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On the Homogeneous Linear Partial Differential
Equation of the First Order

By Takashi KAsuGa

§1. Introduction

In this paper, we shall treat the following partial differential
equation

oz, & oz
87+ ‘Lzzl ff‘-(x;yl)"' 7yn)é‘y:—0 (”Zl)

without the usual condition of the total differentiability on the solution
2(X, yyy oo s V)

For early contributions by R. Baire and P. Montel to this problem
in the special case n =1, cf. Baire [1], Montel [6]. Our method is
entirely different from theirs and gives more general results even for
the case n=1, cf. Kasuga [4]. Also notwithstanding Baire’s statement”
in his paper, it seems to us that their methods cannot be generalized
to the case »_>1 immediately.

We have not yet succeeded in treating the more general non-
homogeneous partial differential equation

oz & oz
a‘x'{";l fll-(x,yly"',yn,z)‘a_y;—g(x,yw ,y,,,z)

in a similar way, except for the case n=1. For this case, cf. Kasuga
[5].

1. In this paper, we shall use for points in R”, R"" or R™* and
for their functions, abbreviations such as:

y:(yn""yn)y (x;y):(x’yly“"yn)y
77:(7]1,"',77,,), (5;7]):(5;7717"‘)77;1)»
(x) é:; 77) == (x7 E’ My *°° )77n) ’ z(x;y):z(xryly ot 7yn))

and if oux, &; ) =@, & 9,--,9,) A=1,--,n are n functions of
(x, &; ),

1) Cf. Baire [1], p. 120.
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¢)(x> E; 77) - (‘P1(x> g;ﬂ) y "ty ¢n(x7 6;77)) )
Z(x; ¢(xr g;"])) = Z(x, ¢1(x7 'Jﬁ; 77)) ot >¢n(x) é ; 77)) .

Also we use the following notations :
For sets of points A, B in R™ (m=1,2, --- ,n+1),

A =closure in R™ of A, A°=interior in R™ of A,
A? = boundary in R™ of A, A-B = intersection of A and B,
A[ x] = the set of the points (y,, ---, y,) in R” such that for a fixed x
(%, 9, -,y A, if ACR"™.

For two pOintS y/ = (y1,7 ,J’n/) ’ J’” == (yl/,} )yn") in Rn,

Ny =yl = g /=2, Y+ = +n" -, 9+

In this paper, the so-called degenerated intervals are also included,
when we use the word “interval” (open, closed, or half-open). Thus
the interval a<“x<"a or the interval ¢ <x <a will mean degenerated
interval which is empty or is composed of only one point respectively.
Similarly for the interval a <x< a or a< x<a.

2. In the following, we shall denote by G a fixed open set in R"*,
by fi(x;y) =1, ---,n n fixed continuous functions defined on G which
have continuous 9f,/9y. A, p=1, --- | n

Under the above conditions, we shall consider the partial differential
equation

oz u L.\ 02
8}+,§f“(x’y)aﬁ—0' (2.1)

With (2.1), we shall associate the simultaneous ordinary differential
equations

Dh—fiwsy) A=1,,m. 2.2)

The continuous curves representing the solutions of (2.2) which
are prolonged as far as possible on both sides in an open subset D of
G, will be called characteristic curves of (2.1) in D. Through any
point (£; ) in D, there passes one and only one characteristic curve in
D®. We represent it by

y)\:¢x(x, g, My *°° ,ﬂnlD)———@)\(x,{:,?}ID) 7\::1, y .
a(&; | D)< x<B(E;9|D).

2) Cf, Kamke [3], §16, Nr. 79, Satz 4,
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a(é; D), B(E;n|D) may be — oo, + oo respectively. Sometimes we
abbreviate it as C(¢;4|D). If an interval (open, closed or half-open) is
contained in the interval «(&; 5|D)< x<_B(£;7n|D), then we say that
C(&; 9|D) is defined for that interval. Also when a property holds for
the portion of C(&; #|D) which corresponds to the values of x belonging
to an interval, we say that C(£;5|D) has the property for this interval.

We shall use the following properties of C(£; »|D) and ¢\(x,&; 5| D)
often without special reference.

As we can easily see from the definition of C(&; n|D), (§; )
€ C(¢;9|D) and if (x’;y')e C(§;4|D), then C(§;4|D)=C(x';y'|D) and
so (§;9) € C(x'; ¥ | D).

In terms of the functions ¢,, this means:

n=op(& E;9|D),
and if y'=p (¥, &;n|D), then
af;n|D)y=a;y|D)y=a, BE;n|D)=p;y|D)=2
and
p(x,E57|D)y=p(x, x';y'|D) for a< x< S,
especially
=& x';y'|D).
Also C(&;9|D) >C(;9/D,), if D, >D, and (£;9)€D,.

We denote by D* the set of the points (x, £;4) in R™? such that
(¢;9) €D and a(§; 5| D)< x<B(;7n|D). D* is the domain of definition
of the functions o,(x, &;4|D). D* is open in R”"®. The functions
@a(x, £; 7| D) are continuous and have continuous partial derivatives
with respect to all their arguments on D*.”

A continuous function z(x;y) defined on G will be called a quasi-
solution of (2.1) on G, if it has 9z/9x, 9z/9y, n=1, --- , n, except at most
at the points of an enumerable set in G and satisfies (2. 1) almost every-
where in G. Here 90z/9x, 9z/9y need not necessarily be continuous.

On the other hand, a continuous function z(x;y) defined on G will
be called a solution of (2.1) on G in the ordinary sense, if it is totally
differentiable and satisfies (2.1) everywhere in G.

3. We shall prove the following three theorems in § 3, §4.

3) Cf. Kamke [3], §17, Nr. 84, Satz 4.
4) Cf. Kamke [3], §17, Nr. 84, Statz 4 and §18, Nr. 87, Satz 1,
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Theorem 1. A quasi-solution z(x;y) of (2.1) on G is constant on
any characteristic curve of (2.1) in G.

Theorem 2. If for a fixed number E®, the family of all the charac-
teristic curves C(£9;5|G) such that ne G[E], covers G and r(n)=+r
(91, »7,) is a totally differentiable function defined on G[&], then
there is one and only one quasi-solution z(x;y) of (2.1) on G such that
Z2(E9; n)=1(y) on G[E®] and this quasi-solution z(x;y) is also a solution
of (2.1) on G in the ordinary sense.

Theorem 3. If n=1, any quasi-solution of (2.1) on G is also a
solution of (2.1) on G in the ordinary sense.

REMARK 1. For the case n=1, the proof of Theorem 1 can be
partly simplified, cf. Kasuga [4].

REMARK 2. In Theorem 1, the condition on z(z;y) that it has
0z/9x, 9z/9y, A=1, --- , n except at most at the points of an enumerable
set in G, cannot be replaced by the condition that it has 9z/0x,
0z/39y, A=1, .-, n almost everywhere in G, as the following example
shows it.

ExampLE. G: 0<x<1 0<y<1,
the differential equation is

oz

and a function z(x, y) is defined by
2(x,9)=(x) on G

where ++(x) is a continuous singular function not constant on the interval
0<x <1 as given in Saks [8] p. 101.

Then z(x,y) is continuous on G, has 9z/9x, 9z/9y almost every-
where in G and satisfies the differential equation almost everywhere in .
G. But z(x, y) is not constant on any characteristic curve y=constant.

§2. Some Lemmas

In this §, the notations are the same as in §1 and we assume that
z(x;y) is a quasi-solution of (2.1) on G.

4. Set K and Some Lemmas. We denote by K the set of the
points (£;7%) of G such that z(x;y) is constant on the portion of the
characteristic curve C(§; 5|G) contained in a neighbourhood of (£; 7).
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Lemma 1. If a characteristic curve C(&;7|G) is defined for an
interval I (open, closed, or half-open) and is contained in K for the open
interval I°, the interior of I, them z(x;y) is constant on the portion of
C(£; n|G) for the interval I.

Proof. By the definition of K, we easily see that z(x; y) is constant
on the portion of C(&; 7|G) for the open interval I°. Then Lemma 1
follows from the continuity of z(x;y) and @.\(x, &;9|G) A=1, -+, n.

Lemma 2. Denote by D an open subset of G, and denote by D, the
set of the points (£;7) of D such that z(x;y) is constant on the charac-
teristic curve C(§;n|D). Then D, is closed in D.

Proof. If C(&?; #®|D) where (§%; )¢ D, is defined for a closed
interval a, <x <8,, then C(&;5|D) where (£;5) is sufficiently close to
(E9; ), is also defined for the interval «, <x <S8, and

(P)\(xyg;ﬂ|D)é?h(x)E(O);n(O)lD) )':1)""”

uniformly in the interval o, <x <8, as (£;9)— (§9;%®)®. From this
and by the continuity of z(x;y), we easily see that D, is closed in D,
qg.e.d.

Lemma 3. Let D be an open subset of G. If.

A=A MIg—yll A=1-,n 4.1)
for every pair of points (x;7¥%), (x;y)€ D with the same x coordinate and
if C(&;7n|D) and C(&;7n|D) where (£;3), (§;9)€ D, are both defined for
an interval o, <x <3, containing & (o, <& <B,), then

%5, €571 D)= (%, €591 D) Il = 33 | ulx, &5 7 D)= pulx, €3 ] D)
<l p—nlexpnM|x—E&]) 4.2)
and
|oa(, €551 D)= (&, £5 9| D) Zla—ml 4 17—
x{exp (@M |x—&|)—1} A=1,--,n (4. 3)
Jor a,<x <8, .

Proof. We abbreviate ¢,(x, &;7|D) and o,(x, &; 5| D) as @,\(x) and
@\(x) respectively.
By (4.1) and (2. 2), we have

5) Cf. Kamke [3], §17, Nr. 84, Satz 4,
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[P () —p (D) < M p(x)—p(x) || A=1,-,n (4.4)

for o, <x <p,, so that

é |/ (x)— @/ (x)| < nM é | Gu(X) — Pulx) |

for ay, <x <B,. Hence by a theorem on differential inequalities®, taking
account of o, <& <3, and 7=@\(§), m=oi(§) =1, -, n), we obtain

|l p(x)—px) | < || n—2n |l exp (nM|x—E]|) (4.5)
for ¢y <x <B,. Thus (4.2) is proved.
By (4.4), (4.5), we get
[P (X)—p\(x) | <M || n—n || exp (nM|x—&]) A=1, .. ,n

for oy <x <3,. Hence, again taking account of a, <& <3, and 7, = ¢,\(§),
m=pxE) (z=1, .-, n), we have

(A —ga(0)| < a= | +M 1| 7= || | exp M| x—£])dx
==l + o |77l {exp (1M |2--E) =1} A=1, -,

for o, <x<pB,. Thus (4.3) is also proved.

§3. Proof of Theorem 1.

In this §, the notations are the same as in §1 and §2 and we
assume that z(x;y) is a quasi-solution of (2.1) on G.

5. Set F and Domain @. We denote by F the set G— K-G. Evidently
F is closed in G and K DG-—F.

If F is empty, that is G=K, we can conclude by Lemma 1 that
zZ(x;y) is constant on any characteristic curve in G and Theorem 1 is
established.

Therefore we suppose in the following that F==0 and we want to
show that such supposition leads to a contradiction.

Proposition 1. There is a positive number N and a (n+1)-dimensional
open cube Q:|x—a|< L, |y\»—b|< L AN=1,-,n (L>0) such that

QCG
(a;b)e F

6) Cf. Kamke [3], §17, Nr, 85, Hilfssatz 3 and Satz 5,
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and such that

|[2(x+h;y)—2z(x; )| <|k|N
[2(X, Yiy o5 Vacas I+ R, Yains 05 V) —R2 (25 )| | BN (5.1)
N = 1, e m

whenever (x;y)e F-Q and
(x+h;y+k)eQ, where k=
(ku Ty kn)'

Proof. We denote by
H the at most enumerable
set consisting of the points
of G at which z(x;y) is not
derivable with respect to «x
and with respect to ¥,
A=1, --- , » simultaneously.

If a point (§°; ) of
G has an open neighbour-
hood V such that every
point of V belongs to K Fig. 1
except at most (£§°; )
itself, then by Lemma 1 z(x;y) is constant on C(§“; 5| V) where 4 is
any point of V[&®] except 7 and so by Lemma 2, z(x;y) is also
constant on C(§; 4| V), that is, (§°; 7)€ K. Hence the set F which
is closed in the open set G, has no isolated point.

Therefore F is a Gs; set in R™"' without isolated point and so
every point of F is a condensation point of ™. Thus since F is not
empty by the supposition and H is at most enumerable, F—H is not
empty and

F-H>F (5.2)

Also the non-empty F—H is a G, set in R"" since F is a Gj set
in R™* and H is at most enumerable. Hence F—H is of the second
category in itself by Baire’s theorem?®. :

On the other hand, if we denote by F,, for each positive integer
m, the set of the points (x;y) of G such that

[2(x+h;y)—2(x; 9) | < |h|m

lZ(x, Vi vA—l’y)\+kxy i1 o )yn)—z(x;y)] é]k)\'m (5'3)
A=1.-,n

7) Cf. Hausdorff [2], p. 138.
8) Cf. Hausdorff [2], p. 142.
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whenever |k, |k <1/m and (x+h;9)€G, (x,3,, -+, Var, I+, Vaias s
y,)€G A=1,--- n, then the union of the sets F,, covers F—H by the
definition of H and each of the set F,, is closed in G by the continuity
of z(x; ).

Therefore there must exist a positive integer N and a (n+1)-
dimensional open cube Q: |x—a|<L, |y»—b0|<L A=1,---,n (L>0)
such that (¢;b)e F—~HC F and

(F—H)-QC_Fy. (5-4)

Also we can take L sufficiently small so that
0<L<1/(2N) (5.5)
QCG (5. 6)

since G is open in R™,
By (5.4), (5.6) and by observing that @ is open in R™* and Fj is
closed in G, we have

F-H.Q=(F—H)-Q-QC Fy-QC Fy-G=Fy
so that by (5. 2).

FyDF-Q.

Hence by (5.5), (5.6) and by the definition of F,, the inequalities (5. 3) for
m=N hold whenever (x; y)€ F-Qand (x+%; y)€ Q, (%, 3, ***, Vr_1, In+Fx,
Priar 0, V) E Q@ A=1, .- n. This completes the proof of Proposition 1.

In the following, @, L, (a;0) and N have the same meanings as in
Proposition 1.

6. Domains @, Q,, G, and Set F. f, and 9f,/9y. A\, p=1, - ,n
are defined and continuous on @ G. Hence there is a positive number
M, such that

ALy 1900l <My A, p=1,.-,n on Q. (6.1)
Then we can easily prove
| A =A@ NI M| 5—p (6.2)

for any pair of points (x;7j), (x;y)€ @ with the same x coordinate.
We take a positive number L, such that

exp (2n*M,L,) < 2 (6. 3)
L(M,+1)<L. (6.4)

We denote by Q, the n-dimensional open cube: |7, —0,|< L, A=1,
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...,n and by @, the (n+1)-dimensional open parallelepiped : |x--a|<L,,

-0 <L A=1,-,n.

defined just for the in-
terval |x—a|<_L, since
‘fxl<Mo A=1,.-,n on
Q, (C Q) by (6.1).

We denote by G, the
portion of @, covered
by the family of all
the characteristic curves
C(a;n|Q) where 5€Q,.
Then by the properties of
C(&;7|Q) and @(x, £;7|Q)
as stated in 8§ 1.2, obser-
ving that Q, is open in
R”, we easily prove that
G, is open in R™' and
the characteristic curves
C(&; 5|G,) where (£;7)
€ G,, are defined just for
the interval |x—al|<L,.

We denote by F the
set of the points  of Q,
such that C(a;5]|G,) has
at least one point in com-
mon with F. F is not
empty since (@ ;b)€ F and
b=, -,b,)cQ,. Now
we prove

Proposition 2. F*, the
interior of F in R", is not
empty.

Proof. Suppose, if
possible, that F°=0.

QCQ.

By (6.4), m+LM,<b+L, n—LM=b--L rA=1,-,n whenever
n€Q,. Hence the characteristic curves C(a;7|€) where »€Q,, are

y

1

L e e - -

By (6.4) L,< L and so

Fig. 2

—
>

———— X

Fig. 3

R If neQ,—F, then C(a;7|G,) is contained in K by the definition of
F and so by Lemma 1 z(x;y) is constant on C(a;7|G,). Hence by
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Lemma 2, z(x;y) is constant on any C(a;5|G,) such that € Q,—F.0,.
But Q,—F-Q,=Q,, since F*=0 by supposition and Q, is open in R".

Therefore z(x;y) is constant on any C(a;#|G,) such that 5€Q,
and so by the definition of K, G, K since G, is covered by the family
of all the characteristic curves C(a; |G,) where »€ Q,. Hence, observing
that G, is open in R™!, we have

F=G-G-K G-G--G,C G—G,.

But this is a contradiction since (a;b)€ F.G,. Thus Proposition 2 is
proved.

7. Domains Q,, G,. By Proposition 2, F* is not empty. Hence we
take a pOint b(l)z(bil), ey b;l)) I FO.
Then we can construct a domain Q, in R” defined by

7t lg=b" <L, (L,>0) (7.1)

such that
Q,CF. (7. 2)

Evidently
Q,CQ, (7.3)

since  Q, by the definition of 7.

We denote by G, the portion of €, covered by the family of all
the characteristic curves C(a; 5| @,) where € Q,. In the same way as
in the case of G,, we easily prove that G, is open in R"*' and so G,[x]

N

k]
~

0

/
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is open in R” for any x in the interval |x—a|<L,. Also C(¢;4]|G,)
where (§; 7)€ G,, is defined just for the interval |x—a|<'L,. Evidently
by (7.3) and the definition of G,, G,,

GG Q.

Proposition 3. C(&; 4|G,) where (£;7)€G,, has at least one point
in common with F.G,.

Proof. If (§;9)€G, and 7 =9@(q, §; |G,), then @€ Q, and
C(¢; 9|G,) = C(a;n|G,) by the definition of G,. Then by (7.2) and
the definition of ¥, Proposition 3 follows.

Proposition 4. If |E—a|<L,, then
GIE1 D (GIENY, the boundary in R™ of G,[£]. (7. 4)
Further if |&--a|< L, and ne (G[£E)), then
@(a, &; |G, e Q, the boundary in R" of Q,.
Proof. We consider the continuous mapping %, of Q, onto G[£]
defined by
7 > & a;9°|G,).
That A, maps Q, onto G,[£] follows from the definition of G,.
By the properties of C(£;4|G,) and o.\(x, &; 5|G,) as stated in

§ 1.2, we easily see that U is one to one and bicontinuous and 2A;* is
represented by

n =@ &;9|G) (7.5)
We have

by (7.3) and the definition of G,. Hence again taking acconnt of (7. 3),
by the continuity of ; we have Ae(Q,) T G,[E].

On the other hand, since Q, is closed and bounded in R” its
continuous image A(Q,) is closed in R” and so, taking account of (7.6),
we have AL(Q,) DG[E].

Therefore A(Q,)=G,[E]. Hence by (7.6), (7.3), and AL(Q,)=G,[£],
observing that Q,, G,[£] are both open in R”", we get (Q})=(G,[£])®
CGE])

From this, taking account of the representation (7.5) of 2!,
Proposition 4 follows.
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8. Classes S,, S and Operations 7T,, 7, Tt». We take two
points (x7;3’), (x/;3) of R"* with the same x coordinate such that
(x"; )€ F-G,, (x";5') € G, and further (x/, ¥/, -+, ¥_1, Ty Yissr > V) € G,.
In the following, we denote the class of all such ordered pairs
{(x";9), (/;3)} of points of R™ by S, =1, .--,#n). If we put
=0 Vi, I Y 5 ¥,), then (275 3) €G,.

Now there is the nearest x to x’ in the interval |x—a|< L, such
that either (x, ¢(x, x’; ¥ |G,)) € F-G, or (x, p(x, x’; ¥'|G,)) € F-G,, since
by Proposition 3 each of the continuous curves C(x’;3’|G,) and
C(x’; 3"|G,) which are just defined for the interval |x—a|< L, and are
contained in G,, has at least one point in common with F.G, which is
closed in G,. We denote such x by x”. If incidently two such x exist,
then we take as x”/ the one on the right side of x’.

Now we distinguish two cases;

1)y If (7, o, x2;351G,)) € F-G,, then we put
Y =¢&", 2 5'|G) and 3" =ge@&", x'; ¥ |G).

i) If (7, ", 2;91G,))¢F-G, and so by the definition of x”,
&, p(x”, ;¥ |G,)) € F-G,, then we put

Y =@, x;¥|G) and 3" =q@", ;5 |G,).
In any case, (x”;y”")€ F-G, and (2”;35")€G,.

We denote by 7, (A=1,---,#) the above operation which assigns
to every (ordered) pair {(x’;y"), (x#’; 7))} of points of R”*' belonging to
the class S,, an (ordered) pair {(x”;y”), (x”;3")} of points of R™*
with the same x coordinate such that (x”; y”)e F-G, and (x”; 35")€G,.
Also we write T {(x"; ), (x"; )} ={(x";y"), (x”; 3)}.

If {(x”; "), (x”;35)} €S, we can apply 7, again on {(x”; "), (x”; 7)}.

Proposition 5. If {(x';y), («';3)} €S, and if we put {(x”;y"),
(2 3y =T (x5 ¥), (55}, @ =23 y), &@=2(";5), 2"=2"(x"; y"),
and z"=2z(x";§"), then

|2/ —2/ | <|2"=2" |+ Ny -yl (8.1)

Proof. We put 3 =/, =, % 1, 5> ¥sr = ¥/).  Then (x';9)
€ F.G,CF.-Q and (x’; )€ G, Q since {(x';y), (x';3")} €S,. Hence
by Proposition 1 (5.1), if we put 2’=2z(x"; ¥’)

|22/ | < N3/ = <Ny =y . (8.2)
By the definition of 7,,
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/— //’ /;~/ G2 /" — //, /; /Gz
{y P, x5 5| Gy) . {y p(x”, x5 §'|G,) (8.3)

7" =@, &5 3|G,) 5" =@ (", &3 5| G,)

On the other hand, each of C(x’;3’|G,) and C(x’; 3 |G,) has no
point in common with F for the interval x’< x< xa” or x”"< x<_x" by
the difinition of 7, so that they are contained in K for the interval
1< x<x" or x'< x<_x". Therefore by Lemma 1 and (8. 3)

{ =2y )=z y) =7
|27 =2(";3") =2(x";3)=2
or
M=z y ) =2 ) =2
{ =2y =2 y) =27
so that
|27 —2"|=|7'—2|. (8.4)

By (8.4), (8.2) we have

7= | |72 | +|7 2| <[22 |+ NI 7=y |,
q.ed.

We denote by 7.-7, the operation which assigns to a pair
{(x'5 ), («/;5)} of points of R™, the pair T.{T,{(x";y), (x;3)}} of
points of R"* if

{(2;9), (2535} €Sy and T, {(«; ), (&;5)}€Su;

and similarly for products of any number of operations 7,(A=1, ---, n).
n m

We put T=7,-T, - T,-T, and T”=T-T------ T (T°=identity

v

operator) for any non-negative integer m and T =T,.T,_,----- 1,-T,-T™
for any non-negative integer [/ if /=mn+v, 0<v<n--1 and m, v=non-
negative integer (if v=0, T =T").

We denote by S (/>>0) the class of all the pairs {(x’;)’), (x'; 5"}
of points of R"' on which we can apply the operation 7 (/>0)
and by S the class of all the pairs {(x’; '), (#';3)} such that
(' ;¥)e F-G, and (2’; 7)€ G,. We regard S as the domain of defini-
tion of the identity operator 7 =T°.

In the following, we put

M, = exp (2n*M,L,)—1 (8.5)
M, = exp (2nM,L,) , (8.6)
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then by (6. 3)
1>M >0. (8.7)
Also
M,™>1. (8.8)
Proposition 6. If {(x; @), (x;35)} e S where |=mn+v,

n—1>v>0 and m, v=mnon-negative integer, and if we put T"{(x; y©),
(x(O) ;y(o)')} — {(x(l) ; y(l))’ (x(l) ; y(l))}’ then

| 7L—yP || < (M, +1)M? || 59—y || (8.9)

Proof. In the following lines, we shall prove by induction on /
more precise results,

| 7P—y@ || < MYy M2 || 59—y || (8.10)

and
FO—nl S (M= MEOME | 50—y for »zrzl  (8.11)
whenever
{(x2599), (x5 39} eSS (I=mn+y).

(8.9) follows from (8.10) since Mj< M,+1 by n—1>v>0 and
(8.5), (8.6).

For /=0, T = T =identity operator and m=vy=0. Hence here
(8.10) and (8.11) are trival.

Now we assume that (8.10), (8.11) are true for /=/=m'n+.’ and
let {(x(o); y(O)), (x(O);J—)(O))} c SEI’-H]((SU’J). Then {(x(l’);y(l’))’ (x(l');}—)(l’))} c S"+1
since T(l/+1;|:TV+1_ TU/J. Also {(x(z'+1) ; y(z/+1>)’ (x(z/ﬂ) ;J—}(LH—I))} =T(1/+1_;){(x(0);
¥9), (x5 3} =T, {(x47; y), (2975 59)}.

Then by the definition of 7,.,, (6.2), Lemma 3 (4.2) and (8.6),
taking account of |x¥*"™—x%|<2L,, we have

5=y 2 < (50— |+ 3 198y x
exp (nM,| xV P — x|y < || ¥ —y || exp (20eM,L,) = M, || ¥ —y@ ||
and so by (8.10) for /=/,
| =y < MM || 5O~y || (8.12)

Also by the definition of 7,,,, (6.2), Lemma 3 (4.3) and (8. 6),
we have
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TP — gD KFRE =9 | 4+ (2 |7a2” =¥
+, Z |y — J’ff"l){eXp(anx("“)—x“"l)-—1} <P =33
+7{(M_1)X 79—y | for m=X=1 rs=0+1,
and so by (8,10) and (8.11) for /=7,
ey < Loy — My ) 50—y |
+%(]W2_1) X MyMY || 52—y || = %(MZ'*I—MQ_I)MY" | 79—y |
for v>=A2>1. (8.13)
Again by the definition of 7,.,, (6.2) and Lemma 3 (4. 3), we have

PR =D S (3] |7y
p=1
b 31 15003 ) fexp (M 5O — 5] —1)
< %(Mz—l) 15—y ),
and so by (8.10) for /=7,
FYAR AR S L (ME - MYMY 50—y . (8.14)

If n—2>,">0, then (8.12), (8.13), (8.14) prove (8.10), (8.11) for
I=0+1 since I'+1l=umwm’+v'+1, n—1=>v+1>1 in this case.

If v=mn -1, then /+1=wn(m’'+1). In this case, by (8.13), (8.14),
we obtain

” J—)(l'—H) Q/+1) ” — Z ly(z/+1> . (l/+1)| + ly;bz’-&l)_y;z/-}l)l
;—%g (M?z—-M‘z‘ DYMY | 5Oy || < (M3—1)MP || 7=y ||
= My 50—y,

since M '>1 for n>p>1 and M,= M3%—1 by (8.8), (8.5), (8.6). This
proves (8.10) for /=/+1 in the case v"=mn—1. In this case (8.11)
for /=17 +1 is trivial, since then there is no A for which it should be
established.

Thus (8.10), (8.11) are proved for any non-negative integer / and
so the proof of Proposition 6 is completed.

9. Further on the operation 7.
In the following we put



54 T. KAsuGcA

M, = nM,(1+M,)1—M,)™. 9.1)
By (8.7), (8.8), M, is positive.

Proposition 7. If {(x; ), (x;3)} e S® for a non-negative
integer 1 and if we put
{(x?; 52), (x5 3P)} = TP{(x; 5), (x5},
7P = qp(a, xP; yP|G), 7P =gp(a, x?°;5P|G,)
for p=0,1,--,1,
then
| 9P =7l <M | =21 9.2)

Proof. By the definition of 7,
YO =@ (aP, x5 FPV(G,) or  FP = p(xP, xP7P; 54| G,)

for p=1, ---,/. Hence

7]@) — ,,‘7<p—1> or ,;7<p) — ;]w—l) p= 1, e ] ,
so that
“ Z(p)_*(p—l) ” — ” ;}(ﬁ)_n(p) “ or ” ;](p)__*(p—l) “ j— 0
for p=1,..-,1.
Therefore

— 14 _ - - 12 —
” 77(1)__,'7(0) “ é pz:zl ” n(ﬁ)_,']([)—l) “ + ” 7](0)_77(0) ” é}’go ” 77(17)__77(173 “ . (9 3)
By (6.2) and Lemma 3 (4.2), we obtain

| 92— || < | 52—y || exp (nM,|a—x?])
< N 3P—y? | exp (nM,L,)=+/M, || 77—y ||
for p=0,-,1, (9. 4)

since |@a—x?’|< L, and \/M,=exp (nM,L,) by (8.6). Similarly by (6.2)
and Lemma 3 (4.2), we have

I7O=y N1 < | 9 =7 [l exp M, | xP—a ) </ M, || n -5 1| . (9.5)

On the other hand, by Proposition 6, if p=gn+s, n—-1>s>0
g, s=non-negative integer, then

N3P—=y? || < (M, +1)M] || 39—y || for p=0,--,l. (9.6)
By (9.4), (9.5), (9.6), we obtain
| 77— || < MM+ DM | 7= || for p=0,--,1. (9.7)



On the Homogeneous Linear Partial Diff erential Equation of the First Order 55

By (9.3), (9.7), taking account of (8.7) and (9.1), if /=mnm+y,
n—1>y>0 and m, v=non-negative integer, then we get

| 72— 2 || S'Hﬁl” 7P || 4 ”ﬁw | 72— ||
Ut il DI A = o=

< MM, +1)CE MY | 50— || + 6+ DM, + DM || 50— |
< nMM,+1)( 3 M3) || 7@ — 5 || = nMy(L+ M)A~ M) || 70— |
=M=, qed.
In the following we put
M, =nNQ1+M,)(1—-M)™ (9.8)
By (8.7), M, is positive.

Proposition 8. Let the premises and the notations be the same as in
the proposition T and further let

2P = z(xP; ) and ZP =z2(xP;5?) for p=0,-.-,1,
then
l 2(0)—ZCO)I é M ” J—}(O)__y(o) “ + Ié(l)'—‘z(l) l . (9. 9)

Proof. We use the same notations as in the proof of Proposition 7.

If /=0, (9.9) is obvious by M,>0. Hence we suppose />0 in
the following lines.
By Proposition 5,

|20 — 2P| — |Z2H0 2| < N || 52—y || for p=0,..-,/—1, (9.10)
Adding the inequalities (9.10) for p=0, ---,/—1 side by side, we obtain
50— | = |50—#P| < N 3 | 52—y 2| . 9.11)
On the other hand, by Proposition 6,
| 5P —y® || < (MA+DMY [ 59—y || for p=0, -1,

where ¢ is determined for p as in Proposition 7 (9.6). Hence m, »
being determined for / as in the definition of 7°%,
SO —y2 || < aM+1) (S My |50y |
p=0 =0 .
+ (M, +1)M7 || 50—y || < (M, +1) (>3 M9) || 57—y ||
a=0
=n(1+M)A-M)" || 3=y, (9.12)
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since #—1>v»>0 and 0<_M,<”1 by (8.7).
By (9.11), (9.12), taking account of (9.8), we obtain finally

lé(o)_z(o)l . IZ(D—'Z(DI g nN(1+Ml)(1_M)—l ” J—}(O)_y(()) ”
<MNFO—=y1,
q.e.d.
10. Domain Q,, G,. We put
M, =1+2(M,+1)M,+2M, . (10.1)
By (8.7), (8.8), (9.1), M,”>1. Hence if we take a positive number L,

such that
LM<L,, (10. 2)

then
L <L,. (10. 3)

Now we take a domain , in R" defined by
7t [l g—=b [ <L,. (10.4) y

Then by (7.1), (10. 3), (10. 4),
(7. 3),

9,0, Ca, (10.5) .

We denote by G, the
portion of €, covered by the q, o,
family of all the character- \\\;L“ Tt
istic curves C(a; | ®,) where
7€ Q,. In the same way as
in the cases of G,, G,, we Q!
easily prove that G, is open _ x
in R™', and C(£; 7|G,) where Fig. 5
(£; )€ G,, is defined just for
the interval |x—a|<L,. By (10.5) and the definitions of G;, G,, G;,

GGG Q.

Proposition 9. If (x@;y®) e F.G, and (x;5) € G,, then {(x; y*),
(x@; )} € S*2 for any non-negative integer 1.

\
i
\
\

N )
i

Proof. We use the same notations as in the Proposition 7 and 8.
We prove Proposition 9 by induction on /. For /=0, Proposition
9 is obvious by the definition of S and G, G,. We assume that
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Proposition 9 is true for /=/". Then if (x;y®)€ F.G, and (x; 7)€ G,,
the pair {(x(l’) ’ y(l’))’ (x(l’) , J—/(V))} — T(V'J {(x(o)’ y(o)), (x(O) ;5)(0))} iS uniquely
determined and (x%”; y“°)e F.G, and (x*”; 3°) € G, by the definition of
TEI/J.

Let /'=wm'n+y, n—1>>0 and wm’, v =integer. Then we put
OO = (0, e, ¥, FE2, Y, e, ¥E) . I 397 € G,[x9”], that is,
(x(l’) ; j;(l’))e Gz, then {(x(l’) ; y(l’))’ (x(l’);y(l’))} c S-.,’—H SO that {(x(o); y(O))’
(2 39} € S+ and the proof of Proposition 9 is completed.

We suppose therefore, if possible, that 3 ¢ G,[x%”]. Then there

is a point y* € (G[x°])® on the segment of straight line which joins
J—}(l') and y(l’) Since J—)(l’)e Gz[x(l’)] by (x(l’);y(l'))ecz-
We can easily see that
| =5 | < N3 =3 1 < N1y =5" 11,
so that by Proposition 6 (8.9)
| y* =5 Il KM +DMY || 7=y . (10. 6)

By Proposition 4, since y*e(G,[x“"])?, y*e G, [x“”], that is,
(x4 ;9*)e G, and if we put 5*= p(a, x°; y*|G,), »*€ Q3. Hence by
(7. 1)

Il =60 || =L, . (10.7)

By (6.2) and Lemma 3 (4. 2), taking account of (8.6) and |a—x“"|
<_L,, we have

” n*_—(l’) ” < ” y*_j—)(z’) ” exp (%M!a—x”’>])
< |l y*—5“° || exp (nM,L,)=~/M, || y*—5 ||

and so by (10. 6)
| 7 =5 | </ M,(M,+1)MY || 50—y || . (10.8)

On the other hand, by the definitions of 7, 4, G, and by
(x@; y9)e F.G,, (x; ) e G,, we have

;'7(0)’ 77(0) = QS R
so that by (10. 4),

“ ;&(0)_[)(1) “ < L3 , ” 77(0)_b(1) ” < L3 . (10 9)

Also, as we have seen in Proposition 7 (9.5),

UJ—)(O)___y(O) ” é \/YWZ ” ;](0)_,'7(0) ” .
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Hence, by (10.9)
I 7P=y N < VM, 7= || + || =0 || ) < 2L/ M, -
From this and (10.8) we get
| 9% — 7 || < 2L, M, (M, + 1) My (10.10)
Also, by Proposition 7, (9.2) and (10.9), we have
7= || < M, 70— 7 | < 2L (10.11)

By (10.7), (10.9), (10.10), and (10.11), taking account of (8.7),
(10.1), we obtain finally

L= 7" =0 || < || 5 =7 || + [ 7= || + | 4™ =02
< L{ZM(M,+ )My’ +2M+1} < L{(2My(M,+1)+2M,+1} = LM, .

But this contradicts (10.2) and Proposition 9 is completely proved.

Proposition 10. Let {(x'; ), (x';5")} be any pair of points of G,
with the same x coordinate and let
F=z(x3y), ¥F=z235).
Then
|2/ —2' | < MM, || /=y || (10.12)
Proof. There is the nearest x to #’ in the interval |x—a|<_L, such
that either (x, ¢ (x, 2; ¥'|G,)) € F-G, or (x, p(x, x'; 7 |G,)) € F-G,, since
by Proposition 3 and G, G,, each of the continuous curves C(x’;y|G,)
and C(x’; 7| G,) which are defined just for the interval |x—a|< L, and
are contained in G,, has at least one point in common with F.G, which

is closed in G,. We denote such x by x®. If incidently two such x
exist, we take as x® for example the one on the right side of x’.

Now we distinguish two cases.
i) If (x, p(x, x2'; ¥'|G,)) € F-G,, then we put
YO =@, x5y G), FO =9, 256

i) If (29, p(x@, 2;¥|G) ¢ F-G, and so by the definition of x©,
(x, p(x, 2" ; 3| G,)) € F-G,, then we put

YO =@ &3 G), IO =, 5 ¥G).

In any case (x@; y®)e F.G, and (x°; ) € G,.
By the definition of £, each of the characteristic curves C(x’; y'|G,)
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and C(x’;7’|G,) has no point in common with F and so is contained in
K for the interval x’<x<x“ or x“< x< x’. Hence by Lemma 1,
if we put z(o):z(x(o) ; y(o)) and 2“’):2(37(0) ; 37(0)),

20— 2© — 3/
{ 2(0) — 2/ or { 2(0) — 2/ .
Therefore in any case,
|2/ — 2| = |20 —29]. (10. 13)
By Lemma 3 (4.2) and (6. 2), taking account of (8.6), we have
17—y <1 57/—y || exp (nM, | x”—x])
< 1y—y llexp @nML) <M, || 57—y, (10.14)

since |x“—x’|<2L,.

Now, by Proposition 9, {(x;y®), (#*;5)} €S for any non-
negative integer /, since (@ ; y®)e F.G, and (x°; 5®)e G,. Hence we
put

{(x(l) ; y(l))’ (x(l) ;J—)(D)} — T(I'J{(x(o) ’ y<o)), (x(O) ;5)(0))} R
ZCI) fa— z(x(l) ; y(l))’ é(l) — z(x(l) ; y—(l))
for any non-negative integer /. Then by Proposition 8

|Z0— 20| < M, || 79—y || + | 7P — 20| (10.15)

On the other hand, by Proposition 6, if /=nm+», n—1>v>0 and
m, v=integer, then

7P =y N < (My+1)M7 || 50—y || .

Hence observing that m— o as /—>co and 0<ZM,<1,
| 7P=P | =0 as -0,
Thus
|ZP— 20| =|2(xP; JP)—2(xP; yP)| >0 as [ - oo,

since by the continuity of z(x;y) on QG), z(x;y) is uniformly
continuous on @ which is closed and bounded in R™* and by the
definition of T, (x°; ), (x; ) e G, @ for any non-negative

integer /.
Therefore letting /— o on the right side of (10.15), we have

|20—29| < M, || 50—y | . (10. 16)
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By (10.13), (10.14) and (10.16), we obtain finally
|2/ —2'| < MM, || 5=y Il ,
q.e.d.

11. Domains @/, Q”, Q,, G, and Mapping 2. Since G, is open in
R™* and F.G,==0 by the way of the construction of G, and Proposition
3, we can take a (z+1)-dimensional open parallelepiped @’:

lx—a'|<L,, In—=b/|<L(M+1) r=1--,n (L, >0)
such that
(a’; 0)y=(a’, b/,---,b)eF.G, and Q" CG,.
Evidently ' G, Q.

We denote by Q, the n—dimensional open cube

qllf)]h—b)\'!(\lﬂ 7\.=1,---,7’l.
Then if 5€Q,,

77)\+L4M = bA/+(]V1;)+1)L4 ’ nA‘LAM = bA/_(M+1)L4 A= 17 e, .

Hence the characteristic curves C(a’; n|Q’) where 7€ Q,, are defined
just for the interval |x—a’|< L, since |f,|< M, A=1, -, n on Q( Q)

by (6. 1).
G

3

AN

\\

Fig. 6
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We denote by G, the portion of @’ covered by the family of
all the characteristic curves C(a’; |Q’) where 5e€Q,. Evidently
G, G,

In the same way as in the cases of G,, G, and G,, we easily prove
that G, is open in R"'' and any characteristic curve C(¢; 5|G,) where
(§; 7)€ G, is defined just for [x—a’|<L,.

We put

M, = N+nM,M,M, + M,M, . (11.1)

Proposition 11. Let (x@; y®) and (x©; ) be any pair of points
of G, and let
20 = Z2(x®; yP) | 2® = z2(x©; y©) .
Then
20— 29| < M(| 2% — 2] + || =5 ||) (11.2)

Proof. We denote by x@:
(Case I) the nearest x to x® in the interval x@<x<x® or 2@ <Lxr<x®
such that (x;@(x, x; y*|G,)) e F, if the portion of C(x®;y*’|G,) for
that interval has some points in common with F. Such x exists in this
case since the continuous curve C(x®; y*|G,) which is defined for the
interval 2@ <x <a® or 2 <x <2, is contained in G, and F-G, is
closed in G,.
(Case II) the number x©, if the portion of C(x®;y*|G, for the
interval 2@ <x <x® or x® <x <x“ has no point in common with F.
We put @ =@x?, x®;y?|G), 2¥=2zx?;y?®). In Case I,
(x®; y»)e F.G, and in Case II, (x2; y®)=(x9; @ (22, 2 ; y©|G,)) € G,.
Then in both Cases, by Lemma 1,

2D = z® (11.3)

since the portion of C(x®; y*|G,) for the open interval x“ < x< x*®
or x¥< x< x> has no point in common with F and so is contained in
K by the definition of x®.

Also by (6.1), (2.2), observing that C(x”; y*|G,) is contained in
@, we have

937 =30 | = palx®, 2P 5 Y21 G)— (20, 525 y [ G|
<M x®—x®| A=1,--,n.
Hence

1Y2—y® || < 31 192 —0i0 | < n, | 29— 20| < nM, | 20— 2],

since a2 < x® < x® or P <La® < x® by the definition of x%.
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Therefore we have
152=y Il < 5P =3 || + | 32—5 |
< uM,|xP—x| + || Y=y || (11.4)
Now
(x5 y®)e @ TG, CQ,
since (x; y*)e G, Q' and (x®; y®?)e G, Q' in both Cases. We put
2D =z (x@; y@).
Then we have
|z(”—z‘”] — [z(x“” : y(”)——z(x(” ; y(z)) |< N| x(Z)__xm)'
in Case I, by Proposition 1 and (x; y®)e Q, (x®; y*)e F.G, F.Q,
and in Case II, simply as x®=x, Hence, by (11.3), we get
Iz(a)_z(l)l — l z(3)_z(2)] —g NI x(Z)_x(O)I g NI x(l)_xCO) I , (11 5)
since ¥ <x® <x® or xP < x® < x by the definition of x®.

Also, by Proposition 10 (10.12), since (x©; y®)eG,, (x; y) € G,
in both Cases, we have

29— < MM, || 2=y ||
Hence by (11.4), we get
| 29— 2| < nMMM,| 0= + MM, | yP—y® || (1L.6)
By (11.5), (11. 6), taking account of (11.1), we obtain finally

| 20— 20| < |2®—2®| 4 | Z®— 2@
< (N+nMM,M,)|xP—x®| + MM, || y*—y ||
< M(|xP =29+ |y =31, q.ed.

We denote by @’ the (n+1)- .
dimensional open cube defined by

(k30 5—|<L, g
I"]A—bh,|<L4 7\':1)""”'

We put Xi(x;7) = o(x, a5 9|G) O
A=1--,n. Then X,(x;7y) are \J
defined and continuous on @’ and
have continuous partial deriva-
tives with respect to all their argu-
ments on §”/, by the corresponding
properties of @,(x, &; 5|G,).

We denote by 2 the continuous Fig. 7

2L4
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mapping of @” onto G,:
(x57) = (x;X(x; 7).

That % maps @” onto G,, follows from the definition of G,.

By the properties of C(£;7|G,) and ¢, (x, &;9|G, as stated in
§1.2, we easily see that 2 is one to one and bicontinuous, and 2™ is
represented by

(x;9) = (x;9(x; ),

if we put y(x; ) =o\a@, x;y1G) v=1,.--,n for (x;y) €qC,.
Further ,(x;y) have continuous partial derivatives with respect to all
their arguments by the corresponding properties of ¢,(x, &; 2|G,).
From this, we can easily prove that 2™ maps any null set in G,
onto a null set in Q”*.
Thus we have

Proposition 12. The mapping N of Q" onto G, is one to one and
bicontinuous, and N * maps any null set in G, onto a null set in Q”.

12. Completion of the proof. By Proposition 11, we have

. |2(x5 9)—2(x; y)|
lim sup 7 o < M, 12.1
(2;3)—(x®; y) [F =2+ || y—y @[ = —

whenever (x; y®)e€G,. Hence z(x;y) is totally differentiable almost
everywhere in G,, by a theorem of Rademacher on almost everywhere
total differentiability’®. Also, by Proposition 12, A~* maps any null set
in G, onto a null set in @”. Therefore, if we write {(x; ») =2(x; X(x; 7)),
and y,=X,(x;9) A=1, .., n for (x;7)€ Q”, we obtain

2 ., __ 9%, . oz . . OXu, . o
'axg(xyﬂ)—a(x,y)+§%(xyy)a‘(x:7]) (12. 2)

for almost all (x; %) of @Q”.
Since X\(x; ) =p\(x, a’; 5|G,) for (x;5)€ Q”, we obtain by (2. 2),

O Xwsm) = A X ) =A; ) A=1,n  (12.3)
for (x; 5)€ @”. Substituting this into (12.2), we get

a n
Syt E5m) = g;(x s Y)+ ,gl Julx; y)g%(x ) (12.4)

9) Cf. Tsuji [9], pp. 49-50. Also Cf. Rademacher [7], pp. 354-355.
10) Cf. Rademacher [7], pp. 341-347. Also Cf. Saks [8], p. 311.
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for almost all (x;75) of Q”.

Since by assumption, z(x;y) satisfies (2.1) almost everywhere in
G(>G,) and by Proposition 12, ' maps any null set in G, onto null
set in Q”, the right side of (12.4) regarded as a function of (x; ),
vanishes almost everywhere in Q”. Therefore

o R
é}é‘(x, 7) =0 (12.5)

almost everywhere in Q.
On the other hand, if we write y® =X,(x; ) A=1,-.-,%n for a
point (x; )€ Q”, we have (x; y)€ G, and

lim sup [£(*3 70) =85 57|
PRI | x—x© I

X Ié‘(x ; n(o))_;‘(x(o) ; 7](0))|
= hxnixstﬁl)p [x—x@ + [ X(x; ) =X(xP; ) ||

x lim sup X ¥+ N X5 97) =X(xT 5 57) |
2o 2O [x—2©]

o (0] . 40D n
<( lim sup [FE;N—2(xP;5° L’)(l +
T <(x;y)—>(x(0);f(0)) |x—x(°)| + || y—y“ | ,;1

X,
axﬂ (x93 )

)

Hence by (12.1) and (12.3), observing that |fi(x; ) |<M, on G(C Q)
by (6.1), we obtain

lim sup [EE =L 0D arq S (005 50)))
=1

s, x—x@]

< M,(1+nM,) (12. 6)

whenever (x©; 7)€ @”.

By Fubini’s theorem, {(x;#) as a function of x, satisfies (12.5)
almost everywhere in the interval |x—a’|<_L,, for almost every 5 in
the domain Q, and by (12.6), {(x;#) as a function of x, is absolutely
continuous in the interval |x—a’|< L, for any 5 in the domain Q,.

Therefore by Lebesgue’s theorem, &(x;7) as a function of x, is
constant in the interval |x—a’|<L, for almost every 7 in the domain
Q,. Hence, by the continuity of z(x;y) and X,(x;#), accordingly of
¢(x;n), it follows that ¢(x;7) as a function of x, is constant in the
interval |x—a’|< L, for any 5 in the domain Q,.

From this, by the definition of {(x;y), we easily see that z(x;y)
is constant on any characteristic curve of (2.1) in G,. Hence, by the
definition of K, we have G, K and so observing that G,(C G) is open
in R"",
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F=G-K-GC G—-G,-G=G—-G,.

This is however excluded, since (a’;¥)€ F.-G,. Thus we arrive at
a contradiction and this completes the proof of Theorem 1.

§4. Proof of Theorem 2 and Theorem 3
In this §, the notations are the same as in §1 and § 2.

13. Proof of Theorem 2. By the assumption on G and Theorem 1,
if we put o (x;¥)=@\(Ex;y|G) A=1,..- ,n for (x;y)€G, then we
have o(x; y)e G[&*] for (x; )€ G and

2(x;9) =Y(o(x;y) on G (13.1)

for any quasi-solution z(x; y) of (2.1) on G such that z(£®;y)=1(z)
on G[§“7]. Hence there is at most only one such quasi-solution.
Conversely if we define a function z(x;y) by the right side of
(13.1) on G, then by the total differentiability of () on G[£“7] and
of wy(x;y) on G, z(x;y) is totally differentiable on G and
0z __ 9 Ow, Oz "y Oy Owy

ax r=1 897” ox ’ ay)\ !"21 877,,.8_%\ A ’ a4

on G. Hence

PN

2z & % (e,
o B AN =T (52 + 2 52 Aa5y) on 6. (13.2)
But for w\(x; ) (=@\(&?, x; ¥|G)), we have™

aan_;_ ’LE Sulx; J’)aw}\ A=1--,n on G

Therefore by (13.2), for z(x;y) defined by (13.1)

+§f#(x y)ay,,. on G.

Also for z(x;y) defined by (13.1), we have
Z(E(o) ; ,)7) — "P‘("?) on G[é:(o)] ,

since (£ ; 5) =P (P, E; 5|G)=1.
Thus there is at least one quasi-solution z(x;y) of (2.1) on G such
that 2(&9; 5)=+(5) on G[£*] and this quasi-solution is also a solution

11) Cf. Kamke [3], §18, Nr. 87, Satz 1.
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of (2.1) on G in the ordinary sense. This completes the proof of
Theorem 2.

14. Proof of Theorem 3. For the special case n =1, we write
(2.1) in the form

oz o0z __
ox T N5, =0 (14.1)

and the characteristic curve of (14.1) in G which passes through the
point (£, ) of G, in the form

y=op(x,§& n|G) «& 9|G) < x<BE 1|G).

Let z(x,y) be any quasi-solution of (14.1) on G and (x?, )
be any point of G. Then there is at least one point (£, ) on
C(x, y|G) where z(x, y) has 9z2/9y, since z(x,y) has 9z/9y except at
most at the points of an enumerable set in G.

If we put o(x, y) =@, %, |G) and for 5e€ GLE?], yr(n)=2(E?, 7),
then by the properties of the family of the characteristic curves as
stated in §1.2, o(x, ) is defined and w(x, y)€ G[£*] for (x,y) in some
neighbourhood of (x°, y) and by Theorem 1

2(x,y) = Y(w(x, ¥)) (14. 2)

in that neighbourhood. Evidently o(x®, y)= @ (&®, 2, y°|G)
= 7@€ G[E]. Also v(5) (=29, 5)) is differentiable at »* since
z(x,y) has 29z/0y at (£, ). '

Since +r(5) is differentiable at #%*° = o (x®, ) and wo(x, )
(=@, x, ¥|G)) is totally differentiable at (x©, ¥*), by (14.2) z(x, y)
is totally differentiable at (x®, ) and

af(xm)’ YO) = \If/(”m))?ﬁ’(xco)’ ¥9),

(x(O)’ y(O)) — Al /(97(0)) (x(O), y(O))
Hence

(o)) oz

zz(x(o)’ y(o)) +f(x(0), y (x(o), y(o))

= '(y (03){ (29, y©) + f(x“”, yco)) Ow ( 29, y“”)} (14. 3)

But for w(x, y)= @&, x, y), we have™?

12) Cf. Kamke [3], §18, Nr. 87, Satz 1.
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%(x(m’ y(O)) +f(x(0), y(O))%) (x(O), y(o)) — 0 .

Hence, by (14. 3)

oz

é;(x(O)’ y(O)) +f(x(0)’ y(O))%j’(x(O)’ y(O)) — 0 .

Therefore z(x, y) is totally differentiable and satisfies (14. 1) at any point
(2, y) of G, q.ed.

(Received March 25, 1955)
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