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Abstract
We discuss the simple constituents of Specht moduleS� for the symmetric group

Sn defined over the field ofp elements. We firstly give an easier proof to the result
in [6] which asserts that there exists a simple constituent of S� with the shape of “a
branch” of � (Theorem 3.3), and secondly give a sufficient condition for� to have
a particular type branch as a constituent (Proposition 3.4).

1. Introduction

Let n be a natural number andp a prime. LetSn be the symmetric group onn
letters andL a field of characteristicp. Given a partition� of n, we have anLSn-
module S� called the Specht module corresponding to�, which is not simple in gen-
eral. However if the partition� is p-regular, the head ofS�, denoted byD�, is simple
and they cover all the non-isomorphic simple modules as� runs through thep-regular
partitions ofn.

One of the main concerns about the Specht modules is to have informations about
the simple constituents of them. Especially, using information only on �, we would
like to describe ap-regular partition� for which D� appears as a constituent ofS�.
For this purpose, it is useful to consider the operations on the patitions� introduced
by James and Murphy [5], each of which is roughly interpreted as a rim hook removal
followed by addition on the Young diagram corresponding to�. We shall call each
of the resulting partitions a branch of�. The Jantzen-Schaper theorem tells that ifD�
is a constituent ofS�, it follows that � = � or � is obtained by making branches
successively beginning with� (cf. [6, Corollary 1]). One of the authors showed that if� is p-regular, there is ap-regular branch� of � such thatD� is a constituent ofS�
(cf. [6, Theorem 2]). And he gave some applications of the result in [7]. However the
proof of the result cited above is rather long and complicated. In this paper we shall
show a short proof to it and a result on simple constituents ofthe Specht modules as
a byproduct of the proof.

2000 Mathematics Subject Classification. 20C30.



476 Y. HIEDA AND Y. TSUSHIMA

2. Preliminary results

A partition of the integern is a non-increasing sequence� = (�1; �2; : : : ; �m) of
non-negative integers whose sum isn. The Young diagram[�] associated with� is
the set of the ordered pairs (i; j ) of integers, called thenodesof [�], with 1 � i � h
and 1 � j � �i , where h denotes the largest number such that�h 6= 0. They are
illustrated as arrays of squares. We denote by�0 the partition conjugate of�, so [�0]
is the transposed diagram of [�].

Let c be a column number of [�] and r a positive integer. Then� is said to ber -
singular on column cif there is an integeri � 0 such that�i +1 = �i +2 = � � � = �i +r = c,
and is r -regular on column cif otherwise. We also say that� is r -singular if it is r -
singular on some column, and isr -regular if otherwise. For the convenience of later
arguments, we understand that every partition isr -regular on column 0. We denote by
P(n) and P(n)0 the sets of the partitions andp-regular partitions ofn respectively.
The dominance orderE on P(n) is defined as follows: given�;� 2 P(n); �E� if and
only if

P
1�i� j �i �P1�i� j �i for all j � 1.

The (i; j )-hook of the Young diagram [�] consists of the (i; j )-node along with
the �i � j nodes to the right of it (called thearm of the hook) and the�0 j � i nodes
below it. The length of the (i; j )-hook of � is hi j (�) := �i + �0 j + 1� i � j . An (i; j )-
rim hook is a connected part of the rim of [�] of length hi j (�) beginning at the node
(�0 j ; j ). We also call the integer�i � j the arm lengthof the node (i; j ). Moreover, a
hook of [�] is called apillar if its arm length is zero.

Let (b; c) is a node of [�] and suppose thata < b. We let �(a;b; c) be the par-
tition of n obtained from� by unwrapping the (b; c)-rim hook of [�] and wrapping
the nodes back with the lowest nodes in the added rim hook lying on row a (if the
resulting partition fails to be a non-increasing sequence of integers,�(a;b; c) is not
defined). We occasionally write�(a;b; c; g) if the highest node in the added rim hook
lies in row g. We call here each�(a;b; c) a branch of � and set

0� :=
��(a;b; c) ; �p(hac(�)) 6= �p(hbc(�))

	; 00� := 0� \ P(n)0;
where�p(m) denotes the largest integere such thatpe divides the integerm.

A branch� = �(a;b; c) is called apillar type branch if the rim hook which has
been removed and the rim hook which has been added are both pillars. Suppose that� = �(a;b; c) is a pillar type branch and putd := �a + 1, q := hbc(�). Then � is
obtained by unwrapping the pillar ofq nodes from columnc and wrapping it back on
column d (with the lowest node on rowa). Hence we sometimes write� = �(c j d;q)
for simplicity. For � 2 P(n), let SC(S�) be the set of simple constituents of the Specht
module S�.

REMARK . Let � 2 P(n)0. Then if � = �(a;b; c) is a pillar type branch of [�],
we havehbc(�) � p� 1. Hence� lies in 0� if and only if hac(�) is divisible by p.
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Now we list below some results for later use.

Theorem 2.1 ([2], [3]). Let � 2 P(n)0. Then S� is simple if and only if�p(hac(�)) = �p(hbc(�)) for all a;b; c � 1.

Theorem 2.2 (Carter and Payne [1]).Suppose that� := �(c j d;q) be a pillar
type branch of� and let a be the row index of[�] such that d= �a + 1. Put e :=�p(hac(�)). If pe > q, we have

HomG(S�; S�) 6= 0:
In paricular, it follows that D� 2 SC(S�) if � is p-regular.

REMARK . The above statement is slightly different from the corresponding the-
orem in [1], but can be deduced easily from it. In fact, if� and � are the same as
above then with the languages in [1],�0 is obtained from�0 by raisingq nodes from
row d to row c, whence we have HomG

�
S�0 ; S�0� 6= 0. The rest of the proof will be

done by routine arguments, using thatS�0 is isomorphic to theL-dual of S�
S(1n) ([2,
Theorem 8.15]).

Theorem 2.3 ([4, Theorem 6]). Let �;� be partitions of n with� p-regular.
Suppose that there is a number k(1 � k � �1; �1) such that the subdiagrams con-
sisting of the first k columns of[�] and [�] are the same and that each has m nodes.
Let

�b�� ([b� ] resp.) be the subdiagram to the right of column k of[�] ([�] resp.).
Then the composition multiplicity of D� in S� as Sn-modules equals the composition
multiplicity of D�̂ in S�̂ as Sn�m-modules.

Proposition 2.4 (Jantzen-Schaper, cf. [6, Corollary 1]).Let � 2 P(n) and let �
be a minimal element of0� with respect to the dominance order. If � is p-regular,
D� 2 SC(S�).

Proposition 2.5 ([6, Proposition 3]). Let � 2 P(n)0 and let [�] be the diagram
to the right of the first column of[�]. If S� is simple, 0� has no p-singular partition.

3. Finding simple constituents of Specht modules

We shall show a short proof to Theorem 2 of [6] and a result on simple con-
stituents of the Specht modules. First we show

Lemma 3.1. Let � 2 P(n)0. If there is a pillar type branch� = �(a;b; c) 2 0�
such that� is p-regular on column c� 1, there is a pillar type branche� in 00�.



478 Y. HIEDA AND Y. TSUSHIMA

Proof. We putr := hbc(�) (� p� 1) and f := �a. Note thathac(�) is a multiple
of p since� 2 0�. We may assume that� is p-singular, so� is p-singular on column
f + 1 by the assumption. (In the above diagram a circle in a node indicates that the
hook length at the node is divisible byp.)

Namely a � �0 f +2 � p, so a � p + 1 > �0 f +2. Put s1 := a � p + 1� �0 f +2 (� 1).
Then r � s1 = (p � 1)� (a � r ) + �0 f +2 = (p � 1)� (�0 f +1 � �0 f +2) � 0, so r � s1.
Now let �(1) = �(c j f + 2; s1), which lies in 0� since ha�p+1;c(�) is divisible by
p. Note that�(1) is p-regular on columnc � 1. If �(1) is p-regular, we may take�(1) ase�. Hence we may assume that�(1) is p-singular, so�0f +2 6= 0 and�(1) is
p-singular on columnf +2. Namely (a� p+1)��0 f +3 � p, so a�2p+2> �0 f +3. Put
s2 := a� 2p + 2� �0 f +3 (� 1). Thens1� s2 = (p� 1)� (�0 f +2� �0 f +3) � 0, so s1 � s2.
Now let �(2) = �(c j f + 3; s2), which lies in0� since ha�2p+2;c(�) is divisible by p.
Note that�(2) is also p-regular on columnc� 1. By repeating similar arguments we
finally obtain a p-regular pillar type branch�(i ) for some i , completing the proof of
the lemma.

Lemma 3.2. Let � 2 P(n)0. If there is a branch� = �(a;b; c) 2 0� with c � 2
such that� is p-singular on column c� 1, there is a pillar type branche� in 00�.

Proof. We may assume that� is chosen so thatc is the smallest and putr :=�0c�1� �0c. Note that the (b; c)-rim hook of [�] is a pillar if and only if b > �0c+1.
CASE I. r � p� 2.
As � is p-singular on columnc� 1, �0c�1 � �0c+1 � p� 1. Put x := (�0c�1 � p +

2)� �0c+1 and y := �0c � (�0c�1� p + 2), so x � 1 andr + y = p� 2.
SUBCASE (i) x + y � p� 2.
We have thatx � r from x+y � p�2 = r +y. Now let 
 = �(c�1 j c+1; x) 2 0�.

If 
 is p-regular, we may take
 ase�. Hence we may assume that
 is p-singular.
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Then by the minimality ofc, 
 must be p-regular on columnc � 2 and there is a
pillar type branche� 2 00� by Lemma 3.1, as asserted. (In the above diagramas the
boldface rim hooks will be removed to make�.)

SUBCASE (ii) x + y = p� 1.
We havex = r + 1. As � 2 0�, either hac(�) or hbc(�) is divisible by p. Let

i = a or i = b according ashac(�) is divisible by p or not. Let furthermoref = �i

and si = i � �0 f +1. Then we see thati � �0c+1 since hic(�) is divisible by p. Since
si � p� 1, we can make the pillar type branch
 = �(c j f + 1; si ) 2 0�. If si + r < p,
 is p-regular on columnc�1 and the assertion follows by Lemma 3.1. Now suppose
that si + r � p and put ti = si � (p � r � 1), so ti � 1. Also �0f +1 = i � si <
i � (p� r � 1) = i � p + r + 1. Note thatti � r since r � ti = p� 1� si � 0. Hence
we can make the pillar type branchÆ = �(c � 1 j f + 1; ti ), which lies in 0� since
hi�p+r +1;c�1(�) = (r + 1) + hic(�) + (p � r � 1) = hic(�) + p is divisible by p. By the
minimality of c, Æ is p-regular on columnc� 2 and so there is a pillar type branche� 2 00� by Lemma 3.1, as asserted.

CASE II. r = p� 1.
We use the same notation as in subcase (ii). Thenhi ;c�1(�) is divisible by p, since

hi ;c�1(�) = hic(�) + p. In the diagram below, we haver = p� 1, so we can make the
pillar type branch
 = �(c� 1 j f + 1; si ) 2 0�. By the minimality of c, 
 is p-regular
on columnc�2 and the assertion follows by Lemma 3.1. This completes the proof of
the lemma.
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Now we are ready to give an alternative proof of the followingtheorem:

Theorem 3.3 ([6, Theorem 2]). Let � be a p-regular partition of n. If S� is re-
ducible, there is a p-regular branche� 2 0� such that D�̃ 2 SC(S�).

Proof. SinceS� is reducible, there is a column numberc such that�p(ha;c(�)) 6=�p(hb;c(�)) for somea;b with 1 � a;b � �0c. Let c be the largest number that satis-
fies the condition. Let [Æ] be the subdiagram of [�] with column c as the first column,
[
 ] the remaining diagram and write� = (
 ; Æ). Then every branch in0Æ is p-regular
by Proposition 2.5. Hence, ifeÆ is a minimal element of0Æ with respect to the dom-
inance order,DÆ̃ 2 SC(SÆ) by a direct consequence of the Jantzen-Schaper theorem
(see Proposition 2.4). Put� :=

�
 ;eÆ � 2 0�. If � is p-singular on columnc� 1, then
c must be greater than 1 and there is a pillar type branche� 2 00� by Lemma 3.2.
Thus we haveD�̃ 2 SC(S�) by the Carter and Payne theorem (see Theorem 2.2). So
we may assume that� is p-regular on columnc � 1. Then� 2 00� and we have
D� 2 SC(S�) by Theorem 2.3. This completes the proof of the theorem.
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Now a node (b; c) is called ahp;1i-point of [�] with arm length one, ifhbc(�) =
p and h�0c;c(�) = 1.

Proposition 3.4. Suppose p> 2 and that S� is not simple. Let � be a (p� 1)-
regular partition of n. Then

(1) If [�] has no hp;1i-point with arm length one, we have00� = 0�. Hence D� 2
SC(S�) for any minimal element� of 0� with respect to the dominance order.
(2) If [�] has a hp;1i-point with arm length one, there is a pillar type branch� =�(c j d;q) such that D� 2 SC(S�) for some c;d;q with q� p� 2.

Proof. (1) The second half follows immediately from the firsthalf and Propo-
sition 2.4. So we need only prove the first half. Suppose the contrary and take ap-
singular branch, say� = �(a;b; c; g), from 0�.

CASE I. � is p-singular on columnc� 1 (hencec � 2).

Since� is (p� 1)-regular, it follows that�0c�1 � p + 2� �0c and so (�0c�1 � p +
2; c�1) is a hp;1i-point of [�] with arm length one, being contrary to the assumption.

CASE II. � is p-singular on column�g�1 (henceg � 2).

As � is (p� 1)-regular, we find easily that�g�1 = �g + 1. Let f = �g�1.
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Then �0 f�1 � �0 f +1 � p � 1, and the node (�0 f�1 � p + 2; f � 1) is a hp;1i-
point of [�] with arm length one, being contrary to the assumption. Thiscompletes
the proof of (1).

(2) Let (i; j ) be a hp;1i-point of [�] with arm length one andm := �0 j +1. Then
i � m< �0 j = i + p� 2 and�m � 1 = �m+1.

Now we assume that the above (i; j ) is chosen so thatj is the smallest. Letm1 :=�0 j +2 and r := hm+1; j (�) = i + p� 2� m. Then m1 < i since the node (i; j ) has arm
length one. Letr1 := i � m1. Then r � r1 = (p � 2) � (m � m1) � 0, so r1 � r .
Therefore we can make the pillar type branch� = �( j j j + 2; r1) 2 0�. If � is p-
singular on columnj �1, then j must be greater than 1 and (�0 j�1� (p�2); j �1) is
a hp;1i-point of [�] with arm length one, contradicting the minimality ofj . Hence�
is p-regular on columnj � 1 and by Lemma 3.1, there is a pillar type branch in00�,
whence the assertion follows by the Carter and Payne theorem.
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