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The Fundamental Solution of the Parabolic Equation
in a Differentiable Manifold

By Seizό Iτό

§ 0. Introduction. The existence of the fundamental solution of
the parabolic differential equation in the Euclidean m-space has been
shown by W. Feller [2] for m = 1, and by F. G. Dressel [1] for
general m. Recently Prof. K. Yosida has generalized the result by
an entirely different approach to the case of a Riemannian space.
(See the immediately preceding paper by K. Yosida in this issue.) In
the present paper, we shall show that the fundamental solution may
be constructed for the case of a differentiable manifold, by means of
Feller-DresseΓs idea, and that the case of a Riemannian space may be
deduced from the result.

The author expresses his hearty thanks to Prof. K. Yosida who
has shown him the manuscript of the paper [4] before the publication
and has encouraged him with kind discussions throughout the course
of the present paper.

§ 1. Preliminary notions and main theorems. Let M be an m-
dimensional manifold of C2-class such that the function of the trans-
formation between two local coordinates has partial derivatives of
second order each of which satisfies a LipSchitz condition of order

1) at every pointυ, and fix s0 and t0 such that — co<ς$0<]t0<:oo.

First we give the following
DEFINITION 1. (Cf. [3] p. 42) Let fι(t,x), ..., /„(*,#) be functions

on (sQ9 £0)xM which depend on the local coordinate around #2). The
system of functions j / l f ... , fn\ is said to be bowuled by K if there
exist a canonical coordinate system on M and constant K > 0 such that

1) We say that a function /(*) satisfies the Lipschitz condition of order T( > 0) at x
if there exist constants N and δ>0 such that \f(x) -/GO I^-ΛΓS, \xt- yl\Ί whenever
\χt-yί\^jδ, i = 1, ...., m, where (Λ£) and (3;*) respectively denote the local coordinates;
such notion may be defined for functions on (s0, /o)xΛf (Cf. [1], [2]).

2) Examples of such functions are a*J(t, x) and b^t, x) stated below.
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for any x 6 M, where a canonical coordinate system should be understood
as defined in pp. 41 — 42 in [3] and Sx denotes the unit sphere with the
centre x with respect to the canonical coordinate around x.

We consider the parabolic differential operator L :

(1.1) L = Lto=Ato-g

where

(1. 2) A ΞEE At, = α"(fc a?) +&X«, a?) +c(t, a?)

and i| aίj(t, x} \\ is a strictly positive-definite symmetric matrix for any
<*, a?]>; aίj(t, x} and &*(ί, a?) are transformed between two local coor-
dinates (a?*) and (#*) in the following manner :3)

(1.3) a'<feS) = -

(1.4) SU 8 ) = ! * ) + «*'<«.*)

We assume further that

ί, a?) 9VJ(t, a?) 36'(t, a?)
— --

and c(ί, a?) satisfy a Lipschitz condition of order τ(0<7^1) at every
point <[ί, x^> of (§0, t 0)xΛf f

d . „ tj H _ x &< .

f det " α " ' 6 > f β f

II) the system of functions

a α" da1*

i» 'f fc 1 = 1, ...» w

is bounded by lί (Definition 1).4) It follows from this condition that
there exist constants Cj and c2>0 such that

(1. 5) cx II f || 22>cαtf αr)rP^c2 1| f || 2

for any t, a: and any ξ e Rm, where || a*iό(t, x) \\ denotes the inverse matrix

of | |α"(fc*)ll and \\ξ\\* = ξ*

3) This transformation ruie is connected with the fact that the value of A-f(t,x) is
independent of the local coordinate.

4) This condition seems to be closely related with K. Yosida's HYPOTHESIS in [4].
But our condition does not require any restriction for g(x) — det || gij(x) \\ even if M is a
Riemannian space with the metric dri = gi)(x)dxtdx). See Theorem 5 below.
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We fix a canonical coordinate system @ for which the condition
II) is satisfied.

Next we fix a real number S ̂ SQ <^ s1 <^ ί0) and put αίXa?)=αίXslf a?)
and α(a?) = det || c&iXa?) II Then, by virtue of (1.3), we may define in
M the metric dar

2 = aij(x)dxdxj and the measure dax == ι/a(x}dxl ••• dx™.
Let I/* and A* be the (formally) adjoint operator of L and that of A
with respect to this metric:

DEFINITION 2. A function w(t, a?; 5, y\ s0<^s<^t<^t0; x, y£M,
is called a fundamental solution of the parabolic equation L f = 0 if, for
any s and any function /(#) uniformly continuous and bounded on M,
the function

(1. 6) /(t, a?) = ( u(t, x s,
JM

satisfies the conditions:

(1.7) L /(taO = 0, «<ί<ί0, a?eM,

(1. 8) lim /(ί, a?) = /(a?) (uniformly on Λf )
£ s

and
o

both f ( t , a?) and ^/(*, a?) are bounded on (s'9 ί' ) xM
dϋ

for any s' and t', § < sf < £' < t0 .

A function u*(s9 y\ t, x}, t0^>t^>s^>s0; x, y£M9 is called a
fundamental solution of the adjoint equation I/*/* = 0 of the equation
L,.f = Q if, for any t and any function /(a?) continuous and summable
on M with respect to the measure dax, the function

(1. 6*) /*(*, fO = «*(*, 2/ *, ̂

satisfies the conditions :

(1.7*)

(1.8*)
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pointwisely and strongly in L\M) and

I both ( \f*(89y)\d& andα I ~~«— j , , v-7 £// i ~-α,£7 ~-~~- j o>~ •/ v» i?/ ^α£/ ^rc
. y ) \

[ bounded on (sf, tf} for any, sr and tf, t^>tf^>s'^>s0.

We state here the main theorems, which will be proved in §4.

Theorem 1. There exists a function u(t, x s, y} of Cl-class in t and
s(5o<Cs<C*<C^o) and °f C2-class ity % $γd y, with the following properties:

i) u(t, x; s, y} is a fundamental solution of the equation L f = 0,
ii) u*(s, y t, x} = u(t, x s, y} is a fundamental solution of the

adjoint equation L*/* = 0,

iii) L£xu(t, x; s, y} = 0, L*yu(t, x; s, y} = 0 ,

iv) j u(t, x T, ξ XT, ξ s, y}daξ = u(t, x s, y} , s < T < t.

Theorem 2. Let u(t, x; s, y} and u*(s, y; t, x} be the functions
stated in Theorem 1.

i) // a function /(£, #)(s<£<£0, #eM) satisfies (1.9), (1.7) and
(1. 8) where f(x} is continuous and bounded on M, then it is expressible
by (1. 6).

ii) // a function f*(s, y}(t^>s^>tQ9 yζM) satisfies (1.9*), (1.7*)
and (1. 8*) where f(x) is uniformly continuous and summable on M with
respect to the measure dax, then it is expressible by (1. 6*).

Theorem 3. (UNIQUENESS OF FUNDAMENTAL SOLUTION) // a function
v(t, x s, y*) is continuous in the region: s0<^s<^t<^t0; x, y G M, and
satisfies the comlition i) or ii) in Theorem 1, then it is identical with
u(t, x; s, y} stated in Theorem 1.

Theorem 4. // c(t, #)<10 in the differential operator Atx, then

u(t, x; s, 2/)>0; if especially c(t, #) = 0, then \ u(t, x; s, y*}day = ~L.

Next, if M is not only an infinitely differentiable manifold but also
a Riemannian space with the metric dr* — gij(x')dxdxj a priori, then it
is natural that we take the measure

dgX — ι/^)(x) dxl ••• dxm where g(x) — det

and consider

1 oί

A' = —L= 92 . ow(ί, x}ι/q(x} i= ̂  b\t, x
y _./ _.N OΛ*?ΌΛ»J >• ' 'V yV.«^> S ../ -,\ d Λ*>' ^ '
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as the adjoint operator of L and that of A. But the results of this
case may be immediately deduced from the above stated results by
means of the function

u(t, x; s, y*) = u(t, x; s, y)

that is,

Theorem 5. // M is a Riemannian space with the metric dr2 =
gtj(x}dxdxj

9 then we may replace L*, A*, u and dax in Definition 2 and
in Theorems 1, 2, 3 and 4 by I/, Ar, u and dax (stated just above)
respectively.

§ 2. Quasi-parametrix. First we consider Ltx and Atx in the Eucli-
dean m-space Rm. Put

V(t, x s, ?/) — (t—s) 2 exp ] —

and

F0(ί, α?) =( exp j-αij(*» **?)£*£J| ̂ , df = ώl1 dξm.

Then we have

Lemma 1. Let f(t, x} be a bounded and continuous function on
(s, t) x Rm(s0 <^ s <; ί0), and put

Then we have

(2.2) |̂  /(ίf a;f τ) = j ^^ F(t, a? r, τ/)/(τ

/(ί, α?f T) = J ^^ y(t, α?; r, τ/)/(τ, τ/)dτ/3

(2.3)
a:

|2

α^cZ

(2.4) lim

5) It is true that α(» and #O) depend upon the local coordinate, but the ratio a(x)
/ g(x) is independent.
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PROOF. The equalities (2.2) and (2.3) may be easily proved from
the assumption. We shall prove (2.4). By the substitution: y —
(t-τγξ''+x, in the right-hand side of (2.1), we get

f(t, X, T) =• exp -
4

where (ί— r f - f # means the sum as vectors in Rm. Hence we obtain
(2. 4) by Lebesgue's convergence έhέϋrem, q. e. d.

Similar argument shows that

Lemma 2.

lim f /(ί, x)V(t, x s, y)dx = f(s, y*)V0(s, y}
t ψ s JRm

for any function f(t, x} bounded and continuous on \_s, ί']x72m(5<^ί'<^ί0).

Lemma 3. Let /(T, y) be a function defined on (s, ί0)x/2w which satis-

fies the following three conditions: i) \ I |/(τ, y}\dydτ
J S J R™

iί) /(T, ?/) & bounded on [Y, ί']x/2m for any sf and tf,
/(r, y) satisfies a Lipschitz condition of order γ(0 <] 7^1) at every point
in (s, t0}xRm; and define f(t, x, r) by (2.1). Then, for any <Ί;, x^>£
(s, t0} x Rm, there exists a constant M such that

(2.5)

whenever s<

(2.6)

dtf
f(t'9 x, r)

] T < t<Ltf further we have

Q
5-7/(*> ^> 7

92 ^r/Λ oo .

PROOF. By the condition Hi), there exist δ(0<δ^l) and
such that

whenever
implies

(2.8)

and \\y-x\\ <L8. Hence the relation t-

ΛΓ «; r, y)
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If we calculate *'. # > τ, y) and put

(2. 9) tf-x' = (ί'-τ)*r, ' » = !,..., m,

then we may see that the right-hand side of (2. 8) is not greater than

'

Hence, by means of the facts t' — τ>£— τ>0 and £— τ^:δ<:i and by the
o

boundedness of cttχt, #) and ^A/£, x), there exists a constant M 0 such
σί

that

(2. 10)

whenever ί— δ^τ<^t<ίf. Furthermore, we may easily show by way
of the substitution (2.9) that

(2.11)

and

(2.12)

IS,

for any ί'>τ^ί-δ for a suitable constant Mi. From (2.10), (2.11)
and (2. 12) and by (2. 2) in Lemma 1, we get

I j m~,v(f> χ;τ,
R

f(t, X)
Ot

whenever t—δ<^τ<^t<Ltr

9 for a suitable constant Λf 2 . On the other
o

hand, ^r,1(tf» %, T) is bounded uniformly in <[tf, α?f r> such that
9ί

ί'—τ-;>δ, as is easily seen from the properties of 7(£', x;r9y) and /(r, ί/).
Hence we conclude (2. 5) consequently we get

\:
We may prove (2.6) in the similar manner.
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Lemma 4. Let f(τ, y} and f ( t , x, T) be as stated in Lemma 3 and put

F(t, x} = Γ /(t, x, τ)ώτ .

Then

(2.13) IjfKt, a?) - /(«,' a?)V0(t, a?)+ Γ ( ^ V(t, a? T,
σC J « J /£m σ£

and

(2.14) AtxF(t, x) = j] j ^ ̂ £ίBF(ί, a? τ,:

PROOF. For any Δ > 0, we have

ι
^, a?)—ίχtf a?)}

1 f'
= ~ ] , a?, τ)dτ+ s {/(* + Δ, a?, τ)-/(ί, x, τ~)\dτ

the first term tends to /(£, a?)y0(*» )̂ bP (2 4), as Δ [ 0, while the second

S c o
oy/C*» ^» τ)^7" by Lebesg ue's convergence theorem and

(2. 5). Hence we have, by (2. 2),

lim- , x)-F(t, a?)}

, F(ί, a; r,

Thus we see that the right derivative DΐF(t, x) exists and is continuous

in t for any x, and hence ^:F(t9 x} exists and equals the right-hand
.at

side of the above equality this fact shows (2.13).
(2.14) is obtained from (2.3) and the following relations:

a

which may be proved by virtue of (2.6).

Lemma 5. Let φ(x} be a function of C2-class on Rm such that

dχi . ^-^.5 =^Jo» i> / = 1» •••> ™, (C0: constant}.
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Then

t, x; s,

where C1 and C2 are positive constants which depend only on c2 in (1. 5)
and C0 stated just above.

This lemma may be proved if we achieve the calculi of differentia-
tions in Ltx[_φ(x)V(t, x; s, y\\ considering the assumption for φ(x) and
the following two facts : 1) || atj(t9 a?) || || aij(t, α?) \\ = identity matrix,
2) p and C are positive constants and λ is a variable ;>0, then there exist
positive constants d and C2 such that λ pexp(— Cλ^CΊexpC — <72λ).

Next we fix a function ω(λ) of C2-class in λ;>0 such that ω(λ) = l
1 2or 0 if λ<:̂  or λ^^ respectively and 0^ω(λ)^l for any λ^O, and

that ** ^ satisfies the Lipschitz condition of order γ at every λ.

For any zeM, we map a neighbourhood t/(z) of z onto the unit
sphere S in Rm by means of the canonical coordinate e @ around z (see

§ 1), and let Ufc) and Z72(«) be the inverse images of S1=(|: ||| || 2 < ~\
I 3 J

and S2 = I f ; II 1 1| 2<^1 respectively under this mapping. By means

of this mapping, we may consider any function φ(ξ ) defined on S as a
function on U(z). We shall denote by φβ(x) the function on t/(z) defined
in such manner from the function φ(ξ) on S.

Now we define the quasi-parametrίx^ Z(t, x s, y} on M as follows.
Since the manifold M satisfies the second countability axiom, there
exists a sequence [ z ί 9 zz, •••JdMsuch that M=\J™mιlUι(z^, where
we may take the sequence in such a manner that every point z e M is
contained in finite number of t/2(zv). We put

Σ ω*v( \\X-z, 11 2)ω*v( 11 y-zv \\ 2)?F^(ί, x s, y)
(2. 15) Z(t9 x ;s,y) =

*

where

(2.16) W(t, x s, y} = V(t, x s, y}/V0(s, y) (x, ^

For any fixed x, ω*v( || x—zv ||
2) — 0 except finite number of i/s and hence

6) The function Z(t, x; s, y} defined here is somewhat different from the parametrix
of K. Yosida [4]. But the former plays a role analogous to the latter in the construction
of the fundamental solution.- So, we call the function Z(t, x\ s, y) quasi-parametrix.
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both 2's appearing in (2. 15) are essentially finite we may easily see
from the definition of ω(λ) that Z(t, x; s,y) is well defined for any

anv / </<? ^ <?^" ϊs^ f } anrl smrlany r, s^s0 <^ 5 <^ τ <^ EO> ana — , —- , ̂ 0^f ana
Cxi/ Cyo Cx

exist and satisfy a Lipschitz condition of order γ> 0 at every point.
(We note that the function F0(s, ?/) is bounded above and bounded away
from zero and satisfies a Lipschitz condition of or order τ^>0.)

Whenever x runs over U(x0} for any fixed x0, we may consider in
(2.15) only such i/s as Z7(zv) f\ £7(#0) is not empty. From this fact and
by (2.15), (2.16) and Lemmas 1, 2, 4 and 5, we may prove the follow-
ing Lemmas 6, 7 and 8.

Lemma 6.

lim \ Z(t, x s, y}f(y)day = /(#) (uniformly)

for any bounded and uniformly continuous function f(x) on M, and

lim J f ( t , x)Z(t, x s, y)dα2/ = /(s, y)

for and continuous function f(t, x} on [s, t') x M(s <C ^ <C *o)

Lemma 7. Asswrae ί/zc&ί /(T, ?/) satisfies a Lipschitz condition of order
7C>0) at every point in (s, t0)χΛf, that /(T, y) is bounded on [§', £']xM

/or αwy s' α^d *', β<*'<*0»
 αwd **α* \ \ I /(τ' 2/) I daydτ < oo /or

J s J^f

F(t, x} = [ ( Z(t, x T, 2/)/(τ,
Js JM

Then F(t, x} is of Cl-class in ί(> s) and of C2-class in x( e M), and

(2. 17) I- *χt, a?) = /(£, a?)+ Γ ( --. Z(t, x r, y}f(τ, y}daydr ,
dί Js J^f dC

(2. 18)

Lemma 8. There exists a constant

:M(ί-s)- +
tâ (t, x; s,y) ^M(t-s) 2 ,

3/
. I; s, y)\daξ and [ |Z(t, »; s,

JM
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J |L,fZ(ί, ξ; s, y)\daξ and J |LίxZ(ί, a?; 5, ί)Kf<M(ί-s)^

/or cm?/ ϊ> s» # ^^ 2Λ

§ 3. Construction of the fundamental solution. We define functions
Jn(t, x; s, y\ n = Q, 1, 2, ..., by the induction as follows:

(3.1) J0(t, x s, y} — LtxZ(t, x s, y*),

(3.2) Jn(t, x s, y} = \ \ J0(t, x r, ξ}Jn^(τ9 ξ s, y*)daξdτ .
J S J J\ιf

Then we may prove by Lemma 8 and by the induction that

I !/«(*» χ> s> y}\daχJM
t

\Jn(t, x\s9JM

and consequently

\Jn+ι(t, x; s, y}<
v=ι

where B(μ, v) is the Beta function. Hence simple calculation shows
that there exists a constant MI such that

(3.3)

oo Λ

Σ \ Un(*f «; s> y)\daχ

Σ \ Un(*. «; S» 2/)Kα2/

-s) exp

and that

oo -(22+
(3 4Λ "SΠ 1 7 Γ/ />• Q oΛ] <: M (f <?^ 2

\3 Q) 2-1 l^n^* •" 9 o, X f J I ^ M i V . ϋ — S )

Hence we may define

(3. 5) /(£, x s, y} = Σ Jw(ί, x; s, y)

where the series in the right-hand side converges absolutely and uni-
formly in <jt, x; s, y^> whenever 0<6^ί—s<η, and consequently
we get

(3.6) LίxZ(t, x; s, 2/) + Γ ( LtaZ(t, x; τ, |)/(τ, ξ ;

= f(t, x; s, 7/)
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and

(3.7)

I |/(ί, x; s, y)\dΛx
JM

\f(t, x; s, y}\day
exp

Now we put

n(t, x s, y} = Z(t, x; s, y} +

(3' 8)
+• Γ ( Z(t. x T, £)/(τ, ξ s, y}daξdτ .

Js JM

For any fixed <>, y^>, we may prove from the properties of Z(t9 x;
s, y} stated in § 2 that the function /(T, ξ ) = /(r, ξ s, y) satisfies the
assumptions of Lemma 7. Hence, by (2. 17) and (2. 18), we get

JUT ( Z(t9 x; T, £)/(τ, ξ; s, y}daξdr\
Us JM J

= Γ ( LίxZ(t, x; T, ξ}f(τ, ξ; s, yyiaξdτ-f(t, x; s, y} .
is JM

By means of (3. 6) and the above equality, the function u(t, x s, ?/) in
(3.8) satisfies

(3.9) Ltxu(t, x; s, y} = Q.

If we apply Lemma 8 and. (3. 7) to (3. 8), we get by simple calculations

(3.10)

(3.11)

and

(3.12)

**

\u(t, x; s, y}\dax

J |w(f, a?; s, 2/)K2/

I — u(t, x s, 2/)
SM dt

5 ^Λ-- w(ί, x s, sO
Λ^ ou

day

{2M1(t-β)έ} .

\2Ml(t-sγ

|w(ί, x; s, y

|j«(tf a?; s, y) :M(έ-ί {2M1(ί-s)} .i

Therefore we may show by (3. 7), (3.8) and by Lemmas 6 and 8 that

(3.13) lim ( <έ, x s, y}f(y~)day — /(») (uniformly)
n» JM
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for any bounded and uniformly continuous function /(#) on M, and that

(3.14) lim ί f(t, x}u(t9 x s, y)ίax = f(s9 y}

for any continuous fuaction f(t, x} on [s, £')xM such that I \f(t, x)\dax
]\ί

is bounded on [s, t'} for any t'9 s<^tf<^t0.
Next, we consider the adjoint equation L*/* = 0. If we expand

the terms in A*/*(ί, x) and consider the conditions I) and II) in § 1 for
A, we see that the coefficients of A* also satisfy the conditions I) and
II). Hence we may construct a fundamental solution u*(s, y\ t, x) of
£,*/* — o, which has the similar properties to those of u(t, x s, y}
stated just above. For the later use, we note especially, that

(3. 9*) L*,u*(s, y; t, α) = 0

(3.13*) lim j u*(s, y t, xtf(x)iΛx - f(y}

pointwisely and also in L\M) for any function /(#) continuous and
summable on M with respect to the measure dax, and

(3.14*) lim \ f(s, y)u*(s9 y ί, x}day = f ( t t x}

for any continuous function f(s9 y} on (s9 ί]xM, bounded on [Y, ί]xM
for any sf

9 sQ<^sf <^t.

§ 4. Proof of Theorems. Let u(t9 χ s9 y} and u*(s, y\ t9 x) be the
functions defined in §3. We first prove the following

Lemma 9. There is a constant M0 such that, for any compact set
Γ c^ M, there exists a function φ(x] of C2-class on M with the following
three properties : 1) φ(x) = 1 on Γ, 2) the support of φ(x} is compact, 3) for

any zv (stated in §3), the functions \φ(x)\9

..., m, are <M0 for x£U(z^ with respect to the local coordinate ( 6 @)
around zv.

PROOF. We may consider that the sequence {z l f z2, •••} stated in
§ 3 is so chosen that each point z G M belongs to at most m0 neighbour-
hoods t/2(zvj, n=l, ..., m0, where m0 is a constant depending only on the
dimension of M. Now we take Zvn, n = 1, ..., nQ9 so that
(see §3), and put
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where ωv(.) = ω2v( ) which is defined in §3. Then we may easily show
that the function φ(x) has the properties 1), 2) and 3) stated above
the constant M0 is determined by means of m0 and supremum of

3λ

32ω(λ) (see § 3).

Lemma 10. Assume that /(a?) and h(x} are function of C2-class on

M such that ( \f(x)\dax<<*>, ί | A*f(x)\dax < oo and that h(x),
IMί Hf

o 02

~-rh(x\ _ ,. . h(x)ι i, ί = l, ..., m, are bounded on M. Then
σX' oX oXJ

» 7)

PROOF. Let Γw, % —1, 2, ..., be compact subsets of M such that
ΓjC^ΓgC^ »M. Then, for each n, there exists a function φn(x} of
C2-class on M with the properties 1), 2) and 3) stated in Lemma 9
where we read Γn for Γ in 1) while the constant M0 is independent of
n. Hence, by means of Lebesgue's convergence theorem, we may
show that

ί /(a?). Atx

J^

ax = lim

ax = A* ̂ (a?) /<α;)ώαα; , q. e. d.= lim

Lemma 11. // α function f*(s,y\ sQ<^s<^t, y^M, has the pro-
perties (1. 9*) and (1. 7*) (t : fixed), then

(4.

/or

/*(τ, 8,

PROOF. From (3. 9) and the assumption (1. 7*) for /*(τ, I), the rela-
tion s <[ TI <[ τ2 <] t implies

0 = r, f) f<τ, ξ; s, 2/)-/*(τ, f) LτfM(τ, f s, 2/)Nα£

r, f) <τ, f ; s, ?/)—/*(τ, |) -4τξ<r, f s, 2/)fdα£

7) Any function on M is considered as a function on (SQ ,

Ca. to the function.
> so we may operate



The Fundamental Solution of the Parabolic Equation in a Diffeientiable Manifold 89

the first term equals zero by Lemma 10 since f(ξ) — /*(τ, f) and
A(£) — u(τ, ξ s, y} satisfy the assumptions of Lemma 10 for any fixed
T, s and ξ, while we may apply Fubini's theorem to the second term
by virtue of (3.12) and the assumption (1.9*) for /*(τ, ξ\ and hence
the second term equals

, fXτ a, ξ s, 2/)-/*(τ!, fXn, ξ; s, y^\daξ.

Thus we see that \ /*(τ, £Mτ, ξ s» S/^αf is independent of T, s<
JΛΓ

From this fact and (3.14), we obtain (4.1).
Now we shall prove Theorems stated in §1.

PROOF OF THEOREM 1. For any fixed t and x, u*(s, y;t,x} satisfies
the assumption of Lemma 11 as a function of s and y. Hence we have

(4.2) \ w*(τ, ξ ί, α?Xτ, I s, y}daξ = u*(s, y t, α?), s < T < ί .
JM

Taking the limit as T t *, we obtain by (3.10) and (3.14*) that

(4. 3) u(t, x s, y) = u*(s, y t, x).

From the relations (3.9—14), (3.9*, 13*, 14*), (4.2) and (4.3), we may
easily show that the function u(t, x; s, y} has all properties i), ii), iii)
and iv) in Theorem 1.

PROOF OF THEOREM 2. Assume that /*(s, y} satisfies (1.9*), (1. 7*)
and (1.8*). Then, by Lemma 11, we have

(4. 4) ( /*(τ, α?Xτ, x s, y}dax = /*(s, y), s0<s<τ < t.
JM

Taking the limit as T tends to t and considering (4.3) and (1.8*)
(strong convergence in L\MJ)9 we get (1.6*), which proves ii) in
Theorem 2.

Similar argument shows i) in Theorem 2.

PROOF OF THEOREM 3. If v(t, x s, y} is continuous in the region :
so<(is<^t<^to'> x> y^M, and satisfies i) (or ii)) in Theorem 1, then, for
any continuous function /(a?) on M with a compact support, we get

I v(t, x s, y)f(y}day = \ u(t, x s,
JΛf J3f

(or { v(t, x s, y)f(xyiax = ( u(t, x s, y)f(x)ίax respectively)
J 1W J M
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by virtue of Definition 2 and Theorem 2. It follows from this relation
and the continuity of u and v that v(t, x; s, y} = u(t, x; s, y\

PROOF OF THEOREM 4. By virtue of Theorem 3 and by the argu-
ments in § 3 and the proof of Theorem 1, we may put

oo

(4. 6) u(t, x; s, #) = Σ3 un(t> % > s, ?/)
w = ϋ

where

Γ uQ(t, x β, 20 = Z(t, x s, y)
Γ c Γ

n(tt x s, 2/) = \ \ Z(t, x : τ, ξ}Jn^(τ, ξ s, y}daξdr , n ̂  1.
J * J M

un

Prom the definition and properties of Z and Jn (§ 3), we see that each
ww(£, x; s,y) vanishes outside a compact set of x for any fixed t, s and
?/, and that the right-hand side of (4. 6) converges absolutely and uni-
formly in <[£, x s, y^> whenever 0 <] 8<t—s^η. Hence we may prove
that, for any function /(#) which is continuous on M and vanishes
outside a neighbourhood of a point in M, the function

f ( t , x} = I u(t, x s, y)f(y}day = Σ \
JM 2 i=u J

ίo 0ero as x tends to the point at infinity^, for any fixed
Moreover, we get

L /(ί, αO = 0
and

|/(tf ^I^ΛfoCί-^exp \M0(t-sf\

for a suitable constant M0 > 0

the last relation follows from (3. 7), (3. 8) and the boundedness of /O).
Hence, by the well known method, we may prove that c(t, x)<LQ and
/(α;)2>0 imply /(£, #):>0; and consequently we get u(t, x; s, ?/)^0.

In the case c(ί, a;) = 0, if we apply i) in Theorem 2 to the function
f ( t , #) = 1, then we get

«(ί, x s, 2/X(l2/ = 1
JΛT

Thus Theorem 4 is proved.

PROOF OF THEOREM 5. We shall call by Theorems Γ, 2f, 3f and

8) This expression means that, for any ε > 0, there exists a compact set Γ C M such
that Λ Γ φ Γ implies \ f ( t , *) |< e.
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4' respectively Theorems 1, 2, 3 and 4 which are modified as stated in
Theorem 5. We note the relations

(A. Ί\ A> ^ j * A *1 λ s y ~ ~ s y ί

and

/ Λ OΛ(4 8)

which immediately follow from the definition of Ar, A*, dax and dax.
By means of these relations and Theorems 1, 2 and 4, we may easily
prove Theorems 1', 4' and i) in Theorem 2'. If AO, ί/) satisfies the
the assumption of ii) in Theorem 2', then the function

satisfies (1.9*), (1.7*) in the sense of initial definition, and

where —J==f(y') is continuous and summable on M with respect to

the measure dax. Hence, by Theorem 2, it follows that

β(ί, a? 5

which proves ii) in Theorem 2 f .
Theorem 3' may be proved from Theorem 2' by the same argument

as the proof of Theorem 3.
Thus Theorem 5 is established.

(Received March 6, 1953)
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Added in proof. It may not be of no use to state a relation between the
results of Feller [2] and Dressel [1] and the result of the present paper.

The boundedness of aίj, b1, da^/dx* etc. is assumed in [1], but the assump-
tion II) stated in §1 in the present paper does not require the boundedness (in
the usual sense) of these functions. For example, consider the equation

(1) u&, *) = <*X«Cf, *) + &(*>*(*, *) + c(*Xfc *),
- oo < t < oo, (- oo ^>Ί < X < r2( ̂  oo ) .

If a, b and c satisfy the assumption I) in §1, if

)-* dx =

(cf. (29), (30), in [2]),

and if b, bx and c are bounded where b = (&-β /2)0rϊ, then the equation (1)
satisfies also the assumption II) even if a, 1 '/a and b are unbounded.




