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On the Structure of the Plane Translation of Brouwer

By Tatsuo HoMMA and Hidetaka TERASAKA

The so-called plane translation theorem of Brouwer [1] had been a
starting point to a series of investigations concerning the sense preserving
topological transformation of the Euclidean plane onto itself without
fixed point. The general behaviour of such a transformation, called by
Scorza Dragoni [10] a generalized translation, however, is not so simple
and but little is definitely known until now. It was first pointed out
by Sperner® that the study of singularities arising from a generalized
translation should have an essential meaning for further investigation
but no attempt seems to have been actually made. In the present paper
is given a full treatment of the subject along this line.

In the attempt to prove the converse to the structure theorem,
however, we were forced to the conclusion that the mere consideration
of an individual homeomorphism is insufficient and a procedure should
be devised of obtaining from a given homeomorphism some other
simplified one in order to make clear the whole mechanism of generalized
translations. In this way alone we shall be able to obtain the adequate
classification of generalized translations comparable with the beautiful re-
sults of Kaplan [3] in his classification of curve-families filling the plane.

In the preliminary I the theory of free domains is developed to be
applied in II to the study of singular lines. The structure theorem and
an attempt to obtain its converse are given in III. In the final IV
known and unknown examples of generalized translations are collected
along with some theorems leading to the construction of several examples.

I. Free Domains

1. Throughout this paper f denotes, unless otherwise stated, a
sense preserving topological transformation of the Euclidean plane E?
onto itself without fixed point. The zn-th iteration of f will be denoted
by f” for any positive or negative integer #, inclusive zero, provided
that f° and f! stand for the identical transformation and the original
transformation f itself respectively.

1) [11] p. 24, foot-note.
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2. Regularity and irregularity.

~ If Mis a point set, the cluster set of f"(M) for all positive integers
m, that is a set of points whose arbitrarily small neighbourhoods meet
an infinite number of f*(M), will be called the final limit or the ( +)-limit
of M and denoted by lim* M; likewise the cluster set of f*(M) for all
negative integers # will be called the initial limit or the (—)-limit of
M and denoted by lim~ M.

If the (+)-limit of M is vacuous, then M is said to be (+)-regular
and if it is non vacuous, then M is said to be (+)-irregular. Similarly
for, (—)-regularity and (—)-irregularity. v ,

‘A single point cannot be irregular in the above sense, for .

Lemma (Brouwer [1]). If p is a pomt then f"( D) dwerges to oo
vwhen n— +oco0 and when n— —oo.

holds true. However, a point p will be sald to be (+)-irregular,- if
every neighbourhood U(p) of p, where we understand by a neighbourhood
always a Jordan domain containing the point in question, is (+)-irregular.

Cf. Example 2%, where a is (+)-irregular. ‘

If further the meet P =\ lim* U(p) for all neighbourhoods U(p)
of p is non vacuous, then p is said to be strongly (+)-irregular. If p
is (+)-irregular but P vanishes, then p is said to be weakly ( + )-irregular.
Similarly for the (—)-irregularity. All points of the segment a,a; other
than a,,,» in Example 6 are weakly (+)- as well as (—)-irregular.

If pisa strongly (+)- 1rregu1ar pomt then

P=N llm+ U(p)

for all neighbourhoods U(p) of 17 w1ll be called the (+)-singularity polar
to p and p will be called a pole of P (Cf. Example 1 and 2). Similarly
for (— )-singularity. '

It is sometimes convenient to replace the Jordan domain U by a
closed Jordan domain U. If namely Ul, u,,..,U,,... are a sequence
of Jordan domains such that -

() UDUDGLDDUD -,

(ii) N2, U, is a point peU, *

(iii) [\n=1 lim* U, = P is non vacuous,

then P will be called the (+)- smgularzty polar to p with respect to the
decreasing sequence of domains U,, U, ,.... Cf. Example 2.

2) All example are collected in IV.
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If a point p is neither (+)- nor (—)-irregular, i.e., if there exists
a neighbourhood U(p) of p such that both lim* U(p) and lim~ U(p)
vanish, then p is said to be regular.

3. Duality:

Duality Theorem. If p is strongly (+)-irregular, then every point
q of the (+)-irvegularily P polar to p are strongly (—)-irregular, and
the (—)-singularity Q polar to q passes through p. The same holds true
if pis strongly (—)-irregular®.

Proof. Let U and V be arbitrary neighbourhoods of p and g¢
respectively. Since ¢€P = \ylim* U(p)_lim* U, we have
Sf™U)-V==0 for infinitely many # >0, thus U.f~"(V)== 0 for infinitely
many z_>0, and consequently U-lim~V==0. Since U was arbitrary, it follows
pelim~ V. Since V was arbitrary, we have finally p € /\,er lim~ V=@,
q.e.d.

Remark 1. The same duality theorem holds if we take instead of
the singularity polar to p the singularity polar to p with respect to a
decreasing sequence of domains U, with p = N\ U,.

As an application of the Duality Theorem we have

Lemma 1. If U is a (+)-irregular bounded domain, then U contains
at least one strongly (+)-irregular point.

Proof. Let g€lim* U. Then, if U(q) is an arbitrary neighbour-
hood of ¢, we have f*(U)-U(q)==0 for infinitely many #» >0, thus
U-f~"(U(g))=+=0 for infinitely many = >0. It follows therefore
U-lim~ U(g)==0. Then a point p € U-lim~ U(q) is by Duality Theorem
a strongly (+)-irregular point contained in T.

4. A point set M is said to be free, if M-f(M)=0.

A domain U is said to fouck another domain V, if U-V =0 but
U- V=02

A domain is said to be critical, if U touches its own image f(U).

An open line is a closed set which is homeomorphic to a straight
line. By an arc is meant a simple (closed or open) arc.

An arc « which has with its image an end point in common, the
interior of the arc being free, is called a #rauslation arc according to

3) A proposition remains true, if we interchange (+) and ( - ), or “initial ” with “final ”.
We often omit the enunciation of proposition obtainable in this way. Likewise for difinitions.

4) U (a dot above U) denotes the boundary of a domain U.
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Brouwer. Then \Jg__f"(=) will be called a stream-line (Bahnkurve
according to Brouwer). A stream-line is a topological image of a straight
line but is not necessarily a closed set, i.e.,, not necessarily an open line
(Brouwer [1]). Cf. Example 3. If a stream-line is an open line, it will
be called regular.

It may happen that every stream-line through a point p is not
regular. Such a point will be called irregular in the large.

Remark 2. A regular point can be irregular in the large.

See Example 4. All points of D, are regular but irregular in the
large.

Concerning stream-lines we have the following important lemma
due to Brouwer [17], from which follows for instance the lemma in §2
as well as the property above mentioned of stream-lines immediately :

Lemma 2. FUNDAMENTAL LEMMA ON STREAM-LINES (BROUWER). If
an arc « makes together with an arc B of a stream-line a simple closed
curve and if B contains a tramslation arc as pure subset, then o has at
least one point in common with its own image f().

We have now

Through every point passes at least one stream-line (Browwer [1]).

For a simple proof see Terasaka [12].
The following lemma is a simple consequence of the fundamental
lemma on stream-lines and is a main instrument for subsequent discussion.

Lemma 3. LEMMA or FREE DoMAIN. If U is a free domain, i.e.,
if U-f(U)=0, then U.-f*(U)=0 for all integers n other than 0. If
U is a free Jordan domain, then there is a positive number & such that

dU, fAUHN>&e>0
for all n other than n=—1, 0 and 1.

In the latter part of the lemma we cannot replace the Jordan
domain merely by a bounded domain.

5. Translation-field and area of translation.

Our principal concern is the investigation of the structure and the
distribution of singularities alluded to in §2, and the theory of trans-
lation-field of Brouwer might be a useful instrument for this purpose.
As a matter of fact, the singularities are all contained in the boundary
of the area of translation generated by the translation field. But a main
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difficulty arises from the fact that the complexities of boundary come
not only from the transformation f itself but also from the way how we
choose a translation-field, as can be shown by examples (cf. Examples
11 and 12). From this reason we devised a more direct approach by
considering only iterated images of free Jordan domains instead of
translation-field, and therefore only what is referred to later on the
subject should be given here.

A simply connected domain which is bounded by two open lines,
one of which is the image of the other, is called a tramslation-field
(Brouwer). It is the important so-called plane translation theorem of
Brouwer that any point of the plane is contained in some translation-
field®. The open line y which bounds together with its image f(y) the
translation-field 7, and in general f"(y)(—oco< n< o) will be called
level curves.

If T is a translation-field, then

A=\Jioo S YT)

will be called the area of tramslation generated by T. A is evidently
simply connected and bounded by lim~ 7 and lim* 7, which will be
called the initial and the final boundary of A respectively. These are
evidently closed and their components are, if non vacuous, unbounded
continua, since they are the cluster sets of level curves which are all
open lines.

6. Intermediate and consecutive domains.
Let U and V be free Jordan domains which meet. Let D be a

component of V—\J3.__ f"(U) such that U and D have some boundary
points in common within V. Such a domain D will be called an intermediate
domain contiguous to U (in V). We say also that U is contiguous to D.

Then we have the following important property of intermediate
domains.

Lemma 4. LEMMA ON INTERMEDIATE DOMAIN. If D is an inter-
mediate domain contiguous to U in V, then D cannot be contiguous other
than (i) either to U alone, (ii) or to U and f(U), (iii) or to U and f~YU).

Proof. If supposing on the contrary the boundaries of f(U) and
f~YU) take parts in the boundary of D at the same time, join a pair

5) Brouwer [1]. For simplified proofs see Kerékjarts [5], Scherrer [8], Scorza-Dragoni
[9]. Sperner [117, Terasaka [12].
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of their points @ and & within D by a Jordan arc ab. Construct a Jordan
domain W within D such that W contains b and has an arc 8 in common
with f~U). Then, since W is disjoint from all f*(U) except for
n=—1, 0 and 1, and since WV
is free, f~(U)+B+W=W' is a
free domain, while W' touches its
second image fAW") = f(U)+f*B)
+f¥ W) in the point @, which is
impossible by Lemma 3. Thus the
boundaries of f(U) and f~YU)
cannot take parts in the boundary
of D at the same time.

From the same reason f*(U)
has no boundary point in common
with D if |n|= 2.

Finally suppose there is a
boundary point p of D which is a
cluster point of an infinite number
of f®(U). Then, since p cannot be Fig. 1
a boundary point of U, f(U) or of
f~YU), there is a neighbourhood U(p) of p contained in V which is
disjoint from U, f(U) and from f- U). We can find therefore an
accessible boundary point & of D within U(p) which is a cluster point
of an infinite number of f"(U). Construct as before a domain W within
D having an arc B in common with U and having the point b on its
boundary. Then U+ 8+ W must be a free Jordan domain whose arbitra-
rily small neighbourhood has points in common with an infinite number
of its own images, in contradiction with Lemma 3.

Thus the proof of the lemma is complete.

If there is an intermediate domain contiguous to f*(U) and f"+*{(U)
in V, then f*(U) and f"*¥U) will be called consecutive domains with
respect to V.

As a result of Lemma 4 we have

Lemma 5. Let U and V be free Jordan domains. If an infinite number
of f™(U) for positive n meet V, then almost all of them meet V.

Proof. First suppose that f*(U)-V==0 and f"(V)-V==0 for some
n_>m+1. Join a point of f*(U)-V to a point of f"(U)-V within V
by an arc and determine its subarc «,a, such that it is disjoint from
f™U) and f™U) except for its end points @, and @, which are on

F*U) and F™U ) respectively. If D is the intermediate domain conti-
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guous to f*(U) at a,, then D is contiguous either to f"~(U) or to
S™YU) other than f*(U). In the former case let a,_, be the last point
of the intersection of @,a,, with f»(U) when a point moves along a,a,,
from a,. If D’ is the intermediate domain contiguous to f*~¥U) at
a,_1, then D' must be contiguous to f*~¥ U), since it cannot be contiguous
to f%(U) by the property of a@,a, . Proceeding in this way we see that
Oy, f~YU0), ..., f~(U), f™(U) are a series of consecutive domains
of V which meet a,a, . If on the other hand f”+(U) is contiguous to
D, then we see by the same reasoning that f*(U), f**(U), f***U),...
ad inf. are a sequence of consecutive domains of V which meet a,a,,,
and our lemma turns out to be true.

Now, if an infinite number of f"(U) for positive #» meet V, then in
either of the cases above considered we can conclude that f*(U)’s meet
V from a certain number z on, and our lemma is proved.

7. Let U be a free Jordan domain. Then, if T is a translation-field
which contains U, we have lim* U lim* T and lim~ U lim~ 7. But
since lim* T and lim~ T belong to the different components of E2—T,
they are disjoint. Hence

Lemma 6. If U is a free Jordan domain, then lim* U and lim~ U
are disjoint. U and all its images f™(U) (—oo<n<oo) are contained
in one and the same component of E*—1lim* U~Ilim~ U. .

If U is a free Jordan domain, then the components of E%*—lim* U,
of E?—lim~ U and of E*—lim* U—1lim~ U in which all f%(U) are con-
tained will be called the positive sides of lim* U, of lim~ U and of
lim* U+lim~ U respectively.

Now let U be a free Jordan domam and let V be another Jordan
domain which meets hm+ U and which is disjoint from lim~ U. Suppose
f™U) meet V and draw from a point of f*(U)-V within V an arc j
such that it has no pomt in common with hm+ U except for its end
point a.

If a, denotes the last point on j that lies on f"(U) When ‘a pomt
moves along j towards a, then the open arc (a,a) is disjoint from all
fYO) for i <n. For first, since V-lim~ U =0, there is the least { with
fi(O)a,a=0. If a, is the last point on a,e that lies on f ‘(U ), and
if D, is the intermediate domain contiguous to f{U) in V having @, on
its boundary, then f**¥(U) is contiguous to D, and-has evidently points
in common with ¢,2, and eo ipso with a,e. Continuing in this manner
we see that all f™(U) have points in common with ¢,¢ if m>: If
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therefore i< #, then f”(U) must have points in common with a,q,
contrary to the property of a,.

Such an arc «,e¢ will be called a bridge between f*(U) aud lim* U
in V, or briefly a bridge. The bridge a,z is by its definition a free arc
such that a, is on the boundary of f*(U) and a is on lim* U and such
that it is disjoint from all f'(U) for i < n except for a,.

8. Bordering cell.

Let the arcs a,..¢ =j,_, and ¢,a = j, be bridges between f"~Y(U)
and lim* U; f*(U) and lim* U, respectively, j, being a subarc of j,_,,
and let b, be the first point of f”(U ) on j,_, proceeding from a,._..
Then the arc a,_,b,=k
is an arc which connect
f*YU) and f*(U) out-
side of all f'(U).

Denote by 3, one
of the two arcs of f(U )
divided by a, and f(a,_,)
and which does not
contain b,. Since the
component G of E%—
lim* U—1lim~ U which
contains all of f¥(U) is
simply connected, G is
divided by f(ja-r)+A0
+j, into two domains G, and G,. Suppose b, belongs to G_.

Now, since f(U) for i < n—1 are all disjoint from j,., and hence
fU) are for i <n—1 also disjoint from f(j.-1), each of f*(U) for
i < n—1 lies either in G,or in G,. But since b,, and hence a,_,b,=Fk
too belongs to G,, f*"(U) is contained in G,; if we consider the inverse

image f~Yk) of k, which joins the point f~%(b,) of f ”“l(U ) to the point
fYa,_,) of f ”‘2((7 ) and which is evidently disjoint from f(j,-;) as well
as from j, and f*(U), we see at once that f*-%U) lies likewise in G, .

Proceeding in this way we see that all f{U) are contained in G,
whenever i < n—1.

We assert next that for each m ~>#n there is a subarc p,q.,, of f"‘(U )
which joins a point p,, of j, to a point ¢,, of f(j,—,) within G,. Suppose
on the contrary there is no such arc for some m. Then there must be

an arc pq of f "‘(U ) which joins a point p of j, to a point ¢ of f(j,_,)

Qo * U a f(a)
Fig. 2
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within G,, so that G, is divided by pg into two domains, one of which,
say G', is a Jordan domain bounded by

pq+qf(an—l)+18n+anp =C.

Out of the two sides in the neighbourhood of 3, the one belongs to G,,
therefore outside of G, and hence the other one, i.e., the inside of f"(U),
belongs to G'. Consequently b, belongs to G’, and the same argument
as above leads to the conclusion that f%U) for ¢ <n—1 are all confined
to the Jordan domain G’, which is absurd.

Thus for any m_>n there is a subarc p,g,, of f ’“‘(U ) which joins a
point p,, of j, to a point ¢,, of f(j,-.) within G,.

The image f( pmqn) lies outside of G,; for first, if a point x moves
along pn.g. from p,, its image f(x) in the neighbourhood of p,, lies
outside of G, in the neighbourhood of the point f( p,,) on f(j,) in conse-
quence of the preservation of orientation, and since f(x) cannot be a

point of f(j,-,) nor of B, (f "(U )), if it should happen that f(x) is at
a certain stage a point of G,, there would be a point x=p such that
f(pnp) is an arc connecting the point f(p,) of f(j,) outside of G, to
the point f(p) of j,, which is absurd as we have shown above. Thus
f(Pmdn) lies outside of G, .

If therefore H, denotes one of the two domains into which G, is
divided by p,g., and whose boundary consists of

(i) the subarc p,a of j*,

(ii) the subarc g,,f (@) Of f(ja1), P o

(iii) Pmgm, and

(iv) a closed subset o of lim* U,

then the image f(H,) has no point
in common with H,,, and thus H,
is a free domain. The image f(p.)
of p,, lies on ¢, f(a), and the arc

pmqm+qu(pm) =T
is a translation arc. We call H,, a bordering cell, the arc

@pm+7+f(@Dm)

the /ink with the translation arc -, and the point set o the singularity
segment bordering H,,.

Fig. 3

The series of arcs ..., pndm, Pms19m+1, --- i0 the above construction
can be so taken that p,,.1qm+1 is contained in H,, except for its end points.
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For, if there is no such arc, then a certain point ¢ of £,4,, can be joined
by an arc e¢d within H,, to a point d of some p,g, with sufficiently large
k that lies within H,, such that ¢d has no point in common with f ’””(U).
Let ¢,, be the last point of F7(U) on c¢d and let d,, be the first point
of f™¥U), f™*U), ... that eventually encounter ¢d. Then f™(U) can
be joined to f™(U) with m'>=m+2 by the arc c,d , which is free since
cmd,, C H,, but this is impossible by Lemma 4.

The singularity segment o bordering the bordering cell H,, is
evidently the limit of pngm, Pmi1dms+1,---. If this sequence of arcs
possesses the above property, then it will be called a simple sequence
defining the singularity segment ¢ bordering H,,.

We will define and develop the theory of singular lines in the unext
section.

II. Properties of Singular Lines

9. Singular lines.

Since the singularity segment ¢ is the limit of a simple sequence
of arcs, it is either a bounded continuum or consists of unbounded
continua. ¢ may have points which are inaccessible from H,, (cf.
Example 5 (1)), but has clearly a dense set of points which are accessible
from H,,. The point set ‘

S=\Unwf"(a)
will be called the (+)-singular line generated by o, the set
\Un==e f (o)

the interior, lim*o the final end or (+)-end, and lim~ o the initial end or
(—)-end of S. The component of E2—S which contains the bordering

G ()

negative side -
Fig. 4
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What follows is almost evident :

fa

S 2. Iftwo singular lines having no points
in common can be joined by a free arc within . D
the domain D bounded by them and coinciding .
with its own image, then they move in the — b
opposite directions with respect to D.

f(b)
Fig. 5

A singular arc of a singular line S is a set of all prime ends lying
between two distinct points (i.e. prime ends) of S. A singularity segment
is a kind of singular arc if we consider its points as consisting of prime
ends. It is to be noted that when we speak of the points or prime
ends of S the point at infintty oo may happen to be counted.

10. To establish the first non trivial property of singular lines
(S 3), we begin with the following

Lemma 7. Every arc which joins a point of a free Jordan domain U
to a point of im*U meets almost all f™(U) for positive n.

Proof. Suppose on the contrary that there is an arc j which joins
a point @ of U to a point & of lim* U and which meets  only a finite
number of f*(U). Choose a neighbourhood, i.e. a Jordan domain, V,
containing b and not meet-
ing U and let j' be an arc
connecting b to a point ¢
of some f*(U)-V(==0)
within V such that j’ has
only the end point & in
common with j and such
that j’ meets an infinite
number of f*(U). Join the
end point ¢ of j' to @ by
an arc j'" meeting a finite
number of f*(U) to make
together with j and j’ a
closed Jordan curve C:C
= j+i+ i,

Take a point d of j such that the arc bd of j does not meet any
of f*(U) and let D be the component of

Fig. 6

(Interior of C)—\Jz._.f™(U)
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cells will be called the positive side of the singular line S or of the
singularity segment o, the other components, if any, being called the
negative side (cf. Example 5(2)).
Similarly we can define (—)-singular lines etc. beginning from lim~ U.
For the sake of simplicity of expression we say hereafter simply
singular lines etc. instead of (+)-singular lines etc. unless otherwise
stated.

The following is the first property of singular lines:

S1. A singular line is a closed set composed of unbounded continua,
and bounds an unbonnded simply commected domain called its positive side.

Taking for each m an inner point ¢}, of f™(U) on j, (cf. fig. 2), let
¢ be a cluster point of the points f~"(c,,)=c, which belong all to U
and consider a monotone decreasing sequence of domains U, U: U,
>U,>--U,>-- such that U, converges to ¢ and each U, contains
infinitely many c¢,,. Then N2, lim* U, is evidently contained in lim* U
and contains itself the singular line S. We say that S is derived from
the decreasing sequence of domains U,. We say also that S is derived
from the point c.

Remark 3. It is not true that given a singular line there is a
decreasing sequence of domains deriving this and only this line.

See Example 7.

According to Carathéodory [2] the boundary of a simply connected
domain consists of prime ends which are cyclically ordered. Therefore,
since the singular line S is the boundary of an unbounded simply
connected domain, we can assign to it the positive sense in accordance
with the fixed orientation of the plane, and speak for example of the
positive side and the negative side of a point (i.e. a prime end) p on S.
Then, if the image f(p) of an interior point p of S falls into the positive
side of p, it is clear that for any other interior point ¢ of S the image
f(g) falls also into the positive side of ¢. In this case we say that the
singular line S moves in the positive direction. Similarly for the motion
in the negative. :

The motion on the negative side of a singular line can also be
defined, provided that there exists among the components of the negative
side one, say D, such that D coincides with its own image: D = f(D).
In this case we can speak of the motion in the positive or in the negative
direction with respect to D, just as we have done on the positive side of
the singular line. '
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whose boundary contains #d. Then an infinite number of, and in reality
almost all of, f*(U ) appear on the boundary of D. For if not, suppose
£, f72(U), ..., F™U) are the only Jordan curves among F™U) which
take parts in the boundary of D. Let a point move along C from d
towards b passing through ¢ and ¢, and let p be the last intersection
with £(0), £"(U), ..., f™U). Then p cannot lie between @ and c,
since otherwise the first Jordan curve f™(U ) which meets the moving
point x after starting from p would be distinct from f”(U), ..., f™(U),
which is absurd. But if on the other hand p is a point of j/, suppose
p is a point of f ""(U ). Then if we move the point x from p further,
it will meet the consecutive domain f™U) of f™(U) with respect to V,
where m=wn,+1 or m=mn,—1, so that f "‘(U ) also appears on the boundary
of D, which again contradicts the supposition that only f™(U), ..., f™U)
appear on the boundary.

Thus there must be an infinite number of f “(U ) which appear on
the boundary of D. By the argument of consecutive domains we see at
once that in reality all f ”(U ) from a certain number on appear con-
secutively on D. :

Now take for each # a point p,, of f ”('U ) which lies upon the boundary
of D. By the theory of prime ends of Carathéodory there can be found
a sequence of cuttings s, of D such that s, converges to a point ¢ of

D and such that if D, denotes the subdomain cut from D by s, and not
containing a definite point o of D, then each D, contains an infinite
number of p, on its boundary, the sequence D, defining a prime end.

(i) g cannot be an accessible point of D. For otherwise let W be
a free neighbourhood of ¢. Then almost all s; belongs to W and
consequently an infinite number of f*(U) are contiguous to a single
intermediate domain with respect to W, contrary to Lemma 4.

(ii) ¢ cannot be an inaccessible point of D. For otherwise there
must be a cutting s, joining a point of some f*(U)-D to a point of lim*U
within a free neighbourhood W of ¢, contrary again to Lemma 4.

Thus our supposition leads to contradictions, and the proof of the
lemma is complete. :

A similar argument yields, if we use instead of Lemma 4, which
results out of Lemma 3, the property of translation arc and the stream-
line generated by the arc: :

Lemma 8. Every arc which joins a point of iranslation arc « to a
point of lim*T meets almost all f™(r) for positive n..



246 T. HOMMA and H. TERASAKA

To see that the same holds true for a singularity segment o, we
need the following

Lemma 9. If o is a singularity segment gemerating a singular line
S, then there is no free arc joining a point of lim*c to a point of some
f™(o) within the positive side of S.

Proof. Suppose on the contrary that there is a free arc pg joining
a point p of lim*es to a point ¢ of f(s) within the positive side of S.
Retaining the earlier notation (§8), let the steam-line generated by the
translation arc = bordering H,, be denoted by 7, and the domain bounded
by T and S, by B. Then, if p lies on lim*r, pg has by Lemma 8 points
in common with an infinite number of f”(r), and hence with an infinite
number of f"(H,); if on the other hand p is disjoint from lim*r, then
either pg belongs entirely to B or there is a point ¢’ on 7 such that
q'p is contained wholly in B, and if we proceed along ¢p from ¢ or ¢’
(which is a point of some f"(H,,)), we encounter infinitely many f"(H,,).
Thus in either case pg has points in common with an infinite number
of f*(H,) for n_>0. Now take m so large that f*-(H,,) and f**¥(H,,)
become disjoint from pg, and let f¥(H,,) be the first among f"(H,) that
pq intersect when a point moves along pg from ¢; let this intersection
be f%gq,). If we construct within H,, a domain H containing the points
g and ¢, on its boundary, then f'(H) and f*(H) with |i—k|>= 2 are joined
by a free subarc of pg outside of all f*(H), contrary to Lemma 4.

Finally we have

Lemma 10. FEvery arc which joins a point of a singularity segment o
to a point of lim *o within the positive side of o meet almost all f"(a)
for positive n.

The proof of this lemma may be carried out quite analogously to
that of Lemma 7 by virtue of Lemma 9 besides Lemma 7 and will be
omitted. It should be added that in applying Lemma 4 a certain
modification of H,, to H, as we have done in the above proof of Lemma
9, will be needed.

Lemma 10 may be stated thus:

S 3. Euvery point of the final as well as the initial end of a singular
line is inaccessible from its positive side.

11. Relations between iwo or more singular lines. Initial and final
ends.

S 4. Two singular lines cannot cross, that is, either theiv positive sides
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have no point in common or one of them is contained wholly in the positive
side of the other.

Proof. Suppose the singular lines S and S’ have a point o of their
positive sides in common, and let D be the component of the intersection
of the positive sides that contains 0. Then clearly either D-f(D)=0
or D coincides with f(D).

(i) Suppose D-f(D)=0. If a is an arc which joins two points
of S on the boundary of D within D, then we have «-f(a)=0, which
shows that any pair of points of S on D cannot be separated by any
other pair of points of S on f "(D) on the positive side of S, and it follow
that there is a singular arc, even a singularity segment ab, of S which
contains all those points of S appearing on D. Now take a point p of
S’ on D disjoint from S and construct a bordering cell H,, with the
bordering singularity segment @b and not containing p and f(p). Then
if ¢ is chosen sufficiently large, f U j runs sufficiently near to p and to
f(p) so that it cuts across H,,, and hence across p,g, of f’”‘(U) and
across the singularity segment ab. It follows therefore that f(U) meets
F™U) for all n greater than m, and if ¢ has been chosen < m beforehand,
then f(U)-f(U")== 0, whence we have U-U'==0.

By the consideration of decreasing sequence of domains, U’ may
be taken as small as we please and so, since U.-U'’'==0, U’ may be
contained wholly within the positive side of S and consequently S’ will
be wholly contained in the positive side of S, contrary to the supposition
that D-f(D)=0.

(ii) Suppose D coincides with f(D), but coincides neither with the
positive side of S nor with that of S’. Then there is an accessible point
aof Son D disjoint from S’. Join ¢ and f(a) within D by an arc «a.
Then there is within the domain bounded by « and by the singularity
segment af(a)= o at least one point, say ¢, of §’, since otherwise o
would be wholly contained in the boundary of D. Now if j is an arc
within D ending in @ and if H,, is the corresponding bordering cell with
sufficiently large 7 so that the singularity segment o' of S’ beginning
from ¢ meets the translation arc «+ of H,, then o' cuts across + as well
as o, and the same reasoning as in (i) leads to the conclusion that
U-U' =0, whence a contradictiou arises exactly as above.

The property S 4 is thus proved.

Now suppose the singular lines S and S’ whose positive sides intersect
have an interior point @ in common. Since S and S’ cannot cross by
S 4, one of them, say S’, is wholly contained in the positive side of S.
Then almost all f*(U) intersect a singularity segment o' of S’ containing
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@, hence U intersect almost all f~"(¢’). Thus the initial end of S’ is
non vacuous and S will be derived from one of its points.

Conversely, if the initial end of S’is non vacuous, then the singular
line S derived from its points has, if non vacuous, clearly interior points
in common with S’. S can vanish if the singularity segment ¢’ deriving
S’ is unbounded. Thus we have

S5. If two distinct singular lines have some interior points in common,
then one of them is derived from a point of the initial end of the other,
provided that their positive
sides have points in common.
Conversely, the singular line
derived from a point of
the initial end of another
singular line has, if mnon
vacuous, interior points in
common with the latter.

If two singular lines
have some interior points
in common, we say, since
they do not cross by S4,
that they ‘fouck each
other. If a singular line S
touches S’ and if S’ is on
the positive side of S, we
say S’ touches S from the Fig. 7
positive side.

If S’ touches S from the positive side, then S is derived from a point
of the initial end E’ of S’ by S5, and hence E’ cannot be the initial
end of S. Thus

S6. If two distinct singular lines touch each other, then their initial
ends are disjoint.

S7. Two distinct singular lines whose positive sides have points in
common cannot have a common initial end.

For if they have a common initial end, their interiors are by S5
and S6 disjoint- But if we take a point p on their initial end, then the
singular line derived from p must touch by S5 both singular lines, which
is evidently impossible.

The following is a direct consequence of the foregoing properties
of singular lines :
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S 8. Three singular lines comnot louch one another, if their positive
sides have points in common.

In connection with S 7 note the following

Remark 4. Two distinct singular lines whose positive sides have
points in common may have a common final end.

See Example 8.
Further we have

S9. The final end of a singular line is disjoint from the initial end
of another singular line, if their positive sides have points in common.

Proof. Suppose on the contrary that the final end of the singular
line S has a point p in common with the initial end of another S’, and
join S and S’ within their common positive side by an arc @a’. If D
denotes the domain bounded by S, S, @aa’ and by the ends of S and S’
having p in common, then f(e@) is again a boundary point of D, while
f(a") lie outside of D, and consequently aa’ intersect its image f(aa’).
But aa’ could have been taken in any free neighbourhood of p, and we
have a contradiction.

The latter part of S5 may be stated thus:

S* 5. The initial end of a (+)-singular line is a (—)-singular line
of an interior point of S, if the singularity segment deriving S is bounded.

From a similar reasoning results at once :

S 10. The final end of a singular line S is derived from an interior
point of S, if the singularity segment deviving S is bounded.

12. For an infinite collection of singular lines we have the following
property.

S11. If S, S, ..., Sa, ... are an infinile number of disjoint singular
lines such that for each S, all the other S, belong to the same component
of E2—S,, then they have no cluster set.

Proof. Suppose on the contrary that they have a cluster set. Then
let pg be a free arc meeting infinitely many S,, of which p is a point
of the cluster set in question, and a sole one upon pg. If S, is an S,
which meets pg and which does not eventually pass through p, then p
lies evidently on the same side of S, on which all other S, belong, and
as a consequence, if @ is the first intersection of pg with S; proceeding



250 T. HOMMA and H. TERASAKA

from p, then ap is contained wholly within that side of S,. Next choose
another S,, say S;, meeting ap and not passing eventually through p
and let b be the first intersection of ap with S; proceeding this time
from a. Then the arc ab of ap is a free arc which connect S, and S;
in the domain D, bounded by S, and S;, and it follows from S 2 that S,
and S; move in the opposite directions with respect to D, .

In the same way let b’ be the first intersection of pb with S;
proceeding from p and choose among S, one, say S,, which meets pd’
but does not meet d'a and let ¢ be the first intersection of &’p with S,
proceeding from &. Then we see as above that S; and S, move in the
opposite directions with respect to the domain D, bounded by S; and S, .
But since the arc ac is again a free arc connecting S, and S, in the
domain D, bounded by S, and S,, these must move in the opposite
directions with respect to D3, and we have a contradiction, since D, and
D, overlap along S, .

If the condition of this theorem is not fulfilled, singular lines may
have cluster set. Indeed, let ¢ be a weakly (+)-irregular point. If U,
is a circular neighbourhood of @ of radius 1/2, then there is by Lemma
1 a strongly (+)-irregular point p in U,. Let P, be the (+)-singularity
passing through p, and determine a singular line S; through an acces-
sible point (which exists) in U,. Next let U, be a circular neighbour-
hood of a disjoint from S and of radius smaller than 1/4 and determine
likewise a singular line S, intersecting U,. Proceeding in this manner
we obtain a sequence of distinct singular lines S,, S,, ... whose cluster
set passes evidently through a.

The cluster set of a sequence of singular lines distinct from any
singular line will be called a weak singular line. We have thus

Lemma 11. Through every weak (+ )-irregular point pcsses a weak
singular line.

A singular line will sometimes be called a strong singular line in
opposition to weak singular line.

Since we can assign to weak singular lines directions of motion,
we have

S 11. The proposition S11 remains true, if S, are weak singular lines.
As an application of S 11 we have
Lemma 12. If U is a free Jordan domain, then lim* U consists of

at most a countable number of singular lines whose interiors have points
accessible from the positive side of lim*+ U.
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Proof. If S denotes the family of all singular lines passing through
points which are accessible from the positive side of lim* U, then
‘they satisfy the condition of S 11 and it follows at once that there are
at most a countable number of distinct singular lines in S. But if a
point p of lim* U fails to be a point of any one of S, then p must
belong to some cluster set of S, which is absurd by S 11.

Lemma 13. There exist at most a countable number of distinct (strong)
singular lines.

Proof. If S denotes the famity of all singular lines corresponding
to all circular neighbourhoods with center at rational points and rational
radii, then S consists by the preceding lemma of at most a countable
number of singular lines. Since every singular line corresponds to a
decreasing sequence of Jordan domains, it belongs to S, and the lemma
follows.

13. As a relation between a (+)-singular line and a (—)-singular
line we have first

Lemma 11. If a (4)-singular line S+ and a (—)-singular line S~
have an interior point a in common and if in any small neighbourhood of
a there arve points of S~ on the positive side of S*, then the initial end of
S— is mon vacuous and S* is derived from its points. Conversely, if the
initial end E- of a (—)-singular line S~ is non vacuous, then a (+)-singular
line derived from a point of E- has some interior points in common with
S~ with the above property.

Proof. Let S* be derived from U and let S~ be generated by a
singularity segment o containing ¢. Then by hypothesis f*(U)-o==0
and hence U-f~"(¢)==0 for almost all #, therefore the initial end of S—
‘is non vacuous and S+ is seen to be derived from a point of this initial
end.

The converse is also clear, if we note that the point at infinity
may happen to be an interior point of a singular line, since we consider
prime ends instead of, or along with, the ordinary points on every
singular line. '

If a (+)-singular line S* and a (—)-singular line S~ have some
interior points in common and if S~ is wholly contained in the positive
side of S*, we say that S~ fouches S* from the positive side. Then,
combining Lemma 14 with its dual, we obtain

S 12. If a (—)-singular line S~ touches a (+)-singular line S* from
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the positive side, then the initial end E~ of S~ is non vacuous and S* is
derived from its points. Conversely, S~ touches from the positive side a
(+)-singular line S derived from a point of E-, provided that the final
end of S vamnishes.

S 13. It is possible that a (+)-singular line S* and a (—)-singular
line S~ touch each other from the positive side of the other, or that S+
and S— cross. In either case S* is derived from a point. of the initial
end of S~, and S~ is derived from a point of the final end of S*.

For the first part of S 13 see Example 9. The second part is an
immediate consequence of Lemma 14 and its dual.

ITI. Structure Theorems. More Properties of Singular Lines.

14. The set of all regular points makes evidently an open set.
Each component of this set will be called a maximal regular domain. A
maximal regular domain may be free whether bounded or not; but if
it is bounded, it must evidently be free. If a maximal regular domain
is not free, it coincides with its own images; then it will be called an
area of total regularity. Mapping the area of total resularity on the
whole plane E? and applying the theorem of Kerékjart6-Sperner ([4],
[[117]), we see at once that

Lemma 15. An area of total regularity can be filled with a regular
family of regular stream-lines.

Thus we have the following

First Structure Theorem. Let f be a gemeralized translation, i.e., a
sense presevving topological tramsformation of the pleme E? onto itself
without fixed point. Then E? is divided into three kinds of disjoint sets:
0., Oy, ...; 0/, 0y, ...; and F. Each O,, the area of total regularity, is
an unbounded simply conmected domain and can be filled with a regular
Jamily of regular stream-lines. Each O,' is a simply connected free domain
and its points are all rvegular. F is closed, consists of all irregular points
of f and filled with at most a countable number of (+)- and (—)-singular
lines and their cluster set, the singular lines having the properties S 1-13
and their duals. '

15. The converse of the first structure theorem seems to be too
complicated to formulate. If we take only the (+)-singularities into
consideration, the structure theorem undergoes a certain weakening,
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but instead we have the advantage of obtaining its converse to some
measure. .

~ In the following we understand by a singular line a strong as well
as a weak (+)-singular line.

If two singular lines S and S’ are disjoint and S’ lies on the positive
side of S, then the point p from which S is derived lies evidently either
on S’ or within the domain bounded by S and S’. 'Now the (—)-singular
line S~ which passes through p and which is derived from a decreasing
sequence of domains U, contained on the positive side of S and con-
verging to an interior point ¢ of S lies wholly within the domain bounded
by S and S’ or at most within its closure. Thus:

S 14. If the singular lines S and S' are disjoint and S' lies on the
positive side of S, then a (—)-singular line S~ from whose points S is
derived lies wholly within the domain bounded by S and S' or at most in
its closure.

If two singular lines S and S’ touch each other, then each compon-
ent D of the open set bounded by them is evidently a free domain.
But there are several cases that occur according to the nature of S
and S'. k

If their positive sides have points in common, then by S 8 there is
no singular line that enter D.

If their positive sides have no points in common, there can be two
‘more singular lines which enter D. In this case they touch together
S and S’ at the very points where S and S’ touch each other.

If S’ is a weak singular line, then the positive sides of S and S’
have no points in common, and there can be only one more singular
line that enter ‘D.

" Finally if S and S’ are both weak singular lines, no more singular
line enter D.

In each case ‘there is a least domain D, bounded by singular lines
(weak or strong) disjoint from all singular lines, and thus the points
of D, are all (—)-regular.

A single singular line may bound a free domain, but if D is a free
domain bounded by several singular lines, then one of them must be
touched by others, since otherwise D cannot be free, and we arrive at
the same situation above considered. Thus

S15. If D is a free domain bounded by several singular lines, and
disjoint from all singular lines, then D 1s either bounded by a single
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singular line or bounded by two singular lines touching each other. All
points of D are (—)-regular.

Suppose now that S, is a sequence of disjoint singular lines such
that each S, passes through a point @, which converges to an interior
point of a singular lines S
from its positive side. If
U is a free neighbourhcod
of an interior point of S-
considered in S 14, then
lim* U > S and hence for
sufficiently large # some
S™(U)has points in common
with the opposite side to
that of S, in which S lies. Sn
But f™(U) can not be //////”:‘E,——___/T\_
wholly contained in that Fig. 8
side of S,, since otherwise
U would be wholly contained in that side of S,, which is impossible by
the property of S— and by the hypothesis on U, and consequently f™(U)
intersect S,, hence U intersect f~™(S,)=S,. Since U was arbitrary, this
indicates that S~ belongs to a cluster set of S, and S~ is seen to be also
a (+)-singular line or at least a weak (4 )-singular line. Thus

S 16. If a singular line S belongs to the cluster set of a sequence of
singular lines, then a (—)-singular line from whose points S is derived
belongs also to the cluster set of the sequence.

If a domain D is bounded by one or more singular lines, disjoint from
all singular lines and not free, then D coincides with its images f"(D).
Since every point of D is by hypothesis (—)-regular, D will be called
an area of semi-regularity. If U is a free Jordan domain contained in
D, then lim* U is also by hypothesis disjoint from D. It follows
therefore that if D is mapped topologically onto the whole plane by a
mapping g, then gfg~! is a regular (or singularity free) transformation
in the sense of Kerékjarto-Sperner ([4], [11]) and is consequently
equivalent to an ordinary translation. The inverse mapping shows that
D can be filled with a regular family of regular stream-lines with respect
to D.

By filling up an area of semi-regularity with a regular family of
regular stream-lines with respect to it we see at once that

S 17. The singular lines bounding an area of semi-regularity D either
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move all in the same direction or are divided into two groups of consecutive
singular lines such that all singular lines belonging to the same group
move in the same direction and any two singular lines belonging to differ-
ent groups move in the opposite divections. In the former case D belongs
to the negative side of some ome of the singular lines bounding D.

Cf. Example 2.

16. Now to the construction of generalized translations f.

Let us call a fixed point free topological mapping ¢ of the boundary
of an open set O onto itself natural, if the boundary D of every com-

ponent D of O is mapped onto D or onto the boundary of another

component and if, whenever D is mapped onto itself, then ¢ satisfies
the condition of S 17. We call an open set O inwardly extendible, if a

natural mapping ¢ of O can be extended to a fixed point free topolo-

gical mapping of the whole O onto itself coinciding withe ¢ on 0.

A closed set S is said to be admissible or called an admissible line,
if S bounds an unbounded simply connected domain D and if it is
periodic, i.e., if there exists a fixed point free topological transformation
@ of S onto itself such that ¢ moves every point of S in the same
direction with respect to D. Open lines are the simplest example of
admissible lines. ¢ will be called a periodicity associated with S. The
simplest example of an inwardly extendible domain is the one bounded
by a set of open lines having no cluster set. Cf. Extension Theorem
in IV (p. 146).

Periodically related are by definition :

1) Two admissible lines S and §', if there are periodicities ¢ and
@' on S and S’ respectively such that the transformations ¢ and ¢’
coincides on their eventual intersection ;

2) A finite number of admissible lines, if there are periodicities
on each lines such that they coincide on their respective intersections ;

3) An infinite number of admissible lines {S}, if (i) they constitute
together a closed set C=\/ S, (ii) there is associated a periodicity on
each line such that they coincide on their respective intersections, and
(iii) these periodicities make a continuous family of transformation on C.

17. We are now in a positition to state the second structure
theorem and its converse as follows:

Second Structure Theorem. Let f be a generalized translation of the
plane E®. Then E? is divided into three kinds of disjoint sets: O,, O,,
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.;0'.0,, ...; and F. Eack O,, the area of semi-regularity, is an un-
bounded simply connected domain and can be filled with a regular family
of regular stream-lines with respect to itself. Each O,' is a simply con-
nected free domain and its points are all (—)-regular. F is closed, con-
sists of all (—)-irregular points of f and filled with strong and weak
(+)-singular lines, the singular lines having the properties S 1-11 and
S 14-17.

Conversely, given a closed family of periodically related admissible
closed set {S} which, regarded as (+)-singular lines, have the properties
S1-11, S14-17 suck that E®— \J S is inwardly extendible, then there exists
a generalized translation f of E* having {S} as the family of its (+)-
singular lines.

Proof. The first part of the theorem is clear from what we have
shown above. To prove the converse, let D,, D,, ..., D,,... be the
totality of the components of E%—\/S which should be the area of
semi-regularity. We observe first that

S 18. If a circle C is given, then there are at most a finite number
of D, such that at least three different singular lines on the boundary of
D, have points in common with C.

To prove this, let us call such a domain D, a special domain, the
three (or more) singular lines on the boundary of D, intersecting C
special lines, that side of a singular line S bordering D, which contains
D, the inside, the other side of S the outside and finally let us call a
special line S a separating line, if there are infinitely many special
domains outside of S.

Now suppose on the contrary that
there are infinitely many special do-
mains and suppose first that a system
of a finite number of special lines
S,, ..., S, have been already chosen D —
such that each one of them lies inside
of the others and such that an infinite S
number of special lines are contained °
in the domain G bounded by S,, ..., S,. s”
Consider then any special line for any D
special domain contained in G, and let ™ | IS"
m be the number of individuals out
of S, ..., S, contained outside of this
special line. Let m, be the minimum of

Fig. 9
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such numbers m for all special lines, and let D, be a special domain with
the special line S, outside of which there are m, individuals of S, ..., S,.
Take next an arbitrary special domain D’ outside of S, with three special
lines S/, S and S'"”. Since there is one and only one singular line on
the boundary of D’ such that D, is contained outside of it, suppose D, lies
inside of S" and S"”". Now by the definition of m, there are m, individuals

of S,..., S, outside of S’ as well as of S”, and hence the number of
individuals S, ..., S, outside of S, amounts to at least 2m,, which is true
when and only when m,=0. It follows therefore that S,, ..., S, together

with S’ and S lie inside one another.” Putting S,,; =S’ if S’ and S”
are both separating lines, and S,.;, =S’ or S"” according as S’ or S”
respectively is not a separating line, we get a system of special lines
Si, .-+s Sn, Spe; having the same property as the system S, ..., S,.

Proceeding in this manner we get an infinite number of singular
lines S;,..., S,, ... intersecting C such that each one of them lies
wholly inside of the others, which is impossible by S 11, and the proof
of S 18 is complete.

Now by the hypothesis of periodical relatedness a transformation ¢
is associated to each admissible closed set S such that {p} forms a
continuous family of transformation on \/S. But it is not known, and
in fact not postulated, whether or not {p} satisfies the condition of
S 17 concerning the direction of motion on the boundary .of D,. Our
next step is to modify ¢ so that it satisfies the condition S 17.

To this end consider first D, and let ¢, @., ... be the transformations
of {p} associated with the singular lines S,,S,,... constituting the
boundary of D,. Substituting some of ¢, suitably with its inverse ¢;*

we obtain a new system o', @3’ ... of transformations of S, S,, ...

such that they satisfy S17 with respect to D,, where #», stand either
for 1 or for —1. Describe a circle about a point of D, with radius >1
and large enough and let Dy, , Dp,, ..., Dny be all the special domains
with respect to C,, D, itself being counted as a special domain. Call
two special domains Dn, and Dy, consecutive, it these are not separated
by another Dy, and call any domain lying between two consecutive
domain ¢ntermediate domain. Further, the unique pair of singular lines
S, and S; on the boundary of consecutive domains Dy, and D, respectively
such that S; and S; can be connected by a series of intermediate domains
will be called the line of transmission of the consecutive domains.
Suppose D, and Dp, are consecutive and S, and S, their lines of
transmission, with the associated transformations ¢, and ¢, respectively.

Then substitute @, by @;* and for all singular lines intersecting C, on
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the boundaries of the intermediate domains between D, and" Dy, substitute
the associated transformation ¢ by @™. On the basis of this substitution
perform a similar substitution for all singular lines on the boundary of
Dy, in accordance with S17. Perform such substitution for all pairs of
consecutive domains D, and D, independently. This can be carried
out effectively, since for two Dn, and Dp; under consideration at most
their eventually existing lines of transmission have to do with in the
operation. If there are consecutive domains of Dn; etc. other than D,
or those taken up thus far, perform the substitution further, until all
special domains with respect to C, are exhausted.

Next describe a circle C, concentric with C; and radius greater than
that of C, and 2. If there are among the new special domains with
respect to C, those which were intermediate domains with respect to C,,
effect first the substitution on them in conformity with S17 and then
perform for the rest the substitution just as above. Proceeding in this

manner we obtain a system of homeomorphisms {@}*} satisfying S 17

in addition to the other conditions. Thus the conditions of inward
extension are now satisfied, and we obtain the desired generalized
translation f.

Remark 5. The converse of the structure theorem given above is
unsatisfactory, since it is still undecided what is the necessary and
sufficient condition that a domain should be inwardly inextendible. Let
the infimum of the diameters of the arcs joining two accessible boundary
points @ and b of a domain D within D be called the iuner distance of
@ and b. In order that a domain D should be inwardly extendible it is
necessary that if (a,, b,) is a sequence of pairs of accessible boundary

points of D converging to a point of D and if the inner distance of
a,, b, tends to 0, then the inner distance of ¢(a,)and ¢(b,) should tend
also to 0. Is this condition sufficient?

Remark 6. Examples 8 and 9 and their extension, Example 10,
show that a slight modification of a generalized translation f, which
takes place indeed only in a bounded domain, gives rise to considerable
complications to singular lines. It is most desirable to divise a procedure
of simplification so that we may reduce the generalized translation to
some simplest forms.

IV. Examples

18. Several examples which may serve to facilitate the understand-
ing of the theorems in the preceding sections will be collected in this
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The domain bounded by A and B, the domain bounded by A and C
are domains of total regularity, and the domain bounded by Band C is
a domain of semi-regularity.

Example 3. In Example 1 join the points (0, 0), 6(0, z/4) and
c (1, 0) successively by segments ab and bc. Then ab+bc is a translation
arc, but the stream line generated by this arc has the straight line y==
as cluster set and so is not an open line. This is essentially equivalent
to the example given by Brouwer [1], p. 40, but simpler.

Example 4. Let f be defined as follows:

(i) #¥=x—1, y'=p9 for y=0.
(ii) Let C, be the curve y = sin 2zx for n—%<x<n and let
=x+1, y=y
for the points on C, and for the points of the convex domains D,
bounded by C,.

(iii) Fill up the rest of
the plane with a system of
stream-lines as indicated in
Fig. 12, which will be effect-
ed as follows: let D be the
domain bounded by all of

VA

-l
<

C, and by the x-axis. Map /

the stripe in Example 1 , Cn Can
topologically onto D by a

mapping % such that % re- Dn Dns+i
mains continuous on the ,

boundary of the stripe ex- Fig. 12

cept for points x=n (integer),
y =0, and define mapping on D by kfh™.

The points of D, are all regular, but are irregular in the large.
\Je._.C, is a (—)-singular line generated by unbounded singularity
segment C, .

Example 5. (1) In Example 6, C, can be so modified that it has
inaccessible points. Thus a singularity segment can have inaccessible
points. )

(2) If C, are the half rays

xr=n, y<-—1

then the (—)-singular line \ /C, has no negative side.
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section. Some theorems leading to the construction of examples are also
given.

Example 1. The following is the (simplified) classical example of
an f which is not topologically equivalent to the ordinary translation
and is instructive for further discussion. Cf. Kerékjart6: Vorlesungen iiber
Topologie, I(1923), p. 195.; cf. also Brouwer [1], p. 40. These examples
turn out to be topologically equivalent each other.

f:(x,9)— (2, ") is defined as follows:

(i) »’=2—1, y'=y for y ==,

(ii) ¥ =x+cosy, ¥y =y+siny for 0<y< =,
(iii) #’==x+1, =y for y<0.

. :j Q |
s f”j__ By

Fig. 10 ' Fig. 11

Example 2. Changing the range of definition, let f be defined as
follows :

(i) #’=2—-1, y'=y for y==,
(ii) #'=x+cosy, ¥y =y+siny for —z<y <=,
(iii) ' =x—1, y'=y for y< —=.

Every point @ of A is strongly (+)-irregular and B+C is the (+)-sin-
gularity polar to @. Every point & on B and every point ¢ of C are
strongly (—)-irregular and A is the (—)-singularity polar to & as well
as the (—)-singularity polar to ¢. B and C are (+)-singular lines, while
A is a (—)-singular line.

Let C, be the circle with center ¢ and radius 1/n. If U, is the
upper semi-circle of C, above the line A, then the singular line B is
derived from the decreasing sequence of domains U, .
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The construction of Example 4 is capable of extension by using the
following lemmas.

Lemma 16. Let g be a topological mapping of the circumference C
of a circle onto itself such that the set of fixed points F is non vacuous
and non dense on C. Moreover let the direction of motion under g be
the same all over C except at fixed points of g. Then g can be extended
to a topological mapping of the whole circle onto itself having no fixed
point in the interior and leaving invariant every circle touching C at
one of its fixed points.

The proof is easily done as follows. Let the direction of motion be
positive. Then, if @ is a fixed point and if we represent the point x
of C by the arc length measured from @ in the positive direction, the
condition of the lemma is expressed by the inequality

x < g(x).

If we set g(2z)= 2=, the whole length of C being 2=, the curve expressed
by the equation y = g(x) in the (x, y)-plane lies on the upper side of
the straight line y = x and touches the latter from above. Let G(x) be
an upper-function of g(x), i.e. a monotone function such that

g(x) < G(x)

except for x =0 and x = 27, where G(0) = g(0) =0, and G(27)= g(2=)
= 27. We have then x < G(x) for 0 < x<2». If we put

g{x) = (1-1G(x)+1g(x),
then g,(x) is monotone, satisfies the relation

x<gfx) for 0<x< 2%
and
£0)=0 and g(2z)= 2=,

and finally g(x) converges monotonously to g(x) when ¢— 1.

Let C, be the circle of radius ¢ touching C at ¢ from inside. Describe
the circle orthogonal to C at @ and let its intersections with C and C,
correspond by a function %,. Then the mapping % = k,-g,-k;* is the
desired one.

We have similarly

- Lemma 17. Let g be a topological mapping of a circle C onto itself
such that the set of fixed points F is non vacuous and non dense on C.
Moreover let C be divided into two semi-circles with end points ¢ and b
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such that on one of them the direction of motion is positive and on the
other, negative. Then g can be extended to a topological mapping of
the whole circle onto itself having no fixed point in the interior and
leaving invariant every circular arc passing through ¢ and b.

The proof may be carried out as above.
The following is an immediate consequence of the preceding lemmas
by virtue of the mapping theorem of Carathéodory.

Extension Theorem. Let D be a simply connected domain bounded
by a discrete family of admissible closed sets S, whose points are all
accessible from D. Then D is inwardly extendible, and moreover D can
be filled with a system of regular stream-lines with respect to D.

Example 6. The following is an example of an f where all points
of the plane are both (+)- and (—)-irregular.

Let T(p, g) denote in general the convex domain bounded by a
segment pq parallel to the y-axis and by two rays p co and g co emerging
from p and ¢ respectively and running in the positive direction parallel
to the x-axis. T(p, ¢) will be called a fube with vertices p, g.

First let T(a,, @,) be a tube and let 7(d, ¢) be another tube wholly
contained in the former, called an iuner tube of T(a,, @,). Take points
a,’ and a,’ on the rays ¢ co and a, co respectively such that the segment
a,'a,’ is parallel to the y-axis. Then the domain

P(ao ’ al) = T(ao ’ al)_ T(b) C)_T(a(),) all)

will be called a pipe with base a,a, and opening a,/a,’. Fill up this pipe
P, = P(a,, @) with a regular family of stream-line segments as in Fig. 13.

_a

a,

e —

Q, oo
Fig. 13
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Take the middle point a@; of a,2; and let a3’ be the point where the
stream-line segment through aj meet the segment a,/a,’. Next insert in
the tube 7(a,, @) inner tubes 7(b,, c,) and 7(b,, c;) respectively and
fill up the corresponding pipes P(q,, a3’) and P(ay, a,') with stream-
lines. Take the middle point @; of the segment ¢,a; and let @)’ be the
point where the streams-line segment through @i and its continuation in
P(a,, a3') meets the opening of the latter.

Continue in this manner indefinitely on the condition that the series
of inner tubes which appear should not have cluster set. Then invert
the configuration on the opposite side of @,z,. Thus we have a domain
which is bounded by two parallel lines and by an infinite number of
broken lines (the boundaries of inner tubes) and which is filled with a
system of stream-lines.

Insert in each of inner tubes topologically the configuration thus
obtained indefinitely and translate the whole configuration suitably
parallel to the y-axis. Then we have finally a regular family of stream-
lines which fill up the whole plane and every point of the plane becomes
(+)- as well as (—)-irregular.

Example 7. In Fig. 14,

Fig. 14

S; is a (—)-singular line derived from a point of S, .

S, +S; is a (—)-singular line derived from a point of S,.
S,+S,+S; is a (—)-singular line derived from a point of S;.
S;+S,+S; is a (+)-singular line derived from a point of S,.
S,+S; is a (+)-singular line derived from a point of S,.

S, is a (+)-singular line derived from a point of S,.
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Especially, S, can be derived only from the point p of S,. But every
decreasing sequence of domains converging to p derives not only S, but
also S; at the same time.

Example 8. Let ¢ be a given generalized translation as indicated
by stream-lines in Fig. 15, B and C being the (+ )-singular lines derived
from the point p and ¢ of S, and S, respectively, and E being the
(+)-singular line derived from a point of B. In the figure let a,b, ¢, d
be transformed by ¢ and ¢? into &/, ¥, ¢/, d’ and a’, b"”,c", d" respectively.
Let 0'fb” and c'ec” be arcs as indicated in the figure. Let f be a
modification of ¢ such that f maps the domain abb'a’, bcc'd’, cdd'c’ onto
domains a'd’'fb"a", b'c’ec’’b'’f, ¢'d'd"'c""e respectively as indicated in the
figure, f coinciding with ¢ elsewhere. Then the (+)-singular line derived
from p and ¢ have the same final end E in common.

Fig. 15 Fig. 16

Example 9. Let ¢ be a generalized translation as indicated in Fig. 16
by stream-lines, S,+S, being the (+)-singular line derived from a point
poof Si. Let a, b, c be transformed by ¢ and ¢? into &/, ¥, ¢’ and a”, d", ¢
respectively, and let a’da’ be an arc as indicated in the figure. If f is
a modification of ¢ such that f maps the domain @a’d’b and aad'c’c into
domains a'da’’b"'b' and a'da’’c"c’ respectively, for the rest coinciding with
¢, then the (+)-singular line a* derived from a point of S; and the
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(—)-singular line a~ derived from a point of S, cross in f*(a) (n =0,
+1, +2,...)

Example 10. The above process of modification shows that simple
singular lines give rise to a complicated final or initial end. In general
let S;,S,,...,S,,... be a sequence of singular lines appearing succes-
sively in this order and in the positive sense on the boundary of a domain
D of semi-regularity such that D is filled with a regular family of
stream-lines. On every S, make a modification of homeomorphism as in
the above examples. Then we have an example of a generalized trans-
lation f such that the singular line derived from a point of S, becomes
the final end of the singular line derived from the point of S,_;.

Example 11. Let f be the ordinary translation given by
¥=zx+1, y=p.

Then the domain 7 bounded by two parallel lines

1
x=siny Oy <=
and
p= g+l 0<y<n)

is a translation-field. The area of translaton generated by T is then
the stripe bounded by two parallel lines y =0 and y = =.

In general we have
Example 12, Let f be the ordinary translation
'=x+1, y'=y.

If D is a simply connected domain and periodic, that is, /(D)= D, then
D becomes an area of translation generated by some translation-field.

Proof (cf. Sperner [11], p.19). Through a point of D we can find
a stream-line j lying wholly within D. The boundary of D will then
be separated by j into two parts: the upper boundary and the lower one.
Then there is on the y-axis a segment @b such that « belongs to the
upper and b belongs to the lower boundary, @b being admitted to be
the whole y-axis or to be a half line. Choose a sequence of points
a, (—oo< < 4+0c0) such that a, lies between a,., and a,,, and
lim,,, a,=a, lim,,__a,=>. Join a, and f(a,.,) within the sub-domain
D' of D bounded by ab and f(ab) by an arc C, such that C, are disjoint
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and that C, converges to the lower bundary of D' when #— —co. If
we put v =\/z__,f"(C,), then the domain bounded by ¢ and f(y) is a

translation-field which generates D.

(Received October 1, 1953)
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