On the Homogeneous Linear Partial Differential Equation of the First Order

By Takashi Kasuga

§ 1. Introduction

In this paper, we shall treat the following partial differential equation

$$
\frac{\partial z}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}\left(x, y_{1}, \cdots, y_{n}\right) \frac{\partial z}{\partial y_{\mu}}=0 \quad(n \geq 1)
$$

without the usual condition of the total differentiability on the solution $z\left(x, y_{1}, \cdots, y_{n}\right)$.

For early contributions by R. Baire and P. Montel to this problem in the special case $n=1$, cf. Baire [1], Montel [6]. Our method is entirely different from theirs and gives more general results even for the case $n=1$, cf. Kasuga [4]. Also notwithstanding Baire's statement ${ }^{1)}$ in his paper, it seems to us that their methods cannot be generalized to the case $n>1$ immediately.

We have not yet succeeded in treating the more general nonhomogeneous partial differential equation

$$
\frac{\partial z}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}\left(x, y_{1}, \cdots, y_{n}, z\right) \frac{\partial z}{\partial y_{\mu}}=g\left(x, y_{1}, \cdots, y_{n}, z\right)
$$

in a similar way, except for the case $n=1$. For this case, cf. Kasuga [5].

1. In this paper, we shall use for points in $R^{n}, R^{n_{+1}}$ or $R^{n_{+2}}$ and for their functions, abbreviations such as:

$$
\begin{aligned}
y & =\left(y_{1}, \cdots, y_{n}\right), & (x ; y) & =\left(x, y_{1}, \cdots, y_{n}\right), \\
\eta & =\left(\eta_{1}, \cdots, \eta_{n}\right), & (\xi ; \eta) & =\left(\xi, \eta_{1}, \cdots, \eta_{n}\right), \\
(x, \xi ; \eta) & =\left(x, \xi, \eta_{1}, \cdots, \eta_{n}\right), & z(x ; y) & =z\left(x, y_{1}, \cdots, y_{n}\right),
\end{aligned}
$$

and if $\rho_{\lambda}(x, \xi ; \eta)=\rho_{\lambda}\left(x, \xi, \eta_{1}, \cdots, \eta_{n}\right) \quad \lambda=1, \cdots, n$ are n functions of $(x, \xi ; \eta)$,

[^0]\[

$$
\begin{aligned}
\varphi(x, \xi ; \eta) & =\left(\mathscr{P}_{1}(x, \xi ; \eta), \cdots, \mathscr{\varphi}_{n}(x, \xi ; \eta)\right), \\
z(x ; \varphi(x, \xi ; \eta)) & =z\left(x, \varphi_{1}(x, \xi ; \eta), \cdots, \mathscr{\varphi}_{n}(x, \xi ; \eta)\right)
\end{aligned}
$$
\]

Also we use the following notations:
For sets of points A, B in $R^{m}(m=1,2, \cdots, n+1)$,
$\bar{A}=$ closure in R^{m} of $A, A^{0}=$ interior in R^{m} of A,
$A^{b}=$ boundary in R^{m} of $A, A \cdot B=$ intersection of A and B,
$A[x]==$ the set of the points $\left(y_{1}, \cdots, y_{n}\right)$ in R^{n} such that for a fixed x $\left(x, y_{1}, \cdots, y_{n}\right) \in A$, if $A \subset R^{n_{+1}}$.

For two points $y^{\prime}=\left(y_{1}{ }^{\prime}, \cdots, y_{n}{ }^{\prime}\right), y^{\prime \prime}=\left(y_{1}{ }^{\prime \prime}, \cdots, y_{n}{ }^{\prime \prime}\right)$ in R^{n},

$$
\left\|y^{\prime}-y^{\prime \prime}\right\|=\sum_{\mu=1}^{n}\left|y_{\mu}{ }^{\prime}-y_{\mu}{ }^{\prime \prime}\right|, \quad y^{\prime}+y^{\prime \prime}=\left(y_{1}^{\prime}+y_{1}{ }^{\prime \prime}, \cdots, y_{n}{ }^{\prime}+y_{n}{ }^{\prime \prime}\right)
$$

In this paper, the so-called degenerated intervals are also included, when we use the word "interval" (open, closed, or half-open). Thus the interval $a<x<a$ or the interval $a \leqq x \leqq a$ will mean degenerated interval which is empty or is composed of only one point respectively. Similarly for the interval $a \leqq x<a$ or $a<x \leqq a$.
2. In the following, we shall denote by G a fixed open set in R^{n+1}, by $f_{\lambda}(x ; y) \lambda=1, \cdots, n \quad n$ fixed continuous functions defined on G which have continuous $\partial f_{\lambda} / \partial y_{\mu} \lambda, \mu=1, \cdots, n$.

Under the above conditions, we shall consider the partial differential equation

$$
\begin{equation*}
\frac{\partial z}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}(x ; y) \frac{\partial z}{\partial y_{\mu}}=0 \tag{2.1}
\end{equation*}
$$

With (2.1), we shall associate the simultaneous ordinary differential equations

$$
\begin{equation*}
\frac{d y_{\lambda}}{d x}=f_{\lambda}(x ; y) \quad \lambda=1, \cdots, n \tag{2.2}
\end{equation*}
$$

The continuous curves representing the solutions of (2.2) which are prolonged as far as possible on both sides in an open subset D of G, will be called characteristic curves of (2.1) in D. Through any point $(\xi ; \eta)$ in D, there passes one and only one characteristic curve in $D^{2)}$. We represent it by

$$
\begin{aligned}
y_{\lambda}= & \varphi_{\lambda}\left(x, \xi, \eta_{1}, \cdots, \eta_{n} \mid D\right)=\varphi_{\lambda}(x, \xi ; \eta \mid D) \quad \lambda=1, \cdots, n . \\
& \alpha(\xi ; \eta \mid D)<x<\beta(\xi ; \eta \mid D) .
\end{aligned}
$$

[^1]$\alpha(\xi ; \eta \mid D), \beta(\xi ; \eta \mid D)$ may be $-\infty,+\infty$ respectively. Sometimes we abbreviate it as $C(\xi ; \eta \mid D)$. If an interval (open, closed or half-open) is contained in the interval $\alpha(\xi ; \eta \mid D)<x<\beta(\xi ; \eta \mid D)$, then we say that $C(\xi ; \eta \mid D)$ is defined for that interval. Also when a property holds for the portion of $C(\xi ; \eta \mid D)$ which corresponds to the values of x belonging to an interval, we say that $C(\xi ; \eta \mid D)$ has the property for this interval.

We shall use the following properties of $C(\xi ; \eta \mid D)$ and $\rho_{\lambda}(x, \xi ; \eta \mid D)$ often without special reference.

As we can easily see from the definition of $C(\xi ; \eta \mid D),(\xi ; \eta)$ $\in C(\xi ; \eta \mid D)$ and if $\left(x^{\prime} ; y^{\prime}\right) \in C(\xi ; \eta \mid D)$, then $C(\xi ; \eta \mid D)=C\left(x^{\prime} ; y^{\prime} \mid D\right)$ and so $(\xi ; \eta) \in C\left(x^{\prime} ; y^{\prime} \mid D\right)$.

In terms of the functions φ_{λ}, this means:

$$
\eta=\varphi(\xi, \xi ; \eta \mid D)
$$

and if $y^{\prime}=\varphi\left(x^{\prime}, \xi ; \eta \mid D\right)$, then

$$
\alpha(\xi ; \eta \mid D)=\alpha\left(x^{\prime} ; y^{\prime} \mid D\right)=\alpha, \quad \beta(\xi ; \eta \mid D)=\beta\left(x^{\prime} ; y^{\prime} \mid D\right)=\beta
$$

and

$$
\varphi(x, \xi ; \eta \mid D)=\varphi\left(x, x^{\prime} ; y^{\prime} \mid D\right) \quad \text { for } \quad \alpha<x<\beta,
$$

especially

$$
\eta=\varphi\left(\xi, x^{\prime} ; y^{\prime} \mid D\right)
$$

Also $C\left(\xi ; \eta \mid D_{1}\right)>C\left(\xi ; \eta / D_{2}\right)$, if $D_{1}>D_{2}$ and $(\xi ; \eta) \in D_{2}$.
We denote by D^{*} the set of the points $(x, \xi ; \eta)$ in R^{n+2} such that $(\xi ; \eta) \in D$ and $\alpha(\xi ; \eta \mid D)<x<\beta(\xi ; \eta \mid D)$. $\quad D^{*}$ is the domain of definition of the functions $\varphi_{\lambda}(x, \xi ; \eta \mid D)$. D^{*} is open in $R^{\left.n_{+2} 3\right)}$. The functions $\varphi_{\lambda}(x, \xi ; \eta \mid D)$ are continuous and have continuous partial derivatives with respect to all their arguments on $D^{*} .{ }^{4)}$

A continuous function $z(x ; y)$ defined on G will be called a quasisolution of (2.1) on G, if it has $\partial z / \partial x, \partial z / \partial y_{\lambda} \lambda=1, \cdots, n$, except at most at the points of an enumerable set in G and satisfies (2.1) almost everywhere in G. Here $\partial z / \partial x, \partial z / \partial y$ need not necessarily be continuous.

On the other hand, a continuous function $z(x ; y)$ defined on G will be called a solution of (2.1) on G in the ordinary sense, if it is totally differentiable and satisfies (2.1) everywhere in G.
3. We shall prove the following three theorems in $\S 3, \S 4$.
3) Cf. Kamke [3], $\S 17$, Nr. 84, Satz 4.
4) Cf. Kamke [3], §17, Nr. 84, Statz 4 ạnd $\S 18$, Nr. 87, Satz 1 ,

Theorem 1. A quasi-solution $z(x ; y)$ of (2.1) on G is constant on any characteristic curve of (2.1) in G.

Theorem 2. If for a fixed number $\xi^{(0)}$, the family of all the characteristic curves $C\left(\xi^{(0)} ; \eta \mid G\right)$ such that $\eta \in G\left[\xi^{(0)}\right]$, covers G and $\psi(\eta)=\psi$ $\left(\eta_{1}, \cdots, \eta_{n}\right)$ is a totally differentiable function defined on $G\left[\xi^{(0)}\right]$, then there is one and only one quasi-solution $z(x ; y)$ of (2.1) on G such that $z\left(\xi^{(0)} ; \eta\right)=\psi(\eta)$ on $G\left[\xi^{(0)}\right]$ and this quasi-solution $z(x ; y)$ is also a solution of (2.1) on G in the ordinary sense.

Theorem 3. If $n=1$, any quasi-solution of (2.1) on G is also a solution of (2.1) on G in the ordinary sense.

Remark 1. For the case $n=1$, the proof of Theorem 1 can be partly simplified, cf. Kasuga [4].

Remark 2. In Theorem 1, the condition on $z(z ; y)$ that it has $\partial z / \partial x, \partial z / \partial y_{\lambda} \lambda=1, \cdots, n$ except at most at the points of an enumerable set in G, cannot be replaced by the condition that it has $\partial z / \partial x$, $\partial z / \partial y_{\lambda} \lambda=1, \cdots, n$ almost everywhere in G, as the following example shows it.

Example. $G: 0<x<1 \quad 0<y<1$, the differential equation is

$$
\frac{\partial z}{\partial x}=0
$$

and a function $z(x, y)$ is defined by

$$
z(x, y)=\psi(x) \quad \text { on } \quad G
$$

where $\psi(x)$ is a continuous singular function not constant on the interval $0 \leqq x \leqq 1$ as given in Saks [8] p. 101.

Then $z(x, y)$ is continuous on G, has $\partial z / \partial x, \partial z / \partial y$ almost everywhere in G and satisfies the differential equation almost everywhere in G. But $z(x, y)$ is not constant on any characteristic curve $y=$ constant.

§ 2. Some Lemmas

In this \S, the notations are the same as in $\S 1$ and we assume that $z(x ; y)$ is a quasi-solution of (2.1) on G.
4. Set K and Some Lemmas. We denote by K the set of the points $(\xi ; \eta)$ of G such that $z(x ; y)$ is constant on the portion of the characteristic curve $C(\xi ; \eta \mid G)$ contained in a neighbourhood of $(\xi ; \eta)$.

Lemma 1. If a characteristic curve $C(\xi ; \eta \mid G)$ is defined for an interval I (open, closed, or half-open) and is contained in K for the open interval I^{0}, the interior of I, then $z(x ; y)$ is constant on the portion of $C(\xi ; \eta \mid G)$ for the interval I.

Proof. By the definition of K, we easily see that $z(x ; y)$ is constant on the portion of $C(\xi ; \eta \mid G)$ for the open interval I^{0}. Then Lemma 1 follows from the continuity of $z(x ; y)$ and $\varphi_{\lambda}(x, \xi ; \eta \mid G) \lambda=1, \cdots, n$.

Lemma 2. Denote by D an open subset of G, and denote by D_{0} the set of the points $(\xi ; \eta)$ of D such that $z(x ; y)$ is constant on the characteristic curve $C(\xi ; \eta \mid D)$. Then D_{0} is closed in D.

Proof. If $C\left(\xi^{(0)} ; \eta^{(0)} \mid D\right)$ where $\left(\xi^{(0)} ; \eta^{(0)}\right) \in D$, is defined for a closed interval $\alpha_{0} \leqq x \leqq \beta_{0}$, then $C(\xi ; \eta \mid D)$ where $(\xi ; \eta)$ is sufficiently close to $\left(\xi^{(0)} ; \eta^{(0)}\right)$, is also defined for the interval $\alpha_{0} \leqq x \leqq \beta_{0}$ and

$$
\varphi_{\lambda}(x, \xi ; \eta \mid D) \rightarrow \varphi_{\lambda}\left(x, \xi^{(0)} ; \eta^{(0)} \mid D\right) \quad \lambda=1, \cdots, n
$$

uniformly in the interval $\alpha_{0} \leqq x \leqq \beta_{0}$ as $(\xi ; \eta) \rightarrow\left(\xi^{(0)} ; \eta^{(0)}\right)^{5)}$. From this and by the continuity of $z(x ; y)$, we easily see that D_{0} is closed in D, q.e.d.

Lemma 3. Let D be an open subset of G. If.

$$
\begin{equation*}
\left|f_{\lambda}(x ; \bar{y})-f_{\lambda}(x ; y)\right| \leqq M\|\bar{y}-y\| \quad \lambda=1, \cdots, n \tag{4.1}
\end{equation*}
$$

for every pair of points $(x ; \bar{y}),(x ; y) \in D$ with the same x coordinate and if $C(\xi ; \bar{\eta} \mid D)$ and $C(\xi ; \eta \mid D)$ where $(\xi ; \bar{\eta}),(\xi ; \eta) \in D$, are both defined for an interval $\alpha_{0} \leqq x \leqq \beta_{0}$ containing $\xi\left(\alpha_{0} \leqq \xi \leqq \beta_{0}\right)$, then

$$
\begin{align*}
& \|\mathcal{P}(x, \xi ; \bar{\eta} \mid D)-\mathcal{P}(x, \xi ; \eta \mid D)\|=\sum_{\mu=1}^{n}\left|\varphi_{\mu}(x, \xi ; \bar{\eta} \mid D)-\mathcal{P}_{\mu}(x, \xi ; \eta \mid D)\right| \\
& \quad \leqq\|\bar{\eta}-\eta\| \exp (n M|x-\xi|) \tag{4.2}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\mathcal{P}_{\lambda}(x, \xi ; \bar{\eta} \mid D)-\mathscr{P}_{\lambda}(x, \xi ; \eta \mid D)\right| \leqq\left|\bar{\eta}_{\lambda}-\eta_{\lambda}\right|+\frac{1}{n}\|\bar{\eta}-\eta\| \\
& \quad \times\{\exp (n M|x-\xi|)-1\} \quad \lambda=1, \cdots, n \tag{4.3}
\end{align*}
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$.
Proof. We abbreviate $\varphi_{\lambda}(x, \xi ; \bar{\eta} \mid D)$ and $\varphi_{\lambda}(x, \xi ; \eta \mid D)$ as $\bar{\varphi}_{\lambda}(x)$ and $\mathcal{P}_{\lambda}(x)$ respectively.

By (4.1) and (2.2), we have
5) Cf. Kamke [3], §17, Nr. 84, Satz 4,

$$
\begin{equation*}
\left|\overline{\mathscr{P}}_{\lambda}^{\prime}(x)-\varphi_{\lambda}{ }^{\prime}(x)\right| \leqq M\|\overline{\mathcal{P}}(x)-\mathscr{P}(x)\| \quad \lambda=1, \cdots, n \tag{4.4}
\end{equation*}
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$, so that

$$
\sum_{\mu=1}^{n}\left|\overline{\mathcal{P}}_{\mu}{ }^{\prime}(x)-\mathcal{P}_{\mu}{ }^{\prime}(x)\right| \leqq n M \sum_{\mu=1}^{n}\left|\overline{\mathcal{P}}_{\mu}(x)-\varphi_{\mu}(x)\right|
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$. Hence by a theorem on differential inequalities ${ }^{6)}$, taking account of $\alpha_{0} \leqq \xi \leqq \beta_{0}$ and $\bar{\eta}_{\lambda}=\bar{\varphi}_{\lambda}(\xi)$, $\eta_{\lambda}=\varphi_{\lambda}(\xi) \quad(\lambda=1, \cdots, n)$, we obtain

$$
\begin{equation*}
\|\bar{\rho}(x)-\mathscr{\rho}(x)\| \leqq\|\bar{\eta}-\eta\| \exp (n M|x-\xi|) \tag{4.5}
\end{equation*}
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$. Thus (4.2) is proved.
By (4.4), (4.5), we get

$$
\left|\overline{\mathscr{P}}^{\prime}(x)-\mathcal{P}_{\lambda}{ }^{\prime}(x)\right| \leqq M\|\bar{\eta}-\eta\| \exp (n M|x-\xi|) \quad \lambda=1, \cdots, n
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$. Hence, again taking account of $\alpha_{0} \leqq \xi \leqq \beta_{0}$ and $\bar{\eta}_{\lambda}=\overline{\mathscr{p}}_{\lambda}(\xi)$, $\eta_{\lambda}=\rho_{\lambda}(\xi) \quad(\lambda=1, \cdots, n)$, we have

$$
\begin{aligned}
& \left|\bar{\rho}_{\lambda}(x)-\rho_{\lambda}(x)\right| \leqq\left|\bar{\eta}_{\lambda}-\eta_{\lambda}\right|+M\|\bar{\eta}-\eta\| \int_{\xi}^{x} \exp (n M|x-\xi|) d x \\
& =\left|\bar{\eta}_{\lambda}-\eta_{\lambda}\right|+\frac{1}{n}\|\bar{\eta}-\eta\|\{\exp (n M|x-\xi|)-1\} \quad \lambda=1, \cdots, n
\end{aligned}
$$

for $\alpha_{0} \leqq x \leqq \beta_{0}$. Thus (4.3) is also proved.

§ 3. Proof of Theorem 1.

In this \S, the notations are the same as in $\S 1$ and $\S 2$ and we assume that $z(x ; y)$ is a quasi-solution of (2.1) on G.
5. Set F and Domain Q. We denote by F the set $\overline{G-K} \cdot G$. Evidently F is closed in G and $K>G-F$.

If F is empty, that is $G=K$, we can conclude by Lemma 1 that $z(x ; y)$ is constant on any characteristic curve in G and Theorem 1 is established.

Therefore we suppose in the following that $F \neq 0$ and we want to show that such supposition leads to a contradiction.

Proposition 1. There is a positive number N and a $(n+1)$-dimensional open cube $Q:|x-a|<L,\left|y_{\lambda}-b_{\lambda}\right|<L \quad \lambda=1, \cdots, n(L>0)$ such that

$$
\begin{gathered}
\bar{Q} \subset G \\
(a ; b) \in F
\end{gathered}
$$

[^2]and such that
\[

\left\{$$
\begin{array}{r}
|z(x+h ; y)-z(x ; y)| \leqq|h| N \tag{5.1}\\
\\
\left|z\left(x, y_{1}, \cdots, y_{\lambda-1}, y_{\lambda}+k_{\lambda}, y_{\lambda+1}, \cdots, y_{n}\right)-z(x ; y)\right| \leqq\left|k_{\lambda}\right| N \\
\lambda=1, \cdots, n
\end{array}
$$\right.
\]

whenever $(x ; y) \in F \cdot Q$ and $(x+h ; y+k) \in Q$, where $k=$ $\left(k_{1}, \cdots, k_{n}\right)$.

Proof. We denote by H the at most enumerable set consisting of the points of G at which $z(x ; y)$ is not derivable with respect to x and with respect to y_{λ} $\lambda=1, \cdots, n$ simultaneously.

If a point ($\xi^{(0)} ; \eta^{(0)}$) of G has an open neighbourhood V such that every point of V belongs to K

Fig. 1 except at most $\left(\xi^{(0)} ; \eta^{(0)}\right)$ itself, then by Lemma $1 z(x ; y)$ is constant on $C\left(\xi^{(0)} ; \eta \mid V\right)$ where η is any point of $V\left[\xi^{(0)}\right]$ except $\eta^{(0)}$ and so by Lemma $2, z(x ; y)$ is also constant on $C\left(\xi^{(0)} ; \eta^{(0)} \mid V\right)$, that is, $\left(\xi^{(0)} ; \eta^{(0)}\right) \in K$. Hence the set F which is closed in the open set G, has no isolated point.

Therefore F is a G_{δ} set in $R^{n_{+1}}$ without isolated point and so every point of F is a condensation point of $F^{\text {. }}$. Thus since F is not empty by the supposition and H is at most enumerable, $F-H$ is not empty and

$$
\begin{equation*}
\overline{F-H} \supset F \tag{5.2}
\end{equation*}
$$

Also the non-empty $F-H$ is a G_{δ} set in $R^{n_{+1}}$ since F is a G_{δ} set in $R^{n_{+1}}$ and H is at most enumerable. Hence $F-H$ is of the second category in itself by Baire's theorem ${ }^{8)}$.

On the other hand, if we denote by F_{m} for each positive integer m, the set of the points $(x ; y)$ of G such that

$$
\left\{\begin{align*}
&|z(x+h ; y)-z(x ; y)| \leqq|h| m \tag{5.3}\\
&\left|z\left(x, y_{1}, \cdots, y_{\lambda-1}, y_{\lambda}+k_{\lambda}, y_{\lambda+1}, \cdots, y_{n}\right)-z(x ; y)\right| \leqq\left|k_{\lambda}\right| m \\
& \lambda=1, \cdots, n
\end{align*}\right.
$$

7) Cf. Hausdorff [2], p. 138.
8) Cf. Hausdorff [2], p. 142.
whenever $|h|,\left|k_{\lambda}\right| \leqq 1 / m$ and $(x+h ; y) \in G,\left(x, y_{1}, \cdots, y_{\lambda-1}, y_{\lambda}+k_{\lambda}, y_{\lambda+1}, \cdots\right.$, $\left.y_{n}\right) \in G \lambda=1, \cdots, n$, then the union of the sets F_{m} covers $F-H$ by the definition of H and each of the set F_{m} is closed in G by the continuity of $z(x ; y)$.

Therefore there must exist a positive integer N and $a(n+1)-$ dimensional open cube $Q:|x-a|<L,\left|y_{\lambda}-b_{\lambda}\right|<L \quad \lambda=1, \cdots, n \quad(L>0)$ such that $(a ; b) \in F-H \subset F$ and

$$
\begin{equation*}
(F-H) \cdot Q \subset F_{N} . \tag{5.4}
\end{equation*}
$$

Also we can take L sufficiently small so that

$$
\begin{gather*}
0<L<1 /(2 N) \tag{5.5}\\
\bar{Q} \subset G \tag{5.6}
\end{gather*}
$$

since G is open in $R^{n_{+1}}$.
By (5.4), (5.6) and by observing that Q is open in R^{n+1} and F_{N} is closed in G, we have

$$
\overline{F-H} \cdot Q=\overline{(F-H) \cdot Q} \cdot Q \subset \bar{F}_{N} \cdot Q \subset \bar{F}_{N} \cdot G=F_{N}
$$

so that by (5.2).

$$
F_{N} \supset F \cdot Q
$$

Hence by (5.5), (5.6) and by the definition of F_{N}, the inequalities (5.3) for $m=N$ hold whenever $(x ; y) \in F \cdot Q$ and $(x+h ; y) \in Q,\left(x, y_{1}, \cdots, y_{\lambda-1}, y_{\lambda}+k_{\lambda}\right.$, $\left.y_{\lambda+1}, \cdots, y_{n}\right) \in Q \quad \lambda=1, \cdots, n$. This completes the proof of Proposition 1 .

In the following, $Q, L,(a ; b)$ and N have the same meanings as in Proposition 1.
6. Domains Q_{1}, Ω_{1}, G_{1} and Set $\widetilde{F} . f_{\lambda}$ and $\partial f_{\lambda} / \partial y_{\mu} \lambda, \mu=1, \cdots, n$ are defined and continuous on $\bar{Q} \subset G$. Hence there is a positive number M_{0} such that

$$
\begin{equation*}
\left|f_{\lambda}\right|,\left|\partial f_{\lambda} / \partial y_{\mu}\right|<M_{0} \quad \lambda, \mu=1, \cdots, n \text { on } Q . \tag{6.1}
\end{equation*}
$$

Then we can easily prove

$$
\begin{equation*}
\left|f_{\lambda}(x ; \bar{y})-f_{\lambda}(x ; y)\right| \leqq M_{0}\|\bar{y}-y\| \tag{6.2}
\end{equation*}
$$

for any pair of points $(x ; \bar{y}),(x ; y) \in Q$ with the same x coordinate. We take a positive number L_{1} such that

$$
\begin{gather*}
\exp \left(2 n^{2} M_{0} L_{1}\right)<2 \tag{6.3}\\
L_{1}\left(M_{0}+1\right) \leqq L \tag{6.4}
\end{gather*}
$$

We denote by Ω_{1} the n-dimensional open cube: $\left|\eta_{\lambda}-b_{\lambda}\right|<L_{1} \lambda=1$,
\cdots, n and by Q_{1} the ($n+1$)-dimensional open parallelepiped: $|x-a|<L_{1}$, $\left|y_{\lambda}-b_{\lambda}\right|<L \quad \lambda=1, \cdots, n$. By (6.4) $L_{1}<L$ and so

$$
Q_{1} \subset Q
$$

By (6.4), $\eta_{\lambda}+L_{1} M_{0} \leqq b_{\lambda}+L, \eta_{\lambda}-L_{1} M_{0} \geqq b_{\lambda}-L \quad \lambda=1, \cdots, n$ whenever $\eta \in \Omega_{1}$. Hence the characteristic curves $C\left(a ; \eta \mid Q_{1}\right)$ where $\eta \in \Omega_{1}$, are defined just for the interval $|x-a|<L_{1}$ since $\left|f_{\lambda}\right|<M_{0} \lambda=1, \cdots, n$ on $Q_{1}(<Q)$ by (6.1).

We denote by G_{1} the portion of Q_{1} covered by the family of all the characteristic curves $C\left(a ; \eta \mid Q_{1}\right)$ where $\eta \in \Omega_{1}$. Then by the properties of $C\left(\xi ; \eta \mid Q_{1}\right)$ and $\rho_{\lambda}\left(x, \xi ; \eta \mid Q_{1}\right)$ as stated in $\S 1.2$, observing that Ω_{1} is open in R^{n}, we easily prove that G_{1} is open in R^{n+1} and the characteristic curves $C\left(\xi ; \eta \mid G_{1}\right)$ where $(\xi ; \eta)$ $\in G_{1}$, are defined just for the interval $|x-a|<L_{1}$.

We denote by \widehat{F} the set of the points η of Ω_{1} such that $C\left(a ; \eta \mid G_{1}\right)$ has at least one point in common with $F . \widetilde{F}$ is not empty since $(a ; b) \in F$ and $b=\left(b_{1}, \cdots, b_{n}\right) \in \Omega_{1}$. Now we prove

Proposition 2. \widetilde{F}^{0}, the interior of \widetilde{F} in R^{n}, is not empty.

Proof. Suppose, if

Fig. 2

Fig. 3 possible, that $\widetilde{F}^{0}=0$.

If $\eta \in \Omega_{1}-\widetilde{F}$, then $C\left(a ; \eta \mid G_{1}\right)$ is contained in K by the definition of \widetilde{F} and so by Lemma $1 z(x ; y)$ is constant on $C\left(a ; \eta \mid G_{1}\right)$. Hence by

Lemma $2, z(x ; y)$ is constant on any $C\left(a ; \eta \mid G_{1}\right)$ such that $\eta \in \overline{\Omega_{1}-\widetilde{F}} \cdot \Omega_{1}$. But $\overline{\Omega_{1}-\widetilde{F}} \cdot \Omega_{1}=\Omega_{1}$, since $\widetilde{F}^{0}=0$ by supposition and Ω_{1} is open in R^{n}.

Therefore $z(x ; y)$ is constant on any $C\left(a ; \eta \mid G_{1}\right)$ such that $\eta \in \Omega_{1}$ and so by the definition of $K, G_{1} \subset K$ since G_{1} is covered by the family of all the characteristic curves $C\left(a ; \eta \mid G_{1}\right)$ where $\eta \in \Omega_{1}$. Hence, observing that G_{1} is open in R^{n+1}, we have

$$
F=G \cdot \overline{G-K} \subset G \cdot \overline{G-G_{1}} \subset G-G_{1} .
$$

But this is a contradiction since $(a ; b) \in F \cdot G_{1}$. Thus Proposition 2 is proved.
7. Domains Ω_{2}, G_{2}. By Proposition 2, \widetilde{F}^{0} is not empty. Hence we take a point $b^{(1)}=\left(b_{1}^{(1)}, \cdots, b_{n}^{(1)}\right) \in \widetilde{F}^{0}$.

Then we can construct a domain Ω_{2} in R^{n} defined by

$$
\begin{equation*}
\eta:\left\|\eta-b^{(1)}\right\|<L_{2} \quad\left(L_{2}>0\right) \tag{7.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\bar{\Omega}_{2} \subset \widetilde{F} . \tag{7.2}
\end{equation*}
$$

Evidently

$$
\begin{equation*}
\bar{\Omega}_{2} \subset \Omega_{1} \tag{7.3}
\end{equation*}
$$

since $\widetilde{F} \subset \Omega_{1}$ by the definition of \widetilde{F}.
We denote by G_{2} the portion of Q_{1} covered by the family of all the characteristic curves $C\left(a ; \eta \mid Q_{1}\right)$ where $\eta \in \Omega_{2}$. In the same way as in the case of G_{1}, we easily prove that G_{2} is open in R^{n+1} and so $G_{2}[x]$

Fig. 4
is open in R^{n} for any x in the interval $|x-a|<L_{1}$. Also $C\left(\xi ; \eta \mid G_{2}\right)$ where $(\xi ; \eta) \in G_{2}$, is defined just for the interval $|x-a|<L_{1}$. Evidently by (7.3) and the definition of G_{1}, G_{2},

$$
G_{2} \subset G_{1} \subset Q_{1} \subset Q .
$$

Proposition 3. $C\left(\xi ; \eta \mid G_{2}\right)$ where $(\xi ; \eta) \in G_{2}$, has at least one point in common with F. G_{2}.

Proof. If $(\xi ; \eta) \in G_{2}$ and $\eta^{(0)}=\varphi\left(a, \xi ; \eta \mid G_{2}\right)$, then $\eta^{(0)} \in \Omega_{2}$ and $C\left(\xi ; \eta \mid G_{2}\right)=C\left(a ; \eta^{(0)} \mid G_{1}\right)$ by the definition of G_{2}. Then by (7.2) and the definition of \widetilde{F}, Proposition 3 follows.

Proposition 4. If $|\xi-a|<L_{1}$, then

$$
\begin{equation*}
G_{1}[\xi] \supset\left(G_{2}[\xi]\right)^{b}, \text { the boundary in } R^{n} \text { of } G_{2}[\xi] . \tag{7.4}
\end{equation*}
$$

Further if $|\xi--a|<L_{1}$ and $\eta \in\left(G_{2}[\xi]\right)^{b}$, then
$\varphi\left(a, \xi ; \eta \mid G_{1}\right) \in \Omega_{2}^{b}$, the boundary in R^{n} of Ω_{2}.
Proof. We consider the continuous mapping \mathfrak{N}_{ξ} of Ω_{1} onto $G_{1}[\xi]$ defined by

$$
\eta^{(0)} \rightarrow \varphi\left(\xi, a ; \eta^{(0)} \mid G_{1}\right) .
$$

That \mathfrak{N}_{ξ} maps Ω_{1} onto $G_{1}[\xi]$ follows from the definition of G_{1}.
By the properties of $C\left(\xi ; \eta \mid G_{1}\right)$ and $\varphi_{\lambda}\left(x, \xi ; \eta \mid G_{1}\right)$ as stated in $\S 1.2$, we easily see that \mathfrak{A}_{ξ} is one to one and bicontinuous and \mathfrak{U}_{ξ}^{-1} is represented by

$$
\begin{equation*}
\eta \rightarrow \varphi\left(a, \xi ; \eta \mid G_{1}\right) \tag{7.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathfrak{N}_{\xi}\left(\Omega_{2}\right)=G_{2}[\xi] \tag{7.6}
\end{equation*}
$$

by (7.3) and the definition of G_{2}. Hence again taking acconnt of (7.3), by the continuity of \mathfrak{N}_{ξ} we have $\mathfrak{N}_{\xi}\left(\bar{\Omega}_{2}\right) \subset \overline{G_{2}}[\xi]$.

On the other hand, since $\bar{\Omega}_{2}$ is closed and bounded in R^{n}, its continuous image $\mathfrak{M}_{\xi}\left(\bar{\Omega}_{2}\right)$ is closed in R^{n} and so, taking account of (7.6), we have $\mathfrak{A}_{\xi}\left(\bar{\Omega}_{2}\right)>\overline{G_{2}}[\xi]$.

Therefore $\mathfrak{A}_{\xi}\left(\bar{\Omega}_{2}\right)=\overline{G_{2}}[\xi]$. Hence by (7.6), (7.3), and $\mathfrak{M}_{\xi}\left(\Omega_{1}\right)=G_{1}[\xi]$, observing that $\Omega_{2}, G_{2}[\xi]$ are both open in R^{n}, we get $\mathscr{\vartheta}_{\xi}\left(\Omega_{2}^{z}\right)=\left(G_{2}[\xi]\right)^{b}$ $<G_{1}[\xi]$.

From this, taking account of the representation (7.5) of $\mathfrak{A q}_{\xi}^{-1}$, Proposition 4 follows.
8. Classes $S_{\lambda}, S^{[l]}$ and Operations $T_{\lambda}, T, T^{[t]}$. We take two points $\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)$ of R^{n+1} with the same x coordinate such that $\left(x^{\prime} ; y^{\prime}\right) \in F \cdot G_{2},\left(x^{\prime} ; \bar{y}^{\prime}\right) \in G_{2}$ and further $\left(x^{\prime}, y_{1}^{\prime}, \cdots, y_{\lambda-1}^{\prime}, \bar{y}_{\lambda}{ }^{\prime}, y_{\lambda+1}^{\prime}, \cdots, y_{n}{ }^{\prime}\right) \in G_{2}$. In the following, we denote the class of all such ordered pairs $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ of points of R^{n+1} by $S_{\lambda}(\lambda=1, \cdots, n)$. If we put $\tilde{y}^{\prime}=\left(y_{1}{ }^{\prime}, \cdots, y_{\lambda-1}^{\prime}, \bar{y}_{\lambda}{ }^{\prime}, y_{\lambda+1}^{\prime}, \cdots, y_{n}{ }^{\prime}\right)$, then $\left(x^{\prime} ; \tilde{y}^{\prime}\right) \in G_{2}$.

Now there is the nearest x to x^{\prime} in the interval $|x-a|<L_{1}$ such that either $\left(x, \varphi\left(x, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)\right) \in F \cdot G_{2}$ or $\left(x, \varphi\left(x, x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right)\right) \in F \cdot G_{2}$, since by Proposition 3 each of the continuous curves $C\left(x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)$ and $C\left(x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right)$ which are just defined for the interval $|x-a|<L_{1}$ and are contained in G_{2}, has at least one point in common with $F \cdot G_{2}$ which is closed in G_{2}. We denote such x by $x^{\prime \prime}$. If incidently two such x exist, then we take as $x^{\prime \prime}$ the one on the right side of x^{\prime}.

Now we distinguish two cases;
i) If $\left(x^{\prime \prime}, \varphi\left(x^{\prime \prime}, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)\right) \in F \cdot G_{2}$, then we put

$$
y^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right) \quad \text { and } \quad \bar{y}^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right) .
$$

ii) If $\left(x^{\prime \prime}, \mathscr{P}\left(x^{\prime \prime}, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)\right) \notin F \cdot G_{2}$ and so by the definition of $x^{\prime \prime}$, $\left(x^{\prime \prime}, \varphi\left(x^{\prime \prime}, x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right)\right) \in F \cdot G_{2}$, then we put

$$
y^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right) \quad \text { and } \quad \bar{y}^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right) .
$$

In any case, $\left(x^{\prime \prime} ; y^{\prime \prime}\right) \in F \cdot G_{2}$ and $\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right) \in G_{2}$.
We denote by $T_{\lambda}(\lambda=1, \cdots, n)$ the above operation which assigns to every (ordered) pair $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ of points of R^{n+1} belonging to the class S_{λ}, an (ordered) pair $\left\{\left(x^{\prime \prime} ; y^{\prime \prime}\right),\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)\right\}$ of points of R^{n+1} with the same x coordinate such that $\left(x^{\prime \prime} ; y^{\prime \prime}\right) \in F \cdot G_{2}$ and $\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right) \in G_{2}$. Also we write $T_{\lambda}\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}=\left\{\left(x^{\prime \prime} ; y^{\prime \prime}\right),\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)\right\}$. If $\left\{\left(x^{\prime \prime} ; y^{\prime \prime}\right),\left(x^{\prime \prime} ; \bar{y}^{\prime}\right)\right\} \in S_{\mu}$, we can apply T_{μ} again on $\left\{\left(x^{\prime \prime} ; y^{\prime \prime}\right),\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)\right\}$.

Proposition 5. If $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\} \in S_{\lambda}$ and if we put $\left\{\left(x^{\prime \prime} ; y^{\prime \prime}\right)\right.$, $\left.\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)\right\}=T_{\lambda}\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}, z^{\prime}=z\left(x^{\prime} ; y^{\prime}\right), \bar{z}^{\prime}=z\left(x^{\prime} ; \bar{y}^{\prime}\right), z^{\prime \prime}=z^{\prime \prime}\left(x^{\prime \prime} ; y^{\prime \prime}\right)$, and $\bar{z}^{\prime \prime}=z\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)$, then

$$
\begin{equation*}
\left|\bar{z}^{\prime}-z^{\prime}\right| \leqq\left|\bar{z}^{\prime \prime}-z^{\prime \prime}\right|+N\left\|\bar{y}^{\prime}-y^{\prime}\right\| \tag{8.1}
\end{equation*}
$$

Proof. We put $\tilde{y}^{\prime}=\left(y_{1}{ }^{\prime}, \cdots, y_{\lambda-1}^{\prime}, \bar{y}_{\lambda}{ }^{\prime}, y_{\lambda+1}^{\prime}, \cdots, y_{n}{ }^{\prime}\right)$. Then $\left(x^{\prime} ; y^{\prime}\right)$ $\in F \cdot G_{2} \subset F \cdot Q$ and $\left(x^{\prime} ; \tilde{y}^{\prime}\right) \in G_{2} \subset Q$ since $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\} \in S_{\lambda}$. Hence by Proposition 1 (5.1), if we put $\tilde{z}^{\prime}=\boldsymbol{z}\left(x^{\prime} ; \tilde{y}^{\prime}\right)$

$$
\begin{equation*}
\left|\tilde{z}^{\prime}-z^{\prime}\right| \leqq N\left|\bar{y}_{\lambda}^{\prime}-y_{\lambda}{ }^{\prime}\right| \leqq N\left\|\bar{y}^{\prime}-y^{\prime}\right\| . \tag{8.2}
\end{equation*}
$$

By the definition of T_{λ},

$$
\left\{\begin{array} { l }
{ y ^ { \prime \prime } = \varphi (x ^ { \prime \prime } , x ^ { \prime } ; \overline { y } ^ { \prime } | G _ { 2 }) } \tag{8.3}\\
{ \overline { y } ^ { \prime \prime } = \varphi (x ^ { \prime \prime } , x ^ { \prime } ; \tilde { y } ^ { \prime } | G _ { 2 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right) \\
\bar{y}^{\prime \prime}=\varphi\left(x^{\prime \prime}, x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)
\end{array}\right.\right.
$$

On the other hand, each of $C\left(x^{\prime} ; \bar{y}^{\prime} \mid G_{2}\right)$ and $C\left(x^{\prime} ; \tilde{y}^{\prime} \mid G_{2}\right)$ has no point in common with F for the interval $x^{\prime}<x<x^{\prime \prime}$ or $x^{\prime \prime}<x<x^{\prime}$ by the difinition of T_{λ} so that they are contained in K for the interval $x^{\prime \prime}<x<x^{\prime}$ or $x^{\prime}<x<x^{\prime \prime}$. Therefore by Lemma 1 and (8.3)

$$
\left\{\begin{array}{l}
z^{\prime \prime}=z\left(x^{\prime \prime} ; y^{\prime \prime}\right)=z\left(x^{\prime} ; \bar{y}^{\prime}\right)=\bar{z}^{\prime} \\
\bar{z}^{\prime \prime}=z\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)=z\left(x^{\prime} ; \tilde{y}^{\prime}\right)=\bar{z}^{\prime}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
z^{\prime \prime}=z\left(x^{\prime \prime} ; y^{\prime \prime}\right)=z\left(x^{\prime} ; \tilde{y}^{\prime}\right)=\tilde{z}^{\prime} \\
\bar{z}^{\prime \prime}=z\left(x^{\prime \prime} ; \bar{y}^{\prime \prime}\right)=z\left(x^{\prime} ; \bar{y}^{\prime}\right)=\bar{z}^{\prime}
\end{array}\right.
$$

so that

$$
\begin{equation*}
\left|\bar{z}^{\prime \prime}-z^{\prime \prime}\right|=\left|\bar{z}^{\prime}-\tilde{z}^{\prime}\right| . \tag{8.4}
\end{equation*}
$$

By (8.4), (8.2) we have

$$
\left|\bar{z}^{\prime}-z^{\prime}\right| \leqq\left|\bar{z}^{\prime}-\tilde{z}^{\prime}\right|+\left|\bar{z}^{\prime}-z^{\prime}\right| \leqq\left|\bar{z}^{\prime \prime}--z^{\prime \prime}\right|+N\left\|\bar{y}^{\prime}-y^{\prime}\right\|,
$$

q.e.d.

We denote by $T_{\mu} \cdot T_{\lambda}$ the operation which assigns to a pair $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ of points of R^{n+1}, the pair $T_{\mu}\left\{T_{\lambda}\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}\right\}$ of points of $R^{n_{+1}}$ if

$$
\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\} \in S_{\lambda} \quad \text { and } \quad T_{\lambda}\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\} \in S_{\mu} ;
$$

and similarly for products of any number of operations $T_{\lambda}(\lambda=1, \cdots, n)$.
We put $T=\bar{T}_{n} \cdot T_{n-1} \cdots \cdots \cdot T_{2} \cdot T_{1}$ and $T^{m}=\overbrace{T \cdot T \cdots \cdots \cdot T}^{m}\left(T^{0}=\right.$ identity
operator) for any non-negative integer m and $T^{[t]}=\overbrace{T_{\nu} \cdot T_{\nu-1} \cdots \cdots \cdot T_{2} \cdot T_{1}} \cdot T^{m}$ for any non-negative integer l if $l=m n+\nu, 0 \leqq \nu \leqq n-1$ and $m, \nu=$ nonnegative integer (if $\nu=0, T^{[l]}=T^{m}$).

We denote by $S^{[l]}(l>0)$ the class of all the pairs $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ of points of R^{n+1} on which we can apply the operation $T^{[l]}(l>0)$ and by $S^{[0]}$ the class of all the pairs $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ such that $\left(x^{\prime} ; y^{\prime}\right) \in F \cdot G_{2}$ and $\left(x^{\prime} ; \bar{y}^{\prime}\right) \in G_{2}$. We regard $S^{[0]}$ as the domain of definition of the identity operator $T^{[0]}=T^{0}$.

In the following, we put

$$
\begin{align*}
& M_{1}=\exp \left(2 n^{2} M_{0} L_{1}\right)-1 \tag{8.5}\\
& M_{2}=\exp \left(2 n M_{0} L_{1}\right), \tag{8.6}
\end{align*}
$$

then by (6.3)

$$
\begin{equation*}
1>M_{1}>0 \tag{8.7}
\end{equation*}
$$

Also

$$
\begin{equation*}
M_{2}>1 \tag{8.8}
\end{equation*}
$$

Proposition 6. If $\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l]}$ where $l=m n+\nu$, $n-1 \geqq \nu \geqq 0$ and m, $\nu=$ non-negative integer, and if we put $T^{[l]}\left\{\left(x^{(0)} ; y^{(0)}\right)\right.$, $\left.\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\}=\left\{\left(x^{(l)} ; y^{(l)}\right),\left(x^{(l)} ; \bar{y}^{(l)}\right)\right\}$, then

$$
\begin{equation*}
\left\|\bar{y}^{(l)}-y^{(l)}\right\| \leqq\left(M_{1}+1\right) M_{1}^{m}\left\|\bar{y}^{(0)}--y^{(0)}\right\| \tag{8.9}
\end{equation*}
$$

Proof. In the following lines, we shall prove by induction on l more precise results,

$$
\begin{equation*}
\left\|\bar{y}^{(l)}-y^{(l)}\right\| \leqq M_{2}^{\nu} M_{1}^{m}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \tag{8.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bar{y}_{\lambda}^{(L)}-y_{\lambda}\right| \leqq \frac{1}{n}\left(M_{2}^{\nu}-M_{2}^{\lambda-1}\right) M_{1}^{m}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \quad \text { for } \quad \nu \geqq \lambda \geqq 1 \tag{8.11}
\end{equation*}
$$

whenever

$$
\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l]} \quad(l=m n+\nu) .
$$

(8.9) follows from (8.10) since $M_{2}^{\nu}<M_{1}+1$ by $n-1 \geqq \nu \geqq 0$ and (8.5), (8.6).

For $l=0, T^{[l]}=T^{[0]}=$ identity operator and $m=\nu=0$. Hence here (8.10) and (8.11) are trival.

Now we assume that (8.10), (8.11) are true for $l=l^{\prime}=m^{\prime} n+\nu^{\prime}$ and let $\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{\left[l^{\prime+1]}\right.}\left(\subset S^{\left(l^{\prime}\right)}\right)$. Then $\left\{\left(x^{(l)} ; y^{\left(l^{\prime}\right)}\right),\left(x^{\left(l^{\prime \prime}\right)} ; \bar{y}^{\left(l^{\prime \prime}\right)}\right)\right\} \in S_{\prime^{\prime+1}}$ since $T^{\left[l^{\prime+1]}\right.}=T_{\nu^{\prime}+1} \cdot T^{\left[l^{\prime}\right]}$. Also $\left\{\left(x^{\left(l^{\prime}+1\right)} ; y^{\left(l^{\prime+1}\right)}\right),\left(x^{\left(l^{\prime}+1\right)} ; \bar{y}^{\left(l^{\prime+1}\right)}\right)\right\}=T^{\left[l^{\prime+1}\right)}\left\{\left(x^{(0)}\right.\right.$; $\left.\left.y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\}=T_{i^{\prime}+1}\left\{\left(x^{\left(l^{\prime}\right)} ; y^{\left(l^{\prime}\right)}\right),\left(x^{\left(l^{\prime}\right)} ; \bar{y}^{\left(l^{\prime}\right)}\right)\right\}$.

Then by the definition of $T_{\nu^{\prime}+1},(6.2)$, Lemma 3 (4.2) and (8.6), taking account of $\left|x^{\left(l^{\prime}+1\right)}-x^{\left(l^{\prime}\right)}\right|<2 L_{1}$, we have

$$
\begin{gathered}
\left\|\bar{y}^{\left(l^{\prime}+1\right)}-y^{\left(l^{\prime}+1\right)}\right\| \leqq\left(\sum_{\mu=1}^{\nu^{\prime}}\left|\bar{y}_{\mu^{\left(l^{\prime}\right)}}^{\left(l^{\prime}\right.}-y_{\mu}^{\left(\mu^{\prime}\right)}\right|+\sum_{\mu=\nu^{\prime}+2}^{n} \mid \bar{y}_{\mu^{\prime}}^{\left(l^{\prime}\right)}-y_{\left.\mu^{\left(l^{\prime}\right)} \mid\right) \times}\right. \\
\exp \left(n M_{0}\left|x^{\left(l^{\prime}+1\right)}-x^{\left(l^{\prime}\right)}\right|\right) \leqq\left\|\overline{\boldsymbol{y}}^{\left(l^{\prime}\right)}-y^{\left(l^{\prime}\right)}\right\| \exp \left(2 n M_{0} L_{1}\right)=M_{2}\left\|\bar{y}^{\left(l^{\prime}\right)}-y^{\left(l^{\prime}\right)}\right\|
\end{gathered}
$$

and so by (8.10) for $l=l^{\prime}$,

$$
\begin{equation*}
\left\|\bar{y}^{\left(l^{\prime}+1\right)}-y^{\left(l^{\prime}+1\right)}\right\| \leqq M_{2}^{\nu^{\prime}+1} M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \tag{8.12}
\end{equation*}
$$

Also by the definition of $T_{\nu^{\prime}+1}$, (6.2), Lemma 3 (4.3) and (8.6), we have

$$
\begin{aligned}
& \left|\bar{y}_{\lambda}^{\left(l^{\prime}+1\right)}-y_{\lambda}^{\left(l^{\prime}+1\right)}\right| \leqq\left|\bar{y}_{\lambda}^{\left(\iota^{\prime}\right)}-y_{\lambda}^{\left(l^{\prime}\right)}\right|+\frac{1}{n}\left(\sum_{\mu=1}^{\nu^{\prime}}\left|\bar{y}_{\mu^{\left(l^{\prime}\right)}}-y_{\mu}^{\left(l^{\prime}\right)}\right|\right. \\
& \left.\quad+\sum_{\mu=\nu^{\prime}+2}^{n}\left|\bar{y}_{\mu}^{\left(l^{\prime}\right)}-y_{\mu}^{\left(l^{\prime}\right)}\right|\right)\left\{\exp \left(n M_{0}\left|x^{\left(l^{\prime}+1\right)}-x^{\left(l^{\prime}\right)}\right|\right)-1\right\} \leqq\left|\bar{y}_{\lambda}^{\left(l^{\prime}\right)}-y_{\lambda}^{\left(l^{\prime}\right)}\right| \\
& \quad+\frac{1}{n}\left(M_{2}-1\right) \times\left\|\bar{y}^{\left(l^{\prime}\right)}-y^{\left(l^{\prime}\right)}\right\| \quad \text { for } \quad n \geq \lambda \geq 1 \quad \lambda \neq \nu^{\prime}+1,
\end{aligned}
$$

and so by $(8,10)$ and (8.11) for $l=l^{\prime}$,

$$
\begin{gather*}
\left|\bar{y}_{\lambda}^{\left(\iota^{\prime}+1\right)}-y_{\lambda}^{\left(l^{\prime}+1\right)}\right| \leqq \frac{1}{n}\left(M_{2}^{\nu}-M_{2}^{\lambda-1}\right) M_{1}^{m \prime^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
+\frac{1}{n}\left(M_{2}-1\right) \times M_{2}^{\nu^{\prime}} M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\|=\frac{1}{n}\left(M_{2}^{\nu^{\prime+1}}-M_{2}^{\lambda-1}\right) M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
\text { for } \quad \nu^{\prime} \geqq \lambda \geqq 1 \tag{8.13}
\end{gather*}
$$

Again by the definition of $T_{\nu^{\prime}+1}$, (6.2) and Lemma 3 (4.3), we have

$$
\begin{aligned}
& \left|\bar{y}_{\nu^{\prime}+1}^{\left(l^{\prime}+1\right)}-y_{\nu^{\prime}+1}^{\left(l^{\prime}+1\right)}\right| \leqq \frac{1}{n}\left(\sum_{\mu=1}^{\nu^{\prime}}\left|\bar{y}_{\mu}^{\left(l^{\prime}\right)}-y_{\mu}^{\left(\nu^{\prime}\right)}\right|\right. \\
& \left.\quad+\sum_{\mu=\nu^{\prime}+2}^{n}\left|\bar{y}_{\mu}^{\left(l^{\prime}\right)}-y_{\mu^{(2)}}^{\left(l^{\prime}\right)}\right|\right)\left\{\exp \left(n M_{0}\left|x^{\left(l^{\prime}+1\right)}-x^{\left(l^{\prime}\right)}\right|\right)-1\right\} \\
& \quad \leqq \frac{1}{n}\left(M_{2}-1\right)\left\|\bar{y}^{\left(l^{\prime}\right)}-y^{\left(l^{\prime}\right)}\right\|,
\end{aligned}
$$

and so by (8.10) for $l=l^{\prime}$,

$$
\begin{equation*}
\left|\bar{y}_{\nu^{\prime}+1}^{\left(z^{\prime}+1\right)}-y_{\nu^{\prime}+1}^{\left(\prime^{\prime}+1\right)}\right| \leqq \frac{1}{n}\left(M_{2}^{\nu^{\prime}+1}-M_{2}^{\nu \prime}\right) M_{1}^{m \prime}\left\|\bar{y}^{(0)}-y^{(0)}\right\| . \tag{8.14}
\end{equation*}
$$

If $n-2 \geqq \nu^{\prime} \geqq 0$, then (8.12), (8.13), (8.14) prove (8.10), (8.11) for $l=l^{\prime}+1$ since $l^{\prime}+1=n m^{\prime}+\nu^{\prime}+1, n-1 \geqq \nu^{\prime}+1 \geqq 1$ in this case.

If $\nu^{\prime}=n-1$, then $l^{\prime}+1=n\left(m^{\prime}+1\right)$. In this case, by (8.13), (8.14), we obtain

$$
\begin{aligned}
& \left\|\bar{y}^{\left(l^{\prime}+1\right)}-y^{\left(l^{\prime}+1\right)}\right\|=\sum_{\mu=1}^{n-1}\left|\bar{y}_{\mu}^{\left(l^{\prime}+1\right)}-y_{\mu}^{\left(l^{\prime}+1\right)}\right|+\left|\bar{y}_{n}^{\left(l^{\prime}+1\right)}-y_{n}^{\left(l^{\prime}+1\right)}\right| \\
& \quad \leqq \frac{1}{n}\left\{\sum_{\mu=1}^{n}\left(M_{2}^{n}--M_{2}^{\mu-1}\right)\right\} M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq\left(M_{2}^{n}-1\right) M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
& \quad=M_{1}^{m^{\prime}+1}\left\|\bar{y}^{(0)}-y^{(0)}\right\|,
\end{aligned}
$$

since $M_{2}^{-1} \geqq 1$ for $n \geqq \mu \geqq 1$ and $M_{1}=M_{2}^{n}-1$ by (8.8), (8.5), (8.6). This proves (8.10) for $l=l^{\prime}+1$ in the case $\nu^{\prime}=n-1$. In this case (8.11) for $l=l^{\prime}+1$ is trivial, since then there is no λ for which it should be established.

Thus (8.10), (8.11) are proved for any non-negative integer l and so the proof of Proposition 6 is completed.
9. Further on the operation $T^{[l]}$.

In the following we put

$$
\begin{equation*}
M_{3}=n M_{2}\left(1+M_{1}\right)\left(1-M_{1}\right)^{-1} \tag{9.1}
\end{equation*}
$$

By (8.7), (8.8), M_{3} is positive.
Proposition 7. If $\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l]}$ for a non-negative integer l and if we put

$$
\begin{gathered}
\left\{\left(x^{(p)} ; y^{(p)}\right),\left(x^{(p)} ; \bar{y}^{(p)}\right)\right\}=T^{(p)}\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\}, \\
\eta^{(p)}=p\left(a, x^{(p)} ; y^{(p)} \mid G_{2}\right), \quad \bar{\eta}^{(p)}=\varphi\left(a, x^{(p)} ; \bar{y}^{(p)} \mid G_{2}\right) \\
\text { for } \quad p=0,1, \cdots, l,
\end{gathered}
$$

then

$$
\begin{equation*}
\left\|\bar{\eta}^{(l)}-\eta^{(0)}\right\| \leqq M_{3}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \tag{9.2}
\end{equation*}
$$

Proof. By the definition of $T^{[p]}$,

$$
y^{(p)}=\mathscr{P}\left(x^{(p)}, x^{(p-1)} ; \bar{y}^{(p-1)} \mid G_{2}\right) \quad \text { or } \quad \bar{y}^{(p)}=\rho\left(x^{(p)}, x^{(p-1)} ; \bar{y}^{(p-1)} \mid G_{2}\right)
$$

for $p=1, \cdots, l$. Hence

$$
\eta^{(p)}=\bar{\eta}^{(p-1)} \quad \text { or } \quad \bar{\eta}^{(p)}=\bar{\eta}^{(p-1)} \quad p=1, \cdots, l
$$

so that

$$
\begin{gathered}
\left\|\bar{\eta}^{(p)}-\bar{\eta}^{(p-1)}\right\|=\left\|\bar{\eta}^{(p)}-\eta^{(p)}\right\| \quad \text { or } \quad\left\|\bar{\eta}^{(p)}-\bar{\eta}^{(p-1)}\right\|=0 \\
\text { for } \quad p=1, \cdots, l .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\left\|\bar{\eta}^{(l)}-\eta^{(0)}\right\| \leqq \sum_{p=1}^{i}\left\|\bar{\eta}^{(p)}-\bar{\eta}^{(p-1)}\right\|+\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \leqq \sum_{p=0}^{l}\left\|\bar{\eta}^{(p)}-\eta^{(p)}\right\| \tag{9.3}
\end{equation*}
$$

By (6.2) and Lemma 3 (4.2), we obtain

$$
\begin{align*}
& \left\|\bar{\eta}^{(p)}-\eta^{(p)}\right\| \leqq\left\|\bar{y}^{(p)}-y^{(p)}\right\| \exp \left(n M_{0}\left|a-x^{(p)}\right|\right) \\
& \leqq\left\|\bar{y}^{(p)}-y^{(p)}\right\| \exp \left(n M_{0} L_{1}\right)=\sqrt{M_{2}}\left\|\bar{y}^{(p)}-y^{(p)}\right\| \\
& \text { for } \quad p=0, \cdots, l \tag{9.4}
\end{align*}
$$

since $\left|a-x^{(p)}\right|<L_{1}$ and $\sqrt{M_{2}}=\exp \left(n M_{0} L_{1}\right)$ by (8.6). Similarly by (6.2) and Lemma 3 (4.2), we have

$$
\begin{equation*}
\left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \exp \left(n M_{0}\left|x^{(0)}-a\right|\right) \leqq \sqrt{M_{2}}\left\|\bar{\eta}^{(0)}--\eta^{(0)}\right\| \tag{9.5}
\end{equation*}
$$

On the other hand, by Proposition 6 , if $p=q n+s, n-1 \geqq s \geqq 0$ $q, s=$ non-negative integer, then

$$
\begin{equation*}
\left\|\bar{y}^{(p)}-y^{(p)}\right\| \leqq\left(M_{1}+1\right) M_{1}^{q}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \quad \text { for } \quad p=0, \cdots, l \tag{9.6}
\end{equation*}
$$

By (9.4), (9.5), (9.6), we obtain

$$
\begin{equation*}
\left\|\bar{\eta}^{-(p)}-\eta^{(p)}\right\| \leqq M_{2}\left(M_{1}+1\right) M_{1}^{q}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \quad \text { for } \quad p=0, \cdots, l \tag{9.7}
\end{equation*}
$$

By (9.3), (9.7), taking account of (8.7) and (9.1), if $l=n m+\nu$, $n-1 \geqq \nu \geqq 0$ and $m, \nu=$ non-negative integer, then we get

$$
\begin{aligned}
& \left\|\bar{\eta}^{(l)}-\eta^{(l)}\right\| \leqq \sum_{p=0}^{n m-1}\left\|\bar{\eta}^{(p)}-\eta^{(p)}\right\|+\sum_{\nu=n m}^{n m+\nu}\left\|\bar{\eta}^{(p)}-\eta^{(p)}\right\| \\
& \quad \leqq n M_{2}\left(M_{1}+1\right)\left(\sum_{q=0}^{m-1} M_{1}^{q}\right)\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\|+(\nu+1) M_{2}\left(M_{1}+1\right) M_{1}^{m}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \\
& \quad \leqq n M_{2}\left(M_{1}+1\right)\left(\sum_{q=0}^{\infty} M_{1}^{q}\right)\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\|=n M_{2}\left(1+M_{1}\right)\left(1-M_{1}\right)^{-1}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| \\
& \quad=M_{3}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\|, \text { q.e.d. }
\end{aligned}
$$

In the following we put

$$
\begin{equation*}
M_{4}=n N\left(1+M_{1}\right)\left(1-M_{1}\right)^{-1} \tag{9.8}
\end{equation*}
$$

By (8.7), M_{4} is positive.
Proposition 8. Let the premises and the notations be the same as in the proposition 7 and further let

$$
z^{(p)}=z\left(x^{(p)} ; y^{(p)}\right) \text { and } \quad \bar{z}^{(p)}=z\left(x^{(p)} ; \bar{y}^{(p)}\right) \quad \text { for } \quad p=0, \cdots, l
$$

then

$$
\begin{equation*}
\left|\bar{z}^{(0)}-z^{(0)}\right| \leqq M_{4}| | \bar{y}^{(0)}-y^{(0)} \|+\left|\bar{z}^{(l)}-z^{(l)}\right| . \tag{9.9}
\end{equation*}
$$

Proof. We use the same notations as in the proof of Proposition 7. If $l=0,(9.9)$ is obvious by $M_{4}>0$. Hence we suppose $l>0$ in the following lines.

By Proposition 5,

$$
\begin{equation*}
\left|\bar{z}^{(p)}-z^{(p)}\right|-\left|\bar{z}^{(p+1)}-z^{(p+1)}\right| \leqq N\left\|\bar{y}^{(p)}-y^{(p)}\right\| \quad \text { for } \quad p=0, \cdots, l-1 \tag{9.10}
\end{equation*}
$$

Adding the inequalities (9.10) for $p=0, \cdots, l-1$ side by side, we obtain

$$
\begin{equation*}
\left|\bar{z}^{(0)}-z^{(0)}\right|-\left|\bar{z}^{(l)}-z^{(l)}\right| \leqq N \sum_{p=0}^{l-1}\left\|\bar{y}^{(p)}-y^{(p)}\right\| \tag{9.11}
\end{equation*}
$$

On the other hand, by Proposition 6,

$$
\left\|\dot{y}^{(p)}-y^{(p)}\right\| \leqq\left(M_{1}+1\right) M_{1}^{q}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \quad \text { for } \quad p=0, \cdots, l
$$

where q is determined for p as in Proposition 7 (9.6). Hence m, ν being determined for l as in the definition of $T^{[l]}$,

$$
\begin{align*}
& \sum_{p=0}^{l-1}\left\|\bar{y}^{(p)}-y^{(p)}\right\| \leqq n\left(M_{1}+1\right)\left(\sum_{q=0}^{m-1} M_{1}^{q}\right)\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
& \quad+\nu\left(M_{1}+1\right) M_{1}^{m}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq n\left(M_{1}+1\right)\left(\sum_{q=0}^{\infty} M_{1}^{q}\right)\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
& \quad=n\left(1+M_{1}\right)\left(1-M_{1}\right)^{-1}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \tag{9.12}
\end{align*}
$$

since $n-1 \geqq \nu \geqq 0$ and $0<M_{1}<1$ by (8.7).
By (9.11), (9.12), taking account of (9.8), we obtain finally

$$
\begin{aligned}
& \left|\bar{z}^{(0)}-z^{(0)}\right|-\left|\bar{z}^{(l)}-z^{(l)}\right| \leqq n N\left(1+M_{1}\right)\left(1-M_{1}\right)^{-1}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \\
& \quad \leqq M_{4}\left\|\bar{y}^{(0)}-y^{(0)}\right\|,
\end{aligned}
$$

q.e.d.
10. Domain Ω_{3}, G_{3}. We put

$$
\begin{equation*}
M_{5}=1+2\left(M_{1}+1\right) M_{2}+2 M_{3} . \tag{10.1}
\end{equation*}
$$

By (8.7), (8.8), (9.1), $M_{5}>1$. Hence if we take a positive number L_{3} such that

$$
\begin{equation*}
L_{3} M_{5}<L_{2} \tag{10.2}
\end{equation*}
$$

then

$$
\begin{equation*}
L_{3}<L_{2} \tag{10.3}
\end{equation*}
$$

Now we take a domain Ω_{3} in R^{n} defined by

$$
\eta:\left\|\eta-b^{(1)}\right\|<L_{3} . \quad(10.4)
$$

Then by (7.1), (10.3), (10.4), (7. 3),

$$
\Omega_{3} \subset \Omega_{2} \subset \Omega_{1}
$$

We denote by G_{3} the portion of Q_{1} covered by the family of all the characteristic curves $C\left(a ; \eta \mid Q_{1}\right)$ where $\eta \in \Omega_{3}$. In the same way as in the cases of G_{1}, G_{2}, we easily prove that G_{3} is open in R^{n+1}, and $C\left(\xi ; \eta \mid G_{3}\right)$ where $(\xi ; \eta) \in G_{3}$, is defined just for

Fig. 5 the interval $|x-a|<L_{1}$. By (10.5) and the definitions of G_{1}^{*}, G_{2}, G_{3},

$$
G_{3} \subset G_{2} \subset G_{1} \subset Q_{1}
$$

Proposition 9. If $\left(x^{(0)} ; y^{(0)}\right) \in F \cdot G_{3}$ and $\left(x^{(0)} ; \bar{y}^{(0)}\right) \in G_{3}$, then $\left\{\left(x^{(0)} ; y^{(0)}\right)\right.$, $\left.\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l]}$ for any non-negative integer l.

Proof. We use the same notations as in the Proposition 7 and 8.
We prove Proposition 9 by induction on l. For $l=0$, Proposition 9 is obvious by the definition of $S^{[0]}$ and $G_{3} \subset G_{2}$. We assume that

Proposition 9 is true for $l=l^{\prime}$. Then if $\left(x^{(0)} ; y^{(0)}\right) \in F \cdot G_{3}$ and $\left(x^{(0)} ; \bar{y}^{(0)}\right) \in G_{3}$, the pair $\left\{\left(x^{\left(l^{\prime}\right)} ; y^{\left(l^{\prime}\right)}\right),\left(x^{\left(l^{\prime}\right)} ; \bar{y}^{\left(l^{\prime}\right)}\right)\right\}=T^{\left[l^{\prime}\right\}}\left\{\left(x^{(0)}, y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\}$ is uniquely determined and $\left(x^{\left(l^{\prime}\right)} ; y^{\left(l^{\prime}\right)}\right) \in F \cdot G_{2}$ and $\left(x^{\left(l^{\prime}\right)} ; \bar{y}^{\left(l^{\prime}\right)}\right) \in G_{2}$ by the definition of $T^{[\ell\rangle}$.

Let $l^{\prime}=m^{\prime} n+\nu^{\prime}, \quad n-1 \geqq \nu^{\prime} \geqq 0$ and $m^{\prime}, \nu^{\prime}=$ integer. Then we put $\widetilde{y}^{\left(l^{\prime}\right)}=\left(y_{1}^{\left(l^{\prime}\right)}, \cdots, v_{v^{\prime}}^{\left(l^{\prime}\right)}, \bar{y}_{v^{\prime}+1}^{\left(l^{\prime}\right)}, y_{v^{\prime}+2}^{\left(l^{\prime}\right)}, \cdots, v_{n}^{\left(l^{\prime}\right)}\right)$. If $\tilde{y}^{\left(l^{\prime}\right)} \in G_{2}\left[x^{\left(l^{\prime}\right)}\right]$, that is, $\left(x^{\left(l^{\prime}\right)} ; \tilde{y}^{\left(l^{\prime}\right)}\right) \in G_{2}$, then $\left\{\left(x^{\left(l^{\prime}\right)} ; y^{\left(l^{\prime}\right)}\right),\left(x^{\left(l^{\prime}\right)} ; \bar{y}^{\left(l^{\prime}\right)}\right)\right\} \in S_{i^{\prime}+1}$ so that $\left\{\left(x^{(0)} ; y^{(0)}\right)\right.$, $\left.\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l /+1]}$ and the proof of Proposition 9 is completed.

We suppose therefore, if possible, that $\tilde{y}^{\left(l^{\prime}\right)} \notin G_{2}\left[x^{\left(l^{\prime}\right)}\right]$. Then there is a point $y^{*} \in\left(G_{2}\left[x^{\left(l^{\prime}\right)}\right]\right)^{b}$ on the segment of straight line which joins $\bar{y}^{\left(l^{\prime}\right)}$ and $\tilde{y}^{\left(l^{\prime}\right)}$ since $\bar{y}^{\left(l^{\prime}\right)} \in G_{2}\left[x^{\left(l^{\prime}\right)}\right]$ by $\left(x^{\left(l^{\prime}\right)} ; \bar{y}^{\left(l^{\prime}\right)}\right) \in G_{2}$.

We can easily see that

$$
\left\|y^{*}-\bar{y}^{\left(l^{\prime}\right)}\right\| \leqq\left\|\tilde{y}^{\left(l^{\prime}\right)}-\bar{y}^{\left(l^{\prime}\right)}\right\| \leqq\left\|y^{\left(l^{\prime}\right)}-\bar{y}^{\left(l^{\prime}\right)}\right\|
$$

so that by Proposition 6 (8.9)

$$
\begin{equation*}
\left\|y^{*}-\bar{y}^{\left(l^{\prime}\right)}\right\| \leqq\left(M_{1}+1\right) M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| \tag{10.6}
\end{equation*}
$$

By Proposition 4, since $y^{*} \in\left(G_{2}\left[x^{\left(l^{\prime}\right)}\right]\right)^{b}, y^{*} \in G_{1}\left[x^{\left(l^{\prime}\right)}\right]$, that is, $\left(x^{\left(l^{\prime}\right)} ; y^{*}\right) \in G_{1}$ and if we put $\eta^{*}=\varphi\left(a, x^{\left(l^{\prime}\right)} ; y^{*} \mid G_{1}\right), \eta^{*} \in \Omega_{2}^{b}$. Hence by (7.1)

$$
\begin{equation*}
\left\|\eta^{*}-b^{(1)}\right\|=L_{2} \tag{10.7}
\end{equation*}
$$

By (6.2) and Lemma 3 (4.2), taking account of (8.6) and $\left|a-x^{\left(l^{\prime}\right)}\right|$ $<L_{1}$, we have

$$
\begin{aligned}
& \left\|\eta^{*}-\bar{\eta}^{\left(l^{\prime}\right)}\right\| \leqq\left\|y^{*}-\bar{y}^{\left(l^{\prime}\right)}\right\| \exp \left(n M_{0}\left|a-x^{\left(l^{\prime}\right)}\right|\right) \\
& \leqq\left\|y^{*}-\bar{y}^{\left(l^{\prime}\right)}\right\| \exp \left(n M_{0} L_{1}\right)=\sqrt{M_{2}}\left\|y^{*}-\bar{y}^{\left(l^{\prime}\right)}\right\|
\end{aligned}
$$

and so by (10.6)

$$
\begin{equation*}
\left\|\eta^{*}-\bar{\eta}^{\left(l^{\prime}\right)}\right\| \leqq \sqrt{M_{2}}\left(M_{1}+1\right) M_{1}^{m^{\prime}}\left\|\bar{y}^{(0)}-y^{(0)}\right\| . \tag{10.8}
\end{equation*}
$$

On the other hand, by the definitions of $\bar{\eta}^{(0)}, \eta^{(0)}, G_{3}$ and by $\left(x^{(0)} ; y^{(0)}\right) \in F \cdot G_{3},\left(x^{(0)} ; \bar{y}^{(0)}\right) \in G_{3}$, we have

$$
\bar{\eta}^{(0)}, \eta^{(0)} \in \Omega_{3},
$$

so that by (10.4),

$$
\begin{equation*}
\left\|\eta^{-(0)}-b^{(1)}\right\|<L_{3}, \quad\left\|\eta^{(0)}-b^{(1)}\right\|<L_{3} \tag{10.9}
\end{equation*}
$$

Also, as we have seen in Proposition 7 (9.5),

$$
\left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq \sqrt{M_{2}}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\| .
$$

Hence, by (10.9)

$$
\left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq \sqrt{M_{2}}\left(\left\|\bar{\eta}^{(0)}-b^{(1)}\right\|+\left\|\eta^{(0)}-b^{(1)}\right\|\right)<2 L_{3} \sqrt{ } \bar{M}_{2}
$$

From this and (10.8) we get

$$
\begin{equation*}
\left\|\eta^{*}-\bar{\eta}^{\left(l^{\prime}\right)}\right\|<2 L_{3} M_{2}\left(M_{1}+1\right) M_{1}^{m^{\prime}} \tag{10.10}
\end{equation*}
$$

Also, by Proposition 7, (9.2) and (10.9), we have

$$
\begin{equation*}
\left\|\bar{\eta}^{\left(l^{\prime}\right)}-\eta^{(0)}\right\| \leqq M_{3}\left\|\bar{\eta}^{(0)}-\eta^{(0)}\right\|<2 L_{3} M_{3} \tag{10.11}
\end{equation*}
$$

By (10.7), (10.9), (10.10), and (10.11), taking account of (8.7), (10.1), we obtain finally

$$
\begin{aligned}
& L_{2}=\left\|\eta^{*}-b^{(1)}\right\| \leqq\left\|\eta^{*}-\bar{\eta}^{\left(l^{\prime}\right)}\right\|+\left\|\bar{\eta}^{\left(l^{\prime}\right)}-\eta^{(0)}\right\|+\left\|\eta^{(0)}-b^{(1)}\right\| \\
& <L_{3}\left\{2 M_{2}\left(M_{1}+1\right) M_{1}^{m^{\prime}}+2 M_{3}+1\right\} \leqq L_{3}\left\{2 M_{2}\left(M_{1}+1\right)+2 M_{3}+1\right\}=L_{3} M_{5}
\end{aligned}
$$

But this contradicts (10.2) and Proposition 9 is completely proved.
Proposition 10. Let $\left\{\left(x^{\prime} ; y^{\prime}\right),\left(x^{\prime} ; \bar{y}^{\prime}\right)\right\}$ be any pair of points of G_{3} with the same x coordinate and let

$$
z^{\prime}=z\left(x^{\prime} ; y^{\prime}\right), \quad \bar{z}^{\prime}=z\left(x^{\prime} ; \bar{y}^{\prime}\right)
$$

Then

$$
\begin{equation*}
\left|\bar{z}^{\prime}-z^{\prime}\right| \leqq M_{2} M_{4}\left\|\bar{y}^{\prime}-y^{\prime}\right\| \tag{10.12}
\end{equation*}
$$

Proof. There is the nearest x to x^{\prime} in the interval $|x-a|<L_{1}$ such that either $\left(x, \varphi\left(x, x^{\prime} ; y^{\prime} \mid G_{3}\right)\right) \in F \cdot G_{3}$ or $\left(x, \varphi\left(x, x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right)\right) \in F \cdot G_{3}$, since by Proposition 3 and $G_{3} \subset G_{2}$, each of the continuous curves $C\left(x^{\prime} ; y^{\prime} \mid G_{3}\right)$ and $C\left(x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right)$ which are defined just for the interval $|x-a|<L_{1}$ and are contained in G_{3}, has at least one point in common with $F \cdot G_{3}$ which is closed in G_{3}. We denote such x by $x^{(0)}$. If incidently two such x exist, we take as $x^{(0)}$ for example the one on the right side of x^{\prime}.

Now we distinguish two cases.
i) If $\left(x^{(0)}, \varphi\left(x^{(0)}, x^{\prime} ; y^{\prime} \mid G_{3}\right)\right) \in F \cdot G_{3}$, then we put

$$
y^{(0)}=\varphi\left(x^{(0)}, x^{\prime} ; y^{\prime} \mid G_{3}\right), \quad \bar{y}^{(0)}=\varphi\left(x^{(0)}, x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right)
$$

ii) If $\left(x^{(0)}, \varphi\left(x^{(0)}, x^{\prime} ; y^{\prime} \mid G_{3}\right)\right) \notin F \cdot G_{3}$ and so by the definition of $x^{(0)}$, $\left(x^{(0)}, \rho\left(x^{(0)}, x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right)\right) \in F \cdot G_{3}$, then we put

$$
y^{(0)}=\varphi\left(x^{(0)}, x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right), \quad \bar{y}^{(0)}=\varphi\left(x^{(0)}, x^{\prime} ; y^{\prime} \mid G_{3}\right) .
$$

In any case $\left(x^{(0)} ; y^{(0)}\right) \in F \cdot G_{3}$ and $\left(x^{(0)} ; \bar{y}^{(0)}\right) \in G_{3}$.
By the definition of $x^{(0)}$, each of the characteristic curves $C\left(x^{\prime} ; y^{\prime} \mid G_{3}\right)$
and $C\left(x^{\prime} ; \bar{y}^{\prime} \mid G_{3}\right)$ has no point in common with F and so is contained in K for the interval $x^{\prime}<x<x^{(0)}$ or $x^{(0)}<x<x^{\prime}$. Hence by Lemma 1, if we put $z^{(0)}=z\left(x^{(0)} ; y^{(0)}\right)$ and $\bar{z}^{(0)}=z\left(x^{(0)} ; \bar{y}^{(0)}\right)$,

$$
\left\{\begin{array} { l }
{ z ^ { (0) } = z ^ { \prime } } \\
{ \overline { z } ^ { (0) } = \overline { z } ^ { \prime } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
z^{(0)}=\bar{z}^{\prime} \\
\bar{z}^{(0)}=z^{\prime}
\end{array}\right.\right.
$$

Therefore in any case,

$$
\begin{equation*}
\left|\bar{z}^{\prime}-\boldsymbol{z}^{\prime}\right|=\left|\bar{z}^{(0)}-\boldsymbol{z}^{(0)}\right| . \tag{10.13}
\end{equation*}
$$

By Lemma 3 (4.2) and (6.2), taking account of (8.6), we have

$$
\begin{align*}
& \left\|\bar{y}^{(0)}-y^{(0)}\right\| \leqq\left\|\bar{y}^{\prime}-y^{\prime}\right\| \exp \left(n M_{0}\left|x^{(0)}-x^{\prime}\right|\right) \\
& \quad \leqq\left\|\bar{y}^{\prime}-y^{\prime}\right\| \exp \left(2 n M_{0} L_{1}\right) \leqq M_{2}\left\|\bar{y}^{\prime}-y^{\prime}\right\| \tag{10.14}
\end{align*}
$$

since $\left|x^{(0)}-x^{\prime}\right|<2 L_{1}$.
Now, by Proposition 9, $\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\} \in S^{[l]}$ for any nonnegative integer l, since $\left(x^{(0)} ; y^{(0)}\right) \in F \cdot G_{3}$ and $\left(x^{(0)} ; \bar{y}^{(0)}\right) \in G_{3}$. Hence we put

$$
\begin{gathered}
\left\{\left(x^{(l)} ; y^{(l)}\right),\left(x^{(l)} ; \bar{y}^{(l)}\right)\right\}=T^{[l]}\left\{\left(x^{(0)} ; y^{(0)}\right),\left(x^{(0)} ; \bar{y}^{(0)}\right)\right\}, \\
z^{(l)}=z\left(x^{(l)} ; y^{(l)}\right), \quad \bar{z}^{(l)}=z\left(x^{(l)} ; \bar{y}^{(l)}\right)
\end{gathered}
$$

for any non-negative integer l. Then by Proposition 8

$$
\begin{equation*}
\left|\bar{z}^{(0)}-z^{(0)}\right| \leqq M_{4}\left\|\bar{y}^{(0)}-y^{(0)}\right\|+\left|\bar{z}^{(l)}-z^{(l)}\right| \tag{10.15}
\end{equation*}
$$

On the other hand, by Proposition 6, if $l=n m+\nu, n-1 \geqq \nu \geqq 0$ and $m, \nu=$ integer, then

$$
\left\|\bar{y}^{(l)}-y^{(l)}\right\| \leqq\left(M_{1}+1\right) M_{1}^{m}\left\|\bar{y}^{(0)}-y^{(0)}\right\| .
$$

Hence observing that $m \rightarrow \infty$ as $l \rightarrow \infty$ and $0<M_{1}<1$,

$$
\left\|\bar{y}^{(l)}-y^{(l)}\right\| \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty,
$$

Thus

$$
\left|\bar{z}^{(l)}-z^{(l)}\right|=\left|z\left(x^{(l)} ; \bar{y}^{(l)}\right)-z\left(x^{(l)} ; y^{(l)}\right)\right| \rightarrow 0 \quad \text { as } \quad l \rightarrow \infty,
$$

since by the continuity of $z(x ; y)$ on $\bar{Q}(\subset G), z(x ; y)$ is uniformly continuous on \bar{Q} which is closed and bounded in $R^{n_{+1}}$ and by the definition of $T^{(l)},\left(x^{(l)} ; y^{(l)}\right),\left(x^{(l)} ; \bar{y}^{(l)}\right) \in G_{2} \subset Q$ for any non-negative integer l.

Therefore letting $l \rightarrow \infty$ on the right side of (10.15), we have

$$
\begin{equation*}
\left|\bar{z}^{(0)}-z^{(0)}\right| \leqq M_{4}\left\|\bar{y}^{(0)}-y^{(0)}\right\| . \tag{10.16}
\end{equation*}
$$

By (10.13), (10.14) and (10.16), we obtain finally

$$
\left|\bar{z}^{\prime}-z^{\prime}\right| \leqq M_{2} M_{4}\left\|\bar{y}^{\prime}-y^{\prime}\right\|,
$$

q.e.d.
11. Domains $Q^{\prime}, Q^{\prime \prime}, \Omega_{4}, G_{4}$ and Mapping \mathfrak{N}. Since G_{3} is open in R^{n+1}, and $F \cdot G_{3} \neq 0$ by the way of the construction of G_{3} and Proposition 3 , we can take a $(n+1)$-dimensional open parallelepiped Q^{\prime} :

$$
\left|x-a^{\prime}\right|<L_{4},\left|y_{\lambda}-b_{\lambda}{ }^{\prime}\right|<L_{4}\left(M_{0}+1\right) \quad \lambda=1, \cdots, n \quad\left(L_{4}>0\right)
$$

such that

$$
\left(a^{\prime} ; b^{\prime}\right)=\left(a^{\prime}, b_{1}^{\prime}, \cdots, b_{n}{ }^{\prime}\right) \in F \cdot G_{3} \quad \text { and } \quad Q^{\prime} \subset G_{3} .
$$

Evidently $Q^{\prime} \subset G_{3} \subset Q$.
We denote by Ω_{4} the n-dimensional open cube

$$
\eta:\left|\eta_{\lambda}-b_{\lambda}^{\prime}\right|<L_{4} \quad \lambda=1, \cdots, n
$$

Then if $\eta \in \Omega_{4}$,

$$
\eta_{\lambda}+L_{4} M_{0} \leqq b_{\lambda}^{\prime}+\left(M_{0}+1\right) L_{4}, \quad \eta_{\lambda}-L_{4} M_{0} \geqq b_{\lambda}^{\prime}-\left(M_{0}+1\right) L_{4} \quad \lambda=1, \cdots, n .
$$

Hence the characteristic curves $C\left(a^{\prime} ; \eta \mid Q^{\prime}\right)$ where $\eta \in \Omega_{4}$, are defined just for the interval $\left|x-a^{\prime}\right|<L_{4}$ since $\left|f_{\lambda}\right|<M_{0} \quad \lambda=1, \cdots, n$ on $Q^{\prime}(<Q)$ by (6.1).

Fig. 6

We denote by G_{4} the portion of Q^{\prime} covered by the family of all the characteristic curves $C\left(a^{\prime} ; \eta \mid Q^{\prime}\right)$ where $\eta \in \Omega_{4}$. Evidently $G_{4} \subset Q^{\prime} \subset G_{3} \subset Q$.

In the same way as in the cases of G_{1}, G_{2} and G_{3}, we easily prove that G_{4} is open in R^{n+1} and any characteristic curve $C\left(\xi ; \eta \mid G_{4}\right)$ where $(\xi ; \eta) \in G_{4}$ is defined just for $\left|x-a^{\prime}\right|<L_{4}$.

We put

$$
\begin{equation*}
M_{5}=N+n M_{0} M_{2} M_{4}+M_{2} M_{4} \tag{11.1}
\end{equation*}
$$

Proposition 11. Let $\left(x^{(1)} ; y^{(1)}\right)$ and $\left(x^{(0)} ; y^{(0)}\right)$ be any pair of points of G_{4} and let

$$
z^{(1)}=z\left(x^{(1)} ; y^{(1)}\right), \quad z^{(0)}=z\left(x^{(0)} ; y^{(0)}\right) .
$$

Then

$$
\begin{equation*}
\left|z^{(1)}-z^{(0)}\right| \leqq M_{5}\left(\left|x^{(1)}-x^{(0)}\right|+\left\|y^{(1)}-y^{(0)}\right\|\right) \tag{11.2}
\end{equation*}
$$

Proof. We denote by $x^{(2)}$:
(Case I) the nearest x to $x^{(1)}$ in the interval $x^{(0)} \leqq x \leqq x^{(1)}$ or $x^{(1)} \leqq x \leqq x^{(0)}$ such that $\left(x ; \mathscr{P}\left(x, x^{(1)} ; y^{(1)} \mid G_{4}\right)\right) \in F$, if the portion of $C\left(x^{(1)} ; y^{(1)} \mid G_{4}\right)$ for that interval has some points in common with F. Such x exists in this case since the continuous curve $C\left(x^{(1)} ; y^{(1)} \mid G_{4}\right)$ which is defined for the interval $x^{(0)} \leqq x \leqq x^{(1)}$ or $x^{(1)} \leqq x \leqq x^{(0)}$, is contained in G_{4} and $F \cdot G_{4}$ is closed in G_{4}.
(Case II) the number $x^{(0)}$, if the portion of $C\left(x^{(1)} ; y^{(1)} \mid G_{4}\right)$ for the interval $x^{(0)} \leqq x \leqq x^{(1)}$ or $x^{(1)} \leqq x \leqq x^{(0)}$ has no point in common with F.

We put $y^{(2)}=\mathcal{P}\left(x^{(2)}, x^{(1)} ; y^{(1)} \mid G_{4}\right), z^{(2)}=z\left(x^{(2)} ; y^{(2)}\right) . \quad$ In Case I, $\left(x^{(2)} ; y^{(2)}\right) \in F \cdot G_{4}$ and in Case II, $\left(x^{(2)} ; y^{(2)}\right)=\left(x^{(0)} ; \varphi\left(x^{(0)}, x^{(1)} ; y^{(1)} \mid G_{4}\right)\right) \in G_{4}$.

Then in both Cases, by Lemma 1 ,

$$
\begin{equation*}
z^{(1)}=z^{(2)} \tag{11.3}
\end{equation*}
$$

since the portion of $C\left(x^{(1)} ; y^{(1)} \mid G_{4}\right)$ for the open interval $x^{(1)}<x<x^{(2)}$ or $x^{(2)}<x<x^{(1)}$ has no point in common with F and so is contained in K by the definition of $x^{(2)}$.

Also by (6.1), (2.2), observing that $C\left(x^{(1)} ; y^{(1)} \mid G_{4}\right)$ is contained in Q, we have

$$
\begin{aligned}
& \left|y_{\lambda}^{(2)}-y_{\lambda}^{(1)}\right|=\left|\varphi_{\lambda}\left(x^{(2)}, x^{(1)} ; y^{(1)} \mid G_{4}\right)-\varphi_{\lambda}\left(x^{(1)}, x^{(1)} ; y^{(1)} \mid G_{4}\right)\right| \\
& \quad \leqq M_{0}\left|x^{(2)}-x^{(1)}\right| \quad \lambda=1, \cdots, n .
\end{aligned}
$$

Hence

$$
\left\|y^{(2)}-y^{(1)}\right\| \leqq \sum_{\mu=1}^{n}\left|y_{!2}^{(2)}-y_{\mu}^{(1)}\right| \leqq n M_{0}\left|x^{(2)}-x^{(1)}\right| \leqq n M_{0}\left|x^{(1)}-x^{(0)}\right|
$$

since $x^{(0)} \leqq x^{(2)} \leqq x^{(1)}$ or $x^{(1)} \leqq x^{(2)} \leqq x^{(0)} \quad$ by the definition of $x^{(2)}$.

Therefore we have

$$
\begin{align*}
& \left\|y^{(2)}-y^{(0)}\right\| \leqq\left\|y^{(2)}-y^{(1)}\right\|+\left\|y^{(1)}-y^{(0)}\right\| \\
& \leqq n M_{0}\left|x^{(1)}-x^{(0)}\right|+\left\|y^{(1)}-y^{(0)}\right\| . \tag{11.4}
\end{align*}
$$

Now

$$
\left(x^{(0)} ; y^{(2)}\right) \in Q^{\prime} \subset G_{3} \subset Q
$$

since $\left(x^{(0)} ; y^{(0)}\right) \in G_{4} \subset Q^{\prime}$ and $\left(x^{(2)} ; y^{(2)}\right) \in G_{4} \subset Q^{\prime}$ in both Cases. We put $z^{(3)}=z\left(x^{(0)} ; y^{(2)}\right)$.

Then we have

$$
\left|z^{(3)}-z^{(2)}\right|=\left|z\left(x^{(0)} ; y^{(2)}\right)-z\left(x^{(2)} ; y^{(2)}\right)\right| \leqq N\left|x^{(2)}-x^{(0)}\right|
$$

in Case I, by Proposition 1 and $\left(x^{(0)} ; y^{(2)}\right) \in Q,\left(x^{(2)} ; y^{(2)}\right) \in F \cdot G_{4} \subset F \cdot Q$, and in Case II, simply as $x^{(2)}=x^{(0)}$. Hence, by (11.3), we get

$$
\begin{equation*}
\left|z^{(3)}-z^{(1)}\right|=\left|z^{(3)}-z^{(2)}\right| \leqq N\left|x^{(2)}-x^{(0)}\right| \leqq N\left|x^{(1)}-x^{(0)}\right| \tag{11.5}
\end{equation*}
$$

since $x^{(0)} \leqq x^{(2)} \leqq x^{(1)}$ or $x^{(1)} \leqq x^{(2)} \leqq x^{(0)}$ by the definition of $x^{(2)}$.
Also, by Proposition 10 (10.12), since $\left(x^{(0)} ; y^{(2)}\right) \in G_{3},\left(x^{(0)} ; y^{(0)}\right) \in G_{3}$ in both Cases, we have

$$
\left|z^{(3)}-z^{(0)}\right| \leqq M_{2} M_{4}\left\|y^{(2)}-y^{(0)}\right\|
$$

Hence by (11.4), we get

$$
\begin{equation*}
\left|z^{(3)}-z^{(2)}\right| \leqq n M_{0} M_{2} M_{4}\left|x^{(1)}-x^{(0)}\right|+M_{2} M_{4}\left\|y^{(1)}-y^{(0)}\right\| . \tag{11.6}
\end{equation*}
$$

By (11.5), (11.6), taking account of (11.1), we obtain finally

$$
\begin{aligned}
& \left|z^{(1)}-z^{(0)}\right| \leqq\left|z^{(3)}-z^{(1)}\right|+\left|z^{(3)}-z^{(0)}\right| \\
& \quad \leqq\left(N+n M_{0} M_{2} M_{4}\right)\left|x^{(1)}-x^{(0)}\right|+M_{2} M_{4}\left\|y^{(1)}-y^{(0)}\right\| \\
& \quad \leqq M_{5}\left(\left|x^{(1)}-x^{(0)}\right|+\left\|y^{(1)}-y^{(0)}\right\|\right), \quad \text { q.e.d. }
\end{aligned}
$$

We denote by $Q^{\prime \prime}$ the $(n+1)-$ dimensional open cube defined by

$$
\begin{aligned}
& (x ; \eta):\left|x-a^{\prime}\right|<L_{4} \\
& \left|\eta_{\lambda}-b_{\lambda}^{\prime}\right|<L_{4} \quad \lambda=1, \cdots, n
\end{aligned}
$$

We put $\chi_{\lambda}(x ; \eta)=\varphi_{\lambda}\left(x, a^{\prime} ; \eta \mid G_{4}\right)$. $\lambda=1, \cdots, n$. Then $\chi_{\lambda}(x ; \eta)$ are defined and continuous on $Q^{\prime \prime}$ and have continuous partial derivatives with respect to all their arguments on $Q^{\prime \prime}$, by the corresponding properties of $\varphi_{\lambda}\left(x, \xi ; \eta \mid G_{4}\right)$.

We denote by \mathfrak{A} the continuous

Fig. 7
mapping of $Q^{\prime \prime}$ onto G_{4} :

$$
(x ; \eta) \rightarrow(x ; \chi(x ; \eta)) .
$$

That \mathfrak{N} maps $Q^{\prime \prime}$ onto G_{4}, follows from the definition of G_{4}.
By the properties of $C\left(\xi ; \eta \mid G_{4}\right)$ and $\rho_{\lambda}\left(x, \xi ; \eta \mid G_{4}\right)$ as stated in $\S 1.2$, we easily see that \mathfrak{A} is one to one and bicontinuous, and \mathfrak{A}^{-1} is represented by

$$
(x ; y) \rightarrow(x ; \gamma(x ; y)),
$$

if we put $\gamma_{\lambda}(x ; y)=\varphi_{\lambda}\left(a^{\prime}, x ; y \mid G_{4}\right) \quad \lambda=1, \cdots, n$ for $(x ; y) \in G_{4}$.
Further $\gamma_{\lambda}(x ; y)$ have continuous partial derivatives with respect to all their arguments by the corresponding properties of $\varphi_{\lambda}\left(x, \xi ; \eta \mid G_{4}\right)$.

From this, we can easily prove that \mathfrak{A}^{-1} maps any null set in G_{4} onto a null set in $Q^{\prime \prime 9)}$.

Thus we have
Proposition 12. The mapping \mathfrak{A} of $Q^{\prime \prime}$ onto G_{4} is one to one and bicontinuous, and \mathfrak{A}^{-1} maps any null set in G_{4} onto a null set in $Q^{\prime \prime}$.
12. Completion of the proof. By Proposition 11, we have

$$
\begin{equation*}
\lim _{(x ; y) \rightarrow\left(x^{(0)} ; y^{(0)}\right)} \frac{\left|z(x ; y)-z\left(x^{(0)} ; y^{(0)}\right)\right|}{\left|x-x^{(0)}\right|+\left\|y-y^{(0)}\right\|} \leqq M_{5} \tag{12.1}
\end{equation*}
$$

whenever $\left(x^{(0)} ; y^{(0)}\right) \in G_{4}$. Hence $z(x ; y)$ is totally differentiable almost everywhere in G_{4}, by a theorem of Rademacher on almost everywhere total differentiability ${ }^{10)}$. Also, by Proposition 12, \mathfrak{A}^{-1} maps any null set in G_{4} onto a null set in $Q^{\prime \prime}$. Therefore, if we write $\zeta(x ; \eta)=z(x ; \chi(x ; \eta))$, and $y_{\lambda}=\chi_{\lambda}(x ; \eta) \lambda=1, \cdots, n$ for $(x ; \eta) \in Q^{\prime \prime}$, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial x} \zeta(x ; \eta)=\frac{\partial z}{\partial x}(x ; y)+\sum_{\mu=1}^{n} \frac{\partial z}{\partial y_{\mu}}(x ; y) \frac{\partial \chi_{\mu}}{\partial x}(x ; \eta) \tag{12.2}
\end{equation*}
$$

for almost all $(x ; \eta)$ of $Q^{\prime \prime}$.
Since $\chi_{\lambda}(x ; \eta)=\varphi_{\lambda}\left(x, a^{\prime} ; \eta \mid G_{4}\right)$ for $(x ; \eta) \in Q^{\prime \prime}$, we obtain by (2.2),

$$
\begin{equation*}
\frac{\partial}{\partial x} \chi_{\lambda}(x ; \eta)=f_{\lambda}(x ; \chi(x ; \eta))=f_{\lambda}(x ; y) \quad \lambda=1, \cdots, n \tag{12.3}
\end{equation*}
$$

for $(x ; \eta) \in Q^{\prime \prime}$. Substituting this into (12.2), we get

$$
\begin{equation*}
\frac{\partial}{\partial x} \zeta(x ; \eta)=\frac{\partial z}{\partial x}(x ; y)+\sum_{\mu=1}^{n} f_{\mu}(x ; y) \frac{\partial z}{\partial y_{\mu}}(x ; y) \tag{12.4}
\end{equation*}
$$

[^3]for almost all $(x ; \eta)$ of $Q^{\prime \prime}$.
Since by assumption, $z(x ; y)$ satisfies (2.1) almost everywhere in $G\left(\supset G_{4}\right)$ and by Proposition 12, \mathfrak{A}^{-1} maps any null set in G_{4} onto null set in $Q^{\prime \prime}$, the right side of (12.4) regarded as a function of $(x ; \eta)$, vanishes almost everywhere in $Q^{\prime \prime}$. Therefore
\[

$$
\begin{equation*}
\frac{\partial}{\partial x} \zeta(x ; \eta)=0 \tag{12.5}
\end{equation*}
$$

\]

almost everywhere in $Q^{\prime \prime}$.
On the other hand, if we write $y_{\lambda}^{(0)}=\chi_{\lambda}\left(x^{(0)} ; \eta^{(0)}\right) \lambda=1, \cdots, n$ for a point $\left(x^{(0)} ; \eta^{(0)}\right) \in Q^{\prime \prime}$, we have $\left(x^{(0)} ; y^{(0)}\right) \in G_{4}$ and

$$
\begin{aligned}
& \limsup _{x \rightarrow x^{(0)}} \frac{\left|\zeta\left(x ; \eta^{(0)}\right)-\zeta\left(x^{(0)} ; \eta^{(0)}\right)\right|}{\left|x-x^{(0)}\right|} \\
& \left.\begin{array}{rl}
\leqq \limsup _{x \rightarrow x^{(0)}} \frac{\left|\zeta\left(x ; \eta^{(0)}\right)-\zeta\left(x^{(0)} ; \eta^{(0)}\right)\right|}{\left|x-x^{(0)}\right|+\left\|\chi\left(x ; \eta^{(0)}\right)-\chi\left(x^{(0)} ; \eta^{(0)}\right)\right\|} \\
& \quad \times \lim _{x \rightarrow x^{(0)}} \frac{\left|x-x^{(0)}\right|+\left\|\chi\left(x ; \eta^{(0)}\right)-\chi\left(x^{(0)} ; \eta^{(0)}\right)\right\|}{\left|x-x^{(0)}\right|} \\
\leqq\left(\lim _{(x ; y) \rightarrow\left(x^{(0)} ; y^{(0)}\right)} \sup ^{\mid z(x ; y)-z\left(x^{(0)} ; y^{(0)} \mid\right.} \mid+\left\|y-y^{(0)}\right\|\right.
\end{array}\right)\left(1+\sum_{\mu=1}^{n}\left|\frac{\partial \chi_{\mu}}{\partial x}\left(x^{(0)} ; \eta^{(0)}\right)\right|\right)
\end{aligned}
$$

Hence by (12.1) and (12.3), observing that $\left|f_{\lambda}(x ; y)\right|<M_{0}$ on $G_{4}(<Q)$ by (6.1), we obtain

$$
\begin{align*}
\limsup _{x \rightarrow x^{(0)}} & \frac{\left|\zeta\left(x ; \eta^{(0)}\right)-\zeta\left(x^{(0)} ; \eta^{(0)}\right)\right|}{\left|x-x^{(0)}\right|} \leqq M_{5}\left(1+\sum_{\mu=1}^{n}\left|f_{\mu}\left(x^{(0)} ; y^{(0)}\right)\right|\right) \\
& \leqq M_{5}\left(1+n M_{0}\right) \tag{12.6}
\end{align*}
$$

whenever $\left(x^{(0)} ; \eta^{(0)}\right) \in Q^{\prime \prime}$.
By Fubini's theorem, $\zeta(x ; \eta)$ as a function of x, satisfies (12.5) almost everywhere in the interval $\left|x-a^{\prime}\right|<L_{4}$, for almost every η in the domain Ω_{4} and by (12.6), $\zeta(x ; \eta)$ as a function of x, is absolutely continuous in the interval $\left|x-a^{\prime}\right|<L_{4}$ for any η in the domain Ω_{4}.

Therefore by Lebesgue's theorem, $\zeta(x ; \eta)$ as a function of x, is constant in the interval $\left|x-a^{\prime}\right|<L_{4}$ for almost every η in the domain Ω_{4}. Hence, by the continuity of $z(x ; y)$ and $\chi_{\lambda}(x ; \eta)$, accordingly of $\zeta(x ; \eta)$, it follows that $\zeta(x ; \eta)$ as a function of x, is constant in the interval $\left|x-a^{\prime}\right|<L_{4}$ for any η in the domain Ω_{4}.

From this, by the definition of $\zeta(x ; \eta)$, we easily see that $z(x ; y)$ is constant on any characteristic curve of (2.1) in G_{4}. Hence, by the definition of K, we have $G_{4} \subset K$ and so observing that $G_{4}(\subset G)$ is open in R^{n+1},

$$
F=\overline{G-K} \cdot G \subset \overline{G-G}_{4} \cdot G=G-G_{4} .
$$

This is however excluded, since $\left(a^{\prime} ; b^{\prime}\right) \in F \cdot G_{4}$. Thus we arrive at a contradiction and this completes the proof of Theorem 1.

§ 4. Proof of Theorem 2 and Theorem 3

In this \S, the notations are the same as in $\S 1$ and $\S 2$.
13. Proof of Theorem 2. By the assumption on G and Theorem 1, if we put $\omega_{\lambda}(x ; y)=\rho_{\lambda}\left(\xi^{(0)}, x ; y \mid G\right) \quad \lambda=1, \cdots, n$ for $(x ; y) \in G$, then we have $\omega(x ; y) \in G\left[\xi^{(0)}\right]$ for $(x ; y) \in G$ and

$$
\begin{equation*}
z(x ; y)=\psi(\omega(x ; y)) \quad \text { on } \quad G \tag{13.1}
\end{equation*}
$$

for any quasi-solution $z(x ; y)$ of (2.1) on G such that $z\left(\xi^{(0)} ; \eta\right)=\psi(\eta)$ on $G\left[\xi^{(0)}\right]$. Hence there is at most only one such quasi-solution.

Conversely if we define a function $z(x ; y)$ by the right side of (13.1) on G, then by the total differentiability of $\psi(\eta)$ on $G\left[\xi^{(0)}\right]$ and of $\omega_{\lambda}(x ; y)$ on $G, z(x ; y)$ is totally differentiable on G and

$$
\frac{\partial z}{\partial x}=\sum_{\mu=1}^{n} \frac{\partial \psi}{\partial \eta_{\mu}} \frac{\partial \omega_{\mu}}{\partial x}, \quad \frac{\partial z}{\partial y_{\lambda}}=\sum_{\mu=1}^{n} \frac{\partial \psi}{\partial \eta_{\mu}} \frac{\partial \omega_{\mu}}{\partial y_{\lambda}} \quad \lambda=1, \cdots, n
$$

on G. Hence

$$
\begin{equation*}
\frac{\partial z}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}(x ; y) \frac{\partial z}{\partial y}=\sum_{\lambda=1}^{n} \frac{\partial \psi}{\partial \eta_{\lambda}}\left(\frac{\partial \omega_{\lambda}}{\partial x}+\sum_{\mu=1}^{n} \frac{\partial \omega_{\lambda}}{\partial y_{\mu}} f_{\mu}(x ; y)\right) \quad \text { on } \quad G . \tag{13.2}
\end{equation*}
$$

But for $\omega_{\lambda}(x ; y)\left(=\varphi_{\lambda}\left(\xi^{(0)}, x ; y \mid G\right)\right)$, we have ${ }^{11)}$

$$
\frac{\partial \omega_{\lambda}}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}(x ; y) \frac{\partial \omega_{\lambda}}{\partial y_{\mu}}=0 \quad \lambda=1, \cdots, n \quad \text { on } G .
$$

Therefore by (13.2), for $z(x ; y)$ defined by (13.1)

$$
\frac{\partial z}{\partial x}+\sum_{\mu=1}^{n} f_{\mu}(x ; y) \frac{\partial z}{\partial y_{\mu}}=0 \quad \text { on } \quad G
$$

Also for $z(x ; y)$ defined by (13.1), we have

$$
z\left(\xi^{(0)} ; \eta\right)=\psi(\eta) \quad \text { on } \quad G\left[\xi^{(0)}\right]
$$

since $\omega_{\lambda}\left(\xi^{(0)} ; \eta\right)=\mathscr{\rho}_{\lambda}\left(\xi^{(0)}, \xi^{(0)} ; \eta \mid G\right)=\eta$.
Thus there is at least one quasi-solution $z(x ; y)$ of (2.1) on G such that $z\left(\xi^{(0)} ; \eta\right)=\psi(\eta)$ on $G\left[\xi^{(0)}\right]$ and this quasi-solution is also a solution

[^4]of (2.1) on G in the ordinary sense. This completes the proof of Theorem 2.
14. Proof of Theorem 3. For the special case $n=1$, we write (2.1) in the form
\[

$$
\begin{equation*}
\frac{\partial z}{\partial x}+f(x, y) \frac{\partial z}{\partial y}=0 \tag{14.1}
\end{equation*}
$$

\]

and the characteristic curve of (14.1) in G which passes through the point (ξ, η) of G, in the form

$$
y=\varphi(x, \xi, \eta \mid G) \quad \alpha(\xi, \eta \mid G)<x<\beta(\xi, \eta \mid G)
$$

Let $z(x, y)$ be any quasi-solution of (14.1) on G and ($x^{(0)}, y^{(0)}$) be any point of G. Then there is at least one point $\left(\xi^{(0)}, \eta^{(0)}\right)$ on $C\left(x^{(0)}, y^{(0)} \mid G\right)$ where $z(x, y)$ has $\partial z / \partial y$, since $z(x, y)$ has $\partial z / \partial y$ except at most at the points of an enumerable set in G.

If we put $\omega(x, y)=\varphi\left(\xi^{(0)}, x, y \mid G\right)$ and for $\eta \in G\left[\xi^{(0)}\right], \psi(\eta)=z\left(\xi^{(0)}, \eta\right)$, then by the properties of the family of the characteristic curves as stated in $\S 1.2, \omega(x, y)$ is defined and $\omega(x, y) \in G\left[\xi^{(0)}\right]$ for (x, y) in some neighbourhood of ($x^{(0)}, y^{(0)}$) and by Theorem 1

$$
\begin{equation*}
z(x, y)=\psi(\omega(x, y)) \tag{14.2}
\end{equation*}
$$

in that neighbourhood. Evidently $\omega\left(x^{(0)}, y^{(0)}\right)=\rho\left(\xi^{(0)}, x^{(0)}, y^{(0)} \mid G\right)$ $=\eta^{(0)} \in G\left[\xi^{(0)}\right]$. Also $\psi(\eta)\left(=z\left(\xi^{(0)}, \eta\right)\right)$ is differentiable at $\eta^{(0)}$ since $z(x, y)$ has $\partial z / \partial y$ at $\left(\xi^{(0)}, \eta^{(0)}\right)$.

Since $\psi(\eta)$ is differentiable at $\eta^{(0)}=\omega\left(x^{(0)}, y^{(0)}\right)$ and $\omega(x, y)$ $\left(=\varphi\left(\xi^{(0)}, x, y \mid G\right)\right)$ is totally differentiable at $\left(x^{(0)}, y^{(0)}\right)$, by (14.2) $z(x, y)$ is totally differentiable at ($x^{(0)}, y^{(0)}$) and

$$
\begin{aligned}
& \frac{\partial z}{\partial x}\left(x^{(0)}, y^{(0)}\right)=\psi^{\prime}\left(\eta^{(0)}\right) \frac{\partial \omega}{\partial x}\left(x^{(0)}, y^{(0)}\right) \\
& \frac{\partial z}{\partial y}\left(x^{(0)}, y^{(0)}\right)=\psi^{\prime}\left(\eta^{(0)}\right) \frac{\partial \omega}{\partial y}\left(x^{(0)}, y^{(0)}\right)
\end{aligned}
$$

Hence

$$
\begin{align*}
& \frac{\partial z}{\partial x}\left(x^{(0)}, y^{(0)}\right)+f\left(x^{(0)}, y^{(0)}\right) \frac{\partial z}{\partial y}\left(x^{(0)}, y^{(0)}\right) \\
& \quad=\psi^{\prime}\left(\eta^{(0)}\right)\left\{\frac{\partial \omega}{\partial x}\left(x^{(0)}, y^{(0)}\right)+f\left(x^{(0)}, y^{(0)}\right) \frac{\partial \omega}{\partial y}\left(x^{(0)}, y^{(0)}\right)\right\} \tag{14.3}
\end{align*}
$$

But for $\omega(x, y)=\mathscr{P}\left(\xi^{(0)}, x, y\right)$, we have ${ }^{12)}$

[^5]$$
\frac{\partial \omega}{\partial x}\left(x^{(0)}, y^{(0)}\right)+f\left(x^{(0)}, y^{(0)}\right) \frac{\partial \omega}{\partial y}\left(x^{(0)}, y^{(0)}\right)=0 .
$$

Hence, by (14.3)

$$
\frac{\partial z}{\partial x}\left(x^{(0)}, y^{(0)}\right)+f\left(x^{(0)}, y^{(0)}\right) \frac{\partial z}{\partial y}\left(x^{(0)}, y^{(0)}\right)=0
$$

Therefore $z(x, y)$ is totally differentiable and satisfies (14.1) at any point ($x^{(0)}, y^{(0)}$) of G, q.e.d.
(Received March 25, 1955)

References

[1] R. Baire; Sur les fonctions de variables réelles, Ann. Mat. Pura e Appl. (3), 3, (1899), 1-122.
[2] F. Hausdorff : Mengenlehre, 2. Aufl. (1927).
[3] E. Kamke: Differentialgleichungen reeller Funktionen, (1930).
[4] T. Kasuga: Generalisation of R. Baire's theorem on differential equation, Proc. Japan. Acad., 27 (1951), 117-121.
[5] T. Kusuga: On the linear partial differential equation of the first order, Osaka Math. J. 5 (1953), 211-225.
[6] P. Montel: Sur les suites infinies de fonctions, Ann. Ecole Norm. (3), 24 (1907), 233-334.
[7] H. Rademacher: Ueber partielle und totale Differentierbarkeit I, Math. Ann. 79 (1919), 340-359.
[8] S. Saks: Theory of integral, 2nd ed. (1937).
[9] M. Tsuji: Change of variables in the multiple Lebesgue integrals, J. Math. Soc. Japan 2 (1950), 48-56.

[^0]: 1) Cf. Baire [1], p. 120.
[^1]: 2) Cf, Kamke [3], $\S 16$, Nr. 79, Satz 4,
[^2]: 6) Cf. Kamke [3], §17, Nr. 85, Hilfssatz 3 and Satz 5,
[^3]: 9) Cf. Tsuji [9], pp. 49-50. Also Cf. Rademacher [7], pp. 354-355.
 10) Cf. Rademacher [7], pp. 341-347. Also Cf. Saks [8], p. 311.
[^4]: 11) Cf. Kamke [3], §18, Nr. 87, Satz 1.
[^5]: 12) Cf. Kamke [3], $\S 18$, Nr. 87, Satz 1.
