Osaka Mathematical Journal Vol. 7, No. 1, June, 1955.

On the Existence of Harmonic Functions on Riemann Surfaces

By Zenjiro KURAMOCHI

H. L. Royden¹⁾ proved by the use of the theory of Banach algebra that the class of O_{HD} or $O_{HDN}^{2)}$ is invariant under a quasi-conformal mapping whose dilatation quotient is bounded. The purpose of this article is to give a function-theoretic proof of the theorem.

Let F be an abstract Riemann surface, let $\{F_n\}$ be its exhaustion and let G be a non-compact subdomain whose relative boundary $\partial G^{\mathfrak{z}}$ consists of at most an enumerably infinite number of analytic curves clustering nowhere in F.

Theorem. (EXTENSION OF L. MYRBERG'S THEOREM⁴). Let $U(p): p \in F$ be a harmonic function on an abstract Riemann surface F such that $D_F(U(p)) < \infty$ and suppose that the universal covering surface F^{∞} of F is mapped onto the unit-circle: |z| < 1. Then U(p) is represented by Poisson's integral.

Lemma. Let V(z) be a continuous sub-harmonic function on $|z| \leq 1$ such that $\int |V(e^{i\theta})| d\theta \leq M$ and let G be a simply connected domain in |z| < 1 with a rectifiable boundary ∂G . Then $\int_{\partial G} |V(z)| d\omega \leq M$, where ω is the harmonic measure of ∂G with respect to G.

Proof of the lemma. Denote by $V^*(z)$ the upper envelope of subharmonic functions $\{V^i(z)\}$ such that $O \leq V^i(z) \leq |V(z)|$ on the complementary set of G. Then $V^*(z) = |V(z)|$ on ∂G and sub-harmonic in |z| < 1and is harmonic in G. Let $V^{**}(z)$ be a harmonic function in |z| < 1with the boundary value $|V(e^{i\theta})|$. Then

$$M \ge \int |V(e^{i\theta})| d\theta = \int V^{**}(e^{i\theta}) d\theta = V^{**}(O) \ge V^{*}(O) = \int_{\partial G} V^{*}(z) d\omega.$$

Map the universal covering surface F^{∞} of F onto |z| < 1. Then the circle: $|z| < \rho$ ($\rho < 1$) is contained in the image of F_n^{∞} for sufficiently large number n. Denote by $G_n(p, p_0)$ the Green's function of F_n and denote by $h_n(p, p_0)$ its conjugate function, where p_0 is the image of z=0. Put $e^{-G_n-ih_n} = r_n e^{i\varphi_n}$. Then

Z. KURAMOCHI

$$D_{F_n}(U(p)) = \frac{1}{2} \int_{\partial F_n} \frac{\partial U^2(r_n e^{i\varphi_n})}{\partial r_n} r_n d\varphi_n \leq M^n$$

and

$$\begin{split} & \int_{\partial F_n} U^2(r_n e^{i\varphi_n}) d\varphi_n := 2 \pi U^2(O) + \iint_{F_n} 2 \text{ grad } U^2(p) \log r_n dr_n d\varphi_n \\ & + \frac{\partial U^2(r_n e^{i\varphi_n})}{\partial r_n} \log r_n r_n d\varphi_n \leq M', \end{split}$$

whence

$$\int_{\partial F_n} U^2(r_n e^{i\varphi_n}) d\varphi_n \leq M''$$

where M'' is independent of n.

Map F_n^{∞} onto $|\xi| < 1$ and let G_{ρ} be the image of $|z| < \rho$ by this mapping. Since the connectivity of F_n is finite, ∂F_n is mapped in $|\xi| = 1$ except possibly a set of linear measure zero, and further $d\varphi_n$ corresponds to ds on $|\xi| = 1$, where ds consists of at most an enumerably infinite of arcs. Since $U^2(\xi)$ is sub-harmonic, we have by the lemma

$$M'' \geq \int U^2(r_n e^{i\varphi_n}) d\varphi_n = \int_{|\xi|=1}^{1} U^2(\xi) d\theta \geq \int_{\partial G_\rho} U^2(\xi) d\omega = \int_{|z|=\rho_n}^{1} U(\rho_n e^{i\theta_n}) d\theta_n$$

Let $\rho_n \rightarrow 1$. Then by Fatou's theorem U(p) is represented by Poisson's integral in |z| < 1.

Let $\tilde{U}(p): p \in F$ be a harmonic function of Dirichlet bounded. Then there exist subdomains⁵⁾ G_i (i = 1,2) in F with the property as follows: there exist harmonic functions of Dirichlet bounded such that $\tilde{U}_i(p) \geq O$, $\tilde{U}_i(p) = O$ on ∂G_i and $G_1 \cap G_2 = O$.

Let G be one of them and let U(p) be one of $\tilde{U}_i(p)$ in the sequel. Map the universal covering surface G^{∞} of G onto |z| < 1. Then there exists a constant δ ($\delta > 0$) and a set E_{δ} of positive measure on |z|=1such that U(p) has angular limits larger than δ , because U(p) is represented by Poisson's integral on |z| < 1. Let G' be the subdomain where $U(p) > \frac{\delta}{2}$. Then G' determines a set $B_{\frac{\delta}{2}}^{\delta}$ of the ideal boundary. Let $V_{n,n+i}(p)$ be a harmonic function in $(F_{n+i} \cap G) - (G' \cap (F_{n+i} - F_n))$ $= H_{n,n+i}$ such that $V_{n,n+i}(p) = 0$ on $\partial G' + (\partial F_{n-i} \cap (G - G') \text{ and } V_{n,n+i}(p))$ = 1 on $\partial F_n \cap G'$. Then $V(p) = \lim_{n} \lim_{t \to 0} V_{n,n+i}(p) \ge \omega_{\delta}(z)$, where $\omega_{\delta}(z)$ is the harmonic measure of E_{δ} , with respect to G^{∞} . Hence V(p) is non-

24

constant. Let $U_{n,n+i}(p)$ be a harmonic function in $H_{n,n+i}$ such that $U_{n,n+i}(p) = 0$ on ∂G , $U_{n,n+i}(p) = 1$ on $(\partial G' \cap (F_{n+i} - F_n)) + (\partial F_n \cap G')$ and $\frac{\partial U_{n,n+i}}{\partial n} = 0$ on $\partial F_{n+i} \cap (G - G')$. It is clear

$$D_G(U(p)) \ge D_{Hn, n+i}(U_n, u+i}(p))$$

and

$$D_{Hn, n+i+j}(U_n, u+i+j(p)) \ge D_{Hn, n+i}(U_n, u+i(p))$$

Hence $U_{n,n+i}(p)$ converges to $U_n(p)$ in mean. Since $U_{n,n+i}(p) \ge V_{n,n+i}(p)$, U(p) is non-constant.

Let C_{δ} be the niveau curve of $U_n(p)$ with height $\delta' (0 \le \delta' \le 1)$ and put

$$_{0}G_{\delta'} = \varepsilon_{p}[0 < U_{n}(p) < \delta'] \text{ and } _{1}G_{\delta'} = \varepsilon_{p}[\delta' < U(p) < 1]$$

respectively.

Let $U_{n,n+i}(p)$ be a harmonic function in ${}_{0}G_{\delta'} \cap F_{n+i}$ such that $U'_{n,n+i}(p) = O$ on ∂G , $U'_{n,n+i}(p) = \delta'$ on ${}_{0}G_{\delta'} \cap (F_{n+i} - F_n) + (\partial F_n \cap_{0}G_{\delta'})$ and $\frac{\partial U'_{n,n+i}}{\partial n} = O$ on ∂F_{n+i} . Then we can prove as the previous manner⁷ the following

Lemma.
$$U'_{n,n+i}(p) \rightarrow U_n(p)$$
 in mean and

$$\lim_i D(U'_{n,n+i}(p)) = D(U_n(p)).$$

On the other hand, for given number ε and i, we see easily that there exists a number j_0 such that

$$D_{_{0}G_{\delta'}\cap F_{n+i}}(p)) \leq D_{_{0}G_{\delta'}\cap F_{n+i+j}}(p)) + \varepsilon < \delta' D(U_{n}(p)) + \varepsilon \quad \text{for } j \geq j_{_{0}}.$$

Let $\varepsilon \rightarrow 0$ and then $i \rightarrow \infty$. Then we have

$$\mathop{D}_{{}_{0}G_{\delta'}}(U'_{n}(p)) \leq \mathop{\delta'D}_{G-(G'\cap F_{n})}(U_{n}(p)).$$

Let $U''_{n,n+i}(p)$ be a harmonic function in ${}_{\delta}G_1 \cap F_{n+i}$ such that $U''_{n,n+i}(p) = 1$ on $\partial G'$, $U''_{n,n+i}(p) = \delta'$ on $(\partial_1 G_{\delta'} \cap (F_{n+i} - F_n)) + (\partial F_n \cap (G_{\delta'}))$ and $\frac{\partial U''_{n,n+i}}{\partial n} = 0$ on ∂F_{n+i} . Then by the same manner we have

$$\lim_{i} U''_{n,n+i}(p) = U''_{n}(p) = U_{n}(p) \text{ and } D_{1G_{\delta'}}(U_{n}(p)) \leq (1-\delta')D_{G-(G\cap(F-F_{n}))}(U_{n}(p)),$$

whence

$$D_{0}(U_{n}(p)) := \delta'D_{G^{-}(G^{-}(F^{-}F_{n}))}$$

Z. KURAMOCHI

Next we have by the same manner as the previous⁸⁾ the following **Lemma.**

$$\int_{\partial_0} \frac{\partial U_n}{\partial n} \, ds = D_{G-(G'\cap F_n)} U_n(p),$$

for every number ε except for at most two numbers ε_1 and ε_2 .

We say that the sequence $\{G' \cap (F-F_n)\}$ $(n=1,2,\cdots)$ determines a set $B_{G'}$ of the ideal boundary and call $\lim_{i} D_{G^{-G'}}(U_n(p))$ the capacity of $B_{G'}$ with respect to G. Then by the above lemmas, we can prove⁹⁾ as the previous the following

Theorem. $U_n(p)$ converges to $U^{\circ}(p)$ in mean and

$$D_{G^{-}(U_{n}(p))} \downarrow D_{G}(U^{0}(p)).$$

Since $U^{0}(p) \geq V(p)$, $U^{0}(p)$ is non-constant and since $D_{G}(U(p)) \geq D_{G}(U^{0}(p))$,

 $\infty > \operatorname{Cap}(B_{G'}) > 0.$

Proof of the Royden's theorem.

Let F^* be another Riemann surface such that $F^* \ni p^* : p^* = T(p) : p \in F$, where T(p) is a quasi-conformal mapping whose dilatation quotient is bounded $\leq K$. Put $U_n^{Q}(p) = U_n(T(p))$. Then $U_n^{Q}(p)$ is not necessarily harmonic and

$$\frac{1}{K} D_{H_n, n}(U_{n, n+i}(p)) \leq D_{T(H_n, n+i)}(U_n^Q, (p^*)) \leq K D_{H_n, n+i}(U_n, (p)),$$

where T(G) is the image of G by the mapping $p^* = T(p)$. Let $U_{n,n+i}(p^*)$ be a harmonic function in $T(H_{n,n+i})$ such that $U_{n,n+i}(p^*) = 0$ on $\partial(T(G))$, $U_{n,n+i}(p^*) = 1$ on $\partial(T(F_{n+i})) + T(\partial G' \cap (F_{n+i} - (F_n)))$ and $\frac{\partial U_{n,n+i}(p^*)}{\partial n} = 0$ on $\partial(T(F_{n+i}))$. Then by the Dirichlet principle

$$D_{T(H_n, n+i)}(U_{n,n+i}(p^*)) \leq D_{T(H_n, n+i)}(U_n^Q, n+i}(p^*)) \leq KD_{H_n, n+i}(U_n, n+i}(p)).$$

Since the inverse mapping $T^{-1}(p)$ of T(p) is also a quasi-conformal mapping,

$$D_{Hn,n+i}(U_n^Q, _{n+i}(T^{-1}(p^*)) \leq K_{T(Hn,n+i}D(U_n, _{n+i}(p^*)) \leq KD_{Hn,n+i}(U_n, _{n+i}(p)),$$

where $U_{n,n+i}^{q}(T^{-1}(p^{*})) = U_{n,n+i}^{q}(p)$. On the other hand, by the Dirichlet priniple, we have

26

On the Existence of Harmonic Functions on Riemann Surfaces

$$D_{H_n, n+i}(U_n, I_{n+i}(p)) \leq D_{H_n, n+i}(U_n^Q, I_{n+i}(T^{-1}(p^*)))$$

Hence

$$D_{T(H_n, n+i)}(U_n, {}_{n+i}(p^*)) \geq \frac{1}{K} D_{H_n, {}_{n+i}}(U_n^{Q}, {}_{n+i}(T^{-1}(p^*))) \geq \frac{1}{K} D_{H_n, {}_{n+i}}(U_n, {}_{n+i}(p)).$$

T(G') also determines a set $B_{T(G')}$ of the ideal boudary of T(F). Let $i \to \infty$ and then $n \to \infty$. Then

$$KD_G(U^{\scriptscriptstyle 0}(p)) \geq D_{T(G)}(U^{\scriptscriptstyle 0}(p^*)) \geq rac{1}{K}D_G(U^{\scriptscriptstyle 0}(p)).$$

Hence $B_{T(G')}$ is a set of positive capacity with respect to T(G) and

$$\frac{1}{K} \operatorname{Cap} B_{G'} \leq \operatorname{Cap} B_{T(G')} \leq K \operatorname{Cap} B_{G'}.$$

Therefore on T(G), there exists a Dirichlet bounded harmonic function with boundary value O on $T(\partial G)$. Thus we obtain our theorem by the method M. Parreau and A. Mori¹⁰⁾.

We construct an open Riemann surface $[(G-G') \cap F_n^{\wedge}]$ by the process of the symmetrization with respect to ∂F_n . Then $((G-G') \cap F_n) + [(G-G') \cap F_n^{\wedge}]$ is a ring domain. Let $n \to \infty$. Then $(G-G') \cap F$ is a generalized semi-ring domain. Thus our theorem is an extension of the well known "Modulsatz".

Let F_0 be a compact set of F and let $N_n(p, p_0)$ be a harmonic function in $(F-F_0) \cap F_n$ such that $N_n(p, p_0) = 0$ on ∂F_0 and $\frac{\partial N_n}{\partial n} = 0$ on ∂F_n and has one logarithmic singularity at p_0 . We can prove that $N_n(p, p_0)$ converges to $N(p, p_0)$, when $n \to \infty$. Let $\{p_i\}$ be a sequence of points tending to the boundary. If a subsequence of $\{N(p, p_i)\}$ converges to $N(p, \{p_{i'}\})$, we say that $\{p_{i'}\}$ determines an ideal point¹¹. We can introduce a topology of the ideal boundary by the use of $N(p, \{p_{i'}\})$ and prove that the above topology is invariant under the quasi-conformal mapping.

(Received March 17, 1955)

Z. KURAMOCHI

References

1) H. L. Royden: A property of quasi-conformal mapping. Proc. Amer. Math. Soc, 5, pp-266-269.

2) $O_{\rm HD}$ and $O_{\rm HDN}$ are the class of Riemann surfaces on which no harmonic function of Dirichlet bounded exists or the dimension of harmonic function of Dirichlet bounded is N respectively.

3) In this article, we denote the relative boundary of G by ∂G .

4) L. Myrberg : Bemerkungen zur Theorie der harmonischen Funktionen. Annales Acad. Fenn. 1952.

5) M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Annales de l'institut Fourier. 1952.

A. Mori: On the existance of harmonic functions on a Riemann surface : Journal. Fac. Sci. Univ. Tokyo, 6, 1951.

6) Z. Kuramochi: Harmonic measures and capacity of sets of the ideal boundary. I and II. Proc. Jap. Acad. 30. 1954 and 31. 1955.

7), 8) and 9) See 6).

10) See 5).

11) A note on this topology will appear in this Journal.