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Lattices of Spaces

By Jtmzo WADA

Let J?i and R2 be two topological spaces with the same basic set
and having the property that O (Rτ) ̂  0(R2}, where 0(R.L} (i = 1, or 2)
denotes the family of all open subsets in Rt. Then we say that R1

is finer than R2 and write Rλ^>Rz (by a binary relation». The
* *

family consisting of all topological spaces with the same basic set
forms a lattice under this ordering. Edwin Hewitt [1] has discussed
the various problems on this lattice. In this paper, we shall consider
the lattices consisting of all spaces with the same basic set on the
basis of the neighbourhoods, the closure and the convergence.

§1. General properties of the lattices 8 and 8^.

Definition. A set X is called a space if a closure operator assigns
to each subset M of X a closure M, and satisfies the condition that
φ = φ(φ is the empty set), and M\JN = M\J N for each pair M and N.
Further a set X is said to be a space with additive topology if it is
a space and satisfies the condition that M ^> M for each subset M of X.

Let 8, 8^ and 8^ denote the family consisting of all spaces on
the same basic setυ E, the family of all spaces with additive topology
on E, and the family of all topological spaces on E respectively. We
are going to construct in 8 a lattice by defining a suitable ordering,
that is, for two spaces R19 R2 of 8, R1^>R2 (we say that Rτ is finer
than R2) if and only if the identical mapping from Rτ onto R2 is
continuous.^

This definition is equivalent to the following one: Rτ^>R2 if and
only if for any point x in E, N^R^^N^R^ where Nx(R^i = 1, or 2)
denotes the family of all neighbourhoods of x in RL.

Let {βλ}λ6Λ be any family of spaces in 8. Then the join of the
spaces Rλ is the space where family of all neighbourhoods of x is

1) If E is any set oί points and if R is any space whose points are the points of Er

then E is said to be the basic set of the space R.
2) See [2], p. 28.
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defined as the family of all subsets consisting of some finite intersection
of sets in the family 2 (̂βj, and the meet of the spaces Rλ is the

λfcΛ

space where family of all neighbourhoods of x is just the sets in the
family flNx(Bλ}. Hence we see that the family 8 forms a complete

λ € Λ

lattice under the above ordering.
Further we see easily that a phalanx x(a\A) converges to x on

the join VAGΛ ^x if and Only if it converges to x on all βλ, and that
an ultraphalanx x(a\A) converges to x on the meet Rλ/\ R2 if and only
if x(a\A) converges to x on Rλ or on R2. In fact, it is clear that if
an ultraphalanx x(a\A) converges to x on Rλ or on R2, then it also
converges to x on the meet R1f\R2. Conversely, suppose that an
ultraphalanx x(a\A) fails to converge to x on Rλ and on R2. Then
there exist a neighbourhood of x in R19 N19 and a neighbourhood of
x in R2, N2, and for some a1ζ^A, a L ^a implies x(a) £ Nl \J N2. This
show that x(a\A) fails to converge to x on the meet R1/\R2, since
NI \JN2 is a neighborhood of x in Rι/\R2. As it is easily seen, this
fact implies that 8 is a distributive lattice.

By the fact mentioned above, we have

Theorem 1. The family 8 forms a distributive, complete and atomic
lattice.

We can prove the following theorem:
Thorem 2. // l£Ί3)>2, every space in 8 is a join of tτvo compact

spaces*) in 8.
Proof. Let α, 6 be two distinct fixed points in E. We define now

the space Ra (similarly βδ): Ra is the space such that ΛΓα(βα) is the
family of a single elment \E\, and for all x but α, Nx(Ra} is the family
of all subsets of E. Then the join Ra V

 Rb is the greatest element
Rj in 8. For every spaces R in 8, R = R/\Rr = R/\(Ra\/Rb) =
(R Λ Ra) V (R Λ #*)• Now, the spaces R /\Ra and R /\Rb are compact,
since 72α, βδ are compact spaces.

Corollary. Any sub-semi-lattice relative to the joiri^ (or sublattice)
containing the family of all compact spaces in 8 coincides with the whole
lattice 8, provided that \E\>2.

Corollary. Every ideal in 8 is a join of two ideals whose elements
are all compact spaces, provided that \E\>2.

3) 1^4.1 denotes the potency of the set A.
4) See [2], p. 36.
5) Let L be any algebraic system with an idempotent, commutative, and associative binary

operation *O.y Then the system L is called a semi-lattice relative to the operation Q
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Proof. Clear, since the family consisting of all ideals in 8 forms
a distributive lattice6' under set-.inclusion.

Theorem 3- Every space R in % is a meet of two TQ-spacesΌ in 8.
Proof. Let the points of E be well ordered:

E = $1, x2, #3, ..., xn9 ..., #λ,... (X<^ λ,0),

where λ0 is some ordinal number with the corresponding cardinal
number \E\.

We define now two spaces Rλ and R2: Rl is the space where
family of all neighborhoods of a?λ is E[M\M^)M^\ for each λ, Mλ being
the set of elements xl9 #2,..., #λ. R2 is the space where family of
all neighbourhoods of α;λ is E[_N\N^>N^] for each λ, ΛΓλ denoting the
set of elements α?λf a?λ+ι, ..., #μ» ...(^<C^o) Then Rτ/\R2 is the least
element in 8. We see here that the theorem will be proved by the
same method as with Theorem 2.

Corollary, Any sub-semi-lattice relative to the meet^ (or sublattice}

containing the family of all T0-spaces in 8 coincides with the whole
lattice 8.

REMARK. (1) In Theorem 3, Γ0-sρace cannot be replaced by 2V
spaces or by !Γ2-spaces,7' for the family of all TΊ-spaces in 8 forms
a proper dual-ideal in 8.

(2) By Theorem 2 and Theorem 3, we see easily that any join-
irreducible element8' in 8 is a compact space and any meet-irreducible
element8' in 8 is a jP0-space.

(3) The family 8^ is a sublattice in 8 and the previous theorem
in 8 are all established in the lattice 8 .̂

6) See, for instance, Birkhoff [3,] p. 141.
7) We define the separation axiom of the space R:

TO-axiom—-for two distinct points in R, there exists some neighbourhood (need not
be an open set) of one of them, which fails to contain the other.

TI -axiom—for two distinct points p, q in R, there exist a neighborhood (need not
be an open set) of p which fails to contain q, and a neighborhood of q which fails
to contain p.

T% (Hausdorff)-axiom—vfor two distinct points p, q in R, there exist a neighborhood
of p, NI , and a neighborhood of q, N^ such that q$Nι, P^N^ and N\ Π N i — Φ
A neighborhood need not be an open set.

A spcce is said to be a To-space, a TI -space, or a 7V (Hausdorff) space if it
satisfies 7V» ΊΊ-, or TVaxiom respectively.

8) An element a of a lattice is called join (meet)-irreducible if
x y y ^ a (Λ Λ y =•• a) implies x == a or y — a.
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We remark finally that for any subset M in E, the closure MR of
M in the meet R of the family f/2 λ} λ € Δ is equal to the set

— 7?
where M λ denotes the closure of M in Rλ for each λ, and that the

closure MR/ of M in the join Rr of the completely ordered family

[R\^A (see, §2) in S is equal to the set JJMR\
λ£Λ

§2. The lattice &τ .

Let jβ^and R2 be two spaces in 2T having the property that
0(Rι) ̂  0(R2\ where 0(Ri)(i = l9 or 2) denotes the family of all open
subsets in Rt . Then we say that Rτ is finer than R2 and write Rl^>R2.

The family SΓ forms a lattice under the ordering. But the lattice 2T

does not form a sublattice in 8, provided that |£7|>3: let R1 be the
space where family of all neighborhoods of x is the family Nx(Rλ}
= E\_N\N^a,, x~\ for any x, and let R2 be the space such that for a
fixed point a, Λ7"tt(β2) is the family of a single element {E\9 and for
any point x but α, NX(R2) = E[_N\N 3X~], Then we see easily that Rτ

and β2 are both topological spaces, but the meet Rι/\R2 in S is not
a topological space, provided that )ί7|>3. Furthermore S^ is a
complete and atomic lattice, but fails to satisfy the distributive law :
let R! be the topological space where family of all open subsets is
0(RI) = E\_M\M 3 a, 6] \J{Φ\* where two points a, 6 distinct fixed points
of E. Let R2 and R3 be two topological spaces such that families of all
open subsets are 0(R2) = E\M \M$a,~\\J\E\ and 0(723) = E\M \ M ^ 6] \J
\E\ respectively. Then we see easily that R± /\* (R2 V*^s) ίs not eQ.ual
to (R2//\^R2}\/^(Rl/\^R3\ where the symbols V* and Λ* are the
join and the meet in SΓ respectively.

We remark finally that for two topological spaces Rl and R2 (in
SΓ), the join Rλ \/*R2 in 2T coincides with the join Rλ\/ R2 in S.

Theorem 4. Every T ̂ topological space is a join of two compact
(= bicompact) T \-topological spaces.

Proof. We may restrict ourselves to the case of \E\>2. Let a, b
be two distinct fixed points in E. Let Ra (similarly, Rb) denote the
topological space such that the family of open subsets consist of all
subsets (in E) which fail to contain the point a and of all subsets
(in E) having a finite complemetary set. The space Ra is clearly a
bicompact 2\-space. We see here that the join Ra V* #& in 8r is the
greatest element in SΓ , in other words, a discrete space Sτ . Let R be
any TVspace in 8Γ. Then R = R /\ Sz = R f\(Ra V*#δ) = #Λ(X

= (R Λ ^α)V(βΛ^&) by the distributivity of S, but we can prove
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easily that R /\ Ra and R f\ Rb are both topological spaces. In fact,
let M be any infinite subset in #* = R f\ Ra. Then MB* = MR \J MRa

= MR \J (M \J α) = MR \J α, M** = M* \J *** = W^* \J MR\JaRa =

( MR W α) V7 (Af* W <0 = MR \J α, therefore, β* = R /\ Ra is a topological
space. Hence R=(R /\ Λα) \/(R /\ Λ») = (R /\ RΛ} V* (<*? Λ -#&)• Since
the family of all 2\-spaces forms a dual-ideal in 8, the spaces R f\Ra

and R/\R ύ are both bicompact TVtopological spaces. This completes
the proof.

In this theorem, ^-spaces cannot be replaced by T2-spaces, for
non regular, !Γ2-spaces cannot be a join of two bicompact T2-spaces
by the following lemma.

Lemma. Let \Rλ}^A be a family of spaces in %τ. Then the join
VλCΛ ^λ w %τ ΐ>s homeomorphic to the diagonal line D in the Cartesian
product Pλ6Λ7?λ.

Proof. The diagonal line D in the Cartesian product Pλ6Λβλ is
represented as the set JE7[(a?, x.x,...); x €#]. We define a function Φ(α?)
from R — VλίΛ^λ onto D Φ(a?) = (x, x, x,...) G D for any x in R. Clearly
Φ(a?) is a homeomorphism from β onto the relative subspace D in the
product space Pλ6Λβλ, since a phalanx x(a\A) converges to x on the
join Vλ€Λ#λ if and only if ifc converges to x on all βλ

Theorem 5. Every T ̂ topological space is homeomorphic to the diagonal
line D in the Cartesian product of two bicompact T-^topological spaces.

Proof. It is evident from Theorem 4 and Lemma.

REMARK. Every TVtopological space R is homeomorphic to the
diagonal line D in the product space R1xR2oί two bicompact 2\-spaces

R! and R2. Hence D (the closure in ί^x^) is a compactification of

R, that is, T = D is a bicompact TVspace and contains R as a dense
subset. But it is different from the Wallman's compactification of R.
This compactification T has the property that |Γ| =

DEFINITION. A property of the topological spaces is said to be
hereditary if it is enjoyed by evrey subspace (in its relative topology)
of a space enjoying the property. The family [Rλ}λ^A is said to be
completely ordered if for any λ l t λ2, €Λ, R^ is finer than Rλ2 or
conversely.

E. Hewitt9) has posed the following problem: Can the hereditary
property be preserved under the formation of join of complete ordered

9) See [1].
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families ?
In this connection, we have the following theorem.

Theorem 6. Let P be a hereditary property. Let spaces βλ(λ e Λ)
in %τ have the property P respectively, and let the Cartesian product
Pλ(:Λjβλ also have the property P. Then the join \/λ^AR has the property P.

Proof. Clear by Lemma.
This theorem implies the following theorem.
Theorem 7. Let \R\λ^Abe any family of regular (Hausdorff} spaces in

%τ . Then the join V Λ € Λ & & °^so a regular space. If all spaces R are com-
pletely regular (Hausdorff}, then the join V A G Λ R °^so enjoys the property
of the completely regularity.

This theorem has been proved by M. J. Norris [4] by using the
open sets.

Corollary. Let [R\λ^^ be any family of uniform spaces™^ in Zτ.
Then the join \/λ6Λβλ is also a uniform space.

Theorem 8. Let (β/!Γ=ι be any completely ordered family of perfectly
normal spaces in %τ. Then the join R = VΓ-i-β* *s also a perfectly
normal space.

Proof. We remark first that for any subset M in E, the closure

M in R is equal to the set ff MRί, MRί being the closure in Rt for each
ί = l

i. Suppose that Aζ^R is a closed set. Since the space Rt is perfectly
normal, there exists a continuous function ft(x) in Rt such that 0 <
<1 for all points x in Rt and ft(χ} — 0 if and only if x£A.Ri-

For x£R, let us put

Clearly /(#) is a continuous function on R such that 0 </(#)<!
for all points x in R and /(#) = 0 if and only if x e A, therefore, R is
a perfectly normal space.

DEFINITION. A Hausdorff space is said to be a minimal Hausdorff
space if it has the family of open sets such that no proper subfamily can
be the family of open sets for a Hausdorff topology on E. Similarly, mini-
mal regular space and a minimal completely regular space are defined,

A family 21 of real-valued functions on E will be said to distinguish
between every pair of distinct points of E if for any pair of distinct

10) See [2], p. 73.
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points of E, x, y, there exists a function / e 31 such that /(#) Φ /(<?/).
For any family 3ί of real-valued functions on E9 we define the space
R^ as follows: if / is an element of 21 and a and β are real numbers
such that <x<^β, then the set E[x\x£R, tf <C/(#)<Cβ] will be open
in βgp and the family of all open subsets of R^ is formed by taking
arbitrary unions and finite intersection of all such sets, with arbitrary
a, β, and / e 21. If the family 21 distinguishes between every pair of
distinct points of E9 then the space R^ is a completely regular space.

M. Katetov has proved that a Hausdorff space is minimal Hausdorff
if and only if it is semi-regular and H-closed.

Theorem 9. A completely regular space is minimal (completely regular}
if and only if it is bίcompact.

Proof. It is evident that a bicompact completely regular (=bicom-
pact Hausdorff) space is minimal. Conversely, suppose that R is s non bi-
compact, completely regular space : and §B = { V λ } λ € Λ be an open covering
of R for which no finite subcovering exists. Take three distinct points,
#, y, and a in R, where a is a fixed point. Since there exists a subfamily

[ V λ l 9 VλZ9..., Vλn\ of SB such that F = R - Σ W, fails to contain the
i = i

points x, y, and α, and since further the apace R is completely regular,
there is a continuous function fxy on R such that fxy(p) = Q for p€(α)
\J(x)\JF and fχy(y) = l. Similarly, for two distinct points y, a, there
exists a continuous function /„ on R such that fy(ρ} = 0 for p e (α) \J F
and fy(y} = 1. We put ^ = E[fxy\x£R-a,9y£R-a,x^y-]\JE\Jy\y£R
— a~]. Then we see easily that the space R^ is completely regular and

the family 0(R^ is a proper subfamily of 0(R). Therefore R is not
minimal and the proof is complete.

Corollary. A Stone space is minimal (Stone} if and only if it is
bίcompact.

Proof. It is evident, since a minimal Stone space is necessarily
completely regular.

A bicompact regular space is minimal regular, but I do not know
whether a minimal regular space is bicompact or not.

For any space R in SΓ> let C(K) be the family of all real-valued
continuous functions on R. If R and Rf are two spaces in Zτ such
that #>#', then evidently C(R)^> C(Rf\

*
Conversely, we see

Theorem 10. Let R and Rr be a completely regular space and a space
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(which need not be completely regular} in 8^ respectively. If C(Rr) )̂ C(R\

then β' > β in 93T.*
We shall prove first the following Lemma.

Lemma. // R and Rf are two completely regular spaces in &τ such
that C(R) = C(R'\ then R coincides with R.

Proof, we see easily that if S is a completely regular space, then
the space Rc^ coincides with S. Hence R = RC<:R) = RC^R^ — Rr, since

Pioof of Theorem 10. If C(R'^C(Rl then C(R) = C(R) f\ C(Rf}
= C(R /\# Rf}. Since the space R is completely regular, the space
R /\* Rr is also completely regular. By Lemma, R /\# Rf coincides
with R, that is, R'^>R in 8Γ.*

Moreover we have,

Theorem 11. A T0-space R (in 8Γ) is completely regular if and only
if it has the property that C(R'}^)C(R) implies R'^>R for any space R'

*•
in 2Γ .

Proof. Suppose that R has such a property. Then C(K) distin-
guishes between every pair of distinct points of R. Otherwise, the
space ROW fails to satisfy the T0 -separation axiom, and C(R0^ = C(R\
But RG<R) 3> R, since R is a T0-space, which is a contradiction. Hence

*
the. space Rc<.#) is completely regular, and we see at the same time that
CΌRcoo) = C(-K) and β> Λc(fi>. But, by the property of R, RccR)^>R9* *
since C(RC^ = C(R\ Therefore R coincides with ROM, and conse-
quently, R is completely regular.

The converse is clear by Theorem 10. This completes the proof.
We remark finally that any expansion of a regular space is a Haus-

dorff space but in general not a regular space, and any expansion of
a completely regular space is a Stone space but is not always a com-
pletely regular space, where the space R' is said to be an expansion
of R if

§3. Two dual-Ideals in &A.

The topology of a space R with additive topology is also defined
by the convergence, that is to say, a notion of the convergence
determines, for each function #(α|2I) from a directed system SI to R
and for each point x of R, whether #(α|2ί) converges to x or not (the
statement "#(α|SΓ) converges to x" is written x(ά)-»x, or merely
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#O) -> x\ and satisfies the following conditions.115

( I ) #O|Sl) converges to x if and only if for each subsystem SI'
which is cofinal in SI, there exists some phalanx x(S\D\ which is con-
tained in tf(Sl') and converges to x, D being the family of all subsets in E.

(II) If x(a, I SI) is ultimately equal150 to x, then it converges to x.

DEFINITION. We will call a space^X a Frόchet's L-space if a
notion of the convergence determines, for each sequence [xn\ and for
each point x in X, whether xn converges to x or not (the statement
" xn converges to x" is written xn -> a?) and satisfies the following
conditions.

( I ) If xn converges to x, then #Wί(% <] w2 < —) also converges to a?.
(II) If xn — x for all n, then aτn converges to x.
Each space with additive topology can be regarded as a Frechet's

L-space by this definition. We define next the L-equivalence: Two
spaces Rτ ana R2 in %A are said to be Z/-equivalent if and only if
whenever a sequence xn converges to x on Rl9 then it also converges
to x on R2, and conversely. Indeed, two spaces Rτ and R2 in &A belong
to the same type of Frechet's L-spaces if they are L-equivalent.

Considering the L-equivalence, we see easily that the equivalence-
class including the least element in $>A forms an ideal Sί0 and the class
including the greatest element (= the discrete space) a dual-ideal S17

in %A. The spaces belonging to this class are very interesting. We
will call such spaces I-spaces. That is, a spaces is an I-space if and
only if any essential13' sequence [xn] fails to converge to all points of
E and each sequence which is ultimately equal to x converges to x
only on it.

DEFINITION. A space is said to be a C-space if each infinite subset
contains the closure of an infinite subset.

The family of all (7-spaces on E forms a dual-ideal in 8^. For,
let X, Y be two (7-spaces in 8^. We may prove that Z is a (7-space
when we put Z = X /\ Y. Let M be an infinite subset of the space Z.
Then there exists an infinite set N and M ^> JVr, since M is a subset
of X and X is a (7-sρace. Also, there is an infinite set N1 and N ^> Nΐ,
since Y is also a (7-space. . jVf = Nf \JNί ζ^N* \J NΪ <^M. Hence
the space Z is a C-space.

11) See [2], pp. 17-24.
12) x(a\*%C) is ultimately equal to x if some of € $X a^>af implies x(a~)=x.
13) A function x(a\^\} from a directed system 5ί into a space X is said to be essential

if Λ;(β|9D is not ultimately equal to all points of X.
14) Problem of E. Cech: See Fund. Math. 34 (1947).
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E. Cechu) has posed the following problem: Does there exist a
non identical set-function / on the set X satisfing the following three
properties: ( i ) /(AΓ)^Λf for each subset M of X, (ii) f(M\JN) =
/(Λf)V7/(AO for each pair M, N and (iii) for every subset M of X,
there is a subset N such that M = f(N) ? If there are such an / and
an X, X is a (7-sρace and a TVspace.

Example of (7-spaces. a) The ωμ-additive spaces15' (»0); the
topological spaces which' satisfy the following axioms:

( I ) For every a-sequence of subsets { M ξ \ , a<^ωμ,,

Σ M ς -
0^,ξ<ί» 0

( Π ) M = M for every finite subset M.

(Ill) M — M for every subset M.
b) The case where the potency of the space is equal to K0 suppose

that X is the set of all rational points of the straight line E1. For
a subset M of X, M denotes the closure of M with regard to the usual
topology on El. Let p be a fixed point of X9 and for each subset M
of X, we define now the closure M as follows: M — M \J p if and only

if the set M contains an open interval of E1 with regard to the usual
topology, and for the others, M = M. Then X is also a C-space. The
countable C-spaces are /-spaces, as we see later, if we assume the
Hausdorffs separation axiom, therefore (b) is also an example of I-
spaces.

We shall give hereafter some characteristics of 7-sρces, C-spaces,
and countably compact spaces, and relations between them.

In this paragraph, " the set" or " the subset" denotes a set with
an infinite potency.

A subset of X is called a hereditary closed set if and only if its
subsets are all the closed sets in X. We see here that the hereditary
closed sets are very scattered sets.

Theorem 12. In a space with additive topology satisfing the T^-axίom,
the following properties are equivalent.

( i ) Space X is a C-space.
(ii ) Each subset contains a closed set in X.
(iii) Each subset is a sum of hereditary closed sets in X.

Proof. (iii)->( i). It is evident from the definition.
( i )-»(ii). Let M be any subset of X. Then there exists a subset Ml

15) See Sikorski [5].
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and M^>M19 since X is a C-space. Similarly, for each n, there is a
subset Mn+I and Mn ^> Λfn+1. If for some n, the set Mn is the closed set,
then this subset Mn is a desired one. But if for each n, Mn fails to
be the closed set, then Mn^ Mn+l (n = 1, 2, 3,...). Consequently, any
set Mn—Mn+l contains at least one point pn. Put P = E\j>n\n = 1,

2, 3, •••], then it is clear that P-PC/7 Mn. Since the set fj Mn is

a closed set, P»—P(^ffMn and P^^M for each ordinal number /*,
»=Ί ._

where we write Pl = P, P2 = P, Pλ =(Pλ~l) for any non-limit ordinal
number λ, and Pλ = 2 ̂  f°r any limit ordinal number λ. Pξ can be

μ<x
a closed set for some ordinal number ξ. This set Pξ is a required one.

(ii)->(iii). Let M be any subset. Then we can find the closed
sets Mn such that M^>Mι and Mn ίg Mn+l (n = 1, 2, 3,...) by (ii). Hence
Mw—Afn+1 has at least a point pw . If we put P = E\j>n\n = 1, 2, 3, ...],
there exists a closed subset Q such that Q d P by (ii). We see here
that set Q is contained in M and is a hereditary closed set. This
completes the proof.

From this theorem, we see easily that for any subset M of a C-
space, I ̂  | > 2«3. | M \, where 3̂  = E[_N\ M^N,\N\> K0].

Theorem 13. In a perfectly normal (T-*)space, the following properties
are equivalent.

( i ) X is an I-space.
( i i ) // I §ί I — KO, αw/ essential function x(a \ SI) mίo JY /CM'k ίo converge

to all points of X.

(iii) ^L is a C-space.

(iv) ί7αc/z subset of X is a non-compact (= non bicompacf) space.

Proof. Verifications of the equivalence ( i ) <->(ii) and of (iv) -> ( i )
are quite elementary and are therefore passed over.

(i)—>(iii). Let M be any subset. Then there exists a subset N
such that M^)N and Nri6) has at most one point by the hypothesis
of the perfectly mormality. We may assume here that the potency
of the subset N is countably infinite. If Nf = \x\ and the elements
of N are xlf $2,... ,α?n,..., that is, N = E[xn\n = l9 2, 3,...], then
xn -f> x (the denial of the convergence) by the hypothesis of (ii). Hence

there is a neighbourhood of x, N(x\ and N-^-=N-N(x} is an infinite
set and M^NΊ.

(iii)—»(iv). Suppose that X is a (7-space. By Theorem 12, any
subset M of ^contains a hereditary closed set JV. Put Np = N—p

16) N ' denotes the set of all cluster points of the set N.
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for each point p in N9 then the family [Np}p^ is of the closed sets
satisfiing the finite intersection property, and ff Np = φ. This show

V£N

that each subset of X is non-compact.

Corollary. In a Hausdorff countable space (== space with additive
topology}, the properties of (i), (ii), (iii), (iv) of Theorem 13 are equivalent.

Theorem 14. In a perfectly normal (T-)space or a Hausdorff countable
T-space X, any subset contains a hereditary closed set or an essential
converging sequence. If each subset of X contains a hereditary closed set,
then X is an I-space (=α C-space), but if each subset contains an essential
converging sequence, then X is countably compact space.

Proof. For each subset M, there is a subset N such that M^>N
and Nr consist of at most a point by the hypothesis of the perfectly
normality (or by Hausdorff s separation axiom in the case of the count-
able space.) If N is a C-space, then its subsets N contains a here-
ditary closed sets in the relative substance N of X, since N^)N, by
Theorem 12. But, since N is a closed set in X, N contains a here-
ditary closed set in X. Secondary, if N is a non C-space, then N
contains an essential converging sequence \xn\ by Theorem 13. But
N—N(^N' and N' has at most one point, therefore, we have an
essential convering sequence which is contained in subset N. The
proof is complete.

(Received February 20, 1953)
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