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Abstract
We give a classification of normal affine surfaces admittingaiggebraic group
action with an open orbit. In particular an explicit algebrdescription of the affine
coordinate rings and the defining equations of such vasiéiggiven. By our meth-
ods we recover many known results, e.g. the classification ohaloaffine surfaces
with a ‘big’ open orbit of Gizatullin [19, 20] and Popov [31] oome of the classi-
fication results of Danilov-Gizatullin [12], Bertin [6, 7] anathers.

Introduction

Let G be an algebraic group acting on a normal affine algebraitase V . By
classical results of Gizatullin [19] and Popov [31], W is esoth andG has a big
open orbitO (that isV\O is finite), thew is one of the surfaces

C*2, A2, C'x AL, P'xPhA, PAA,

where A € P! x P! is the diagonal and\ < P? is a nondegenerate quadric. Further-
more, if V is singular therV = V, is the Veronese conAé/Zd, whereZ, acts on
A2 via multiplication with the group ofl/ -th roots of unity (seedple 5.2).

The aim of this paper is to give more generadlydescription of all normal affine
surfacesV = SpecA ¢ver the ground fieldC) that admit an action of an algebraic
group with an open orbit As was suggested by Popov [31] and confirmed in the
smooth case by Bertin [7], either such a surfate is isomorhiC*?, or a semidi-
rect product ofC* and C, acts onV with an open orbit (Proposition 2.10). We pro-
vide a classification of all such surfaces in Section 3. Ta&lé to a new proof of the
Gizatullin-Popov Theorem above (see Section 4.4) whicts usdy elementary facts
from Lie theory. For generalizations of this result see 4%021].

Our interest in such actions is inspired by the role that thlay in certain classi-
fication problems, e.g. in the proof of linearization of reguC*-actions onA% [23].
Usually in applications, to an affine variefy  with G,-action one associates (non
canonically) another one, say,  with@- and C,-action (see e.g., [26, 36] and Re-
mark 3.13.3 below). Therefore it is of particular importarto classify such varieties.
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C*-actions on algebraic surfaces were extensively studigtidrliterature, see [17]
and the references given therein, and also [3] for a gemataln to higher dimen-
sions. A C*-action onV gives rise to a grading  &,_, A;. We will rely here
on our previous paper [17] to describe the graded componéntg; terms of the
Dolgachev-Pinkham-Demazure construction (BleD construction for short).

Classification results fo€.-actions on affine surfaces can be found in [11, 16, 27,
28, 35], [41-[5], [9, 10], and [13]-[15]. It is well known [32that a C.-action gives
rise to a locally nilpotent derivatioda o  (see Propositiot)l The condition that a
semidirect product ofC* and C, acts onV is equivalent to the condition th&t is a
homogeneous derivation (cf. Lemma 2.2). Thus we are led s pa

(A,09), e=dego,

whered is a homogeneous locally nilpotent derivationon  ofdain degreee . Our
classification of such pairs is as follows.

Elliptic case In this caseAy = C, and A is positively graded so that the asso-
ciated C*-surfaceV' = Sped has a unique fixed point given by the maximedlid
Ay = @, A;. If V also admits a nontrivialC.-action then by [18, Lemmas 2.6
and 2.16],V = AZ%/Z, is a quotient ofAZ by a small cyclic subgroup oEL(C).
More precisely, we show in Theorem 3.3 th&t= C[X, Y]%, where the cyclic group
Zg = 7/dZ = {¢) generated by a primitive/l -th root of unity acts @fX, Y] via
.X =¢X and ¢.Y =¢°Y with e > 0, gcde,d ) = 1,and 0 = X¢9/9Y. In particular,
V =V, is an affine toric surface (see Example 2.8).

Parabolic case Here againA is positively graded, bdiy # C. ThusC = Sped,
is a smooth affine curve, andd is fibered ow@r  with general fibgr Using the
DPD construction it follows thatA =Ag[D] for some Q-divisor D on C (see [17,
Theorem 3.2]). More precisely, Ky denotes the field of fractions Fra) then A =
Ao[D] C Ky[u] is the graded subring with

Ay ={fu" € Ko-u" | div f+nD >0} .

If such a surface admits also @;-action given by a homogeneous locally nilpotent
derivationd then eithe€. actsvertically (that is fiberwise), so that the orbits are con-
tained in the fibers of the projectioF — C , or the orbits map otte base curve
C (horizontal cask In both cases we classify all possible actions (see Theoré 12
and 3.16). For instance, in the horizontal case= v, , = A(ZC/Zd is again an affine
toric surface and the derivatioh is as described in the tellipase. These are the
only normal affine surfaces with an elliptic or paraboli¢-action and with a trivial
Makar-Limanov invariant that is, admitting two non-trivi@l,-actions with different or-
bit maps (see Definition 4.2 and Theorem 4.3).

Hyperbolic caseIn this caseA; /=0 for ali € Z, and the surfac&/ = Spec is
fibered over the base curve = Spegwith general fiberC*. By [17, Theorem 4.3]
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A = Ao[Ds+, D] C Frac(Ao)[u, u~1] with a pair of Q-divisors D. onC satisfying
D;+ D_ < 0. This means thatt-o = Ao[D+] € Ko[u] and A<o = Ao[D_] € Ko[v] are
as above withw =~1. Furthermore, the pair{s, D_) is determined uniquely up to
an arbitrary shift O, D_) ~» (D+ +divgp, D_ — divg) with ¢ € FracAp. In Corol-
lary 3.23 we show thatd admits a homogeneous locally nilpotent derivatidn  of
positive degreee if and only i€ = A}C i.e, Ag = C[t], and A = Ag[D+, D_],
where D. = —(e’/d)[p] is supported at one poin0 < ¢ < d andee’ = 1 modd .
Moreover 9 is uniquely determined up to a constant by its degsléernatively, such
surfaces can be described as cyclic quotients of the naratimihs of hypersurfaces
{u®v—p(t) =0} in A3, wherep e C[7] (see [17, Proposition 4.14] and Corollary 3.30
below).

C,-actions on a normal affine surfadé  are related to affinegslin — I' (that
is, rulings into affine lines) with being a smooth affine cufgee Lemma 1.6). If
V = SpecA withA =Ao[D,, D_] as above, whereAq = C[¢] and D, + D_ # O,
then there exists an affine ruling — Al if and only if the fractional part{D} of
at least one of thé-divisors D, is supported at one point or is ze®uch an affine
ruling is unique unless botkD.} and {D_} are either zero or supported at points
{p+}, and if and only if, for a homogeneous element A\C, kerd 2 C[v] for every
locally nilpotent derivationd € DerA (Corollary 3.23 and Theorem 4.5). Otherwise
V allows continuous families of affine rulings, @*-actions and ofC.-actions with
generically different orbit maps (Corollary 4.11). The aim also true in the elliptic
and the parabolic cases.

In the first two sections we summarize some factstaractions and on algebraic
group actions on normal affine surfaces. Section 3 contéiesptincipal classification
results. In Section 4 we classify all*-surfaces which have a trivial Makar-Limanov
invariant (Corollary 4.4 and Theorem 4.5). Finally, in Saat5 we discuss concrete
examples and compare different approaches.

Throughout the paper we use the notati®h, = GL(2, C), SL, = SL(2, C), etc.

1. C.-actions and locally nilpotent derivations

We frequently use the following well known facts.

Proposition 1.1 (see e.g., [26, 32, 36]).Let V = SpecA be an affine algebraic
C-schemeThen the following hold
(@) If C; acts onV then the associated derivatidn an is locally nilpgtee. for
every f € A we can finde € N such thatd"(f) = 0. Conversely given a locally
nilpotent C-linear derivationd: A — A the mapg: C+ x A — A with ¢(t, f) =€ f
defines an action of. on V.
(b) Assume thatd is a domain and léte DercA be a locally nilpotent derivation
of A. Then the subalgebréerd = A% C A is algebraically and factorially closedor
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inert)! in A, and for 3 # O the field extensiofFrac(ked )< Fraa has transcendence
degreel. Moreover for any u € FracA with ud(A) C A, the derivationud € Derg A
is locally nilpotent if and only ifx € Frac(ker ).

(c) If C; acts non-trivially on an irreducible reduced affine cur@e enhC = A}C.

Corollary 1.2. For an algebraicC-schemeA and a locally nilpotent derivation
9 #0 on A, the following hold
(@) The algebra of invariantkerd = A% is integrally closed inA. Consequentlyif
A is normal and the ring of invariantst® is finitely generated then the orbit space
SpecA®+ of the associateC.-action onV is also normal
(b) For an elementv € A, the principal ideal(v) = vA is d-invariant if and only if
v € kera.
(c) If dimA > 2 then the automorphism groufiut A is of infinite dimension

Proof. (a) immediately follows from Proposition 1.1 (b). Bhow (b) we fix
n > 1 such thaty :=9""'(v) # 0 anddu = 0. If the idealy ) i) -invariant then
u € kerd N (v) can be written ag v witlf € A . As kér is inert (see Propo-
sition 1.1 (b)) andu =fv € ked we have € ke&r , as required. The proofhef
converse is trivial. A*? ¢ Aufi Ya € ker and dimker> 1, (c) also follofvem
Proposition 1.1 (b). O

1.3. Let us recall some well known facts on the surface geometrpreésence
of a Cs-action; see e.g., [4, 28, 29]. For a normal affine surfiice  emote Vieg =
V\SingV . Acylinder in V is a Zariski open subsell = I'g x AL, whereI is a
smooth curve. Anaffine rulingon V is a morphismV — I' onto a smooth curve
I' with general fibers isomorphic tA}C. Two affine rulings coincide if they have the
same fibers.

Lemma 1.4 ([29, Ch. 3, Lemma 1.3.1, Theorem 1.3.2 and Lemma 1.4.4.(1)])
For a normal affine surfaceé/ the following conditions are e@lént
() V is affine ruled
(i) V contains a cylinder
(i) There exists an affine Zariski open sub®etc Vieq with I?(W) = —00.2
Moreover under these condition¥ has at most cyclic quotient singpigsr

RemArRk 1.5. If V is smooth then any degenerate fiber of an affine rulingvo
consists of disjoint components isomorphic A (see [6, 16]). IfV is only normal
then any such component has a normalization isomorphit{tocontains at most one
singular point ofV and is smooth off this point ([29, Ch. 3, Leas 1.4.2 and 1.4.4)).

1The latter means thatb € kerd = a, b € kerd.
2As usual,k stands for the logarithmic Kodaira dimension.
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Suppose that a normal surfadé = Sgec admits a non-triahction. The
orbit morphismrn,.: V — T" := V //C, then yields an affine ruling oY  over a smooth
affine curvel’ = SpecA®. Therefore [4, Remark 1], an affine ruling o over a
projective base cannot be produced in this way. For instathee latter concerns the
projection px: (P! x P1)\A — P!, where A € P! x P! is the diagonal. The following
simple lemma clarifies the situation (cf. [4, Prop. 2]).

Lemma 1.6. For a normal affine surfacé/ the following are equivatent
(i) VvV admits an affine rulingy — I over an affine base
(i) vV contains a cylindetU = I'y x A(l: which is a principal Zariski open subset
(iii) There exists a non-trivial regula€.-action onV.

Proof. The implication (iii)= (i) has been noted above. Thedgirof (i') =
(i) follows that of (i) = (ii) in Lemma 1.4; it suffices to notehat, becausé’y € I’
can be taken principal, so does the cylinderc = ().

To show (i) = (iii") we letU = T'g x A(%: be a principal cylinder inv = Spet
given via A [1/ fo] = B[tf] with fp € A, whereT'g = SpecB . We consider the derivation
d =0d/0t € DerB[t]. Given a system of generatogs, ..., g, of the algebraA we can
write dg; = hi/fy, whereh; € A andk; > 0i( =1..,n ). Sincgsd(g) € A Vi,
wheree := max<;<, k;, we haved, :=f§d € Der A. Moreover,d, fo = 0 as fp € B[1]
is a unit. Henced, is locally nilpotent and so defines a nonatri€.-action onV =
SpecA , as required. O

1.7. If a ramified covering of normal varietieB — X is unramified in oodn-
sion 1 then anyC.-action onX lifts toY [18, proofs of Lemmas 2.15 and 2.16]. In
the following lemma we show that, under certain circumstandt still lifts to a cyclic
covering ramified in codimension 1, provided the latter ifirgsl by an invariant.

Lemma 1.8. Let A be a normal domain of finite type ov€rand letd € DerA
be a non-zero locally nilpotent derivatiofror a non-zero element € kerd and for
n € N denoteA’ the normalization of the cyclic ring extensibp:] 2 A with (u')" =
v. Then the following hold
(&) A’ is a normal affineC-algebra of finite typeand the elements oA are not zero
divisors onA’.

(b) 9 extends uniquely to a locally nilpotent derivatiohe Der A" with 9’(u’) = 0.

(c) If, moreover A is a graded domain and and8 are homogeneous @&y =n
then A’ is graded as welbnd u’ andd’ are homogeneous witlegy’ = 1and degd’ =
dego .

(d) Furthermore if the polynomialx” —v € A[x] is irreducible overA then the cyclic
group Z, = (¢), where¢ is a primitiven -th root of unityacts onA’ with¢|A = id,
cu' =cu', and A = (A))% is the ring of invariants of this action
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Proof. The proofs of (a), (c) and (d) are easy and we omit thEmshow (b)
note that the derivatiod’ € Deru[ ] defined /|4 & awvdu’ ( ) = 0 is lo-
cally nilpotent. By [33] its extension to Fra¢(u'[ ]) stab#ig the integral closurel’
of A[u']. By [34] (see also [18, Lemma 2.15 (a)]) this extensi@n f dato A’ is again
locally nilpotent, as stated. ]

2. Algebraic group actions on affine surfaces

2.1. C,-actions on graded rings. We letV = Specd be an affine variety over
C with an effectiveC*-action, which corresponds to a gradidg &, A;.

Lemma 2.1. [32] If 9 is a locally nilpotent derivation onA and = Zﬁ:k 0;
is the decomposition o into graded components then  &nd  ganalocally
nilpotent

Homogeneous locally nilpotent derivations dn &3;_, A; correspond to actions
of certain semidirect products df* and C, on A. Indeed, we have the following
lemma (cf. [31], [7, (2.5)]).

Lemma 2.2. (a) Letd: A — A be a homogeneous locally nilpotent derivation
of degreee and consider the action @f on C. given byr,.(f, ®) := .0 = t°«, Where
t € C*, o € C,. Then the semidirect product

G, =C"x,, C,
(with C,+ as a normal subgroypacts onA, and hence orV, via
(s,).f :=s.*"(f), where (s,a)e G, and f € A.

This action restricts to the given actions on the subgroGpsand C* of G,.

(b) Conversely if there is an action ofG, onV = SpecA restricting to the given
action of C* € G, on A, thenC; C G, acts onV and the associated derivation on
A is homogeneous of degree

Proof. (a) The multiplication oG, is given by
(s, )@, B) = (st,t“a+B) with s,7e€C*, «,BeCs.

Sinced is homogeneous of degree it follows thad f( ( }f&s.f( ), and s

oo

5.e®(f) = Zs.aval}!(f) = Z (xi"se”i:(s.f) = s f),

v=0 v v=0
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hence

(s, )(t, B)) - f = (s1).e " PP(f) = 5.(.¢" P (f)) = 5.6 1.P (f) = (s, @).((t, B).S)-

This shows thatG, acts indeed oh  and henceVon
(b) Conversely, suppose that, acts an  restricting to thengaetion of C*
on A. Then forCy 3a=(1,a) € G, we havea.f = { ), and so

5.e(f) = (s.a).f = (L s%a)((s, 01 f) =e" " 6.1)

Differentiating this equation with respect to  and taking woi1fe gets

5.0(f) =s°9(s. f).

It follows that 9 is homogeneous of degree . Ul

Remarks 2.3. 1. For any non-zero homogeneous elemeat dker of degree ,

the derivationd’ :=u™d € DeA is again locally nilpotent (see Prapas 1.1 (b)) of
degreee +nn . Thus for evernyr > O the grodp.,, also acts omA restricting to the
given C*-action onA . The inversion. — A~! provides an isomorphisng, = G_,,
and soG, acts otV for any =+e mod
2. For instance, a Borel subgroup C SL; is isomorphic toG, and acts effectively
on V =AZ with an open orbit. Similarly, the Borel subgrouf ~ ByZ, in PGL; =
SL,/7Z,, whereZ, = {+1,} is the center ofSL, (and of B), is isomorphic taG; and
acts effectively on the Veronese coie; := A2/Z, = SpecCl[t, u, v] [(uv — 1?) € A2
with an open orbit (cf. Example 5.2).
3. Fore > 0,G, is a metabelian solvable Lie group with a cyclic ee# (G.) =
Z. x {0} € C* x Cs, and so is aretale covering group of5; via G, “3 G =
G./Z(G,). The Lie algebray = Lie G, is isomorphic toAZ with Lie bracket 1, 7] =
(0, U1 A V).

Actually, an effectiveG, -action omt  witle /=0 permits to produgecontinuous
family of gradings onA .

Proposition 2.4. Let A =&,_, A; be a gradedC-algebra of finite type and e
DerA be a homogeneous locally nilpotent derivation 4n  of degree0. If the orbit
closures of the associated*- and C.-actions onV := SpecA are generically different
then A admits a continuous family of generically distinctdjreys

Proof. Fora € C,, @ # 0, we consider a new, -action ofi, ¥ induced by
the isomorphisne ¥ — V,, that is, conjugated with the origidal ieacton V' by
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means ofa . More precisely, we have a commutative diagram
£
G.—=G,

—aY(x) —x

<< Q

Q

o.—
-

where the vertical arrow on the right is the n&wy  -actiongn and

&(g) = ozgofl =t, B+t ‘a—a) for g=(,B)eG..

The C*-orbit of (1, 8)e G, =C* x,, C, is equal toC* x {8} and is mapped undes,
onto the set

{t,p+17°a—a) | t €C*},

which is not an orbit of theC*-action onG, . Since by our assumption for a general
x € V the orbitG..x has dimension 2, the genefi¢-orbit in V is not mapped onto
a C*-orbit of V. Ol

In the surface case we have the following elementary lemma.

Lemma 2.5. For a G.-action on an affine surfac¥ = SpecA the following con-
ditions are equivalent
(i) It has an open orbit
(i) A% # AT (& kerd # Ag)d.
(iii) ker 8 = C[v] or kerd =C[v, v™!], wherev € A; withd # 0.
Under these equivalent conditions the surfake is ratipraald the affine ruling
v:V — I := SpecA® has at most one degenerate fiber 0 consisting ofC*-orbit
closures.

Proof. Sinced € DeA is homogeneous, its ring of invariantsokerA= is a
graded subring ofA . Thus the normal (hence smooth) affineeclire SpecA® also
carries aC*-action, and the quotient morphismi — I ¥&//C, (which provides an
affine ruling onV = Sped ) i€*-equivariant. In casel® # A" (that is, kel® /Ao)
the inducedC*-action onI" is non-trivial, henc& = Al or C*. In this case ked =

C[v] and C[v, v~1], respectively, where € A, N keér is homogeneous ahd =0.
The rationality ofV follows from liroth’s Theorem. The rest of the proof is easy
and can be omitted. U

3].e., theC.-action is horizontal w.r.t. the give@*-action.
4Cf. Remarks 1.5, 3.13 (iii) and Lemma 3.24 below.
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2.2. Actions with an open orbit. The next simple observations will be used in
the proofs below (cf. Remark 1 in [25, 11.4.3.B])).

Lemma 2.6. (a) If a connected Lie groug. and a finite grou  act on an
algebraic C-schemeV = SpecA then the action ofL. descends /G  if and only if
the actions ofG and. oV commute
(b) Conversely suppose that a connected and simply connected Lie gfoup oacts
the quotientV/G ofV by a free action of a finite groap Then the action of. lifts
to V commuting with the action af.

Proof. (a) Suppose first that the action bf &n  descend§ G . e m
also assume that  acts faithfully dn . It follows that  presertheG -orbits, and
so, if w = g.z for somez,w € V and somg € G then for anye L there is an
elementg’ =¢’ £ )¢ G such that.w #'.A.z . This implies the equality.z g'%.z
Sinceg’ ) is a continuous function on the connected Lie graupith walues inG
it must be constant, i.eg’ =z , and g Az for glle G ahdk L . Thus the
actions ofL and ofG commute, as stated in (a). The proof of theaiging assertions
is easy and will be omitted. ]

Lemma 2.7. (a) If a complex unipotent Lie grouy acts on an affine variety
V with an open orbit therV = AdmV,
(b) If a complex reductive Lie grouy  acts effectively on a cotett@lgebraic va-
riety V with a fixed pointp € V then the induced representatign G — GL(7,V)
on the Zariski tangent space 6f at s faithful
(c) Any affine toric surfacé/ non-isomorphic & x C* admits aG, -action with an
open orbit for everyl € Z.

Proof. (a) Since any orbit of/ is closed @ [22, Exercise 8 irctae 17],
[25, 111.2.5.3], the openU -orbit is the whol&¥ . Thus = U/H = Agm", where
H C U is a closed subgroup (see [31, Corollary of Theorem 2]). Bhisws (a).

(b) is well known and follows for instance from Luna&tale slice theorem or
from the identity theorem [1, Sect. 2.1]. Alternativelyjstitan be seen by the follow-
ing elementary argument: for 3> 0 the induced action®f 4n OfF,/m"!
is easily seen to be faithful, i.e. the map G: — Auir( ) is injeetivwhere
Aut(A,) denotes the Lie group of-algebra automorphisms of, . The subgrodp
of Aut(A4,) consisting of automorphismg  witli = id madf is a normal unipo-
tent subgroup, s@, }(N,) is also normal and unipotent and thus trivial. It followet
already the mapG — Auf(;) = Aut(A,)/N, is injective, which implies thatG  acts
effectively onT,V .

(c) As G, =C* x A} this is evident in case that = C* x A. Otherwise (c) is
shown in Example 2.8 below. Ul
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ExampLE 2.8. Affine toric surfacesGiven two natural numberd, ¢ with &
¢ <d, gcde’, d) =1, we consider the affine toric surfatg, = Spge , Where

1) Age =Clx,¥]*= P C-xy" cClx,y] with x= X9 y=y/x*
b>0,ad—be’>0

is the semigroup algebra of the coa& C=4,E'é1+dé,) in R?, and whereZ, = (¢)
acts onC[X, Y] via

2) cX=¢X, Y =¢Y

(cf. [17, Example 2.3]). ThigZ,-action commutes with an{*-action onC[X, Y] of
the form

AX=A%X, LYy =A%y,

where @y, dy )e Z2. It also commutes with the locally nilpotent derivations
(3) dx e =X -2 anddy, =v*- ¢ Der C[X, Y]
X" — 8Y Ye — BX ) ’

wheree”’,e > 0 are such that’ =¢ mall aede = 1 mod ¢if/ =0, =0
if ¢ = 0. Therefore by Lemma 2.6 th€.-actions onCJ[X, Y] induced by dx ., and
dy,e stabilize the ring ofZ,-invariants A;,, =C[X, Y]%, hence descend from?2 =
SpecC[X, Y] to the quotient surface/;,, = Spet,, 4&2/Z,. Note that any affine
toric surface non-isomorphic t@* x C* or Aé x C*, is isomorphic toV,, for some
d,¢ as above. Consequently, any such surface admits @Gwactions with different
general orbits (cf. Corollary 4.4 below).

Letting above e.g.dx = Ody =I we obtain that dggr /= , and so by
Lemma 2.2 (b) the groul;; acts effectively on the riAg Az

Lemma 2.9. Let G be a connected complex algebraic Lie group acting effec-
tively on a normal affine surfac&¥ = SpecA .
(&) If G is unipotent andV #¥ Aé, then G is commutative and the orbits 6f  are
1-dimensional
(b) If G is solvable and acts orV  with an open orlit, then O is isomorphic to
one of the surface€* x C*, C* x AL or AZ. Moreover if O is big that is V\O is
finite, then O = V.
(c) G is solvable if and only if it does not contain a subgroup isgohec to SL, or
to PSL,.

Proof. (a) The orbits ofG are closed i  and generically omeedisional,
since otherwiseV = Aé by Lemma 2.7 (a). We lelr V — I' := Spe® be
the quotient map. The Lie algebga= Lie G consists of vector fields tangent along
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the fibers ofz . Any such vector field € g is an infinitesimal generator of a one-
parameter subgroup @& isomorphic @ and so is a locally nilpotent derivation on
A. Being proportional, every two such nonzero derivatidnsd, are equivalent i.e.,
b1d1 = byd» for someby, by € AS. Thus d; = bd, with b := bp/b; € FracA® and so
0 =[d1, bd2] = B[y, 32]. This shows that; and d, commute, proving (a).

(b) We may suppose that # Aé. In the decompositiorG & x N [22, The-
orem 19.3 (b)], wherel is a maximal torus andV is the unipotent radical @f
we haveN = C, by (a). If » = 0 then clearlyO = C* x C*. In caser > O let
do € Lie N be a common eigenvector of the adjoint representatiofi @ LieN and
denoteNy € N the corresponding one-parameter subgroup. By (a) thesoobiG and
of Go := Tx Ny are the same. Thus we may suppose tfiat Nyp=has dimension 1. As
G acts effectively onV  with an open orbit the torlismust be of dimension 1 or 2,
S0G = C* x Cy or G = C*? x Cs. In the first case the open orbi? @ s iso-
morphic to G . In cas&; = C*? x C, the stabilizerH =Stab< G of a point € O
has dimension 1 and s & df = C* If H= NthenO = G/H = C*. If
H = C* then we may suppose that € T. Indeed, any subtorus i is contained in
a maximal torus, which is unique up to a conjugation. But tieeF G/H = C* xAé.

In all cases the open orbi® is affine, hengg O is either empty divisor.
Thus, if O is big thenO = , proving (b).

(c) is well known and follows from the structure theory of ellgaic groups,
see [8, 22]. ]

To describe all normal affine surfacés  admitting an actiomrofalgebraic group
G with an open (not necessarily big) orbit, we follow a sugmesin [31, The con-
cluding remark]. In the particular case of smooth rationafaces it was confirmed in
[7, Proposition 2.5].

Proposition 2.10. Let V = SpecA be a normal affine surface non-isomorphic to
C* x C*. If an algebraic groupG acts oV  with an open orbit thdar somee € Z,
the groupG, = C* x,, C, also acts onV with an open orbit

Proof. If V is a toric surface then by Lemma 2.7 (c) it admit&;a ctiem with
an open orbit. So we may suppose in the sequel that is not iorjgarticularV #
AZ.

In caseG = SL, we let BL be the Borel subgroups of upper/lower triangular
matrices. Their intersection is the tors= C* of diagonal matrices. If bottB. act
with 1-dimensional orbits orVV  then their orbits would be dqguwathe orbit closures
of the torus action. Hence als6  would act with 1-dimensioordits contradicting
our assumption. Thus at least one of the gro#as has an opénirorly. Since
B+ = G» the result follows in this case.

Clearly, the casé; = PGL, = SL,/{£1} reduces to the previous one.
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For the remaining cases we may suppose that acts effectirely, is con-
nected and does not contain a subgroup isomorphicSlte or PGL,. By Lem-
ma 2.9 (a), (c)G is solvable and not unipotent. Sin¢e is nat,tdhe maximal
torus T of G has dimension 1. As in the proof of Lemma 2.9 (b) we can ictstihe
action of G to a subgroug/ ¥ xC, of G which still has an open orbit. A& = G,
for somee , the result follows. [

3. Classification of affine surfaces with aC*- and C.-action

In this section we study normal affine surfacés = Spec endowmittd an ef-
fective C*- and aC.-action. TheC*-action provides a grading &D,., A; and the
Cs-action a locally nilpotent derivatio® oA . Due to Lemma 2. wan find a
homogeneousocally nilpotent derivation onA . Thus in the sequel we cdasipairs
(A, d), where A is the graded coordinate ring Bf = Spec as abovedand erAD
is a nonzero homogeneous locally nilpotent derivation.

Derinimion 3.1. We call such a pairA, d glliptic if the C*-action onV is el-
liptic i.e., if A is positively graded with dirdg = 0, parabolic if A is parabolic i.e.,
positively graded with dindg = 1, andhyperbolicif A is hyperbolic, i.e.AL £~ 0.

Two such pairs 4,0 ) andA’,d’ ) are calledomorphic if there is an iso-
morphism of gradedC-algebrasp A — A’ withpd H'¢ .

For hyperbolic pairs we will suppose in the sequel that :=aleg 0 (indeed,
otherwise we can reverse the gradingAof ).

We can reformulate 2.2 in this setup as follows.

Proposition 3.2. Lete € Z be fixed There is al-1 correspondence between iso-
morphism classes of pairfsA, 9) with degd =e as above and normal algebraic affine
surfacesV equipped with an effecti¢ce  -action up to equivdriaomorphism

Thus to describe normal affine surfaces withGa  -action up taivagant iso-
morphism we classify in this section all elliptic, paralsotind hyperbolic pairsA, 9 )
with e = degd . Our main results are the structure theorems 312, 3.16, 3.22 and
Corollary 3.30. It also turns out that in many cases the igpinem class of a pair
(A, d) depends only on the isomorphism class of the graded agébrsee Proposi-
tion 3.7.

3.1. Elliptic case. Let (A,d) be an elliptic pair. It is shown in [18, Lem-
mas 2.6 and 2.16] that = C[X, Y]%, whereC[X, Y] is graded via deX =x > O,
degVY =dy > 0, and wheregG = Z, is a small subgroup of5L,. In particular
V = SpecA is a toric surface. Moreover, extends to a homogenemadlyl nilpo-
tent derivation also denoted By C[X, Y] — C[X, Y], and the actions of and; on
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C[X, Y] commute (see Lemma 2.6(a)).

Theorem 3.3. If (A, d) is an elliptic pair then after an appropriate change of
coordinates we haveA = C[X, Y]¢ with G = Z; = (¢), where¢ is a primitived -th
root of unity generatingG, acting onC[X, Y] via

cX=CX, ¢Y=c,
and 9 extends tcC[X, Y] via
a(X)=0, ay)=Xx° ie, 9=X"—,
wheree > 0, gcde,d) =1

Proof. Sincea is homegeneous locally nilpotent ©pX, Y] we haved P ) = 0
for an irreducible quasihomogeneous polynomfale C[X, Y] with degP > O (see
Proposition 1.1 (b)). We can writdé  °3, where d is again a locally nilpotent
derivation ands is chosen to be maximal. The derivation, ﬁ_agf CI[X, Y]/ P) in-
duced byd is then nontrivial, so by Proposition 1.1 (c) abo@§X, Y] /( P) is a poly-
nomial ring in one variable. Sinc® is quasihomogeneous, ustnibe linear inX
or in Y. After a suitable quasihomogeneous change of vasable may assume that
P =X so thatd § ) =0 and ket £[X]. Since d is homogeneous locally nilpotent,
a(Y) is a homogeneous polynomial i, i.@.,Y ( pX¢  withe C* ande > 0 (cf.
the proof of Lemma 2.16 in [18]). Replacing &/a we may suppdedd = 1.

Since 8 commutes with the action &f , for any € G we haveg.X( ) =
g.0(X) =0, and sog.X =a £ X for some character G: — S'. It was shown in
the proof of [18, Lemma 2.16] that is necessarily injectiVaus we can identifyG
with the cyclic groupa G ) =(¢) = Z, for a certain primitived -th root of unity ,
where¢. X =¢X . We write nowg.Y =Y $X° , wherdy &ady in the case that
B #0. Sinced €.Y ) =¢.0 ¥ ) we obtain

aX®=¢.X =X,

and thereforex ¢ . If gcdle y=1thede= O mad for sonie<d , and so
¢? # 1 acts as a pseudo-reflection @fiX, Y], which is excluded by our assumption
that G is small. Hence gcd(e )=1.
Finally, if ¢¢ =¢? then¢ when considered as an operator@n+ CX° has infi-
nite order, which is impossible. Henge =0 in this case;“lf/ ¢°= entheplacingY
by Y :=Y +(B/(¢—¢9))X° we can achieve that.Y’ &Y’ , proving the theorem.
U]
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3.2. Technical lemmas.

Notation 3.4. Until the end of this section we led(d ) be a parabolic of hy
perbolic pair as in Definition 3.1. Thug is a homogeneousllpaglpotent deriva-
tion on A = A, @ Ao ® A_ corresponding to &.-action, C = Sped, is a smooth
curve andA, == @, o A; 7 0. We assume as before that thié-action is effective so
that A, # 0, and alsoA_1 # 0 as soon asA_ %p,_oA; 7 0. We letd =d @)
be the minimal positive integer such that., = A;A, for everyn > 0 (see [17, 3.6
and Lemma 3.5]).

Lemma 3.5. If 9]Ap # 0 then Ag = C[7] for a certaint € Ap. Consequently for
everym WwithA,, # 0 the Ag-moduleA,, is free of ranid.

Proof. The morphismr : Spet — C = Spég induced by the inclusion
Ap — A coincides with the orbit map onto the algebraic quoti&yC*, hence its
general fiber is an orbit closure of thé*-action onV = Sped associated to the
given grading. Sincéd|Ag # 0 the general orbits of th€.-action ¢; onV belong-
ing to @ are not contained in the fibers af , and so map dominamtlp Specio.
These orbits being isomorphic #}, Ao is a subring of a polynomial rin@[7]. It is
easily seen thato is a normal ring, hencely = C[¢] for somer € A, as stated. Now
the second statement follows from [17, Lemma 1.3 (b)]. O

For later use we consider in the next lemma more generallyrehemogeneous
derivation, but with homogeneous components of only noatieg degrees.

Lemma 3.65 Letd = Zﬁ:k d; be a nonzero locally nilpotent derivation o de-
composed into homogeneous components Ivithk > 0. If d := d(Asg) andv € A,
generatesA, as amo-module thenkerd =C[v, v=1] N A. In particular, 3|Aq # 0.

Proof. Note first thato stabilizes the subring.o. Since by definition ofd we
have A+, = A,Ay = vA,, it stabilizes as well the principal idealAd-o of A-o. Thus
by Corollary 1.2 (b)d ¢ ) = 0 and s€[v,v™1] N A C kerd. To deduce the other in-
clusion it is sufficient to show thaE[v, v=}] N A is integrally closed inA (see Propo-
sition 1.1 (b)). The normalization of[v,v ] N A in A is again graded and normal
and so is equal t@[w, w™ ] N A for some homogeneous elemente A of positive
degreed’ . Thusy =w* for some > 0 ande C, and sod =d’k . It follows that
Ap+a = VA, = wA,+q—1e for all n > 0. By definition ofd , this is only possible in the
cased =d’' , which proves th&t[v, v N A =kerd. U

This lemma has the following important consequence. Algioit also follows
from the classification theorems 3.16 and 3.22 we give hermdependent proof.

5Cf. Lemma 2.5.
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Proposition 3.7. Let A be a parabolic or hyperbolic algebra withy = C[f] as
above and let, 3" be nonzero homogeneous locally nilpotenvalisns onA of the
same degree. In the parabolic case assume further that> 0. Thend andd’ are
proportional i.e. ' = c¢d for somec € C*. In particular, the pairs(A, d) and (A, 9")
are isomorphic

Proof. If A is hyperbolic we may reverse the grading, so in bcakes we may
suppose that > 0. By Lemmas 3.5 and 3.6 there exists Ay such that ke
kerd’ =C[v,v N A. Thusv :V :=Spect — I' := Spe€(v, v~ N A) is an affine
ruling (see also Lemma 2.5), and the vector fields anhd are taotgent to the
fibers of v. Henced’ =d for some € Frat( ) of degree 0, and becauseapoPr
sition 1.1 (b) we have € keér . By Lemma 3.6 this implies that C, proving the
first assertion.

To deduce the second one, we write A& withe C*. The C*-action on A
induces aC*-action on Def(A, A) via (A.8)(a) = A.(6(r.a)) for § € Derc(A, A) and
a € A. As 9 is homogeneous of degree we havé c¢d= 3'= , as required. [

Lemma 3.8. If degd > Oand d(x) = O for some nonzero elemente A, then
Aso = C[t, u] with degr = 0,and d|Aso = x9/9¢ for some homogeneouse Agegs-

Proof. First we note thad x( = 0 for alt € Ap\C by Lemma 3.6. Applying
Lemma 3.5 we see thaty = C[7] for somer € Ag and, moreover, for every > 0 the
Ag-module A, is freely generated by some element A, . Thereifibre pex for
a certainp; € Ag. Sinceu* € ked and ker is factorially closed,p( )d=ei( )= 0.
Hence p, € C for all k > 0, and s0Aso = C[¢,u]. Since d ) = 0 we have)|Aso =
xd/0t, wherex =9 { )e Agegs, as required.

O

Lemma 3.9. If Ag = C[f] and degd =:e > Othen there is an isomorphism of
graded C-algebras Ao = C[s, u']% with s¢ =t and «’Y = v, where the polynomial
ring B := C[s,u] is graded viadegs = 0, deg’ = land the cyclic grougZ, = (&)
acts onB via

Es=¢&, Eu =E&u.

Moreovergcd, d) = 1,and 9 is the restriction toA-, of the derivation

0=u"—.
as
Proof. We may suppose that  A-p, and we letB be the normalization of
A in the field of fractions ofA 4§’ ], whera/’ :=%v. In view of the minimality of
d the assumptions of Lemma 1.8 are fulfilled. Hence the grdup= (&) acts onB
via £]A = id, £’ = £u’, so thatA = B %, andd extends to a locally nilpotent
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derivation (also denoted ) oB of degree . A3/ ( ) =0 andudeg =1laec
apply Lemma 3.8 to obtain tha® = CJs, u'] for somes € By, ando =x0d/ds for
a certain homogeneous element p=s u(®)e C[« u]).. Since d =pEn*d/ds is
locally nilpotent we havep € C*. Hence we may assume that u“

The action ofZ; on Spedy = SpedC[s] has a fixed point which we may suppose
to be given bys = 0. Thug.s <£*s for some € Z. Sinced commutes with the
action of Z,; (see Lemma 2.6) we have

Eu =6.9(s) = 0(5.5) ="u”,

i.e., we may assume that &« .
Since A; = (B1)% # 0 there exists a non-zero elemefit ¢= u( ¥ A,, where
q(s) =Y h-0qms™ € C[s]. The elementf being invariant undér we obtain

E.f=q@Es)su’ =qsh' = f,

ie., &m*t = 1 as soon ag,, /=0. Thuge +% 0 mdd and so gaod( ) = 1.
Finally, by Lemma 3.55¢ € C[s]% = C[{] = Ao generatesA,. After rescaling we may
suppose that? # as claimed. U

Remark 3.10. In the situation of Lemma 3.9 Filad/7]) = FradA[¢/v]) =
C(s, u).

3.3. Parabolic case. We are now in position to exhibit the structure f,0 )
in the case of a positive grading with difig = 1. We distinguish the following cases.

Derinimion 3.11. A parabolic pair4, 9 ) as in Definition 3.1 will be callegrti-
cal or of fiber typeif 9|Ag = 0, and ofhorizontal typeif d|Ag # 0.

Two isomorphic pairs 4,0 ) andA/,d9 ) have the sameamerical invariants
(d,e), wheree = de@ and!l := A ) is as in 3.4 (see also [17, 3.6]). IrcGFh
rem 3.16 below we show the converse, namely, that two pacapairs of horizontal
type with the same numerical invariants are isomorphic.

A parabolic pair is of fiber type if and only if the general dgbiof the corre-
spondingC.-action onV = Sped coincide with the general fibers of the mismph
n:V — C = SpecAq or, equivalently, if the vector field oV is tangent to the
fibers of x . In contrast, if the pair is of horizontal type thédw ffibers of theC.-action
map surjectively onto the base curée@  and 60 Al or, equivalently,Aq = C[{]
(see Lemma 3.5).

We start with the case of parabolic pairs of fiber type.
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Theorem 3.12. If (A, d) is a parabolic pair of fiber typetheno has degree-1.
Furthermore if we representA via the DPD construction as

A= Ao[D] = @ HO(C, Oc(InD))) - u" < Frac(o)[u]

n>0

with a Q-divisor D on C = SpecAg thend extends td-racdo)[u] as d = ¢ - 3/0u,
where ¢ = du belongs toH%(C, O¢(|—D))). Vice versaany ¢ € H(C, Oc(l—D)))
gives rise to a homogeneous locally nilpotent derivatior ¢ - 3/0u on A of degree
-1.

Proof. The case degy > 0 is impossible by Lemma 3.6. If dleg 0 then
Ag C kerd, and sincedg is integrally closed inA we have even equality (see Propo-
sition 1.1 (b)). If de < — 1 then any element 4y would be in ke® , which is a
contradiction. It follows that de§ = 1.

If ¢ is a section in H°(C, Oc(|—D])) then the derivationd =¢ - 3/0u
of Frac(Ao)[u] stabilizes A . Indeed, forf € HO(C,Oc(lnD])) we havegf e
HO(C, Oc(l(n — 1)D])) and s0d fu" ) =npfu"' e A,_1. Conversely, ifd is a
Ag-linear derivation ofA then it extends to Frag)[u], and so is of typed =-9/0u
for somey € Fracfp). If d € N is such thatd D is integral then multiplication hy
gives a map

HY(C,0c(ldD])) — HC, Oc(l(d — 1)D))),

and hence amounts to a section A(C, Oc(L—D])). ]

Remarks 3.13. 1. Our proof shows that

(i) A = Ag[D] always admits a non-zero locally nilpotent derivation ofefib

type and

(ii) every homogeneous locally nilpotent derivation 4r= Ap[D] of negative de-

gree has degree-1 and is of fiber type
(i) also follows from Lemma 1.6, since for a paraboli¢-surfaceV = Spedy[D] the
canonical projectiomr V — C = Spely is an affine ruling.

We claim as well that

(iii) The reduced fibers of the affine ruling: V — C are all irreducible and

isomorphic toA}.

To show (iii), with the same argument as in the proof of Primos 3.8 (b) in
[17] we can reduce to the case thag = C[7] (i.e., C = A(%;) and D =-—¢'/d)[0],
where 0< ¢ < d and gcd(,d ) = 1 (see [17, Theorem 3.2 (b)]). In this chee t
reduced fiber ofr vV — Al over Oe Al is isomorphic to Spe€[v] with v:= ¢¢u,
In fact, using the presentation ef as in (1) it is readily séwat the radical of/zA
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is given by
Viaz P Cub, andso A/ViAE @ Cr'ub = Cl.
b>0,ad—be' >0 b>0,ad—be’'=0
2. The multiple fibers oft ¥ — C correspond to the points|{i®}|] . More-pre

CiSE|y, if {D} = Zi (e,-/m,- )a,- with ¢; € C and ng(I', m; ) =1 them* Cl( ) 'm,-n_l(a,-)
(see [17, Theorem 4.18)).

3. LetW =Sped be any affine surface with a non-trivigl-action. The coordinate
ring B is filtered by the kernel8, :=kéf , whetee DRr is the coroesjing
locally nilpotent derivation. Consider the associateddgtaring A :=@,.,A4; with

A; = Bi+1/B; and the associated homogeneous locally nilpotent desivati € DerA

of degree— 1. Therd’|Ap = 0, and so the normalization of is as in Theorem 3.12.

In the following example we exhibit a particular family of naéolic pairs of hor-
izontal type, and then we show in Theorem 3.16 below that fémsily is actually ex-
haustive.

ExavpLE 3.14. Given coprime integers > 0 anf > 0 ¥t  be the unique
integer with 0< ¢’ <d ande’'= 1 mod ; we note that by this condition =0 and
d =1if e =0. Letting Ag = CJ[z], we consider theAq-algebraA given by the DPD
construction as follows:

A = Ag[D] C Frac@o)[u] with D= —%/[O] eDiv (A}).

Clearlyd =d () (see Lemma 3.5 in [17]). According to [17, Profios 3.8] and
Example 2.8 above we can represent as the ring of invariants

A=A% with A" :=C[s,u’], degs =Q deg’/ =1
wheres? =t ,u’ =us¢ , and wher&, = (¢) acts onA’ via
cs=¢s, cal =¢u.

Thus as in Example 2. = Spdc= V, . is an affine toric surface, and because of
e¢/ =1 modd the derivation

d
4) 8’ =u'“— € DerA’
as

of degreee is locally nilpotent and commutes with thg-action. By Lemma 2.6 it
restricts to a locally nilpotent derivatioh  of

Derinmion 3.15. We call the pair P;, =4,9 ) as abovehe parabolic
(d, e)-pair.
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Note thatP; . is of horizontal type. Moreover, two parabolic pal;, and P; ;
are isomorphic if and only i =/ ande =¢ (cf. [17, Corollary 3.4]). In the next
result we classify all parabolic pairs of horizontal type.

Theorem 3.16. Every parabolic pair(A, d) of horizontal type is isomorphic to
the parabolic(d, ¢)-pair P;, with ¢ := degd and d := d(A).

Proof. We recall (see [17, Remark 2.5]) that fare’ > 0 and = 1 mod
the Zs-actionsG),, andG,. om2 = SpedC[s, u] with

G;[’g . é.(s, u’) = (ges’ gu/) and Gd,e’ S C. (S" M,) — Q;S, {e,u/)

where&, ¢ are primitived -th roots of unity wity &° , have the sambitst hence
also the same rings of invariants. Now Lemma 3.9 shows thab (is igomorphic to
P, .. This proves the result. O

ExavmpLE 3.17. If A is parabolic and admits a nonzero homogeneous lyocal
nilpotent derivationa of degree 0 theA = C[t,u] and 0 = d/d¢. In fact, by the
classification aboveA, d ) is the paitoie.,e¢ =0,d =1,s =t and’ = in Ex-
ample 3.14.

Remarks 3.18. 1. We note that the derivatidgh in Example 3.14 natyreX-
tends to Frac{o)[u, »~1] giving the derivation

a0 ad d 0
(5) d=d-t*u— — e - Futt— = tkue (d t—— - u—) ,
at ou t

whereee' — 1 =kd . Indeed, from = and #s¢ we obtain
3)=d s =d- "¢ and 9@)=—¢ s = — - Fuctt,

2. By virtue of Lemma 3.6, ket €[v]. Hencev :V — AZ is the orbit map of the
C.-actione¢’® onV generated by . As is homogeneous of degreed A~ >( ) 0,
the C*-action onV acts non-trivially on this affine ruling and on litase. Therefore

can have at most one degenerate fibet(0), which is the fixed point curve€, = Al

of the C*-action. Moreover, diw( ) =C. (see [17, Remark 3.7]).

Corollary 3.19. A normal affine surface/ = SpecA ,where A = Ag[D], admits
a horizontal C,-action if and only ifAp = C[¢] and the fractional part{D} of the
Q-divisor D onC = A%: is supported at one point or is zero

Proof. This follows immediately from Theorem 3.16; notettirathe casedg =
C[¢] we have A =Ag[D] = Ao[{D}], see [17, Corollary 3.4 and Proposition 3.8].
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Let us provide for the ‘only if’-part an independent georieetirgument. For this
consider more generally a morphism V: — C of a normal affine serfédconto
a smooth affine curv&  with only irreducible fibers. We clainatth there exists an
affine rulingv: Vv — I different fromz thenC = Al andx has at most one multiple
fiber. Clearly, this claim implies our assertion (see Remark 2)13o show the claim,
we let G = Al be a general fiber of , and we assume on the contrarysthat  has at
least two fibersF; of multiplicitym; > 2 =0 1. Ax|G G — C is dominant
it follows that C = A}, and sox|G :G — C can be viewed as a non-constant
polynomial v € C[f]. We also may assume thaf = 7—(0) and F; = 7~(1). As G
is a general fiber obb it meets; at smooth pointslof  only, with iersection
multiplicities in G - 7* () being a multiple ofn; i( =0 1). Thusy, mj, divides the
multiplicity of any root of the polynomiab y— 1, respectiveldencev =A"°0 = y™+
1 for some non-constant polynomials u € C[f]. The pair ., u) defines a dominant
map A}C — I'yg.m,, Wherel, ., is the smooth plane affine curwe™ — y™ = 1. But
the existence of such a map contradicts the Riemann-Hurfaitaula, which proves
our claim. O

3.4. Hyperbolic case. In this subsection we assume that is hyperbolic, so
that AL #0. If9 is a homogeneous locally nilpotent derivation Arof degreee with
e < 0 then by reversing the grading of we obtain a derivation ddithbe degree.
Thus it is sufficient to classify the hyperbolic pairg,@ ) asDefinition 3.1.

Lemma 3.20. If (A, d) is a hyperbolic pair thend stabilizegi.o € A, and
(Aso, 9) is a parabolic pair of horizontal type

Proof. It follows immediately from the definitions thati{o, ) is a parabolic
pair. If it were of fiber type then the orbits of the correspiogdC,-action onV =
SpecA would be the fibers of V — C = Spag. As the general fiber ofr i€*,
this leads to a contradiction. ]

Thus by Theorem 3.16A(¢, d) is isomorphic to thed, e )-paitP;, , where =
degd andd =d A-p) = d(9) (see 3.4 and Lemma 3.9). In particulaty = C[f] and
Aso = Ao[—(¢'/d)[0]] < Frac(Ao)[u], where 0 is the origin inAl = Specd, (see
Example 3.14). Moreoved is given as in (4) or, alternativaly,in (5). The following
lemma is crucial in our classification.

Lemma 3.21. Let D., D_ be Q-divisors onC := SpecA, with Ay = CJ[t] satis-
fying D+ + D_ < 0, where D, = —(¢//d)[0] with 0 < ¢’ < d and gcdE’,d) = 1 The
derivation d: Ag[ D+] — Ao[D+] of degreee > 0 as in (5) extends to

A = Ao[Ds, D_] € Frac(Ao) [u, u™"]
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if and only if the following two conditions are satisfied.
(i) If D_(0) #¢'/d then(ee’ —1)/d —eD_(0)> Oi.e.,, —e(D+(0)+D_(0))> 1/d.
(i) If a € AL with @ #0 and D_(a) # 0 then -1 —eD_(a) > 0.

Proof. Note thatd extends in a unique way to a derivation otc@@[u, 1]
also denotedd . We must show that stabilizes if and only if (Yl &ii) are satis-
fied.

Let us first treat the casé =1 so thét =0 abd=0. Then (i) and (ii) can
be reduced to the condition

(6) —1—eD (@)= 0 Vae AL

Moreover,k =— 1 and so according to (B) «<-9/d¢r  acts on a homogeneonwerte
f@u™ e C(t)u™™ by

Q) I @) = f e

Thus o stabilizesA if and only iff (W™ € A_,, > 0) implieg’ t " € A._p
or, equivalently,

divf'+(m—e)D_>0 ifm—e>0
®) div f +mD_ > 0= {OV/ =)D =0 ifm—e=
divf'+(e—m)D, >0 if m—e<O0.
If (6) is satisfied then for any € AL
div, f'+(m —e)D_(a) > div, f +mD_(a)— 1—eD_(a)> div, f +mD_ (@),
where diy, (- ) denotes the order at . Thus (8) is satisfieth i- ¢ > @ simce
Di(a)=0and—D_ ¢ )> 0, it also follows foin —e < 0.
Conversely, assume that stabilizés . Consider ¢ such thadivieor m D_

is integral. Fora € AL with D_(a) # 0 we lets :=—mD_ ¢ ); thuss > 0. Consider a
polynomial Q without zero at: such that

(t—a)’Qu ™ eA_,.
By assumptiond ¢(—a Qu™" )={t(—a y*Q +(t —a)’ Q)u¢" € A_,+ and so
diva(s(t —a)’ *Q +(t —a)’ Q') + (m — €)D_(a) > 0.
The term on the left is equal to— 1, hence we obtain
s—1+m—e)D_(@a)=—1—eD_@)= Q

as required in (6).
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In cased > 2 we consider the normalizatioi ~ af in Frad(/)] as in
Lemma 3.9, and we lep Al = Specd; — Al = Specdq, s —> s, be the cov-
ering induced by the inclusiodo € Aj. By loc. cit. AL, = C[s,u] with s¢ = ¢ and
u’=vekerd, deg/ =1, and extends to the derivatin «'=3/ds A, and as
well on Frac@d’ ). If 9 stabilizesA thed’ stabilize§  (see Lemma).llx_Boreover,
v can be written av  ¥“u? (see the proof of Theorem 4.15 in [17]). IS0][17,

Proposition 4.12],
A" = Ay D), D] € Frac(p) [u', u'™1],

where D, = 0 and D’ =p* O+ + D_). Using the first part of the proof we get that
D' () <O implies—1—eD’ @' )> 0.1fa =p@)£~F0thenD_d )=D_ d ), hence
(i) follows. Similarly, if p(a) =0 thenD’ @ )=—¢" +dD_ (0) and (i) follows.
Conversely, assume that (i) and (ii) are satisfied. Revgr#lie reasoning above
we obtain that— = D" " » 0 ifD” 4 )/=0. Thus by the first pait  stabilizés
Taking invariantsd stabilized =A( %), as desired. O

Summarizing we state now our main classification result fgehbolic pairs.

Theorem 3.22. If (A, d) is a hyperbolic pair withd := d(Aso) and e := degd >
0, then Ag = C[7] and A = Aq[D., D_] for two Q-divisors D., D_ on Al with D, +
D_ < 0, where the following conditions are satisfied
(i) Di+=—(/d)0] withO<e <d andee’ =1 modd .
(i) If Du()+ D_(a) # 0 then —(Ds(a) + D_(a)) * < 194 ¢~ 0.
e, a#0
(iii) 0 is defined by(5) in Remark 3.18.
Conversely given twoQ-divisors D, and D_ on A}C with D, + D_ < 0 satisfying (i)
and (ii) there exists a unigyeaup to a constantlocally nilpotent derivationd of degree
e on A = Ao[D+, D_], and this derivation is as ir(iii). In particular, isomorphism
classes of hyperbolic pairs are if+1 correspondence to pairéP, ., D_), where D_
is a Q-divisor on Al satisfying(ii).

Proof. By Theorem 3.16, A0, 9) is isomorphic to the parabolic paiP;, . In
particular, (i) and (iii) are satisfied. By Lemma 3.21 alsp fiolds, proving the the-
orem. O

Corollary 3.23. A two-dimensional normal grade@-algebra A = @,,., An
with AL # 0 admits a homogeneous locally nilpotent derivation  of pesidegree
if and only if Ap = C[s] and A = Ao[D+, D_], where the fractional part{D.} is
supported at one point or is zero
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In order to study more closely the structure of the affinengilwhich corresponds
to the C.-action with generato® as above, we need a simple lemma. Ya le
Ao[D+, D_] C Frac(Ao)[u, u™1] be a normal graded-algebra, and we consider the

associatedC*-fibration 7 : V = Spedd — C := Sped, over the curveC . It was
shown in [17, Theorem 4.18] that the fiber over a paint C with(a) + D_(a) <
0 consists of twoC*-orbit closuresO*. Moreover, if Di(a) = —(e+/m+), D_(a) =

e—/m_, wherem, >0, m_ < 0 and gcd{y, my ) =1, then
(9) @) =m0 —m_[0;] and divu =—e.[0]+e [0 ]+,

where the terms in dots correspond to pointgin| U |D_| different froma . Letting
vy € A,, be an element witl,,, ®.Aq neara , we have the following observation.

Lemma 3.24. (a) The orbit closuresﬁ;t = SpedC[v+] are smooth affine lines
(b) div(vs) = A(@)[O,] and div(v_) = A(a)[O}], where A(a) := mie_ — m_es.

Proof. With the same argument as in the proof of Propositi@(B) in [17] we
can reduce to the case whe#g = C[7] and |D,| U |D_| is the pointa =0e C =Al.
We may also suppose that.(0) + D_(0) < 0. Recall (see the proof of Theorem 4.15
in [17]) that v+ =r**u™= up to a constant iC*.

() The ideal 0f5; coincides with the radical/v_A, see the proof of Theo-
rem 4.18 in [17]. Thus it suffices to show that

VicA=A_@tAe P A

mytB

As v ¢ J/u_A we have the inclusionC . To deduce>’ ' we note first that @
tA C Jv_A. Suppose that*u? € A , wherg > 0 amd. { 8, and let us show that
t“uf e Ju_A. For this we need to prove that. ="  divide§u"® i for
n > 0 or, equivalently, that"*=¢u"#="- € A,5_, . This amounts to

(10) o —e_)+ @B —m_)D.+(0) > 0 < n( +B8D+(0)) > e_ +m_D,(0).

Because of our assumption$u? < A and t 8 we havea +8D.(0) > 0 and
BD.(0) ¢ Z, soa +8D.(0) > 0. Hence (10) is satisfied for > 0, as required.
(b) follows from (9) by virtue of the equalities

divv, = e divt+medive and divo_ =e_ divt +m_ divu. O

We consider below a hyperbolic paid(d ) as in Theorem 3.22, wedet v €
A, be a generator oA; oveAg = C[f] (cf. Lemma 3.6). Therw V = Spet —
r = A%: provides an affine ruling which is the quotient map of tBe-action onV
induced byd . In the next proposition we describe the muttipis which occur in
the degenerate fibers of this affine ruling (cf. Remark 3)18.2
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Proposition 3.25. The fiber of the affine ruling: V. — I = AL over a point
p # 0 is smooth reduced and consists of just ori&.-orbit, whereas the fiber over
p =0 is a disjoint union ofC*-orbit closures isomorphic to affine lineene for each
point a € C with D.(a) + D_(a) < 0. Moreover

(11) divw) =ds Y m_(a) (D+(a) + D_()) [0, ].

aEA%

where the integemn _(a) < 0 is defined byD (a) = e_(a)/m_(a) with gcde_ @),
m_(a)) = 1.

Proof. Aswv is homogeneous of degrde & := d(Asp) the affine ruling
v: V — Al is equivariant if we equipAl with the C*-action ».z =219t . This im-
plies that for every poinp /=0, the fiber af over is smooth, ieethand consists
of just oneC.-orbit. By the previous lemma, div( ) is a linear combinatiohthe di-
visors 5(,—, wherea runs through all points af ﬁg}c with Dy(a) + D_(a) < 0. We
compute the multiplicities separately in the cases where anda £ 0.

If a=0 then D4(0) = —(e+/d+) with e, =¢’ and D_ (0) =e_/m_ withe_ =e_ (0),
m_ = m_(0), so by Lemma 3.24 the coefficient 630‘ in div(v) is A(0) = —esm_ +
e_my =dsm_(D+(0) + D_(0)), which agrees with (11).

If a 70 thenmy(a) =1 and SOA ¢ ) =m_ 4 )D+(a) + D_(a)). Letting v, € Az
be an element generating; over Ag neara , we can write %vf*, wherees € Ag
is a unit neara i.e.g d )/= 0. By Lemma 3.2@5 occurs with multiplicity A ¢ ) in
div(v,), and so it occurs with multiplicityls A(a) = dim_(a)(D+(a) + D_(a)) in div(v),
as required in (11). O

Remark 3.26. We note that diw( ) is the exceptional divisor of theatonal
morphismoy: V — V. = SpecA-( induced by the inclusiom-o — A. Indeed, the
divisor div(v) = d+C+ on V. is supported by the fixed point curné, = Aé of the
C*-action onV, (see Remark 3.18). For every pointc C A%: with Ds(a)+D_(a) <
0 there is a unique point’ over dfi,, ando. is the affine modification consisting
in an equivariant blowing up o¥, with center supported at all those pointse C.
and deleting the proper transform of the divigor (see [17, Remark 4.20]).

If vis a unitin A thenD,+D_=0,v:V — AL\ {0} is the quotient map, and
all fibers of v are smooth affine lines. More precisely the follmyvresult holds.

Corollary 3.27. Let (A, d) be a hyperbolic pair and! := d(Aso). If one of the
following two conditions is satisfied
(i) e:=dego =0,or
(i) A contains a unit of non-zero degree
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then

ad
AZClzv,v] (= V=ALxCY) and 0=,
Z

wheredegz =—e and degv =d .

Proof. In case (i) Theorem 3.22 (i) shows that =1 a&d =0pso=0, and
moreover by 3.22 (ii)D+(a)+D_(a) = 0 for all closed points: € A}C. ThusD, =D_ =
0 and A =Ao[u, u!] for some element € A;. By 3.22 (iii) and Remark 3.18.2 is
the derivationd =9/dr , which proves the result.

In case (i), by [17, Remark 4.5]D. = —D_, and by Theorem 3.22D, =
—(e’/d)[0]. Therefore,A is the semigroup algebra generated @vesy all monomi-
als tu® with ad — be’ > 0,a,b € Z (cf. the proof of Theorem 4.15 in [17]). Choose
g € Z with | ;| =1 and consider the elements

vi=ru?, v! and z =% eA with deg =, deg =e,
so thaty =v=9z=¢ andr =v°z¢ . As we have noticed above, a mononfiat
pae—bazad=be’ helongs toA if and only ifad — be’ > 0. ThustA  €[v, v, z]. The
orbits of the C,-action on Spe€[v,v~t,z] = AL x C* given by 9 are necessarily
contained in the fibers of the projection @, and ke® =C[v, v™] (cf. Lemma 3.6).

Since d is homogeneous of degree , we get ci2z” - 9/9z for suitable C*,
a € Z, b € N with ad — be = 0. As 9 is also locally nilpotent this forceas &= =0
and sod =c-0d/0z . Replacing by/c , the result follows. ]

Next we describe explicit equations for hyperbolic pairstle case thatA =
Ao[D+, D_] with D, = 0. Similarly as in 3.4 we lek & A-p) be the minimal posi-
tive integer such that _,_, A_;A_, foreveny> 0.

Corollary 3.28. Let (A, 9) be a hyperbolic pairand suppose thatt = Ag[D-,
D_] with D, =0, so thatA-o = CJ[t, u] with degu = 1land degr = O.If k := d(A<o)
and e := degd > Othen A is the normalization of the graded domain

B = By p :=Clt, u, v]/(ukv — P(t)) with  degv =—k,

where
(12) P(t) :H(t —q))"eClf] (=1 and a #a; for iZj)
i=1
is a unitary polynomial uniquely determined B} = — div P/k and satisfying

k
(13 gedg,r1,...,r) =1 and e> —

ri
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fori=1,...,s. The derivationd is given (and uniquely determined) by thedi@®ns
(14) I)=0 9¢)=u" EI0)=P ()} ")

Conversely given a polynomialP as in(12) and (13) there is up to a constant
a unique locally nilpotent derivatio@ of degree of the nolization A of B, p sat-

isfying (14).

Proof. As was shown in [17, Example 4.10 and Proposition ]4.141 is the
normalization of the algebra; p, , wherg is a unitary polynomiaiquely de-
termined by D. = — divP Jk . Sincek is minimal wittkD_  integral, we have
gcdk, r1,...,r,) = 1. By Theorem 3.22 (ii), (iii) it follows thate > k/r; and that
d has the stated form (14). Conversely, given  the normatinai of By p is iso-
morphic to Ag[D+, D_] with D, =0 andD_ =— divP Yk . Ife > k/r; for alli then
the conditions (i), (ii) in Theorem 3.22 are fulfilled for , sbere is a locally nilpo-
tent derivationd ofA satisfying (14), anél is uniquely detered up to a constant
factor. O

Remarks 3.29. 1. Over each of the points & € AL, the surfaceV = Spet
considered in Corollary 3.28 has a unique fixed peifit  of @feaction. This point
a; € V is a quotient singularity of typed(,e; ), whevg/k dr/e;  with,e;  coprime
and 0< ¢; < d; ,¢; = ¢, modd; . This follows from Theorem 4.15 in [17], since
Di(a;) = 0 and D_ @ ) =r;/k . In particular, the surfacé is smooth if and oifly
rilk for all i (cf. Corollary 4.16 in [17]).

2. A description of the automorphism group Atp for a smoothfagie vV, p =
SpecBi.p , WhereB; p is as in Corollary 3.28, can be found in [6, (ZB%#] and
[27, Theorem 1].

3. For anye > k the derivatio® described in Corollary 3.28 siabd the ringB
and induces &C.-action (actually, aG, -action, see Lemma 2.2) A\xé which leaves
the surfaceV, p = Spek C A% invariant. In casez < k , howeved, does not induce
a derivation onB . The simplest example of such a surfécg iB Wit= 3 and
k=2, e =1. Here the elemerit v( ) 31 is not in B but is integral oveB as its
square is equal tor® € B

4. TheC,-action associated to the derivation in Corollary 3.28 is

(15) . u,v)=¢ tau u, u P +au)) o eCs,
with fixed point setfu =@ . Again, foe > k thi€,-action extends ta\3.
In the caseD. = —(¢//d)[0] # O a suitable cyclic covering o/ = Spdc can be

described as in Corollary 3.28. This leads to the followidggraative description of
arbitrary hyperbolic pairs4, 9 ).
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Corollary 3.30. We let(A, 9) be a hyperbolic pair with invariantg := d(Ao),
k:=d(A<p), e :=degd > 0.If A = Ag[D+, D_], where D, = —(¢’/d)[0] and D_(0) =
—(I/k), then there exists a unitary polynomigl € C[7] with Q(0) # 0 and div(Q¢) =
—kD_. Moreover if A = A; p is the normalization of

(16) Bip =C[s,u,v] /(u*v — P(s)), where P(s):= Q(s")s**,
then the groupZ, = (¢) acts onB; p and also oM’ via
a7 s =Cs, Cu=¢u and Cw=v

so thatA = A’%«, Furthermore e’ = 1 modd and, up to a constant factord is the
restriction of the derivatioru® - 9/9s toA.

Proof. The inequalityD,(0)+D_(0) < O is equivalent t&e’ &1 > 0. This implies
that there are unitary polynomial® ¢ (€) C[r] and P (s) € C[s] such that divQ:' ) =
—kD_ and P (g) =0 (yd )J(e’ﬂl[_

The isomorphismA = A% was established in Example 4.13 and Proposition 4.14
of [17]. The derivationu® - 9/0s commutes with thH&;-action (17), and so restricts to
a homogeneous locally nilpotent derivatioh  of degeee An f ¢déf = 1 modd
(see Theorem 3.22 (i)). Thus by Corollary 3.28 it is equabtop tol a constant. The
rest of the proof can be left to the reader. [l

4. Applications

4.1. Preliminaries. Sometimes the surfaceg = Spec as above admit two
C.-actions with different orbit maps; see e.g. Example 2.8 Ttilowing example is
also well known.

ExavpLe 4.1. We letA be the normalization of the rimy p =C[t, u+,u_]/(u+u—
— P(t)), where P € CJ[z] is a unitary polynomial and the grading is given by deg =0,
degu. =4+ 1. By Corollary 3.28, for every > 1 there are homogeneoually nil-
potent derivations of degree as well as of degree  Aon . Mordaitkplthese are
given (up to a constant factor) by

9 a d ad
18 e =ul—+ P ()ust— and - =u® — + P'(t)u"t—;
(18) e F U P ut o+ Pt B
cf. (14). Note that key ) =C[u+], hence the corresponding.-actions ¢, and ¢_
preserve the affine rulings. V. — C of V = SpecA , respectively. These rulings are
different provided thatP is a non-constant polynomial.
In view of (15) ¢, is given by

a.(t,us,u )= (t +aul, us, u:lP (t +ozui)) , oeC,.
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As ker(@_) =C[u_] the conjugated locally nilpotent derivation
9y =a.0_.a e DerA

has kernel ked, ) £[u,], where

degP (Xj
g = (o) =u P +aug) =u_+ Yy PO@)—ul
— J!
Jj=1

As a € C, varies, the affine rulings, vV — Al also vary in a continuous family.

Derinimion 4.2, One says that tw@.-actions on an affine varietfy’ = Spdc
are equivalentif their general orbits are the same, or in other words, ifytlefine
the same affine ruling o

If 0 and 9 € DerA are the associated locally nilpotent derivatidthsn the
Cs-actions are equivalent if and only if ker = k& , and if andyoifl ad = a’9’
for some elementg,a’ € kér (see [24, Lemma 2.1] or Proposition(i)jL Conse-
quently, any two equivalent locally nilpotent derivatiohsand 3’ commute:d, ' ] =0.

We recall [24, 36] that theViakar-Limanov invariantof an affine varietyV =
SpecA is ML{ ) =ML ) = ker , whered runs over the set of all locallypoient
derivations ofA .

Certainly, a surface/  has a trivial Makar-Limanov invariant Ml = C if and
only if V admits two non-equivalent.-actions, or two different affine rulings over
affine bases, or else two non-equivalent nonzero locallyotéint derivations ofd .

A useful characterization of surfaces with a trivial Makamianov invariant is the
following result due to Gizatullin [20, Theorems 2 and 3],rfde [7, Theorem 1.8],
Bandman and Makar-Limanov [5] in the smooth case, and to Dioko[i3] in the
normal case.

Theorem 4.3. For a normal affine surface/  non-isomorphic ©* x C* and
C* x Aé, the following conditions are equivalent
(i) The Makar-Limanov invariant o¥/ s trivial
(i) The automorphism groupwutV ® acts onV with an open orbi) such that the
complementV\O s finite
(i) Vv admits a compactification by aigzag that is by a linear chain of
smooth rational curves

Thus an affine rulingy — Al on a normal affine surfac® is unique (in other
words, any twoC,-actions onV are equivalent) unle¥s  admits a smooth compact-

6Which is not necessarily an algebraic group, see Example él@®b
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ification by a zigzag. In the latter case there are, indeedeast two different affine
rulings V — A}, hence also two non-equivalefit,-actions onV .

Note that all surfaces as in Theorem 4.3 are rational andvadlaconstructive de-
scription, see [20, Proposition 3] or [13]. The automorphigroup AutV of such a
surfaceV is infinite dimensional and admits an amalgamated froduct structure
[12].

4.2. C*-surfaces with trivial Makar-Limanov invariant. =~ Some interesting
classes of normal affine surfaces with a trivial Makar-Limariovariant were dis-
cussed e.g., in [4, 5, 9, 10, 14, 15] and [28], for instance such a surfaceV is
smooth and its canonical bundl&y, s trivié.g., if V is a smooth complete inter-
sectior) then V = SpedC[t, u, v] /(uv — P(r)) for a polynomial P € C[f] with simple
roots [5] (cf. Example 4.1). Here we concentrate on such surfadeishwalso admit a
C*-action. From Theorems 3.3 and 3.16 we deduce:

Corollary 4.4. A normal affine surfaceV  with an elliptic or
C*-action has a trivial Makar-Limanov invariant if and only ¥ = V,,
is an affine toric surface as iExample 2.8.

parabolic
A2/Z4

n o

Actually V as in the corollary admits a parabolic*-action, and so by Re-
mark 3.13.1 (i) it has &.-action of fiber type and also @.-action of horizontal type
(see Examples 2.8 and 3.14).

The following theorem together with Corollary 4.4 descsiball normal affine
C*-surfaces with a trivial Makar-Limanov invariant.

Theorem 4.5. We let A = Aq[D+, D_], where A = C[f] and D,, D_ are
Q-divisors onAl with D, + D_ < 0. The following conditions are equivalent
(i) The Makar-Limanov invariant of/ s trivial
(i) A admits two homogeneous locally nilpotent derivatidhsd_ of positive and
negative degreerespectively such that the orbits of the correspondidg-actions are
generically different
(iii) There are(not necessarily distingtpoints p., p- € Al such that the fractional
part {D.} of Dy is zero or is supported ip., and D, + D_ # 0.

Proof. The implication (ii)= (i) is evident. For the proof ofi¢ converse, as-
suming (i) there exist two non-equivalent locally nilpdtesterivations onA , which
means that they have different kernels. By Lemma 3.6 not lbétthem can be lin-
ear combinations of derivations of positive degrees, amdlaily not both of them can
have homogeneous components of only negative degree. Tets ére also homoge-
neous locally nilpotent derivations oA  of positive and ofjaiive degree. To show
that the correspondin@.-actions are not equivalent, we let and v_ be generators
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of the Ap-modulesA,, and A_,_, respectively, wheré, := d(Aso) andd- =d A<o).
By Lemma 3.6 keby =C[v.,vil] N A. Thus, if 9, and d_ were equivalent then.
would be units and so by Corollary 3.27 we would have= C[z, v+, v;iY]. As the
latter ring does not admit two non-equivale@it-actions, (ii) follows.

(i) = (ii). Assuming (iii) Corollary 3.23 shows that thererea homogeneous
derivation 3, and 9_ of positive and negative degree, respectively. By osuraption
D.+D_ # 0, henceA* =C and so, the elements, and v_ are not units (see [17,
Remark 4.5]). Thus with the same arguments as above theaterig 9, and o_ are
not equivalent.

(i) = (ii)). Conversely, if (i) holds then by Corollary 3.23he first two condi-
tions in (iii) are satisfied. With the same arguments as abbw&annot contain a non-
constant unit, hence again by [17, Remark 4.5] we hByer D_ # 0. L]

Remark 4.6. For explicit equations of*-surfaces with a trivial Makar-Limanov
invariant we refer the reader to Proposition 4.8 in [17], weh®or {—D.} =€/, /d+ [p+]
one must letPy =f— py % withd, :=i/k and :=gcdf,d ).

We note that the two locally nilpotent derivations as in Tieao 4.5 (i) do not
commute except in the case = A?C. This is a consequence of the next result. Al-
though it follows immediately from Lemma 2.7 (a), we providedirect argument.

Corollary 4.7. If a normal affine varietyV = SpecA of dimensionn admits an
effectiveC}i-action then V= Ag.

Proof. LetAf = C}.p — V be an open orbit and consider the associated in-
clusion of C-algebrasA < B :=C[Xjy,..., X,]. The derivationsd; :=9/90X; onB
stabilize A and the restrictiong|A  are the infinitesimal getoesaof the actions of
the factors ofC} on A. By Proposition 1.1 (b), for every4i <n the intersection

K, =AN ﬂ keraj =AN (C[X,]
J7i

has transcendence degree 1, hekge/ C. As 9; acts onK; and decreases the degree
of polynomials inK; by 1,K; € A must contain a linear polynomialX; b+ and
hence alsaX; . It follows than 8 , as required. O

For a normal affine surfac&/ = Spac with two different affineingd
v, v_1 V — AL, Miyanishi and Masuda [28] introduced a useful invariant., ¢_) €
N, called theintertwining numberof v, and v_, which is the intersection number
of two general fibers of, and v_, respectively. Actually v, v_) = trdeg(FracA
C(vs+, v2)).
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DeriniTion 4.8, Let us call theMiyanishi-Masuda invarianof V' the integer

MM(V) == min «(vs, v_),
(vs+,02)

where the minimum is taken over all possible choices of p@itssv_) as above. In
case thatV is endowed with an effecti{Z&-action, we also consider the homogeneous
version

MM (V) := min t(vs+, v_),
(v+,v2)
under the additional assumption that andv_ € A as above are homogenedus.

We let as beforel, := d(Asp) andd_ :=d (A<p). We recall [17, Lemma 3.5] that
d(Ao[D]) is equal to the minimal intege#d > 1 such that the divighp ngegral.

Lemma 4.9. For a normal affineC*-surfaceV = SpecA with a trivial Makar-
Limanov invariant the following hold
(@) If A= Ag[D] thenMM (V) = d(A).
(b) If A=A¢[Ds+, D_] thenMM (V) = —d.d_degD+ + D_).
(€) If MM,(V)=1 thenV = AZ.

Proof. (a) In this case the grading oh  is parabolic,}50 is & teurface
Vi, Whered =d @), and the twd&*-equivariant affine rulings oV  are provided by
elementsr € Ag = C[t] and v € A; =vAg (see Corollary 4.4). Since the restriction of
v onto a general fiber of has degréde , the result follows.

(b) In this case the grading oA is hyperbolic, and so the @Weequivariant
affine rulings onV are provided by elements € Ay, with,,, vEAp (see the
Proof of Theorem 4.5). By Proposition 4.8 in [17}, is a cyditanch covering of
degreek = gcdi;, d_) of the normalization of the hypersurfac{e)il’* v P(t) = 0}
in A% = SpedC[t, v+, v_], whered, :=dy/k. Hence MM V¥ ) =k de@ (). By
Lemma 4.7 inloc. cit. we have

Di=Do+{Ds} and D_ ={D_}— Dg—divQ,
where Q € C[¢]. From (8) and (10) inloc. cit. we obtain
divP =kd.d divQ —d div P, —d,divP_,
where div P. =d. dif{D.} . Therefore

(19) div P =kd.d' div(Q — {D:} — {D_}) = —kd.d' (D+ + D_).

“Clearly MM;, >MM( V), where presumably the equality holds.
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Now

MM (V) = v+, v_) = k degP ¢ ) =—k?d.d" deg(D+ + D_) = —d+d_deg(D+ + D_),

as stated.
(c) The equalites MM V ) = de@ () =1 imply that =1 and deg ()= 1.
Now the assertion easily follows. ]

4.3. Families of C.-actions on aC*-surface. We show in Corollary 4.11 be-
low that any C*-surface with a trivial Makar-Limanov invariant admits a tonous
family of generically non-equivalent locally nilpotent ril&tions (cf. Proposition 2.4).
This is based on the following general observation.

Proposition 4.10. If a domainA of finite type admits two non-commuting locally
nilpotent derivationsd, § € DerA, then A also admits a continuous family of generi-
cally non-equivalent locally nilpotent derivation$, };cc+ € DerA.

Proof. Lettingy, =exp@ ), =expf ) be the associatéd-actions onA , we
consider the following two families of conjugated localljipotent derivations oA :

& =vY;0do0y,t and & =g 080¢ .

Suppose in contrary that none of these has the desired pyapet is, the derivations
in each family{9;},c,1 and {§,},c,2 are mutually equivalent. It follows that

(20) % =f(@Po=f()d and & =g P VieAg,

where f ¢ )e ked ,g { )e ke V¢ € AL (see Definition 4.2 and Proposition 1.1 (b))
and f (0) =g (0) = 1. Moreoverf € (kex [ ], sincg is an everywhere defimatio
of two proportional regular vector fields ardg on the affine scheme (Spdcx Al.
Similarly, g € (ker§)[f]. In particulard (f { > 1)z ) =0, so taking thkmit as+ — 0
gives f' (0)e kew and, similarlyg’ (0§ keér . From (20) we get:

;00 —0 doy, — 0
Viod= f)oy = ¥ t - /0 t“’

vimld g - o—f(t)‘/’t’_id:ao<f(t)w’_id+f(t)_1id>.

= ———00=0
t t t

Taking the limit ast — 0 we obtain
500=0908+ f'(0)0
and, similarly,

do8=800+g'(0),
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whence

[0, 8] = g'(0)6 = — f'(0)9.

As observed abovegy’ (@ kér and @) Rer ,thus &nd are equivatehso
commute, contradicting our assumption. U

Corollary 4.11. Any normal affine surfacd/ = SpecA with a C*-action and
a trivial Makar-Limanov invariant admits continuous fareg of C.-actions and of
generically distinct affine ruling — Al.

4.4. Actions with a big orbit. As an application of our results we give below
a new proof for the classification due to Gizatullin [19] anopBv [31], mentioned in
the introduction. Let us recall it again.

Theorem 4.12. Let a normal affine surfac& admits an action of an algebraic
group G with an open orbitO such that\O s finitéf V is smooth thenvV is
isomorphic to one of the followin§ surfaces

(21) A2, AL xC*, C*xC* (PxPH)\A, PAA,

where A € P! x P! is the diagonal andA < P2 is a smooth coniclf V is singular
then V is isomorphic to a Veronese cofg, for somed > 2 (seeExample 5.2).

Remark 4.13. Popov [31] listed as well all affine surfaces with a bjgeio orbit
without the assumption of normality.

Proof of Theorem 4.12. We note first that all surfaces listeddil2 admit an
action of an algebraic group with a big open orbit (see Exas.1 and 5.2). Con-
versely, suppose that  admits an effectife -action with adpgn orbit. If G is
solvable then by Lemma 2.9 (B is isomorphicA@, Al x C* or C*2. Otherwise
by Lemma 2.9 (c)G contains a subgroup isomorphicSta or PGL,. Now the con-
clusion follows from the next result. U

Proposition 4.14. If SL, acts nontrivially on a normal affine surface = SpecA
then vV is isomorphic either to one of the surfad@sx P\ A, P?\ A or to a Veronese
cone V, ;. Moreover any two suchSLp-actions onV are conjugated iAut(V).

The proof is preceded by the following observations and bsnioa 4.17 below.
4.15. With the assumptions of 4.14, the kernel ®f, — Aut(V) is either trivial

or equal to the centeZ S(,) = {£+1I>}, so one of the group& SL, or G =PGL;
acts effectively onV . We le¢ =z ( ) be the order of the ceriteG ( atilks,e =2 if
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G =SL; ande =1 if G =PGL,. The effectiveC*-action onV provided by the maxi-
mal torus of diagonal matriceB of G defines a gradingt €D, , Ai = A+ @ AP A_.
The Borel subgroupsB. = G, (cf. Remark 2.3.2) act effectively o , and the in-
finitesimal generators of the unipotent subgrodps = C, of upper/lower triangular
matrices with 1 on the diagonal induce nonzero homogenemaly nilpotent deriva-
tions d. € DerA of degreete (see Lemma 2.2). We et Ber be the infinitds
generator ofl so that§ ¢ ) =deg-a fow € A homogeneous.dfe Déer is a homo-
geneous derivation therd,[0 ]=dégo ; in particular

[8,0+] = +ed+ and moreover §.,9_]=34.

The adjoint action onT of the elementr =(2° ) € G of order 2 is given
by Adz: 8§ — —§. Hencetr acts orA homogeneously by reversing the grading
i.e.7(A;) =A_;, and the action of Ad on the Lie algebga= sl, = Cs @ Co. @ Co_

of G is given byd, — —d; . In particular, th€*-action onV defined byl is hyper-
bolic.

DeriNTion 4.16. We say that two pairsD¢, D_) and (D, D_) of Q-divisors on
Al are equivalent if one can be obtained from the other by apglgin affine trans-
formation AL — Al and a shiftD, > D, + Dy with an integral divisorDs.

Lemma 4.17. Let the assumptions be as Rroposition 4.141f A = Ag[D+, D_]
with Ag = C[f] and D, + D_ < 0 is a DPD representation forA graded via the
T-action then (D., D_) is equivalent to one of the following pairs
(1) (0, —[1]—[-1]); heree =1 and V = P! x P1\ A, see(23);

(2) ((1/2)[0}, —(1/2)[0]— [1]); heree =1 and V = P2\ A, see(25);

(3) (—(1/d)[0], —(1/d)[0]) with d > 1; heree =1 and V = Vy; 1, See(26);

4) (—(E/a)ol, (¢ — 1)/ad)[0]) with d = 2/ — 1 > 1;heree = 2and V = V,;,
see(27).

Proof. We start with the following

CLam. If the divisorsD. are integral then, in a suitable coordinate A%, one
of the following 3 cases occurs:
(¢) e=2, D+ + D_=—]0].
(B) e=1, D+ + D_=-2[0].
(y) e=1, D:+ D_=—[1] —[-1].
In particular, O+, D_) is equivalent to one of the integral pairs in (1)—(4).

To prove the claim, we note first thdd.  being integral= Ag[0, D+ + D_] is
the normalization of the ringB1 p = C[t, us, u_]/(usu_ — P(r)), whereP € C[z] is a
unitary polynomial with divP ) =— D+ + D_) (see Corollary 3.28 and Example 4.1).
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After multiplying u+, u_ with suitable constants we have
0:(us) =0, 0:()=u, and 3y () =P ( PHO)uz

(cf. (18)). Hence
d
[0+, 3_](us) = 3: (P'(t) P~ H(t)uz**) = o (P'()P*(t)) us.
On the other hand,df, 9_] =8 and § (+) = u.+, therefore

d l e—1 —
T (P'(0)P(1)) = 1.
Thus eithere =2 andde§ =1@ =1and deg =2. Siite+r D = —div(P),
the claim follows.

For the rest of the proof we may assume tliat are not both amdteBy The-
orem 4.5 (ii)= (iii), the fractional part§D.} are concentratedpoints p. € Aé.
Clearly,  yields an isomorphismo[ D+, D_] = Ao[t3(D-), 75(D+)], whereg: Aé —
Al is the affine transformation of Spdg = Al induced byt := t|Ao. By Theo-
rem 4.3 (b) in [17] there is an integral divisd with

(22) D = Tg(D,) + Do, D_= TJ(D+) — Do = Di+D_= S(D+ + D,)

It follows that ti({D+}) = {D+} 7 0 and sore(p+) = px. With a suitable choice of
then either (i)p+ = p_ =0 is a fixed point ofrg, or (ii) 79: t — —t and p_ =—ps #
0.

We claim that the case (ii) cannot occur. In fact, in this casehavery # id, and
because of (22) and Theorem 3.22 we may suppose that

—é —e

o D_(p+s)=—a, and D_(p_-)= R

D(p+) =

D+(p—) = —a,

whered > 2,0< e <d ande’= 1 mod . In particulaD{+D_)(p+) = —(¢'/d)—
a < 0 and so theT = C*-action onV has a unique fixed poipt, € = (p+) over
p+ (see Theorem 4.15 in [17]). Ip,. were singular pointsof , theaytwould be
fixed under the action of the connected gratlp  contradictytg_) = p+ # p—. Thus
V is smooth inp/. and hence by [17, Theorem 4.25] ad+ =1, forathg =d an
a = 0. The conditionee’= 1 mod then implies = 1. By Theorem 3.22 (i§ also
have —e O+(p+) + D_(p+)) > 1, which givese ¢ /d +a )> 1. This is a contradiction.
Thus in fact (ii) is impossible and sp. = p_ = 0. We can writeD, = —(¢’/d)[0]
and D_ =— ¢'/d )[0]+Ep on Aé = Specdy with d > 2, wherekEj is integral andD. +
D_<0. Letvy € AL, be a generator al.; ovety. Due to Lemmas 1.8, 3.9 and
Remark 3.10 the fraction fields of[</v.] and A[/7] are equal, the normalization
A’ of A in this field is again graded, angl.  extend to locally nilpdteerivations
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on A’. ThusA’ admits again asi,-action. Applying Proposition 4.12 in [17j' =
A([D,, D"], where Ay = C[s], s¢ =1t and D}, =x*(D.) withw :s — s¢. Since the
divisors D, are integral, their sum

D, + D =g*(Ds+ D_)=-2[0] +7*(Eo)

is as in ¢ )~ ) above. In casex( ) oB( ) clearlyp = —b[0] with b € Z. In case & )
we have 2 b =1, and sinceQ ¢ <d thisimpliess = 1,40 &2 1 and
(D+, D) is as in (4). Similarly, in caseg( ) we have'2 db =&, =1 a&0= 1
modd impliese’ =1,b =0, thu¥y=0 and we are in case (3).

In the remaining casey( ) we have = 1. Lettillg = —b[0]+ Ej with E{(0) =0,
we obtain that— (2 b )[0] #* E() = —[p] —[q] with p = g. Therefore either

2¢'+db=0 and 7" €g) = —[p] —[q] with p.q70,
or, up to interchangingg ang
p=0, 2 +db =1 and n* E)) =—[q] #[O0].

Actually this latter case cannot occur singe> 2 divides sefedy).(Thus we must
haved = 2,¢/ =1b =— 1angp =g /= 0. Letting e.gp, = 1 we obtain that
(D4, D_) is as in (2). This proves the lemma. L]

Proof of Proposition 4.14. Lemma 4.17 implies that a surfaith an SL,-action
is isomorphic to one of the surfaces listed in the propasitii remains to show
that this isomorphism can be chosen to be equivariant widpeet to the given
SlL,-actions. For this we restrict to the caﬁé\&, the argument in the other cases
being similar.

Let V = SpecA be arSL,-surface as in Lemma 4.17 (2) and dendte PZA
with its standard action as in Example 5.1. Beth  and the affowrdinate ringA’ of
V'’ are equipped with the grading coming from the maximal toru$l,, and by the
construction in Lemma 4.17 the isomorphistn= A’ is compatible with these grad-
ings. Let @, 0+, 9_) be the triplet of derivations oM as in 4.15, and I&t §;,9")
denote the corresponding derivations #h . Using Lemma 4ghiha = de@,. =t 1,
asPGL, acts onV’ (cf. Example 5.1) we also have dég += 1.

Now Proposition 3.7 shows that the pairs, @) and (A’, ;) are isomorphic, so
there is a graded isomorphisth A: — A" with § ()&  and d.)(= d.. Again
by Proposition 3.7f, d- ) =d” for some constante C*. As § = [d;, d_] it follows
that8” = f. 6) = fu (0+, 0_]) = c[0;,d"] = ¢6". Hencec =1 and sof, o ) 3. . By
Proposition 3.2 this means that the induced isomorphisr& V' is equivariant with
respect to the Borel subgroups. 8L, and so it isSL,-equivariant, as desired.

U
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Remark 4.18. Proposition 4.14 shows in particular that @l,-action on the
plane AZ is conjugated in AuAZ to the standard linear representation.

5. Concluding remarks: Examples

Here we illustrate our methods in concrete examples. Adogrdo Gizatullin's
Theorem cited in 4.12, there are only 5 different homogeseaffine surfaces (21).
In the following example we consider more closely the lasb tof these surfaces
P! x PI\A andP2\A (cf. [31, Lemma 2]).

ExavpLe 5.1. LetV = C? be a 2-dimensional vector space. The gr&®(L, =
PGL(V) then acts onP! = P(V) as well as on the projectivized space of binary
quadricsP? = P(S?V). Since PGL, acts doubly transitive of®!, the diagonal action
on P! x P! has an open orbiP! x P\ A, where A is the diagonal. Similarly, the ac-
tion of PGL, on IP? leaves the degenerate quadrics invariant thus providingction
on P2\ A, where A is the space of degenerate binary forms.

The symmetric producV x V — §?V, (v, w) — v Vv w, induces a natural unram-
ified 2:1 covering

PPt x PY\A — PA\A,

where the covering involution is the map interchanging the factors of P! x P,

To make the situation more explicit, let us fix a basigv; of V so that the
points of P(V) can be represented in coordinates, [c1] = [xovo + x1v1]. With re-
spect to the basisZ, 2vov1, v2 of S2V the points ofP? = P(S2V) have then coor-
dinates §i,, s, u’ ]. Clearly A = {[(xovo + x1v1)?] € P(S?V): x0,x1 € K} has equation
Q:=s2—u,u’” =0. The mapp factors through

Pl x PAA B B 5 p2\A,
where H is the affine quadri¢Q =}1C A% = SpedC[u,,s,u’ ] and p is the iso-

morphism given by

1
([xo0, x1], [yo, y1]) = ——————(2x0Y0, X0y 1+ X1Y0, 2X1y1).
XoYy1— X1y0

This isomorphism identifies the factors interchanging iation of P! x P! with the
map @+, s, u_) — —(u+, s, u_). ThusP* x P\A = H = SpecA’ , where according to
Example 4.10 in [17]

(23) A =Clul,s,u' ]/ (W' — 52+ 1) = Ay[D,, D']

with Ay := C[s], D, = 0 andD” =—[1]— E 1]. This isomorphism determines a
hyperbolic grading with deg =0 and deg 4= 1.
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Next we turn to the surfacé”z\g, which is the spectrum of the invariant ring
A = A2, As noted above the action df, on A’ is given by {.,s,u’) ~
—(u),s,u’). The algebra of invariants is generated by the degree 2 m@at® in
s, uly

2

ug =suly, vy =uf 2

and r :=s
satisfying the relations
u_o =t — Duit, ve=rN2 v =1 — 1)Pui?

(observe that/,u’ = s> —1 =t —11in A’). ThusA =C[f][v—, u_, u+, v4] can be
presented as

(24) A =C[f [((t —1)%u,? t(t — Vui b ue, tu2] € C[us, ui ']
By virtue of (24) and Lemma 4.6 in [17],

(25) A= Ao[Ds, D_] with D, = %[0], D_= —%[01 —[1].

Indeed, according to this lemma
. 1 1
D+ = — ), ——= = _ s
mm{o 2[O]} 2[0]

D_ :—min{div 1 — 1), M} !

5 (=50 -1
and soD,+D_ =—[1].

With this example one can also make some of the previoustsequite explicit.
For instancesr* ;) = D, + Do with Dy := [0] and z* (D-) =—[0]— [1] - [-1] =
D! — Do with w: AL — Al being the base change~> s? = ¢, which agrees with
Proposition 4.12 in [17] applied to the Galdfs-extensionA — A’ . Further, the frac-
tional parts{D.} ofD. are supported at one point; compare with Tdrao4.5 above.

For everyA = {4, Ao, A_) with 23 = 4x.A_ the hyperplane irP? given by f; =
Aos + Asus + A_u_ = 0 intersectsA in one point. It follows that the maps

fi i H— AL and g :=f2/0: P\A — AL

provide explicit families of affine rulings compatible with (cf. Proposition 4.10). By
[7, Proposition 1.11] any affine ruIin@’Z\E — A}C is given by a certairg; ; they can
be visualized via the Segre and Veronese embeddiigs P! — P3, P2 — PS,

Finally it is easy to see (and left as an exercise to the rgatiet the locally
nilpotent derivationso. defined by the unipotent subgroups < PGL, of up-
per/lower triangular matrices with 1 on the diagonal are efrede 1 and are given by
the formulas in Remark 3.18 (1) (compare also with the Prddfemmma 4.14).
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ExampLE 5.2. Veronese coneford > 1 ande = 1,A4;1 = @P,.,C[X, Y], is
the d -th Veronese subring of the polynomial ridgf X, Y]. The standardSL,-action
on C[X, Y] stabilizesA,; and so, induces aBL,-action on the normal affine surface
Va1 = SpecA, 1. This SLp-action has a unique fixed poite V, 1 and is transitive
on V;1\{0}.

The algebrad, ; is generated by the monomia’Y?~ € A 1)1 (i =0,...,d),
and these define an embeddipg V1 — A"*l onto the affine cone over the degree
d rational normal curvel’y = ProjA,1 in IP" The morphismp is equivariant with
respect to the standard irreducible representatioslof on the spaceM+1 of degree
d binary forms. The groufsL, (respectively,PGL,) acts effectively onV,; if d is
odd (respectively, even). The stabilizer subgroup

v 1o)

of the binary formX“ € A, is a cyclic extension of the maximal connected unipotent
subgroupN =N, of SL,. Clearly, V; 1 = SpeaD(SL,/N,), asSLy/N,; = V,1\{0} and
V41 is normal [31].

To represent the Veronese cones via the DPD constructids, fivet that the ac-
tion of the torusT = {(4,%)| e (C*} C SL, provides a grading on the ring

= C[X, Y] with degX = 1 def =-— 1, and so induces a grading on the -th
Veronese subringl,, = A@ = @, , A“). We consider separately the case where
is even or odd.

(1) Ford =20’ even, thél-action onA“) factorizes through an action &f/Z,,
which corresponds to letting dég 1 2 deg —=/ 1 2. With %V(¢ 9 Ag’) =
Clfl]andu :=X/Y € (FraC‘Ao)A(d), we have

8d21,ae(C+}

=Xy =l e AP, —d'<i<d.

As AD =Clu_y, ..., us] by Lemma 4.6 in [17]A@) = A(")[D+, D_], where
1 1 . 1.1, 1
(26)  Dv=- 2“21 {_L_'[O]} - _E[O]’ b-= L {_—_i[o]} - _E[O]

and soD, + D_ =—(2/d")[0].
(2) Ford =2'— 1 odd, the torug acts effectively onA@). We letr := XY ¥ e
AD =, up = xv "1 e A and
Uy 11= Xy k= ey Bl gD <k <,

As A9 =Clu_y, ...,ug] then by Lemma 4.6 in [17U@ = AY[D,, D_], where

o k- ¢ -1 ) (& e
D+__1gl1<l<né{ 2k — [0]} a o D"_ﬂ'f}«o{zk [O]}"_Z[O]
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and so,D. + D_ = —(1/d)[0]. We notice that

-1 e e e -1
@) 0w D)= (0L~ 5100) ~ (=510 )
via the shift O, D_) — (D. — [0], D_ +[0Q]).
Alternatively, the Veronese cong; ; can be obtained from the Hirzebruch surface
T, = P(Op & Opi(—d)) by deleting a sectiorC, withlC? = 4 and contracting the
exceptional sectiorE, WittE2 = —d [12, §11, Example 1]. This leads [12] to a de-
scription of the automorphism groups AUj(1).

In the next example we exhibit affine surfac&s such that thensarphism
group AutV acts onV with a big open orb@? and there are algelgeicp actions
on V with an open orbit, whereas there is no such action withgaopien orbit.

ExampLE 5.3. (Actions on surfaces with a big open orhitLtet D, be two
Q-divisors onAl with D, + D_ < 0 such that the supports of the fractional parts
{Dy} are contained in (possibly the same) poifis.} . According tecfém 4.5 the
ring A = Ao[D+, D_] with Ap := C[r] admits locally nilpotent derivationd,  of posi-
tive and negative degree. The associdfedactionsg, and¢_ onV are not equivalent
provided thatD; + D_ # 0 (see Definition 4.2).

Consider the subgrou He+, A, 0-) < AutV generated byp, and the
C*-action A onV . The fixed points set @@ is finite as it is containedttie fixed
points setF of theC*-action onV . Recall that has exactly one paiit  over every
point a € A}C with D.(a) + D_(a) < 0 [17, Theorem 4.18 (b)]. We claim th&  acts
transitively on the complemenit\F . Indeed, the algebraic suwG,, :=(ps+,A) of
G acts onV with an open orbit which contains\v;1(0). Hence for a general point
x € V, the orbitG.x containsV/\{v;1(0)N v_1(0)} = V\F (cf. Proposition 3.25).

Thus G acts onV with a big open orbit. However, such a surfdce s ahm
admit an action of aralgebraic group with a big open orbit unless it is isomorphic to
one of the surfaces from Theorem 4.12. For instance, thisascase ifV has two or
more singular points (cf. [17, Theorem 4.15]), or is an affingc surfaceV,, with
d>e>1.

A particular case is provided by the dihedral surfatgg 1 = Specd, 4 1, where
Aga1 = Clt,ur,u]/(usu_ —t?) andd > 3. We haved, s 1 =4, Ao[D+, D_] with
D, =0 andD_ =-d [0] for a grading oM, ,_1 with degr = Q deg+ =t 1 (see
Corollary 3.28). The derivations

a-1 9

9
0r =ur—+d-t
RNy du~

with degdy ==+ 1 are locally nilpotent oM, ,_1. The associated.-actions¢. and
¢_ on V41 generate a subgroug  of AU, 1. Using e.g., Remark 3.29.4 it is
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easily seen thaG acts with a big open orng,l\{ﬁ}, where0 e Vi.a—1 denotes
the unique singular point. The dihedral surfadgs;_; with d > 3 are not isomorphic
to Veronese cones, since the exceptional set of the minigsalution ofV, 41 is a

chain of d — 1 rational £ 2)-curves, whereas it is just one ratiocurve for every
singular Veronese cone. Hence by Popov's Theorem 4.12 ikeme algebraic group
action with a big open orbit oV, ;_1.

We continue with examples that illustrate Corollaries 3a2fl 3.30.

ExavpLE 5.4. Danielewski's surfacesThese are the smooth surfaces
Wy =wlv=r?+1) C A3 (@d=>1).

Thus W, = Sped,p withP () :=t> +¢ is one of the surfaces studied in Corol-
lary 3.28. So it admits &*-equivariantC,-action along the fibers of the affine ruling
u: Wy — Al. Note thatWw; = (P! x P)\A has a continuous family of affine rulings
over AL (see Example 5.1), whereas for every> 2, such a rulinghgn igueni
and ML(W,) =C[u]. The latter follows from Theorem 4.5 a8 B; p = Ag[D+, D_]
with Ag = CJ[t], D+ =0 andD_ =— (¥d )([0] + F 1]), where the fractional pafD_}
of the Q-divisor D_ is supported at two points (see Example 4.10 in)[17]

According to Corollaries 4.24 and 4.25 in [17] we have Big( =)Z generated
e.g., by 50‘], whereasKy, =0.

We recall [11f that these surfaces provide examples of non-cancellatit, is
Wy x AL = Wy x AL Vd,d' € N, whereasW, # W, if d 7 d..

ExavpLE 5.5. Bertin’s surfaces These are the smooth affine surfaces
(28) Wd.n = {Xdy =X +Zn} c AS;

they admit an algebraic group action with an open orbit [%teNthatW, ; = A2 and
Wi, = V,,—1 admit continuous families of affine rulings ovm}c. Thus we will sup-
pose in the sequel that,» > 2. The defining equationigf, is quasigemeous
with weights

degx =n, deyy =nd— 1) deg =.1

To compute a DPD presentation of the coordinate ting C[x, y, z] (x%y — x — 27,
we note thatdg = C[7] with ¢ := x?'y — 1. Moreover the equationst z' and
y = (¢t + 1y? z7"@"D show thatA =Ao[z, ¢ 7", (t + L)? 1z @ Y], and so by [17,
Lemma 4.6]

1

A= Ao[Dy, D_] with Dy = %[0] and D_ =—%[O] - m[—ll-

8Cf. also [4, 16, 35].
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A homogeneous locally nilpotent derivation onh  of degrek— i be given by
Ax)=0, aWy)=n"t () =x"

According to Corollary 3.30 Bertin’s surfaces can be désmutias cyclic quotients of
Vu.p for a suitable paird’, P ). To find such a presentation one takesnttrmaliza-
tion A’ of A in the quotient field ofA 4 ], where« :x¥". The equatione”/u" =
shows thats :=z/u € A’ . ThusA’ contair@&[s, u, y] (u"“~Vy — 1 — s"), and since
the latter ring is normal, these two rings are equal. Thevd#ddn d extends td’ via
d(u) =0 andd § ) =«"“~* commuting with the homogeneo(®,-action onA’

cs=¢7Ys, tu=cu and .y =y,

where ¢ is a primitiven -th root of unity. This action oi’ = Sp¥c fileed point
free andA =A% i.e., Wy, = V'/Z, = Vy p/Z,, Whered' :=n  — 1) andP :3" +1.

For everyd,n > 2 the fractional paftD_} of th®-divisor D_ is supported at
two points. Hence according to Theorem 4:5, W;, — A}C gives a unique affine
ruling on W;, over an affine base, and Mk, ) €[x] (cf. [27]). The latter also
follows from [7, Theorem 1.8 and Example 4.11 (iii)] (cf. Tdrem 4.3) due to the
fact that the dual graph of a minimal compactification Wj ,, ig hoear.

It can be readily seen that P&, 3 Z/nZ generated e.g., bydp], whereas
Kw,, =0 (see e.g., Corollaries 4.24 and 4.25 in [17]).

Remark 5.6. Any affine surfaceV # Aé which admits an ellipticC*-action
is singular. If V is equipped with a parabolic*-action and a horizontaC.-action
then by Theorem 3.19 it has a quotient singularity. Thus goemooth the surfaces
P! x Ph\A, P2\A, W, and W,,, withd,n > 2 admit neither elliptic nor parabolic
C*-actions.

Correction to our paper [17]. Due to an error in the printing process the letter
¢ in Example 4.13 was printed as . Thus the first 4 lines of thersdgaragraph
of 4.13 have to be replaced by:

More concretely, ifk :=d_ QA ),l :=kD_ (0) and if we choose a unitary poly
nomial Q e C[r] with D_= —(div(Qt')/k) then D, + D" = —(div(Q(s¢)s***¥)/k). By
Example 4.104" = A, p is the normalization of

(12) Bk,P :(C[S, I:i, v] /(ﬁkv — P(s)) s where P 6- ) ::Q @d ).ke+dl.
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