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Lattices of Spaces

By Junzo Wapa

Let R, and R, be two topological spaces with the same basic set
and having the property that O (R,) > O(R,), where O(R,) (i =1, or 2)
denotes the family of all open subsets in R,. Then we say that R,
is finer than R, and write Rl?R2 (by a binary relation >*). The

family consisting of all topological spaces with the same basic set
forms a lattice under this ordering. Edwin Hewitt [1] has discussed
the various problems on this lattice. In this paper, we shall consider
the lattices consisting of all spaces with the same basic set on the
basis of the neighbourhoods, the closure and the convergence.

§1. General properties of the lattices & and 2,.

Definition. A set X is called a space if a closure operator assigns
to each subset M of X a closure M, and satisfies the condition that
¢ = ¢ (¢ is the empty set), and M\ /N = M \/ N for each pair M and N.
Further a set X is said to be a space with additive topology if it is
a space and satisfies the condition that M > M for each subset M of X.

Let &, 8¢, and ¥, denote the family consisting of all spaces on
the same basic set? ¥, the family of all spaces with additive topology
on E, and the family of all topological spaces on ¥ respectively. We
are going to construct in 2 a lattice by defining a suitable ordering,
that is, for two spaces R,, R, of 8, R, >R, (we say that R, is finer
than R,) if and only if the identical mapping from R, onto R, is
continuous.?

This definition is equivalent to the following one: R, >R, if and
only if for any point z in E, N(R;) DN/(R,), where N (R,Yi =1, or 2)
denotes the family of all neighbourhoods of x in R,;.

Let {R,},., be any family of spaces in €. Then the join of the
spaces R, is the space where family of all neighbourhoods of z is

1) If E is any set of points and if R is any space whose points are the points of E,
then E is said to be the basic set of the space R.
2) See [2], p. 28.
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defined as the family of all subsets consisting of some finite’ intersection
of sets in the family >N,/(R,), and the meet of the spaces R, is the
AN

space where family of all neighbourhoods of x is just the sets in the
family //N,(R,). Hence we see that the family € forms a complete
AEA

lattice under the above ordering.

Further we see easily that a phalanx a(«|A) converges to x on
the join \/,c, R, if and only if it converges to = on all R,, and that
an ultraphalanx a(a|A) converges to x on the meet R, /\ R, if and only
if a(a|A) converges to # on R, or on R,. In fact, it is clear that if
an ultraphalanx a(«a|A) converges to « on R, or on R,, then it also
converges to 2 on the meet R,/\ B,. Conversely, suppose that an
ultraphalanx a(a|A) fails to converge to 2 on R, and on R,. Then
there exist a neighbourhood of z in E,, N,, and a neighbourhood of
zin R,, N,, and for some «;, C 4, a, <« implies a(a)¢ N;\/N,. This
show that x(«a|A) fails to converge to x on the meet R, A\ R,, since
N,\UN, is a neighborhood of # in R, /\ B,. Asitis easily seen, this
fact implies that & is a distributive lattice.

By the fact mentioned above, we have

Theorem 1. The fomily & forms o distributive, complete and atomic
lattice.

We can prove the following theorem :

Thorem 2. If |E|® > 2, every space in & is & join of two compact
spaces® in L.

Proof. Let @, b be two distinct fixed points in £. We define now
the space R, (similarly R,): R, is the space such that N,(RE,) is the
family of a single elment {¥}, and for all « but a, N(R,) is the family
of all subsets of ¥. Then the join R,\/ R, is the greatest element
R, in 8. For every spaces R in & R=RAR,=R/\(RB.,\/R,)=
(R/\ R.)\/(R/\R,). Now, the spaces R /\ R, and R /\ R, are compact,
since R,, B, are compact spaces.

Corollary. Any sub-semi-lattice relative to the join” (or sublattice)
containing the family of all compact spaces in & coincides with the whole
lattice 8, provided that |E|> 2.

Corollary. Ewvery ideal in L is @ join of two ideals whose elements
are all compact spaces, provided that |E|> 2.

3) |A| denotes the potency of the set A.

4) See [2], p. 36.

5) Let L be any algebraic system with an idempotent, commutative, and associative binary
operation x ) y. Then the system L is called a semi-lattice relative to the operation (.
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Proof. Clear, since the family consisting of all ideals in & forms
a distributive lattice® under set-inclusion.

Theorem 3. Ewvery space R in & is a meet of two T,-spaces” in L.
Proof. Let the points of E be well ordered :

E =2, T, X3y ..cs Lpyeeey Tpyoen A< N)»

where )\, is some ordinal number with the corresponding cardinal
number |E|.

We define now two spaces R, and R,: R, is the space where
family of all neighborhoods of x, is E[M|M >M,] for each A, M, being
the set of elements z,, %,,..., ®. R, is the space where family of
all neighbourhoods of z, is E[N|N D N,] for each \, N, denoting the
set of elements &y, @yi1s --- s Luy -..(8<Np). Then R, /\ R, is the least
element in €. We see here that the theorem will be proved by the
same method as with Theorem 2. ‘

Corollary, Any sub-semi-lattice relative to the meet® (or sublattice)

containing the family of all T,spaces in L coincides with the whole
lattice L.

REMARK. (1) In Theorem 3, T,-space cannot be replaced by T,-
spaces or by T,-spaces,” for the family of all 7,-spaces in ¥ forms
a proper dual-ideal in 2.

(2) By Theorem 2 and Theorem 3, we see easily that any join-
irreducible element® in £ is a compact space and any meet-irreducible
element® in € is a 7,-space.

(3) The family &, is a sublattice in £ and the previous theorem
in € are all established in the lattice &,.

6) See, for instance, Birkhoff [3,] p. 141.
7) We define the separation axiom of the space R:
To-axiom—for two distinct points in R, there exists some neighbourhood (need not
be an open set) of one of them, which fails to contain the other.
T, -axiom—for two distinct points p, g in R, there exist a neighhorhood (need not
be an open set) of p which fails to contain ¢, and a neighborhood of ¢ which fails
to contain p.
T'; (Hausdorff)-axiom—for two distinct points p, ¢ in R, there exist a neighborhood
of p, N1, and a neighborhood of g, N, such that gé& Ny, p& Ny and Ny (| Ny = ¢.
A neighborhood need not be an open set.
A spcce is said to be a Tp-space, a T4-space, or a T3-(Hausdorff) space if it
satisfies T%~, T";-, or Ts-axiom respectively.
8) An element a of a lattice is called join (meet)-irreducible if
x\/y=a (x/\ y=a) implies x ==a or y =a.
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We remark finally that for any subset M in E, the closure M" of
M in the meet B of the family {R,},, is equal to the set S\
where J%* denotes the closure of M in R, for each \, and tﬁ;% the
closure % of M in the join R’ of the completely ordered family
{R} .\, (see, §2) in £ is equal to the set ]]MR*.

AEA

§2. The lattice ¥, .

Let R, and R, be two spaces in ¥, having the property that
O(R,) D O(R,), where O(R;) (i =1, or 2) denotes the family of all open
subsets in ;. Then we say that R, is finer than R, and write R, >* R,.

The family £, forms a lattice under the ordering. But the lattice 2,
does not form a sublattice in &, provided that |E|>>3: let B, be the
space where family of all neighborhoods of ax is the family N(R,)
=E[N|N >a, «] for any z, and let R, be the space such that for a
fixed point @, N(R,) is the family of a single element {£}, and for
any point  but @, N(R,)=E[N|N>2]. Then we see easily that R,
and R, are both topological spaces, but the meet B, /\ R, in £ is not
a topological space, provided that |F|>3. Furthermore %2, is a
complete and atomic lattice, but fails to satisfy the distributive law:
let R, be the topological space where family of all open subsets is
OR)=E[M|M>a, b]\J{$}, where two points a, b distinct fixed points
of £. Let R, and R; be two topological spaces such that families of all
open subsets are O(R,) =E[M|M $a]\J{E} and O(R;) =E[M|M 3b]\J
{E'{ respectively. Then we see easily that B, /\ 4 (B, \/+«Rs)is not equal
to (B, \y B,) \/x (R, /\« B;), where the symbols \/, and A\, are the
join and the meet in &, respectively.

We remark finally that for two topological spaces R, and R, (in
£,), the join B, \/4x R, in &, coincides with the join B, \/ R, in £.

Theorem 4. Ewvery T,-topological space is a join of two compact
(= bicompact) T,-topological spaces.

Proof. We may restrict ourselves to the case of |E|>2. Let a,b
be two distinct fixed points in E. Let R, (similarly, R,) denote the
topological space such that the family of open subsets consist of all
subsets (in £) which fail to contain the point @ and of all subsets
(in F) having a finite complemetary set. The space R, is clearly a
bicompact T;-space. We see here that the join R, \/4 B, in £, is the
greatest element in £,, in other words, a discrete space S,. Let R be
any T,-space in &,. Then R=RAS;=R/\ (B, \/xRB,) =R /\ (R,
VR,)= (R )\ R,)\/(B/\R,) by the distributivity of &, but we can prove
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easily that R /\ R, and R /\ R, are both topological spaces. In fact,
let M be any infinite subset in R* = R /\ R,. Then M"™ = y"\) "™
— I JM\J @)= T\, B = TF\Jo = Ja \J i\ Ja " =
(M™\J a)\J(M"\J &)= M"\J a, therefore, R* = R /\ R, is a topological
space. Hence R =(R /\ R.,)\/(R/\ BR,) =(R /\ R.)\/x(R /\ R,). Since
the family of all T,-spaces forms a dual-ideal in %, the spaces R /\ R,
and R/\R, are both bicompact T7,-topological spaces. This completes
the proof. »

In this theorem, T,-spaces cannot be replaced by T,-spaces, for
non regular, T,-spaces cannot be a join of two bicompact T,-spaces
by the following lemma.

Lemma. Let {R,},., be a family of spaces in £,. Then the join
\Vrea B in 8, is homeomorphic to the diagonal line D in the Cartesian
product P,¢ R,.

Proof. The diagonal line D in the Cartesian product P,.,R, is
represented as the set E[(z, . @, ...); € £]. We define a function ®(x)
from B = \/xeAR Onto D ; ®(x) = (x, , @, ...)€ D for any » in B. Clearly
®(x) is a homeomorphism from R onto the relative subspace D in the
product space P,c,R,, since a phalanx a(a|A) converges to x on the
join \/ycnR, if and only if it converges to x on all R,

Theorem 5. Every T,-topological space is homeomorphic to the diagonal
line D in the Cartesian product of two bicompact T,-topological spaces.

Proof. It is evident from Theorem 4 and Lemma.

ReEMARK. Every T,-topological space R is homeomorphic to the
diagonal line D in the product space R; x R, of two bicompact T,-spaces
R, and R,. Hence D (the closure in R,xR,) is a compactification of
R, that is, T = D is a bicompact T,-space and contains B as a dense
subset. But it is different from the Wallman’s compactification of R.
This compactification 7 has the property that |T|=|R]|.

DEFINITION. A property of the topological spaces is said to be
hereditary if it is enjoyed by evrey subspace (in its relative topology)
of a space enjoying the property. The family {R,},, is said to be
completely ordered if for any \;, \,, €A, Rj is finer than Rz, or
conversely.

E. Hewitt® has posed the following problem: Can the hereditary
property be preserved under the formation of join of complete ordered

9) See [1].
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families?
In this connection, we have the following theorem.

Theorem 6. Let P be o hereditary property. Let spaces Ry(A€A)
in L, have the property P respectively, and let the Cartesian product
P, R, also have the property P. Then the join \/\c, R has the property P.

Proof. Clear by Lemma.

This theorem implies the following theorem.

Theorem 7. Let {R},c, be any family of regular (Hausdorff) spaces in
L,. Then the join \/,c, R is also a regular space. If all spaces R are com-
pletely regular (Hausdorff), then the join \/,c, B also enjoys the property
of the completely regularity.

This theorem has been proved by M. J. Norris [4] by using the
open sets.

Corollary. Let {R},., be any family of wuniform spaces’® in £,.
Then the join \/\c, R\ is also a uniform space.

Theorem 8. Let {R,}:., be any completely ordered family of perfectly
normal spaces in L,. Then the join R =\/r, R, is also a perfectly
normal space.

Proof. We remark first that for any subset M in FE, the closure
M in R is equal to the set ﬁMR‘, M" being the closure in R, for each
=1

i. Suppose that A C R is a closed set. Since the space R, is perfectly
normal, there exists a continuous function f,(2) in R, such that 0 < f(«)
<1 for all points = in R, and f(x)=0 if and only if x€ A™-

For z € R, let us put

OEDERION
t=1

Clearly f(x) is a continuous function on R such that 0 < f(z)<1
for all points « in R and f(x)=0 if and only if x € A, therefore, R is
a perfectly normal space.

DEFINITION. A Hausdorff space is said to be a minimal Hausdorff
space if it has the family of open sets such that no proper subfamily can
be the family of open sets for a Hausdorff topology on E. Similarly, mini-
mal regular space and a minimal completely regular space are defined.

A family % of real-valued functions on £ will be said to distinguish
between every pair of distinct points of E if for any pair of distinct

10) See [2], p. 73.
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points of E, wx, y, there exists a function f €U such that f(a)=F f(»).
For any family U of real-valued functions on F, we define the space
Ry as follows: if f is an element of A and « and B are real numbers
such that a <@, then the set E[x|x € R, a < f(x)< B8] will be open
in Ry, and the family of all open subsets of Ry is formed by taking
arbitrary unions and finite intersection of all such sets, with arbitrary
a, B, and f€A. If the family A distinguishes between every pair of
distinct points of F, then the space R‘JI is a completely regular space.

M. Katétov has proved that a Hausdorff space is minimal Hausdorff
if and only if it is semi-regular and H-closed.

Theorem 9. A completely regular space is minimal (completely regular)
if and only if it is bicompact.

Proof. It is evident that a bicompact completely regular (=bicom-
pact Hausdorff) space is minimal. Conversely, suppose that R is s non bi-
compact, completely regular space: and 8={V,},., be an open covering
of R for which no finite subcovering exists. Take three distinct points,
x, 9, and @ in R, where a is a fixed point. Since there exists a subfamily

{Vi,, Vigs ..., Vi Of B such that F =R — 31V, fails to contain the
i=1

points z, ¥, and a, and since further the space R is completely regular,
there is a continuous function f,, on R such that f,,(p)=0 for p€(a)
\J(z)\J F and f,(y)=1. Similarly, for two distinct points v, a, there
exists a continuous function f, on R such that f(p)=0 for p€(a)\J F
and f(y)=1. Weput A =E[f,|x€eR—a,y€ER—a,z=+=y]|\JE[f,|JVUER
—a]. Then we see easily that the space Ry is completely regular and
the family O(Ry) is a proper subfamily of O(R). Therefore R is not
minimal and the proof is complete.

Corollary. A Stone space is minimal (Stone) if and only if it is
bicompact.

Proof. It is evident, since a minimal Stone space is necessarily
completely regular.

A bicompact regular space is minimal regular, but I do not know
whether a minimal regular space is bicompact or not.

For any space R in %,, let C(R) be the family of all real-valued
continuous functions on B. If R and R’ are two spaces in &, such
that R?R’, then evidently C(R) > C(R').

Conversely, we see

Theorem 10. Let R and R’ be a completely reqular space and a space
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(which meed not be completely regular) in &, respectively. If C(R") D C(R),
then R’?R in Bj.
We shall prove first the following Lemma.

Lemma. If R and R' are two completely regular spaces in £, such
that C(R)= C(R'), then R coincides with R'.

Proof. we see easily that if S is a completely regular space, then
the space R, coincides with S. Hence R = R, = R,x, = R/, since
C(R)=C(R").

Proof of Theorem 10. If C(R')> C(R), then C(R)=C(R)\ C(R')
= C(R \x R'). Since the space R is completely regular, the space
R /\x«R' is also completely regular. By Lemma, R /\4R’ coincides
with R, that is, R'>*R in &,.

Moreover we have,

Theorem 11. A T -space R (in ;) is completely regular if and only
if it has the property that C(R") > C(R) implies R' >R for any space R’
in 2. *

Proof. Suppose that B has such a property. Then C(R) distin-
guishes between every pair of distinct points of R. Otherwise, the
space R, fails to satisfy the T,-separation axiom, and C(R,) = C(R).
But R, ;1>R, since R is a T,-space, which is a contradiction. Hence

the space R, is completely regular, and we see at the same time that
C(Ry) = C(R) and R>>'< Ry,x. But, by the property of R, Ry > R,
since C(Ry) = C(R). Therefore R coincides with Ry, and conse-
quently, R is completely regular.

The converse is clear by Theorem 10. This completes the proof.

We remark finally that any expansion of a regular space is a Haus-
dorff space but in general not a regular space, and any expansion of
a completely regular space is a Stone space but is not always a com-
pletely regular space, where the space R’ is said to be an expansion
of R if R’ %R.

§3. Two dual-Ideals in £,.

The topology of a space R with additive topology is also defined
by the convergence, that is to say, a notion of the convergence
determines, for each function x(e¢|) from a directed system U to R
and for each point « of R, whether #(a|2) converges to  or not (the
statement “2(a|?A) converges to x” is written w(a);}i»x, or merely
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2(a) — ), and satisfies the following conditions.'?

(1) a(a]A) converges to z if and only if for each subsystem A’
which is cofinal in 2, there exists some phalanx (8|D), which is con-
tained in (') and converges to z, D being the family of all subsets in E.

(II) If a(a|NA) is ultimately equal'® to w», then it converges to =z.

DeriniTION. We will call a space;’X a Fréchet’s L-space if a
notion of the convergence determines, for each sequence {x.} and for
each point z in X, whether z, converges to # or not (the statement
« g, converges to x” is written z,—2) and satisfies the following
conditions.

(I) If x, converges to z, then xn(n, < n,<-..) also converges to x.

(I) If z, =2« for all =, then «, converges to x.

Each space with additive topology can be regarded as a Fréchet’s
L-space by this definition. We define next the L-equivalence: Two
spaces R, and R, in £, are said to be L-equivalent if and only if
whenever a sequence z, converges to £ on R,, then it also converges
to 2 on R,, and conversely. Indeed, two spaces R, and R, in £, belong
to the same type of Fréchet’s L-spaces if they are L-equivalent.

Considering the L-equivalence, we see easily that the equivalence-
class including the least element in 24 forms an ideal %, and the class
including the greatest element (= the discrete space) a dual-ideal 9,
in £,. The spaces belonging to this class are very interesting. We
will call such spaces I-spaces. That is, a spaces is an I-space if and
only if any essential'® sequence {x,} fails to converge to all points of

E and each sequence which is ultimately equal to x converges to =
only on it.

DerINITION. A space is said to be a C-space if each infinite subset
contains the closure of an infinite subset.
- The family of all C-spaces on E forms a dual-ideal in & 4. For,
let X, Y be two C-spaces in £,. We may prove that Z is a C-space
when we put Z=X/\Y. Let M be an infinite subset of the space Z.
Then there exists an infinite set N and M > N7, since M is a subset
of X and X is a C-space. Also, there is an infinite set N, and N > N7,
since Y is also a C-space. N?= Nf\/NYCN"\JNi C M. Hence
the space Z is a C-space.

11) See [2], pp. 17-24.

12) x(a|Y) is ultimately equal to x if some a’€ Y a>a’ implies x(a)= x.

13) A function x(a|) from a directed system 9 into a space X is said to be essential
if x(a|Y) is not ultimately equal to all points of X.

14) Problem of E. Cech: See Fund. Math. 34 (1947).
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E. (fech“’ has posed the following problem: Does there exist a
non identical set-function f on the set X satisfing the following three
properties: (i) f(M) > M for each subset M of X, (ii) f(M\JN)=
f(M)\J f(N) for each pair M, N and (iii) for every subset M of X,
there is a subset N such that M = f(N)? If there are such an f and
an X, X is a C-space and a T,-space. .

Example of C-spaces. a) The w.-additive spaces'® (u _>0); the
topological spaces which' satisfy the following axioms:

(I) Por every a-sequence of subsets {M.}, a < w,,

2 M= 3} M

0= <o 0<f<a

(II) M = M for every finite subset M.

(I11) M = M for every subset M.

b) The case where the potency of the space is equal to 8,; suppose
that X is the set of all rational points of the straight line E!'. For
a subset M of X, M denotes the closure of M with regard to the usual
topology on E'. Let » be a fixed point of X, and for each subset M
of X, we define now the closure M as follows: M = M\ J p if and only
if the set M contains an open interval of E! with regard to the usual
topology, and for the others, M = M. Then X is also a C-space. The
countable C-spaces are I-spaces, as we see later, if we assume the
Hausdorff’s separation axiom, therefore (b) is also an example of I-
spaces.

We shall give hereafter some characteristics of I-spces, C-spaces,
and countably compact spaces, and relations between them.

In this paragraph, “the set” or ‘“the subset” denotes a set with
an infinite potency.

A subset of X is called a hereditary closed set if and only if its
subsets are all the closed sets in X. We see here that the hereditary
closed sets are very scattered sets.

Theorem 12. In a space with additive topology satisfing the T,-axiom,
the following properties are equivalent.

(i) Space X is a C-space.

(ii ) Fach subset contains a closed set in X.

(iii) FEach subset is a sum of hereditary closed sets in X.

Proof. (iii)—(i). It is evident from the definition.
(i)—(ii). Let M be any subset of X. Then there exists a subset M,

15) See Sikorski [5].
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and M D M,, since X is a C-space. Similarly, for each #, there is a
subset M,,, and M, D M,,,. If for some u, the set M, is the closed set,
then this subset M, is a desired one. But if for each », M, fails to
be the closed set, then M, 2 M,,, (=1, 2, 3,...). Consequently, any
set M,—M,,, contains at least one point p,. Put P=E[p,,\n=1.

-««], then it is clear that P—P C ]] M,. Since the set ﬁ M,
a closed set, P»—P [] M, and P'*(M for each ordinal number s

where we write; P1=P, P2 = P P* = (P*1) for any non-limit ordinal
number A, and P» =3 P» for any limit ordinal number . P¢ can be

WA

a closed set for some ordinal number £ This set P* is a required one.

(ii) — (iii). Let M be any subset. Then we can find the closed
sets M, such that ¥ DM, and M, 2 M,,, (n=1,2, 3, ...) by (ii). Hence
M,—M,,, has at least a point p,. If we put P=FE[p,|n=1,2,3,...],
there exists a closed subset @ such that @ CC P by (ii). We see here
that set @ is contained in M and is a hereditary closed set. This
completes the proof.

From this theorem, we see easily that for any subset M of a C-
space, |R,|>2%. |M|, where N, =E[N|M DN, |[N|>8,].

Theorem 13. In a perfectly normal (T-)space, the following properties
are equivalent.

(i) X is an I-space.

(ii) If |A|=N,, any essential function x(a|N) into X fails to converge
to all points of X.

(iii) X s o C-space.

(iv) Each subset of X is a mon-compact (= mon bicompact) space.

Proof. Verifications of the equivalence (i)« (ii) and of (iv) - (i)
are quite elementary and are therefore passed over.

(i)—(iii). Let M be any subset. Then there exists a subset N
such that M SN and N’'® has at most one point by the hypothesis
of the perfectly mormality. We may assume here that the potency
of the subset N is countably infinite. If N’ = {x} and the elements
of N are @,, %y,...,%,,..., that is, N=F[z,|ln=1, 2, 3,...], then
x,- 2 (the denial of the convergence) by the hypothesis of (ii). Hence
there is a neighbourhood of z, N(x), and N, = N-N(z) is an infinite
set and M D N,.

(iii) — (iv). Suppose that X is a C-space. By Theorem 12, any
subset M of X contains a hereditary closed set N. Put N,=N—p

16) N’ denotes the set of all cluster points of the set N.



12 J. Wapa

for each point p in N, then the family {N,},.r is of the closed sets
satisfiing the finite intersection property, and [/ N, =¢. This show
ey

that each subset of X is non-compact.

Corollary. In a Hausdorff countable space (= space with additive
topology), the properties of (i), (i), (iii), (iv) of Theorem 13 are equivalent.

Theorem 14. In a perfectly normal (T-)space or ¢ Hausdorff countable
T-space X, any subset coniains o hereditary closed set or an essential
converging sequence. If each subset of X contains o hereditary closed set,
then X is an I-space (=a C-space), but if each subsetl contains an essential
converging sequence, then X is countably compact space.

Proof. For each subset M, there is a subset N such that ¥ DN
and N' consist of at most a point by the hypothesis of the perfectly
normality (or by Hausdorff’s separation axiom in the case of the count-
able space.) If N is a C-space, then its subsets N contains a here-
ditary closed sets in the relative substance N of X, since N DN, by
Theorem 12. But, since N is a closed set in X, N contains a here-
ditary closed set in X. Secondary, if N is a non C-space, then N
contains an essential converging sequence {z,} by Theorem 13. But
N—NCN' and N’ has at most one point, therefore, we have an
essential convering sequence which is contained in subset N. The
proof is complete.

(Received February 20, 1953)
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