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Abstract
In this article we study a priori upper bounds of subsolwicsatisfying a
certain differential inequality ) below on a non-compact complete Riemannian
manifold (M, g) without any Ricci curvature condition. Our method depends o
a volume estimate of open subsets where those solutionsfysaticertain strong
subharmonicity. Several applications in conformal defation of metrics and value
distribution of harmonic maps are given.

1. Introduction

Let (M, g) be a connected Riemannian manifold of dimensmnand A4 the
Laplacian defined byAqu := Tracg VVu for a smooth functioru on M. Through-
out this article M, g) is always assumed to h@on-compact completand connected
unless otherwise stated. We are interested in a priori uppands of a non-negative
smooth functionu satisfying the following differential inequality:

(%) Agu+ku—Iud*t >0

on M wherek and| are continuous functions oM, anda > 0 is a constant re-
spectively. A differential geometric interpretation of aigui upper bounds of such a
subsolution appears in conformal deformation of metricd ealue distribution of har-
monic maps and has been studied under a certain curvatuditioanof g. Neverthe-
less our method does not depend on any curvature conditignaofd depends only on
a volume estimate of an open subset whergatisfies a certain strong subharmonicity.
It can be stated as follows.

Theorem 1.1. Let a smooth function u on M satisfy the following differahtn-
equality

Cua+l
Agu > ——
T @Hrp
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on an open subsdu > §} # @ for certain constants C- 0, a > 0 and § > 0, where
r. is the distance function from a fixed point &f M. If b < 2 (resp b = 2), then

iming 09V ) _, ( M:+oo>
logr

r—>+o00  2-b

resp liminf

r—+oo

)

where \ (r) is the volume of the geodesic ball B) centered at a fixed point.xe
M and of radius r> 0.

This result is a refinement of Theorem 1.1 in [18] and playsuxiat role to show the
following a priori upper estimate afi satisfying ).

Theorem 1.2. Let u be a non-negative smooth function satisfying therdiitel
inequality (x) on M and the functions k and | if«) satisfy the following condition

k < HlI for some constant H> 0
and
| > ——— for certain constants >0 and beR
(1+r,)P

on M respectivelySuppose the following volume growth condition either

log V
@) IjTjgijﬁ’m<+m it b<2,
or
. logV. ,
2) imint 29V L0 i p=2
r—+oo  logr
Then

supu < H*2,
M
Especially u vanishes identically if H 0.

REMARK 1.1. The above volume growth condition is weaker than a decay
dition of Ricci curvature studied in [14, 15] (cf. [14], Themn A and [15], Theo-
rem 0.2). Actually in view of the Laplacian comparison threzar(cf. [6]), if there exist
constantsC > 0 andb < 2 such that

Ricg(X) = —C(1 +r,(x))>P
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for any x € M, then one can see that

0
limsu pgri)(() +oo if b<2 (resp I|msupgTX() if b:2>.
r—+o00 r—+o0o
In caseb = 2 the above pointwise lower bound condition of Ricci cunvatcan be
replaced by the following weaker condition. Namely if thegatve partRy _ of the
Ricci curvature of M, g) satisfies the following

/ R{, _dvg = O(r¥)
By, (1)

for anyr > 0 and positive integerp, k with p > m—1 andp/2p+k)(m—1) « 1,
then the condition (2) is satisfied (cf. [7], Theorem 1.1 armtdfiary 1.2).

As an applications of Theorem 1.2, we can show the following.

Theorem 1.3. Under the condition eithe(1) or (2) of Theorem 1.2for b < 2,
suppose(M, g) has dimension n> 2 and the scalar curvaturegsof g satisfies the
following inequality

L
§ < _m for some constant = 0
*

on M. Then any conformal transformation f @M, g) which preservesgsi.e., the
scalar curvature K-y of f*g coincides with g is an isometry(cf. Corollary 3.1
and [14], Corollary 1).

Theorem 1.1 is deeply related to a generalized maximum iptendor the Laplacian
Ag on a complete manifoldM, g). In fact we can show the following in terms of our
formulation.

Theorem 1.4. Suppose the condition eithét) or (2) of Theorem 1.2s satisfied
for b < 2, and a smooth function u is bounded from above onT¥en for anys > 0
and xe M, there exists a point xof M such that

@) u(x) = u(xe),
.. &
(||) Agu(XE) < m

Furthermore if0 < b < 2 and there exists a continuous functianon a real line
such thatAgu > A(u) on M, then one can take the above point which satisfies
[VUu|(X.) < & simultaneously
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REMARK 1.2. In [18], Theorem 2.3 we have announced that a genedalizax-
imum principle for Ay can be induced under the condition (1) for= 0 in Theo-
rem 1.2. However its proof is incomplete and so the problerstils unsolved except
the above case (cf. [10]).

By Theorem 1.4 we can restore several results stated in §B3]Applications without
proof. For instance we get the following.

Theorem 1.5. Under the condition eithe(1) or (2) of Theorem 1.2for b < 2,
suppose that f(M, g) — (N, h) is a harmonic map to an Hadamard manifoltd, h)
and the energy density(f) of f satisfies the following inequality

C
e(f) > m for some constant G 0

on M. Then the image of f is unboundédd particular if (N, h) is an n-dimensional
Euclidean spacéR", g.) provided with Euclidean metricegand the condition eithe¢l)
or (2) of Theorem 1.2is satisfied for0 < b < 2, then the image of f can not be
contained in any non-degenerate coneRSf (cf. Corollary 3.6, Theorem 3.7nd [9],
Theorem B).

In the second section we give the proof of the above resultemxTheorems 1.3
and 1.5. Their applications including those theorems avergin the third section.

REMARK 1.3. In preparation of this work, an article [11] has beenlighled by
S. Pigola, M. Rigoli and A.S. Setti. In the paper they study @rpupper bounds of
u satisfying &) from a view of volume growth condition of complete manifeldnd
give certain applications related to our results. Howeteirtmethod can not allow us
to study the casb = 2, i.e., (M, g) has a polynomial volume growth. The upper bound
2 of b is originated from the fact that\y is the 2-Laplacian which is a special case
of the p-LaplacianAg , defined byAg pu := div(|Vu[P~2Vu) for u € C®(M).

2. A volume estimate for a strong subharmonicity of solutiows

Let (M, g) be a complete non-compact Riemannian manifold of dimengeioas
in the introduction and, the distance function from a fixed poirt € M. We restate
Theorem 1.1 in the introduction.

Theorem 2.1. Let u be a smooth function ofM, g) satisfying the inequality

Cua+l
(1) Agu> =

= @erp O {u>38}#p for C;>0, a>0 and §>0.
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If b <2 (resp b=2), then

logV; log V.
fiming 129V _ resp liminf logVu () _ L )
roteo 2 r—+c  logr

Proof. We may assume sy = +oo. If u* := sug, u < +oo, then puttingv :=
1/(u* —u) (u does not attairu® on {u > 4} by (2.1)) one can verify thangv >
C182 %2/ +r,)° on {v > &8,} with 8, := 1/(u* —8) > 0. We have only to discuss
by replacingu by v for a = 1. Since we can assume that > § + C,} # ¢ for any
C, > 0, we replaceu by u/(§ + Cp) and C; by C := Cy(8 + C2)? > 0 respectively,
and setk, := 1/(1+r,)" in (2.1). The inequality (2.1) can be modified into the follow
ing form:

(2.2) Agu > Ck,u®t on M*:={u>1} #0.

From the above observation, we can take the consfaatbitrarily large in (2.2). We
choose a non-negative smooth convex functioon a real lineR such thati(t) = 0
if t <21, A(t) >0, M) >0, A"t)>0ift >1andA(t)=1ift > 1+n fora
sufficiently smalln > 0 and a Lipschitz continuous functian on M such that 0<
o <1, Suppp) C By (2r), w=1 on B, (r), and |Vw| < 1/r. By using (2.2), a direct
calculation shows the following for anp andq > O:

div(0®VA(uP)) = pA' (UP){(p—1)o™uP~?| Vu +0®uPt Agu+2qw® ™ uP Vo, Vu)}

> pA'(UP){(p— D)w*uP 2| Vu*+Cao®k,uP*? — 200 tuP VUl Vel .
By integrating the both sides and hypothesis, for any 0 we get
(p— l)/wzqk’(up)up_2|Vu|2dvg +C/w2qk*x’(up)up+""dug

< 2q/a)zq’l)n’(up)uF”1|Vu||Va)|dvg

< S/wzq)\’(up)up*2|Vu|2dvg +%2/w2(ql)k’(up)up|Vw|2dvg.
For e = (p — 1)/2 > 0 we obtain
(2.3) f ®k, A\ (UP)UP* dug < o / 0?@ DN (UP)UP| Ve ? dug.

Clp—-1)

By settingq = (p+a)/a > 1 in (2.3), the following holds:

2(p +a)?

2(p+a)/ /
(24) /(,() p+a ak*)\. (Up)up+advg < m

w?PRUP) (UP)| Vo ? dug.
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The Holder inequality yields the following:
/pr/aupA’(up)|Vw|2dvg
p/(p+a) a/(p+a)
< ( / w2<P+a>/ak*x(up)uP+advg> ( / k;P/a,v(up)|Vw|2<P+a>/adug> )

Since there exists; > 2 depending orC such thatBy (r) N M* # @ for anyr > ro,
by substituting the above inequality into the right handesid (2.4), we get

(2.5)
(pta)/a
2(p +a)? ) _
kA (UP)UP dug < (7 / P2/ (UP)| Ve | XP*)/2 .
/l;x*(r) () ’ a?(p—-1)C B, (2r.r) % ) g

where By (2r,r) := By (2r) \ By (r) for anyr >rqp. We set
F(r, p) ::/ A (uP)dvg >0
Bx.(r)

for anyr >rg and p > 1. Sincer 2(1 +r,)° < 2*(1 +r)P2for1<r <r, < 2r and
b < 2, the right-hand side of (2.5) can be estimated as follows:

(p+a)/a
2(p +a)? ) / _
e L/ kC p/ay /P |Va)|2(p+a)/a dv
(aZ(p - 1)C By, (2r.r) ( ) ¢

25(p + a)? )(p+a)/a

= c(b(r)F(zrv p) (az(p _ 1)C(1 +r)2—b

whereap(r) = (1 +r)™P if b > 0 andap(r) = (1 +2)~® if b < 0. SinceA’(uP) > 0
if and only if u > 1, by combining this estimate with (2.5), we get for any> rq
andp>1

25( p+ a)2 >(p+a)/a

(2.6) F(r, p) < Bo(r)F(2r, p) <a2(p “1)C(L+r)2 D

wherefp(r) =1if b> 0 andBy(r) = (L +2) ™ if b < 0. If r > 1 andb < 2, then

we set
a’C(L+r)>®
p(r) = —

Since we may assume tha(r) > a+ 2 for anyr > 1 by takingC arbitrarily large,
we get

2>(p(r) +a)
a?(p(r) —1)C(1 +r)2z-b

1
> forany r > 1.

=<
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By putting p = p(r) and F(r) := F(r, p(r)) in (2.6), we have

1\ (PM)+a)/a
) for any r >rq.

@) F0) = 0F@) (5

We fix r with r > 2rg > 4 and assumé < 2. Since there exists an integler> 1 with
270D < ro/r < 275, by puttingr; = 2/r and using (2.7), we can see

1 (285 teva) /o

F(ro) < Bo(r)°%/™ <§> F(r)

B, log,(r /ro) aCrzb/21+2
r r 2 1

r 2
which implies

aClog2 max—b, 0} (log(1+2))?> logF(r)
213-2b r2-blog2 = r2-b

for anyr >r(C, a, b) with a sufficiently larger (C, a, b) > ro. By takingr(C, a, b) so
large again we get

aClog2 logF(r)
214-2b — ,2-b

for anyr > r(C,a, b). Since we can tak& arbitrarily large andF(r) < Vi (r) by
supk A’ = 1, we attain the conclusion. i = 2, then byg,(r) = 1 we get the following
by the same argument as above:

’

ri\ @C/2%)+1
F(ro) < ()
which implies

aC - logF(r)
29 = logr

for anyr with r > r(C, a, 2) > 0. Therefore we attain the conclusion similarly. [
Now we are in a position to show Theorem 1.2 stated in the diirton.

Proof of Theorem 1.2. Ifu > HY3} # ¢, then takinge > 0 with {u > (H +
e)¥3} # @, u satisfiesAgu > Cu*t/(1 +1,)° on {u > §} for C; = eL/(H +¢)
and § = (H +¢)¥/2. However this contradicts the volume growth condition iewiof

Theorem 2.1. O

As a corollary of Theorem 1.2 we get the following.
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Corollary 2.2. Let u be a non-negative smooth function u satisfying therdiff
tial inequality (¥) and the function Kresp I) in (%) satisfy the following

K L
k < m (resp | > m) for K >0 (resp L > 0) and c(resp b) e R

on M. If the condition eithe(1) or (2) of Theorem 1.2is satisfied for b< min{2, c},

then
K 1/a
supu < [ — .
Mp _(L>

Especially u vanishes identically on M if ¥O.

Proof. Sincek < (K/L)I if b < ¢, the assertion follows from Theorem 1.2 im-
mediately. ]

The difference of two solutions of«] can be estimated as follows (cf. [19], Theo-
rem 4.9).

Corollary 2.3. Let uy; and w be non-negative solutions of the equality
Agu+ku—Iludt =0

on M, where h and k satisfy the assumption @heorem 1.2respectively If
the condition of either(1) or (2) of Theorem 1.2is satisfied for b< 2, then
supylup — up] < HY3,

Proof. By settingw := (u; — Uy)?, one can verify thatw satisfies the inequality
Aqw > —2kw + 2w@2* on M. Hence the conclusion follows from Theorem 1.2
immediately. O

Here we show Theorem 1.4 stated in the introduction.

Proof of Theorem 1.4. We may assume thiatloes not attairu* := sup,u <
+00 on M. We pute, = min{e, u* — u(x)}/(1 + min{e, u* — u(x)}) > 0 for a fixed
constante > 0 and pointx € M respectively. We set :=1/(1 +u* —u) > 0 and

e w?P(y) }
(L+r.(y)P

for any positive integerp. One can verify thatM, C My and I'y C Iy for any p >

g > 1 in view of the equalityAqwP = (p/q)wP~ 944w + p(p — q)wP*?|Vul?. By

Theorem 2.1 the volume growth condition implies tl&§ := MyN I, is a non-empty,

Mp:=1{y € M;wP(y) > 1—e) and I :={ye M; AquP(y) <
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and unbounded subset ™ for any p otherwisewP satisfies 1- ¢, < Sups, wP <1
and AgwP > e,w?/(1+r,)° on {wP > sup; wP} #@. Moreover ify € Xy, for p > 1,
then one can see tha(x) < u(y) and

(2.8) Agu(y) < (p+1)(1— )" PIVUIA(Y).

s
p(L +r.(y))°
The estimate 2.8 implies that any point &f; is the desired one. To show the latter
half assertion, suppos&u| > n on ¥; for a constant; > 0. Clearly we can verify
that X, C X, for p > g > 1, and ﬂ;‘fl X, = ¥ becauseu < u* on M. Hence for
each pointy, € X, we geti(u*) = limp_ 1o 2 (U(Yp)) < liMpoioo AgU(yp) = —00
by (2.8). This is a contradiction. ]

As a direct consequence of Theorems 1.4 and 2.1 we can oltaifollowing simi-
larly to an aspect by Cheng and Yau (cf. [3], Corollary).

Corollary 2.4. Let u be a smooth function satisfying the inequality

A(U)
S ey

on M, wherea is a continuous function oR such that
Alt) > C.t*t for any t>e¢ with certain constants & 0,¢ >0 and C > 0.

If the condition either(1) or (2) of Theorem 1.2is satisfied for b< 2, thensup, u <
¢ and A(sup, u) < 0. Especially if u> 0 and 1 satisfies the above property for any
small ¢ > 0, then u= 0. Moreoverinfy |Vu|=0if 0<b < 2.

REMARK 2.1. As a related topic, Tachikawa showed a non-existeneerdim of
harmonic maps fronR™ to an Hadamard manifold with negative sectional curvature
under a certain non-degenerate condition which is simiathe condition (3.2) be-
low (cf. [17], Theorem 1). His result can be also induced bylgpg Corollary 2.4
to A(t) = sinhkt (x > 0) andb =2 (see the inequality (2.2) in [17], p.152).

We can also get the following theorem which is related to arptiound estimates of
solutions for a certain Poisson equation (cf. [19], Corgll4.3).

Corollary 2.5. Let u be a smooth solution of the following equation

_ Mu)

on M, where A is a continuous function on a real line such thaft) > C,t3"!
(resp A(t) < C_t}) fort > a» >0,a>0and C. > 0 (respt < o_ < 0 and
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C_ > 0). If the condition either(1) or (2) of Theorem 1.2is satisfied for b< 2, then
a_ < infyu < supyu < «,. Especially if oy = o = 0, then u= 0. Moreover
infy [Vul|=0if 0<b<2.

3. Applications in differential geometry

Let (M, g) be a complete non-compact Riemannian manifold of dimensic> 2
and f: (M, g) — (N, h) a smooth map to a Riemannian manifol,f). f: (M, g) —
(N, h) is said to be aconformal immersiorif there exists a smooth functiom > 0 on
M satisfying f*h = u*(M=2g (resp. f*h = ug) if m > 3 (resp.m = 2). It is known
that u satisfies the following equality oM:

4(m — 1)
M > 3= CnAgU — SgU + Kpu™M2/m-2 =g ¢ = —
(3.1) et T S ™ m-2)

m=2=— Aglogu — sy + K¢:qu =0,

where sy (resp. K¢+n) is the scalar curvature of (resp. the pull backf*h of h by
f). First we state the following theorem (cf. [14], Theorem 1)

Theorem 3.1. Suppose f (M, g) — (N, h) is a conformal immersion such that

L
Kt+h < min 0} and Ky < ———— for some constant = 0O
fh < min{sy, O} NS e

on M. If the condition either(1) or (2) of Theorem 1.lis satisfied for b< 2, then f
is distance decreasing.e., sup, u < 1.

Proof. By applying Theorem 1.2 tk = —min{0, sg}/Cm, | = —K+n/Cm, H = 1
anda = 4/(m-2) (resp.a =1) for m > 3 (resp.m = 2), we can get the conclusion[]

We get the following from Theorem 3.1 immediately (cf. [1@orollary 1 & the ref-
erences, and [19], Theorem 4.7).

Corollary 3.2. Under the condition eithe(1) or (2) of Theorem 1.2for b < 2,
suppose(M, g) has dimension n»> 2 and the scalar curvaturegsof g satisfies the
following:

L
§ < _m for some constant = 0

on M. Then any conformal transformation f @M, g) which preserves gsi.e., the
scalar curvature K-.4 of f*g coincides with g is an isometry

By applying this to the identity map dfl we get the following (cf. [14], Corollary 2).
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Corollary 3.3. Under the same hypothesis &porollary 3.2suppose h is a con-
formal metric of g whose scalar curvature coincides wigh Bhen h= g.

Corollary 2.2 yields the following (cf. [13], Corollary 4.and [15], Theorem 0.2 &
Corollary 0.1).

Corollary 3.4. Under the condition eithe(1) or (2) of Theorem 1.2for b < 2,
suppose the scalar curvature of g is non-negative on M and & smooth function
satisfying

S<—-——— for some constant =0

T (P
on M. Then the metric g cannot be conformally deformed to any mefriscalar cur-
vature S

REMARK 3.1. In the above results it is not necessary to control theeidound
of 5. The reader should see [11] (resp. [14, 15]) which studiesctiise—C; < 54 <
—Co/(1 +1.)P (resp. —Cq/(1 +1.)2"D < 55 < —Cy/(1 +71.)P) for certain constants
C1, C, andb with C; > C, > 0 andb < 2 respectively.

REMARK 3.2. If | asymptotically behaves like-1/(1 +r,)° for b > 2 andk =
0, then an existence theorem of non-trivial solutiensatisfying the equatiomg,u =
lug*l is known on anm > 3 dimensional Euclidean spa&" provided with Euclidean
metric ge (cf. [2], Theorem II).

The rest of this section is devoted to give several appboatiof Theorem 1.1 related
to value distribution of maps. First we begin with the foliog (cf. [4], Theorem 3.1,
[12], Theorem 2.17, and [18], Theorem 3.5).

Theorem 3.5. Let f: (M, g) — (N, h) be a smooth map to an Hadamard man-
ifold (N, h) whose sectional curvature is bounded from above by a noithmgon-
stant K. Suppose the energy densgff) and tension fieldr(f) of f satisfy the fol-
lowing

Cx
(L+r.)°

Ci
e(f) > m and [|[z(f)| <

for certain constants €>0and G >0

on M respectivelylf the condition either(1) or (2) of Theorem 1.2is satisfied for
b <min{2,c} and2/—KC; > C, > 0 (resp 2C; > C, > 0) for K < 0 (resp K =0),
then f is unbounded.e, the image {M) of M can not be relatively compact in.N

Proof. By lettingry be the distance function from a poigte N\ f(M) Z @, we
setu(x) := f*A(ry) with A(t) = coshCst)/2 for C3 = /—K if K <0 andCs = 1 if
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K = 0. By combining the composition law of maps (cf. [5], (2.2@roposition) with

the Hessian comparison theorem (cf. [6R), the following estimate holds (cf. [12],
(2.22)):

1
Agu > 2C3u (Cge(f) — §||r(f)|| tanh(Cgf*ry)) .

By hypothesis we can see

AU C3(2C3C1 — Cou
g

0
- 2(1 +r,)b g

on M. If f is bounded, theru is bounded from above and jlu > 0. Howeveru
does not attain its supremum & by the above inequality. By putting = 1/(sup, u —
u) > 0, a direct calculation shows the following:

2

C4w
(L +r,)P

Agw > for some constantC,; > 0
on M. On the other hand Corollary 2.4 implies thatshould vanish identically. This
is a contradiction. O

Especially by lettingC, = 0 we get the following immediately (cf. [12], Theorem 2.12)

Corollary 3.6. Under the condition eithe(1) or (2) of Theorem 1.2for b < 2,
suppose that f(M, g) — (N, h) is a harmonic map to an Hadamard manifoltd, h)
and the energy density(f) of f satisfies

C
(3.2) e(f) > m for some constant G 0

on M. Then f is unbounded

In case {, h) = (R", ge), we can show the following which is a more precise result
than Corollary 3.6 (cf. [9], Theorem B, [1], Theorem 3 and][18heorem 3.3).

Theorem 3.7. Let f: (M, g) — (R", ge) be a harmonic map satisfying the con-
dition (3.2) for 0 < b < 2. If the condition either(1) or (2) of Theorem 1.2s satisfied
for 0 < b < 2, then the image of f can not be contained in any non-degenexate
of R",

Proof. The idea of proof is due to [9], Theorem B (see also.[Ahsume there
exists a unit vecton at the origin of R" such that(f(x), v)/|| f(x)|| = § for a fixed
constants > 0 and anyx € M. Here( , ) (resp.| - ) is the inner product (resp. the
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norm) relative toge. Let R™1 be the subspace d®" which is orthogonal ta» and f

the R”*l-compon_en_t of the position vectdf, i.e. f := f — (f,v)v. We may assume
that (f,v)2 — 8 f, f) > 1 on M. For a constana with § > a > 0, we set

Fai=—(fv)+,/af, f)+1<0.

Since the sef{ f (x); Fa(x) > Fa(x,)} is contained in a compact set for amy with
0<a<§—4¢ and a fixed poinx, € M, there exists a small constaat> 0 such that

(3.3) a?(f(x), f(x) <1

for any x € My = {X; Fa(X) > Fa(x:)}. We fix such a constard and putF = F, —
Fa(x.). Clearly F is bounded from above anH(x,) = 0. A direct calculation shows

(3.4) (£ X, )% < 2{IF X7 + &% (|| . X — (£.X, v)v]|?) || F1I%}

for any X € T My andx € M. The harmonicity off implies

2 le f*x - f*X, 2
(3.5) AgF > a“ iz |l ks |_ ( 3/|2 V)V
(a2(F, T)+1)

for an orthogonal basi$X;} in TMy and x € M. By applying Theorem 1.4 ta. =
infyw AgF > 0 (see (3.5)) and putting = F in (2.8) there exists a sequen¢e,} of
points of M such that

(3.6)

() F(xn) >0, (i) IVF2(xy) < and (i) AgF(xn) <

N(L +r.(Xy))° N(L+r.(%))P

By putting Ky := (1 +r.(x0))°, if ko 20 I fXi — (£ Xi, v)v||2(xy) tends to zero, then
kn D (£ Xi, v)2(Xa) also tends to zero by the conditions (3.3), (3.4) and (ii\26),
and soka > || f. Xi [12(%a) = 2ka€( f)(xn) tends to zero. However this contradicts (3.2).
Hence there exists a consta@t > 0 such thatk, > /0 || f. Xi — (f. Xi, v)v]|2(Xn) >

Cs > 0 for any n. However this again contradicts the condition (iii) of (Bi6 view

of (3.3) and (3.5). Ul

We can show the following distance decreasing property ¢drhorphic maps of com-
plex manifolds (cf. [20], Theorem 2, [16], Theorem 1, and][IBheorem 3).

Theorem 3.8. Let f:(M,g) — (N,h) be a holomorphic map from an m-
dimensional complete non-compacgtder manifold (M, g) to a complex hermitian
manifold (N, h). Let Ry — (resp HSy) be the negative part of the pointwise lower
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bound of the Ricci curvature of resp. the pointwise upper bound of the holomorphic
sectional curvature of h Suppose

L

Ry _ < =
M= (L+r,)p

and H(f) <
Ty S(f) <
on M for certain constants K- 0, L > 0, b and c If b < min{2, c}, thensup, e(f) <
2vK/(v+1)L, wherev is the maximal rank of d.fEspecially f is constant if the Ricci
curvature of g is non-negativ

Proof. Sinceb > 2(b — 1) for b < 2, by hypothesis the Ricci curvature gfcan
be supported from below by-K /(1 +r,)2®-1D. Hence the condition either (1) or (2)
of Theorem 1.2 is satisfied as stated in the introduction. l@ndther hand since the
energy densitye(f) of f satisfies the inequality

v+1
v

Agloge(f) = —2Rw,- — HS(Fe(f),
where g(f) # 0 (cf. [16], Proposition 4), the conclusion follows by ayipg Corol-
lary 2.2 tou =e(f), k=2H/(1 +r,)¢ and| = K(v + 1)/v(1 +r,)P respectively. O

We can also show the following volume decreasing properthaibmorphic maps of
complex manifolds (cf. [8],81, [7], Theorem 3.5 & Corollary 3.6, and [18], Theo-
rem 3.7).

Theorem 3.9. Let f: (M, g) — (N,h) be a holomorphic map from an m-
dimensional complete non-compactt{er manifold (M, g) to a complex hermitian
manifold (N, h) of the same dimensiorLet S, _ be the negative part of the scalar
curvature & of g. Let u; denote the ratio fVy/Vu of the volume forms y rela-
tive to g and Y relative to h respectivelySuppose

L

S @+r)p

,,gm and Ricy(f) < —

on M for certain constants K= 0, L > 0, b and c If the condition either(1) or (2)
of Theorem 1.2is satisfied for b< min{2, ¢}, thensup, us < (2K/mL)*™.

Proof. By lettingu := uY®", u satisfies the following inequality ofu > 0} (see

[7], the proof of Theorem 3.5):

1 1
A —Su—-Ri 2,
glogu > ZmSV' 4R|cN(f)u

To get the conclusion we have only to apply Corollary 2.2kte —(1/2m)Sy.- and
= —(1/4) Ricy(f) respectively. U
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If the scalar curvature is non-negative, then the Ricci atune is bounded from below
and so the condition (1) of Theorem 1.2 is satisfied lfor 1. By settingK = 0 in
Theorem 3.9 we obtain the following immediately.

Corollary 3.10. Let (M, g) be a complete Khler manifold whose scalar curva-
ture is non-negativelLet f: (M, g) — (N, h) be a holomorphic map of complex man-
ifolds with the same dimension such that

L
1+r,

Rien(f) = —

on M for some constant & 0. Then f degenerates everywhere on M
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