)eG2, then {(jcαo /z/)), (jtrαo /z/))} e S,,+1 so that {Uco) /0)),
(Λ:CO) j;co))} e Sc//+ι:ι and the proof of Proposition 9 is completed.

We suppose therefore, if possible, that jyαo j£ G2[#
αo]. Then there

is a point j* G (G2[]Λ:α/)3)δ on the segment of straight line which joins
yao and y™ since j;αo e G2[Λ:α/)] by (*αo jycί°) 6 G2 .

We can easily see that

so that by Proposition 6 (8.9)

II J>*_yαo i i ^(M, + l)Mf 11 /0)-/0) || . (10.6)

By Proposition 4, since j>* e (G2 |>
α/)])δ ,^66, [jt:ao] , that is,

(x™ y*) £ Gi and if we put <η*= φ(a, xcιn ;y*\G1), ^*eΩi. Hence by
(7.1)

||^-^||-L2. (10.7)

By (6.2) and Lemma 3 (4.2), taking account of (8.6) and \a-xao\
<^L!, we have

II ̂ -^° II ̂  \\y*-ym

^ II y*-y™ || exp

and so by (10. 6)

II 17* -y10

On the other hand, by the definitions of ^co), ^°\ G3 and by
(jcc o );/0 ))eF.G3, U c o );/0 ))eG3, we have

;;coW0)eΩ3,

so that by (10. 4),

|| ̂ -b^ ||< L3 , i| η^-b^ ||< L3 . (10. 9)

Also, as we have seen in Proposition 7 (9. 5),
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Hence, by (10. 9)

From this and (10. 8) we get

II ^-^c/0 II <2L3M2(M1 + l)Mf (10. 10)

Also, by Proposition 7, (9.2) and (10.9), we have

II η™-η™ || < M3 |i ̂ -^ || < 2LM (10. ID

By (10.7), (10.9), (10.10), and (10.11), taking account of (8.7),
(10. 1), we obtain finally

But this contradicts (10. 2) and Proposition 9 is completely proved.

Proposition 10. Let {(xf j/), (#' jy')} #0 <^ Ĵ pair of points of G3

with the same x coordinate and let

Then

z'-z'\<M2M4\\y'-y'\\ (10.12)

Proof. There is the nearest x to x' in the interval \x—a\<^L1 such
that either (x, φ(x, x' /|G3)) e F G3 or (ΛΓ, ^(Λ:, ̂  ^X |G3)) € F G3, since
by Proposition 3 and G3C^G2, each of the continuous curves C ( x ' \ y f \ G z ]
and C(x'',y'\G3) which are defined just for the interval \x—a\<^L1 and
are contained in G3 , has at least one point in common with F G3 which
is closed in G3. We denote such x by #co). If incidently two such x
exist, we take as xw for example the one on the right side of xf.

Now we distinguish two cases.

i) If (x^\φ(x^\ ^;/|G3))eF.G3, then we put

yo) = φ uco)? ̂  y I G3) , y«» = φ (y?\ χ> y' \ G3)

ii) If (*co), φ(x^\ ^;/ |G 3))^F G3 and so by the definition of *cco,
(*co), φ(x™, x'\y'\ G3)) G F G3 , then we put

In any case (xw /°>) € F G3 and (*co) jco)) e G3 .
By the definition of #co), each of the characteristic curves C(xf y'\G3)
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and C(x' yf \ G3) has no point in common with F and so is contained in
K for the interval x'<^x<^x™ or x™<^x<^xf. Hence by Lemma 1,
if we put zw = z(x^;yw) and z™ = z(x™ jco)),

z™ = zf

or
zco) = z'

Therefore in any case,

|3'-Z'| = |Z«»--Z«»|. (10.13)

By Lemma 3 (4. 2) and (6. 2), taking account of (8. 6), we have

^ II y'-y II exp (2^7^^) < M2 \\ y'-y' \\ , (10. 14)

since

Now, by Proposition 9, {(x™ /0)), (xw jco))} 6 Sc/:j for any non-
negative integer /, since (#C(υ /0)) e F G3 and (#co) j;co))e G3. Hence we
put

for any non-negative integer /. Then by Proposition 8

M,\\y^-y^\\ +\z^-z^\ (10.15)

On the other hand, by Proposition 6, if l = nm + u, n—l^u^Q and
, v = integer, then

Hence observing that m->oo as /->oo and

!!/"-/« || ̂ o as / - » o o ,

Thus

/'>) | -* 0 as

since by the continuity of z(x y) on Q(CG), ^(Λ:;^) is uniformly

continuous on Q which is closed and bounded in Rn+1 and by the
definition of Ta\ (*CD /n), (x^D fD) G G2 C Q for any non-negative
integer /.

Therefore letting /->oo on the right side of (10.15), we have

^Mj|/°>-y0)u . (10.16)
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By (10.13), (10.14) and (10.16), we obtain finally

q.e.d.

11. Domains Q', Q", Ω4, G4 and Mapping §ί. Since G3 is open in
Rn+l, and F G 3ΦO by the way of the construction of G3 and Proposition
3, we can take a (w-f-l)-dimensional open parallelepiped Qf:

\x-a'\<L<9 |A-VI<L4(

such that

(a' δ') = (a'9 &/, - - - , ft/) 6 F G3 and Qx C Gs .

Evidently Q/

We denote by Ω4 the ^-dimensional open cube

Then if

Hence the characteristic curves C(af \ η Q') where ^GO 4 , are defined
just for the interval \x—af <L4 since |/λ|<M0 λ=l, •••,« on QX(
by (6. 1).

Fig. 6
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We denote by G4 the portion of Q' covered by the family of
all the characteristic curves C(af η\Qr) where η£Ω4. Evidently

In the same way as in the cases of G1 , G2 and G3 , we easily prove
that G4 is open in Rn+1 and any characteristic curve C(ξ\ η\G4) where
( ξ ' , η ) £ . G 4 is defined just for \x— a'\<^L^

We put

M5 = N+ nM0MM + AζM4 . (11.1)

Proposition 11. Let (jrα) /υ) and (#co) /0)) be any pair of points
of G4 and let

z^ = z (*C1) y™) , <rco) = z (*co) /0)) .

Then

^-xw\ + \\y™-y™ || ) (11.2)

Proof. We denote by #C2) :
(Case I) the nearest x to #α) in the interval x^<x<x^ or #ci)<ji;<ji;(co

such that (x\<p(x,x™\^\Gt))£F, if the portion of C(*C1) /Ό |G4) for
that interval has some points in common with F. Such x exists in this
case since the continuous curve C(*α) /1}|G4) which is defined for the
interval #co) <x ^#C1) or x^^x<,x^\ is contained in G4 and F G4 is
closed in G4.
(Case II) the number *co), if the portion of C(*C1) /Ό |G4) for the
interval x^<^x<^x^ or x^Ό<^x<:xw has no point in common with F.

We put y™ = φ(x™,x™;y™G4), z™ = z(x^ /2)) . In Case I,
(*C2) /2)) € ̂  G4 and in Case II, (x™ /2)) = (*co) <p(xw, x^ /1} G4)) e G4.

Then in both Cases, by Lemma 1,

^α) = z™ , (11. 3)

since the portion of C(Λ:CI) y ι } |G4) for the open interval x^<^x<^x^
or x^<^x<^x^ has no point in common with F and so is contained in
K by the definition of Λ:C2).

Also by (6.1), (2.2), observing that C(*α) /1}|G4) is contained in
ζ), we have

1 3>Γ -y? I = I φ^2\ x^ /1} I G4) - φλ(x«\ x™ /^ G4)
< M l r ( 2 ) — rα )l > — 1 ... w^ IK/Q | Λ Λ, I Λ, - J., , Λ ί .

Hence

since Λ:CO) ̂  ̂ C2) ̂  Λ:(I) or *α:) ̂  Λ:(2) ̂  *co) by the definition of *°°.
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Therefore we have

Now

(ii. 4)

since (*C(D /0))<E G4C £' and UC2) /2)) G G4CQX in both Cases. We put
z™ = z(x™]y™).

Then we have

I z^-z^ I = I z(xw /2))-<r(*(2) /2)) | ̂  N\ x™-xw \

in Case I, by Proposition 1 and (xw /2))e Q, (Λ:C2) /2))G F G4(^ F Q,
and in Case II, simply as jrC2) = #co). Hence, by (11.3), we get

(11. 5)

since x™ or by the definition of *C2).
Also, by Proposition 10 (10.12), since (x™ /«) e G3 , (Λ:CO) /°5) € G3

in both Cases, we have

Hence by (11.4), we get

(11. 6)

By (11. 5), (11. 6), taking account of (11.1), we obtain finally

I *CD_ *CO) I ̂  I -C3)_ -CO I , I ~C3) ~CO) I

M

We denote by Q" the (» + !)-
dimensional open cube defined by

(χ η): |jt-

λ=ι,
We put %λU; ί7) = ^ λ (^Λ / ;^ |G 4 )
λ = !,-••,«. Then %λ(jt;;?7) are
defined and continuous on Q" and
have continuous partial deriva-
tives with respect to all their argu-
ments on Q", by the corresponding
properties of φλ(x> ξ η G4).

We denote by §1 the continuous Fig. 7
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mapping of Q" onto G4 :

(X\η) -+(X

That SI maps Q" onto G4, follows from the definition of G4.
By the properties of C(ξ\η\G^) and φλ(x, ξ ^|G4) as stated in

§ 1. 2, we easily see that SX is one to one and bicontinuous, and SI'1 is
represented by

(x y) -+(χ

if we put 7λ(*;;y) = φλ« *;j |G 4) λ = l, ,« for (*
Further <γλ(# jy) have continuous partial derivatives with respect to all
their arguments by the corresponding properties of φλ(x, ξ η G4).

From this, we can easily prove that SI'1 maps any null set in G4

onto a null set in Q//9).
Thus we have

Proposition 12. The mapping SI of Q" onto G4 is one to one and
bicontinuous, and SI'1 maps any null set in G4 onto a null set in Q".

12. Completion of the proof. By Proposition 11, we have

sup j^y)-*(>;y£)l^κ9 (12Λ)~ 5

whenever (#co) /w) e G4. Hence ^(ΛΓ J) is totally differentiable almost
everywhere in G4, by a theorem of Rademacher on almost everywhere
total differentiability10). Also, by Proposition 12, SI'1 maps any null set
in G4 onto a null set in Q". Therefore, if we write ξ(x η) = z(x %(x η)),
and yλ = %λ(x \η) λ = l, ••• , n for (x η) e Q7/, we obtain

4rU;9) = ̂ ;Λ+ί}|;(*;Λ^;,) (12.2)

for almost all (Λ: ?;) of Q".
Since %λ(* η) = φ^x, a' η \ G4) for (ΛΓ η] e Q", we obtain by (2. 2),

= fλ(χ y) λ = 1, - , » (12. 3)

for (ΛΓ η] e Q". Substituting this into (12. 2), we get

Mx'y}(x'y} (12 4)

9) Cf. Tsuji [9], pp. 49-50. Also Cf. Rademacher [7], pp. 354-355.

10) Cf. Rademacher [7], pp. 341-347. Also Cf. Saks [8], p. 311.
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for almost all (x η) of Q".
Since by assumption, z ( x \ y ) satisfies (2.1) almost everywhere in

GO)G4) and by Proposition 12, SI"1 maps any null set in G4 onto null
set in Q", the right side of (12.4) regarded as a function of (x 97),
vanishes almost everywhere in Q". Therefore

j j c S ( x ; v ) = Q (12.5)

almost everywhere in Q".
On the other hand, if we write j£0) = %λ(*C(0 ^co)) λ = l, — ,« for a

point (*co) 77CO)) 6 Q", we have (*co) ;ycw) e G4 and

: lim sup

x lim sup -J— . rίn.*-**«» I*-*CΊ
IVi ,

Hence by (12.1) and (12.3), observing that |Λ(*;.y)|<Af0 on G4

by (6. 1), we obtain

T> _ ^lim sup J L _ ! ί-3_ < M5(i
-+W \X — X

(12.6)

whenever (Λ:CO) η™) G Qx/.
By Fubini's theorem, ξ(x 97) as a function of x, satisfies (12. 5)

almost everywhere in the interval \x— a'\<^L4, for almost every η in
the domain ί!4 and by (12. 6), ξ(x η) as a function of Jtr, is absolutely
continuous in the interval \x— a'\<^L^ for any η in the domain Ω4.

Therefore by Lebesgue's theorem, ζ(x 77) as a function of x, is
constant in the interval x— a'\<^L4 for almost every η in the domain
ί!4. Hence, by the continuity of z(x y) and %λ(x rj), accordingly of
ζ(x η), it follows that ζ(x ?;) as a function of xy is constant in the
interval \x—a'\<^L4 for any η in the domain ί24.

From this, by the definition of ξ ( x ; η ) 9 we easily see that z(x y)
is constant on any characteristic curve of (2.1) in G4. Hence, by the
definition of K, we have G4C^/f and so observing that G4(C^G) is open
in Rn+\
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^G4 G = G-G4 .

This is however excluded, since (a' b') e F G4 . Thus we arrive at
a contradiction and this completes the proof of Theorem 1.

§ 4. Proof of Theorem 2 and Theorem 3

In this § , the notations are the same as in § 1 and § 2.

13. Proof of Theorem 2. By the assumption on G and Theorem 1,
if we put ωλ_(x;y)=:φλ(ξco\x;y\G) λ = l, ~ ,n for (#;;y)eG, then we
have ω(x y) e G[£co)] for (x y)eG and

jO=ψM*;jO) on G (13.1)

for any quasi-solution z(#;;y) of (2.1) on G such that 2(£co) η) =
on G^|co)3. Hence there is at most only one such quasi-solution.

Conversely if we define a function z(x y) by the right side of
(13. 1) on G, then by the total differentiability of ty(η) on G[£co)] and
of ω λ ( x ; y ) on G, z(x y) is totally differentiate on G and

on G. Hence

a^_L V» f (r iΛ9*— V^ 9^ (dω*+ V^ dω*f(r - i Λ nnό-+ Zj JAX ^)o7. — 2j o — lo^-+ 2j o^-Jμl^ >J) ) on

ox μ=ι dy λ=ιc797 λ\σΛ: μ=ι cτyμ /

But for ωλU;j;)(-^λ(|co), ^;j |G)), we haven)

j^+£f»(x ,y)^ = 0 λ = l,...,ιι on G.
CUT μ=l C7Jμ

Therefore by (13.2), for z(x y) defined by (13.1)

|+Σ/^;^)|-ro on G.

Also for z(χ-,y) defined by (13.1), we have

since ωλ(P3 ^) - <pλ(£co), ^co) ^ | G) = η.
Thus there is at least one quasi-solution z ( x \ y ) of (2.1) on G such

that z (ξ co) η) — ψ>(η) on G[£co)] and this quasi-solution is also a solution

11) Cf. Kamke [3], §18, Nr. 87, Satz 1.
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of (2. 1) on G in the ordinary sense. This completes the proof of
Theorem 2.

14. Proof of Theorem 3. For the special case n = 1, we write
(2. 1) in the form

|+/(̂ )| = 0 (14.1)

and the characteristic curve of (14. 1) in G which passes through the
point (ξ, η) of G, in the form

Let z(x,y) be any quasi-solution of (14.1) on G and (#co), /0))
be any point of G. Then there is at least one point (£co), 9/0)) on
C(#co), /0 ) |G) where z ( x y y) has dz/dy, since z ( x y y) has dz/dy except at
most at the points of an enumerable set in G.

If we put ω(x,y) = φ(ξ™, x,y\G) and for ^eG[P}], ^(η) = z(ξ^\η)9

then by the properties of the family of the characteristic curves as
stated in §1.2, ω(x, y) is defined and ω(xy y) e G[fco)] for (x,y). in some
neighbourhood of (#co), jyco)) and by Theorem 1

z(x,y) = γ ( ω ( x 9 y ) ) (14.2)

in that neighbourhood. Evidently ω(x™, y™) = φ(ξ™, x™, y™\G)
= 97co)eG[P:)]. Also ^(97) (=z(ξ™y<η)) is differentiate at ̂  since
^(^,3;) has 3^/θj; at (fc<W°>).

Since ^(97) is differentiate at τ;co) = ω(Λ;co), /0)) and ω(x, y)
( = φ(?°\x,y\G)) is totally differentiate at (Λ:CO),/O)), by (14.2) z ( x 9 y )
is totally differentiable at (Λ:CO), /0)) and

a/
Hence

_ (14. 3)

But for ω(x, y) — φ(ξί<>\ x, y), we have125

12) Cf. Katnke [3], §18, Nr. 87, Satz 1.
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!̂ (*CO), /") +/(*cw, /0))|^(ΛΓCO), /«) = 0 .

Hence, by (14. 3)

~(*cw, /0))+/(*«>, /0))1*(*M), /°5) = 0.ox ay

Therefore z ( x y y) is totally differentiable and satisfies (14.1) at any point
(*co),/0)) of G, q.e.d.

(Received March 25, 1955)
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