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Abstract
We give a classification of normal affine surfaces admitting an algebraic group

action with an open orbit. In particular an explicit algebraic description of the affine
coordinate rings and the defining equations of such varieties is given. By our meth-
ods we recover many known results, e.g. the classification of normal affine surfaces
with a ‘big’ open orbit of Gizatullin [19, 20] and Popov [31] or some of the classi-
fication results of Danilov-Gizatullin [12], Bertin [6, 7] andothers.

Introduction

Let be an algebraic group acting on a normal affine algebraic surface . By
classical results of Gizatullin [19] and Popov [31], if is smooth and has a big
open orbit (that is, is finite), then is one of the surfaces

C 2 A2
C C A1

C P1 P1 P2 ¯

where P1 P1 is the diagonal and̄ P2 is a nondegenerate quadric. Further-
more, if is singular then = is the Veronese coneA2

C Z , whereZ acts on
A2

C via multiplication with the group of -th roots of unity (see Example 5.2).
The aim of this paper is to give more generallya description of all normal affine

surfaces = Spec (over the ground fieldC) that admit an action of an algebraic
group with an open orbit. As was suggested by Popov [31] and confirmed in the
smooth case by Bertin [7], either such a surface is isomorphic to C 2, or a semidi-
rect product ofC and C+ acts on with an open orbit (Proposition 2.10). We pro-
vide a classification of all such surfaces in Section 3. This leads to a new proof of the
Gizatullin-Popov Theorem above (see Section 4.4) which uses only elementary facts
from Lie theory. For generalizations of this result see also[2, 21].

Our interest in such actions is inspired by the role that theyplay in certain classi-
fication problems, e.g. in the proof of linearization of regular C -actions onA3

C [23].
Usually in applications, to an affine variety with aC+-action one associates (non
canonically) another one, say, with aC - and C+-action (see e.g., [26, 36] and Re-
mark 3.13.3 below). Therefore it is of particular importance to classify such varieties.

1991 Mathematics Subject Classification: 14R05, 14R20, 14J50.
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C -actions on algebraic surfaces were extensively studied inthe literature, see [17]
and the references given therein, and also [3] for a generalization to higher dimen-
sions. A C -action on gives rise to a grading = Z . We will rely here
on our previous paper [17] to describe the graded componentsin terms of the
Dolgachev-Pinkham-Demazure construction (theDPD construction, for short).

Classification results forC+-actions on affine surfaces can be found in [11, 16, 27,
28, 35], [4]–[5], [9, 10], and [13]–[15]. It is well known [32] that a C+-action gives
rise to a locally nilpotent derivation of (see Proposition 1.1). The condition that a
semidirect product ofC and C+ acts on is equivalent to the condition that is a
homogeneous derivation (cf. Lemma 2.2). Thus we are led to pairs

( ) = deg

where is a homogeneous locally nilpotent derivation on of a certain degree . Our
classification of such pairs is as follows.

Elliptic case: In this case 0 = C, and is positively graded so that the asso-
ciated C -surface = Spec has a unique fixed point given by the maximal ideal

+ := 0 . If also admits a nontrivialC+-action then by [18, Lemmas 2.6
and 2.16], = A2

C Z is a quotient ofA2
C by a small cyclic subgroup ofGL2(C).

More precisely, we show in Theorem 3.3 that= C[ ]Z , where the cyclic group
Z := Z Z = generated by a primitive -th root of unity acts onC[ ] via

= and = with 0, gcd( ) = 1,and = . In particular,
= is an affine toric surface (see Example 2.8).

Parabolic case: Here again is positively graded, but0 = C. Thus = Spec 0

is a smooth affine curve, and is fibered over with general fiberA1
C. Using the

DPD construction it follows that = 0[ ] for some Q-divisor on (see [17,
Theorem 3.2]). More precisely, if 0 denotes the field of fractions Frac(0) then =

0[ ] 0[ ] is the graded subring with

= 0 div + 0

If such a surface admits also aC+-action given by a homogeneous locally nilpotent
derivation then eitherC+ actsvertically (that is fiberwise), so that the orbits are con-
tained in the fibers of the projection , or the orbits map onto the base curve

(horizontal case). In both cases we classify all possible actions (see Theorems 3.12
and 3.16). For instance, in the horizontal case= = A2

C Z is again an affine
toric surface and the derivation is as described in the elliptic case. These are the
only normal affine surfaces with an elliptic or parabolicC -action and with a trivial
Makar-Limanov invariant that is, admitting two non-trivialC+-actions with different or-
bit maps (see Definition 4.2 and Theorem 4.3).

Hyperbolic case: In this case = 0 for all Z, and the surface = Spec is
fibered over the base curve = Spec0 with general fiberC . By [17, Theorem 4.3]
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= 0[ + ] Frac( 0)[ 1] with a pair of Q-divisors on satisfying

+ + 0. This means that 0 = 0[ +] 0[ ] and 0 = 0[ ] 0[ ] are
as above with = 1. Furthermore, the pair (+ ) is determined uniquely up to
an arbitrary shift ( + )  ( + + div div ) with Frac 0. In Corol-
lary 3.23 we show that admits a homogeneous locally nilpotent derivation of
positive degree if and only if = A1

C i.e., 0 = C[ ], and = 0[ + ],
where + = ( )[ ] is supported at one point, 0 and 1 mod .
Moreover, is uniquely determined up to a constant by its degree. Alternatively, such
surfaces can be described as cyclic quotients of the normalizations of hypersurfaces

( ) = 0 in A3
C, where C[ ] (see [17, Proposition 4.14] and Corollary 3.30

below).
C+-actions on a normal affine surface are related to affine rulings (that

is, rulings into affine lines) with being a smooth affine curve(see Lemma 1.6). If
= Spec with = 0[ + ] as above, where 0 = C[ ] and + + = 0,

then there exists an affine ruling A1
C if and only if the fractional part of

at least one of theQ-divisors is supported at one point or is zero. Such an affine
ruling is unique unless both + and are either zero or supported at points

, and if and only if, for a homogeneous element C, ker C[ ] for every
locally nilpotent derivation Der (Corollary 3.23 and Theorem 4.5). Otherwise

allows continuous families of affine rulings, ofC -actions and ofC+-actions with
generically different orbit maps (Corollary 4.11). The same is also true in the elliptic
and the parabolic cases.

In the first two sections we summarize some facts onC+-actions and on algebraic
group actions on normal affine surfaces. Section 3 contains the principal classification
results. In Section 4 we classify allC -surfaces which have a trivial Makar-Limanov
invariant (Corollary 4.4 and Theorem 4.5). Finally, in Section 5 we discuss concrete
examples and compare different approaches.

Throughout the paper we use the notationGL2 = GL (2 C), SL2 = SL(2 C), etc.

1. C+-actions and locally nilpotent derivations

We frequently use the following well known facts.

Proposition 1.1 (see e.g., [26, 32, 36]).Let = Spec be an affine algebraic
C-scheme. Then the following hold:
(a) If C+ acts on then the associated derivation on is locally nilpotent, i.e. for
every we can find N such that ( ) = 0. Conversely, given a locally
nilpotent C-linear derivation : the map : C+ with ( ) :=
defines an action ofC+ on .
(b) Assume that is a domain and let DerC be a locally nilpotent derivation
of . Then the subalgebraker = C+ is algebraically and factorially closed(or
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inert)1 in , and for = 0 the field extensionFrac(ker ) Frac has transcendence
degree1. Moreover, for any Frac with ( ) , the derivation DerC
is locally nilpotent if and only if Frac(ker ).
(c) If C+ acts non-trivially on an irreducible reduced affine curve then = A1

C.

Corollary 1.2. For an algebraicC-scheme and a locally nilpotent derivation
= 0 on , the following hold.

(a) The algebra of invariantsker = C+ is integrally closed in . Consequently, if
is normal and the ring of invariants C+ is finitely generated then the orbit space

Spec C+ of the associateC+-action on is also normal.
(b) For an element , the principal ideal( ) = is -invariant if and only if

ker .
(c) If dim 2 then the automorphism groupAut is of infinite dimension.

Proof. (a) immediately follows from Proposition 1.1 (b). Toshow (b) we fix
1 such that := 1( ) = 0 and = 0. If the ideal ( ) is -invariant then

ker ( ) can be written as = with . As ker is inert (see Propo-
sition 1.1 (b)) and = ker we have ker , as required. The proof ofthe
converse is trivial. As Aut ker and dim ker 1, (c) also followsfrom
Proposition 1.1 (b).

1.3. Let us recall some well known facts on the surface geometry inpresence
of a C+-action; see e.g., [4, 28, 29]. For a normal affine surface we denote reg =

Sing . A cylinder in is a Zariski open subset = 0 A1
C, where 0 is a

smooth curve. Anaffine ruling on is a morphism onto a smooth curve
with general fibers isomorphic toA1

C. Two affine rulings coincide if they have the
same fibers.

Lemma 1.4 ([29, Ch. 3, Lemma 1.3.1, Theorem 1.3.2 and Lemma 1.4.4 (1)]).
For a normal affine surface the following conditions are equivalent:
(i) is affine ruled.
(ii) contains a cylinder.
(iii) There exists an affine Zariski open subset reg with (̄ ) = .2

Moreover, under these conditions has at most cyclic quotient singularities.

REMARK 1.5. If is smooth then any degenerate fiber of an affine ruling on
consists of disjoint components isomorphic toA1

C (see [6, 16]). If is only normal
then any such component has a normalization isomorphic toA1

C, contains at most one
singular point of and is smooth off this point ([29, Ch. 3, Lemmas 1.4.2 and 1.4.4]).

1The latter means that ker ker .
2As usual,¯ stands for the logarithmic Kodaira dimension.
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Suppose that a normal surface = Spec admits a non-trivialC+-action. The
orbit morphism + : := C+ then yields an affine ruling on over a smooth
affine curve = Spec C+ . Therefore [4, Remark 1], an affine ruling on over a
projective base cannot be produced in this way. For instance, the latter concerns the
projection pr1 : (P1 P1) P1, where P1 P1 is the diagonal. The following
simple lemma clarifies the situation (cf. [4, Prop. 2]).

Lemma 1.6. For a normal affine surface the following are equivalent:
(i ) admits an affine ruling over an affine base.
(ii ) contains a cylinder = 0 A1

C which is a principal Zariski open subset.
(iii ) There exists a non-trivial regularC+-action on .

Proof. The implication (iii ) (i ) has been noted above. The proof of (i )
(ii ) follows that of (i) (ii) in Lemma 1.4; it suffices to note that, because 0

can be taken principal, so does the cylinder 1( 0).
To show (ii ) (iii ) we let = 0 A1

C be a principal cylinder in = Spec
given via [1 0] = [ ] with 0 , where 0 = Spec . We consider the derivation

= Der [ ]. Given a system of generators1 of the algebra we can
write = 0 , where and 0 ( = 1 ). Since0 ( ) ,
where := max1 , we have := 0 Der . Moreover, 0 = 0 as 0 [ ]
is a unit. Hence is locally nilpotent and so defines a non-trivial C+-action on =
Spec , as required.

1.7. If a ramified covering of normal varieties is unramified in codimen-
sion 1 then anyC+-action on lifts to [18, proofs of Lemmas 2.15 and 2.16]. In
the following lemma we show that, under certain circumstances, it still lifts to a cyclic
covering ramified in codimension 1, provided the latter is defined by an invariant.

Lemma 1.8. Let be a normal domain of finite type overC and let Der
be a non-zero locally nilpotent derivation. For a non-zero element ker and for

N denote the normalization of the cyclic ring extension[ ] with ( ) =
. Then the following hold:

(a) is a normal affineC-algebra of finite type, and the elements of are not zero
divisors on .
(b) extends uniquely to a locally nilpotent derivation Der with ( ) = 0.
(c) If, moreover, is a graded domain and and are homogeneous withdeg =
then is graded as well, and and are homogeneous withdeg = 1and deg =
deg .
(d) Furthermore, if the polynomial [ ] is irreducible over then the cyclic
group Z = , where is a primitive -th root of unity, acts on with = id,

= , and = ( )Z is the ring of invariants of this action.
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Proof. The proofs of (a), (c) and (d) are easy and we omit them.To show (b)
note that the derivation Der [ ] defined by = and ( ) = 0 is lo-
cally nilpotent. By [33] its extension to Frac( [ ]) stabilizes the integral closure
of [ ]. By [34] (see also [18, Lemma 2.15 (a)]) this extension of to is again
locally nilpotent, as stated.

2. Algebraic group actions on affine surfaces

2.1. C+-actions on graded rings. We let = Spec be an affine variety over
C with an effectiveC -action, which corresponds to a grading = Z .

Lemma 2.1. [32] If is a locally nilpotent derivation on and = =

is the decomposition of into graded components then and are again locally
nilpotent.

Homogeneous locally nilpotent derivations on = Z correspond to actions
of certain semidirect products ofC and C+ on . Indeed, we have the following
lemma (cf. [31], [7, (2.5)]).

Lemma 2.2. (a) Let : be a homogeneous locally nilpotent derivation
of degree and consider the action ofC on C+ given by ( ) := = , where

C , C+. Then the semidirect product

:= C ⋉ C+

(with C+ as a normal subgroup) acts on , and hence on , via

( ) := ( ) where ( ) and

This action restricts to the given actions on the subgroupsC+ and C of .
(b) Conversely, if there is an action of on = Spec restricting to the given
action of C on , then C+ acts on and the associated derivation on

is homogeneous of degree.

Proof. (a) The multiplication on is given by

( )( ) = ( + ) with C C+

Since is homogeneous of degree it follows that ( ( )) = ( ), and so

( ) =
=0

( )

!
=

=0

( )

!
= ( )
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hence

(( )( )) = ( ) ( + ) ( ) = ( ( )) = ( ) = ( ) (( ) )

This shows that acts indeed on and hence on .
(b) Conversely, suppose that acts on restricting to the given action of C

on . Then forC+ = (1 ) we have = ( ), and so

( ) = ( ) = (1 )(( 0) ) = ( )

Differentiating this equation with respect to and taking = 0one gets

( ) = ( )

It follows that is homogeneous of degree .

REMARKS 2.3. 1. For any non-zero homogeneous element ker of degree ,
the derivation := Der is again locally nilpotent (see Proposition 1.1 (b)) of
degree + . Thus for every 0 the group+ also acts on restricting to the
given C -action on . The inversion 1 provides an isomorphism = ,
and so acts on for any mod .
2. For instance, a Borel subgroup SL2 is isomorphic to 2 and acts effectively
on = A2 with an open orbit. Similarly, the Borel subgroup := Z2 in PGL2 =
SL2 Z2, whereZ2 = 2 is the center ofSL2 (and of ), is isomorphic to 1 and
acts effectively on the Veronese cone2 1 := A2

C Z2 = SpecC[ ] ( 2) A3
C

with an open orbit (cf. Example 5.2).
3. For 0, is a metabelian solvable Lie group with a cyclic center ( ) =

Z ⋉ 0 C ⋉ C+, and so is anétale covering group of 1 via
:1

1 =
( ). The Lie algebrag = Lie is isomorphic toA2

C with Lie bracket [~ 1 ~ 2] =
(0 ~ 1 ~ 2).

Actually, an effective -action on with = 0 permits to producea continuous
family of gradings on .

Proposition 2.4. Let = Z be a gradedC-algebra of finite type and
Der be a homogeneous locally nilpotent derivation on of degree= 0. If the orbit
closures of the associatedC - and C+-actions on := Spec are generically different
then admits a continuous family of generically distinct gradings.

Proof. For C+, = 0, we consider a new -action on := induced by
the isomorphism : that is, conjugated with the original -action on by
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means of . More precisely, we have a commutative diagram

//

1( )

�� ��
//

where the vertical arrow on the right is the new -action on and

( ) = 1 = ( + ) for = ( )

The C -orbit of (1 ) =C ⋉ C+ is equal toC and is mapped under
onto the set

+ C

which is not an orbit of theC -action on . Since by our assumption for a general
the orbit has dimension 2, the genericC -orbit in is not mapped onto

a C -orbit of .

In the surface case we have the following elementary lemma.

Lemma 2.5. For a -action on an affine surface = Spec the following con-
ditions are equivalent.
(i) It has an open orbit.
(ii) C+ = C ( ker = 0)3.
(iii) ker = C[ ] or ker = C[ 1], where with = 0.
Under these equivalent conditions the surface is rational, and the affine ruling

: := Spec C+ has at most one degenerate fiber= 0 consisting ofC -orbit
closures4.

Proof. Since Der is homogeneous, its ring of invariants ker =C+ is a
graded subring of . Thus the normal (hence smooth) affine curve = Spec C+ also
carries aC -action, and the quotient morphism = C+ (which provides an
affine ruling on = Spec ) isC -equivariant. In case C+ = C (that is, ker = 0)
the inducedC -action on is non-trivial, hence = A1

C or C . In this case ker =
C[ ] and C[ 1], respectively, where ker is homogeneous and = 0.

The rationality of follows from L̈uroth’s Theorem. The rest of the proof is easy
and can be omitted.

3I.e., theC+-action is horizontal w.r.t. the givenC -action.
4Cf. Remarks 1.5, 3.13 (iii) and Lemma 3.24 below.
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2.2. Actions with an open orbit. The next simple observations will be used in
the proofs below (cf. Remark 1 in [25, II.4.3.B]).

Lemma 2.6. (a) If a connected Lie group and a finite group act on an
algebraic C-scheme = Spec then the action of descends to if and only if
the actions of and on commute.
(b) Conversely, suppose that a connected and simply connected Lie group actson
the quotient of by a free action of a finite group. Then the action of lifts
to commuting with the action of .

Proof. (a) Suppose first that the action of on descends to . We may
also assume that acts faithfully on . It follows that preserves the -orbits, and
so, if = for some and some then for any there is an
element = ( ) such that = . This implies the equality = .
Since ( ) is a continuous function on the connected Lie group with values in
it must be constant, i.e., = , and so = for all and . Thus the
actions of and of commute, as stated in (a). The proof of the remaining assertions
is easy and will be omitted.

Lemma 2.7. (a) If a complex unipotent Lie group acts on an affine variety
with an open orbit then = Adim

C .
(b) If a complex reductive Lie group acts effectively on a connected algebraic va-
riety with a fixed point then the induced representation: GL ( )
on the Zariski tangent space of at is faithful.
(c) Any affine toric surface non-isomorphic toC C admits a -action with an
open orbit for every Z.

Proof. (a) Since any orbit of is closed in [22, Exercise 8 in Section 17],
[25, III.2.5.3], the open -orbit is the whole . Thus = = Adim

C , where
is a closed subgroup (see [31, Corollary of Theorem 2]). Thisshows (a).

(b) is well known and follows for instance from Luna’śetale slice theorem or
from the identity theorem [1, Sect. 2.1]. Alternatively, this can be seen by the follow-
ing elementary argument: for 0 the induced action of on :=O m +1

is easily seen to be faithful, i.e. the map : Aut( ) is injective, where
Aut( ) denotes the Lie group ofC-algebra automorphisms of . The subgroup
of Aut( ) consisting of automorphisms with id mod̄m2 is a normal unipo-
tent subgroup, so 1( ) is also normal and unipotent and thus trivial. It follows that
already the map Aut(1) = Aut( ) is injective, which implies that acts
effectively on .

(c) As = C A1
C this is evident in case that = C A1

C. Otherwise (c) is
shown in Example 2.8 below.
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EXAMPLE 2.8. Affine toric surfaces. Given two natural numbers with 0
, gcd( ) = 1, we consider the affine toric surface = Spec , where

(1) = C[ ]Z =
0 0

C C[ ] with = =

is the semigroup algebra of the cone = (~ 1 ~ 1 + ~ 2) in R2, and whereZ =
acts onC[ ] via

(2) = =

(cf. [17, Example 2.3]). ThisZ -action commutes with anyC -action onC[ ] of
the form

= =

where ( ) Z2. It also commutes with the locally nilpotent derivations

(3) = and = Der C[ ]

where 0 are such that mod and 1 mod if = 0, = 0
if = 0. Therefore by Lemma 2.6 theC+-actions onC[ ] induced by and

stabilize the ring ofZ -invariants =C[ ]Z , hence descend fromA2
C =

SpecC[ ] to the quotient surface = Spec =A2
C Z . Note that any affine

toric surface non-isomorphic toC C or A1
C C , is isomorphic to for some

as above. Consequently, any such surface admits twoC+-actions with different
general orbits (cf. Corollary 4.4 below).

Letting above e.g., = 0, = we obtain that deg = , and so by
Lemma 2.2 (b) the group acts effectively on the ring = .

Lemma 2.9. Let be a connected complex algebraic Lie group acting effec-
tively on a normal affine surface = Spec .
(a) If is unipotent and = A2

C, then is commutative and the orbits of are
1-dimensional.
(b) If is solvable and acts on with an open orbit, then is isomorphic to
one of the surfacesC C , C A1

C or A2
C. Moreover, if is big that is, is

finite, then = .
(c) is solvable if and only if it does not contain a subgroup isomorphic to SL2 or
to PSL2.

Proof. (a) The orbits of are closed in and generically one-dimensional,
since otherwise = A2

C by Lemma 2.7 (a). We let : := Spec be
the quotient map. The Lie algebrag = Lie consists of vector fields tangent along
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the fibers of . Any such vector field g is an infinitesimal generator of a one-
parameter subgroup of isomorphic toC+ and so is a locally nilpotent derivation on

. Being proportional, every two such nonzero derivations1 2 are equivalent i.e.,

1 1 = 2 2 for some 1 2 . Thus 1 = 2 with := 2 1 Frac and so
0 = [ 1 2] = [ 1 2]. This shows that 1 and 2 commute, proving (a).

(b) We may suppose that = A2
C. In the decomposition =T ⋉ [22, The-

orem 19.3 (b)], whereT is a maximal torus and is the unipotent radical of ,
we have = C+ by (a). If = 0 then clearly = C C . In case 0 let

0 Lie be a common eigenvector of the adjoint representation ofT on Lie and
denote 0 the corresponding one-parameter subgroup. By (a) the orbits of and
of 0 := T⋉ 0 are the same. Thus we may suppose that =0 has dimension 1. As

acts effectively on with an open orbit the torusT must be of dimension 1 or 2,
so = C ⋉ C+ or = C 2 ⋉ C+. In the first case the open orbit of is iso-
morphic to . In case = C 2 ⋉ C+ the stabilizer =Stab of a point
has dimension 1 and so = or = C . If = then = = C 2. If

= C then we may suppose that T. Indeed, any subtorus in is contained in
a maximal torus, which is unique up to a conjugation. But then= = C A1

C.
In all cases the open orbit is affine, hence is either empty or adivisor.

Thus, if is big then = , proving (b).
(c) is well known and follows from the structure theory of algebraic groups,

see [8, 22].

To describe all normal affine surfaces admitting an action ofan algebraic group
with an open (not necessarily big) orbit, we follow a suggestion in [31, The con-

cluding remark]. In the particular case of smooth rational surfaces it was confirmed in
[7, Proposition 2.5].

Proposition 2.10. Let = Spec be a normal affine surface non-isomorphic to
C C . If an algebraic group acts on with an open orbit then, for some Z,
the group = C ⋉ C+ also acts on with an open orbit.

Proof. If is a toric surface then by Lemma 2.7 (c) it admits a -action with
an open orbit. So we may suppose in the sequel that is not toric, in particular =
A2

C.
In case = SL2 we let be the Borel subgroups of upper/lower triangular

matrices. Their intersection is the torusT = C of diagonal matrices. If both act
with 1-dimensional orbits on then their orbits would be equal to the orbit closures
of the torus action. Hence also would act with 1-dimensionalorbits contradicting
our assumption. Thus at least one of the groups has an open orbit in . Since

= 2 the result follows in this case.
Clearly, the case = PGL2 = SL2 reduces to the previous one.
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For the remaining cases we may suppose that acts effectivelyon , is con-
nected and does not contain a subgroup isomorphic toSL2 or PGL2. By Lem-
ma 2.9 (a), (c) is solvable and not unipotent. Since is not toric, the maximal
torus T of has dimension 1. As in the proof of Lemma 2.9 (b) we can restrict the
action of to a subgroup =T⋉C+ of which still has an open orbit. As =
for some , the result follows.

3. Classification of affine surfaces with aC - and C+-action

In this section we study normal affine surfaces = Spec endowedwith an ef-
fective C - and aC+-action. TheC -action provides a grading = Z and the
C+-action a locally nilpotent derivation of . Due to Lemma 2.1 we can find a
homogeneouslocally nilpotent derivation on . Thus in the sequel we consider pairs
( ), where is the graded coordinate ring of = Spec as above and Der
is a nonzero homogeneous locally nilpotent derivation.

DEFINITION 3.1. We call such a pair ( )elliptic if the C -action on is el-
liptic i.e., if is positively graded with dim 0 = 0, parabolic if is parabolic i.e.,
positively graded with dim 0 = 1, andhyperbolic if is hyperbolic, i.e. = 0.

Two such pairs ( ) and ( ) are calledisomorphic if there is an iso-
morphism of gradedC-algebras : with = .

For hyperbolic pairs we will suppose in the sequel that := deg 0 (indeed,
otherwise we can reverse the grading of ).

We can reformulate 2.2 in this setup as follows.

Proposition 3.2. Let Z be fixed. There is a1-1 correspondence between iso-
morphism classes of pairs( ) with deg = as above and normal algebraic affine
surfaces equipped with an effective -action up to equivariant isomorphism.

Thus to describe normal affine surfaces with a -action up to equivariant iso-
morphism we classify in this section all elliptic, parabolic and hyperbolic pairs ( )
with = deg . Our main results are the structure theorems 3.3, 3.12, 3.16, 3.22 and
Corollary 3.30. It also turns out that in many cases the isomorphism class of a pair
( ) depends only on the isomorphism class of the graded algebra , see Proposi-
tion 3.7.

3.1. Elliptic case. Let ( ) be an elliptic pair. It is shown in [18, Lem-
mas 2.6 and 2.16] that = C[ ]Z , whereC[ ] is graded via deg = 0,
deg = 0, and where = Z is a small subgroup ofGL2. In particular

= Spec is a toric surface. Moreover, extends to a homogeneous locally nilpo-
tent derivation also denoted by :C[ ] C[ ], and the actions of and on
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C[ ] commute (see Lemma 2.6(a)).

Theorem 3.3. If ( ) is an elliptic pair then, after an appropriate change of
coordinates, we have = C[ ] with = Z = , where is a primitive -th
root of unity generating , acting onC[ ] via

= =

and extends toC[ ] via

( ) = 0 ( ) = i.e., =

where 0, gcd( ) = 1.

Proof. Since is homegeneous locally nilpotent onC[ ] we have ( ) = 0
for an irreducible quasihomogeneous polynomial C[ ] with deg 0 (see
Proposition 1.1 (b)). We can write = ˜, where ˜ is again a locally nilpotent
derivation and is chosen to be maximal. The derivation, say,¯ of C[ ] ( ) in-
duced by˜ is then nontrivial, so by Proposition 1.1 (c) aboveC[ ] ( ) is a poly-
nomial ring in one variable. Since is quasihomogeneous, it must be linear in
or in . After a suitable quasihomogeneous change of variables we may assume that

= so that ( ) = 0 and ker =C[ ]. Since is homogeneous locally nilpotent,
( ) is a homogeneous polynomial in , i.e., ( ) = with C and 0 (cf.

the proof of Lemma 2.16 in [18]). Replacing by we may suppose that = 1.
Since commutes with the action of , for any we have ( ) =

( ) = 0, and so = ( ) for some character : 1. It was shown in
the proof of [18, Lemma 2.16] that is necessarily injective.Thus we can identify
with the cyclic group ( ) = = Z for a certain primitive -th root of unity ,
where = . We write now = + , where = in the case that

= 0. Since ( ) = ( ) we obtain

= =

and therefore = . If gcd( ) = 1 then 0 mod for some , and so
= 1 acts as a pseudo-reflection onC[ ], which is excluded by our assumption

that is small. Hence gcd( ) = 1.
Finally, if = then when considered as an operator onC + C has infi-

nite order, which is impossible. Hence = 0 in this case. If = then replacing
by := + ( ( )) we can achieve that = , proving the theorem.
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3.2. Technical lemmas.
NOTATION 3.4. Until the end of this section we let ( ) be a parabolic or hy-

perbolic pair as in Definition 3.1. Thus is a homogeneous locally nilpotent deriva-
tion on = + 0 corresponding to aC+-action, := Spec 0 is a smooth
curve and + := 0 = 0. We assume as before that theC -action is effective so
that 1 = 0, and also 1 = 0 as soon as := 0 = 0. We let = ( 0)
be the minimal positive integer such that + = for every 0 (see [17, 3.6
and Lemma 3.5]).

Lemma 3.5. If 0 = 0 then 0 = C[ ] for a certain 0. Consequently for
every with = 0 the 0-module is free of rank1.

Proof. The morphism : Spec = Spec0 induced by the inclusion

0 coincides with the orbit map onto the algebraic quotient C , hence its
general fiber is an orbit closure of theC -action on = Spec associated to the
given grading. Since 0 = 0 the general orbits of theC+-action on belong-
ing to are not contained in the fibers of , and so map dominantlyonto Spec 0.
These orbits being isomorphic toA1

C, 0 is a subring of a polynomial ringC[ ]. It is
easily seen that 0 is a normal ring, hence 0 = C[ ] for some 0, as stated. Now
the second statement follows from [17, Lemma 1.3 (b)].

For later use we consider in the next lemma more generally a non-homogeneous
derivation, but with homogeneous components of only nonnegative degrees.

Lemma 3.6.5 Let = = be a nonzero locally nilpotent derivation on de-
composed into homogeneous components with 0. If := ( 0) and
generates as an 0-module, then ker = C[ 1] . In particular, 0 = 0.

Proof. Note first that stabilizes the subring 0. Since by definition of we
have + = = , it stabilizes as well the principal ideal 0 of 0. Thus
by Corollary 1.2 (b) ( ) = 0 and soC[ 1] ker . To deduce the other in-
clusion it is sufficient to show thatC[ 1] is integrally closed in (see Propo-
sition 1.1 (b)). The normalization ofC[ 1] in is again graded and normal
and so is equal toC[ 1] for some homogeneous element of positive
degree . Thus = for some 0 and C, and so = . It follows that

+ = = +( 1) for all 0. By definition of , this is only possible in the
case = , which proves thatC[ 1] = ker .

This lemma has the following important consequence. Although it also follows
from the classification theorems 3.16 and 3.22 we give here anindependent proof.

5Cf. Lemma 2.5.
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Proposition 3.7. Let be a parabolic or hyperbolic algebra with0 = C[ ] as
above and let be nonzero homogeneous locally nilpotent derivations on of the
same degree . In the parabolic case assume further that 0. Then and are
proportional, i.e. = for some C . In particular, the pairs ( ) and ( )
are isomorphic.

Proof. If is hyperbolic we may reverse the grading, so in bothcases we may
suppose that 0. By Lemmas 3.5 and 3.6 there exists such that ker =
ker = C[ 1] . Thus : := Spec := Spec(C[ 1] ) is an affine
ruling (see also Lemma 2.5), and the vector fields and are bothtangent to the
fibers of . Hence = for some Frac( ) of degree 0, and because of Propo-
sition 1.1 (b) we have ker . By Lemma 3.6 this implies that C, proving the
first assertion.

To deduce the second one, we write = with C . The C -action on
induces aC -action on DerC( ) via ( )( ) = ( ( 1 )) for DerC( ) and

. As is homogeneous of degree we have = = , as required.

Lemma 3.8. If deg 0 and ( ) = 0 for some nonzero element 1, then

0 = C[ ] with deg = 0,and 0 = for some homogeneous deg .

Proof. First we note that ( ) = 0 for all 0 C by Lemma 3.6. Applying
Lemma 3.5 we see that0 = C[ ] for some 0 and, moreover, for every 0 the

0-module is freely generated by some element . Therefore = for
a certain 0. Since ker and ker is factorially closed, ( ) = ( ) = 0.
Hence C for all 0, and so 0 = C[ ]. Since ( ) = 0 we have 0 =

, where = ( ) deg , as required.

Lemma 3.9. If 0 = C[ ] and deg =: 0 then there is an isomorphism of
graded C-algebras 0 = C[ ]Z with = and = , where the polynomial
ring := C[ ] is graded viadeg = 0, deg = 1and the cyclic groupZ =
acts on via

= =

Moreovergcd( ) = 1,and is the restriction to 0 of the derivation

=

Proof. We may suppose that = 0, and we let be the normalization of
in the field of fractions of [ ], where := . In view of the minimality of
the assumptions of Lemma 1.8 are fulfilled. Hence the groupZ = acts on

via = id, = , so that = ( )Z , and extends to a locally nilpotent



946 H. FLENNER AND M. ZAIDENBERG

derivation (also denoted ) on of degree . As ( ) = 0 and deg = 1 we can
apply Lemma 3.8 to obtain that = C[ ] for some 0, and = for
a certain homogeneous element = ( ) (C[ ]) . Since = ( ) is
locally nilpotent we have C . Hence we may assume that = .

The action ofZ on Spec 0 = SpecC[ ] has a fixed point which we may suppose
to be given by = 0. Thus = for some Z. Since commutes with the
action of Z (see Lemma 2.6) we have

= ( ) = ( ) =

i.e., we may assume that = .
Since 1 = ( 1)Z = 0 there exists a non-zero element = ( ) 1, where

( ) = =0 C[ ]. The element being invariant under we obtain

= ( ) = ( ) =

i.e., +1 = 1 as soon as = 0. Thus + 1 0 mod and so gcd( ) = 1.
Finally, by Lemma 3.5, C[ ]Z = C[ ] = 0 generates 0. After rescaling we may
suppose that = as claimed.

REMARK 3.10. In the situation of Lemma 3.9 Frac = Frac =
C( ).

3.3. Parabolic case. We are now in position to exhibit the structure of ( )
in the case of a positive grading with dim0 = 1. We distinguish the following cases.

DEFINITION 3.11. A parabolic pair ( ) as in Definition 3.1 will be calledverti-
cal or of fiber typeif 0 = 0, and ofhorizontal typeif 0 = 0.

Two isomorphic pairs ( ) and ( ) have the samenumerical invariants
( ), where := deg and := ( ) is as in 3.4 (see also [17, 3.6]). In Theo-
rem 3.16 below we show the converse, namely, that two parabolic pairs of horizontal
type with the same numerical invariants are isomorphic.

A parabolic pair is of fiber type if and only if the general orbits of the corre-
spondingC+-action on = Spec coincide with the general fibers of the morphism

: := Spec 0 or, equivalently, if the vector field on is tangent to the
fibers of . In contrast, if the pair is of horizontal type then the fibers of theC+-action
map surjectively onto the base curve and so,= A1

C or, equivalently, 0 = C[ ]
(see Lemma 3.5).

We start with the case of parabolic pairs of fiber type.



LOCALLY NILPOTENT DERIVATIONS ON C -SURFACES 947

Theorem 3.12. If ( ) is a parabolic pair of fiber type, then has degree 1.
Furthermore, if we represent via the DPD construction as

= 0[ ] =
0

0( O ( )) Frac( 0)[ ]

with a Q-divisor on = Spec 0 then extends toFrac( 0)[ ] as = ,
where = belongs to 0( O ( )). Vice versa, any 0( O ( ))
gives rise to a homogeneous locally nilpotent derivation= on of degree

1.

Proof. The case deg 0 is impossible by Lemma 3.6. If deg 0 then

0 ker , and since 0 is integrally closed in we have even equality (see Propo-
sition 1.1 (b)). If deg 1 then any element in1 would be in ker , which is a
contradiction. It follows that deg = 1.

If is a section in 0( O ( )) then the derivation =
of Frac( 0)[ ] stabilizes . Indeed, for 0( O ( )) we have

0( O ( ( 1) )) and so ( ) = 1
1. Conversely, if is a

0-linear derivation of then it extends to Frac(0)[ ], and so is of type =
for some Frac( 0). If N is such that is integral then multiplication by
gives a map

0( O ( )) 0( O ( ( 1) ))

and hence amounts to a section in0( O ( )).

REMARKS 3.13. 1. Our proof shows that
(i) = 0[ ] always admits a non-zero locally nilpotent derivation of fiber
type, and
(ii) every homogeneous locally nilpotent derivation on= 0[ ] of negative de-
gree has degree 1 and is of fiber type.

(i) also follows from Lemma 1.6, since for a parabolicC -surface = Spec 0[ ] the
canonical projection : = Spec0 is an affine ruling.

We claim as well that
(iii) The reduced fibers of the affine ruling: are all irreducible and
isomorphic toA1

C.
To show (iii), with the same argument as in the proof of Proposition 3.8 (b) in

[17] we can reduce to the case that0 = C[ ] (i.e., = A1
C) and = ( )[0],

where 0 and gcd( ) = 1 (see [17, Theorem 3.2 (b)]). In this case the
reduced fiber of : A1

C over 0 A1
C is isomorphic to SpecC[ ] with := .

In fact, using the presentation of as in (1) it is readily seenthat the radical of
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is given by

=
0 0

C and so =
0 =0

C = C[ ]

2. The multiple fibers of : correspond to the points in . More pre-
cisely, if = ( ) with and gcd( ) = 1 then ( ) = 1( )
(see [17, Theorem 4.18]).
3. Let = Spec be any affine surface with a non-trivialC+-action. The coordinate
ring is filtered by the kernels := ker , where Der is the corresponding
locally nilpotent derivation. Consider the associated graded ring := 0 with

:= +1 and the associated homogeneous locally nilpotent derivation Der
of degree 1. Then 0 = 0, and so the normalization of is as in Theorem 3.12.

In the following example we exhibit a particular family of parabolic pairs of hor-
izontal type, and then we show in Theorem 3.16 below that thisfamily is actually ex-
haustive.

EXAMPLE 3.14. Given coprime integers 0 and 0 let be the unique
integer with 0 and 1 mod ; we note that by this condition = 0 and

= 1 if = 0. Letting 0 = C[ ], we consider the 0-algebra given by the DPD
construction as follows:

:= 0 [ ] Frac( 0)[ ] with = [0] Div A1
C

Clearly = ( ) (see Lemma 3.5 in [17]). According to [17, Proposition 3.8] and
Example 2.8 above we can represent as the ring of invariants

= Z with := C[ ] deg = 0 deg = 1

where = , = , and whereZ = acts on via

= =

Thus as in Example 2.8 = Spec= is an affine toric surface, and because of
1 mod the derivation

(4) := Der

of degree is locally nilpotent and commutes with theZ -action. By Lemma 2.6 it
restricts to a locally nilpotent derivation of .

DEFINITION 3.15. We call the pair := ( ) as abovethe parabolic
( )-pair.
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Note that is of horizontal type. Moreover, two parabolic pairs and ˜ ˜

are isomorphic if and only if =˜ and = ˜ (cf. [17, Corollary 3.4]). In the next
result we classify all parabolic pairs of horizontal type.

Theorem 3.16. Every parabolic pair( ) of horizontal type is isomorphic to
the parabolic( )-pair with := deg and := ( ).

Proof. We recall (see [17, Remark 2.5]) that for 0 and 1 mod ,
the Z -actions and onA2

C = SpecC[ ] with

: ( ) = ( ) and : ( ) = ( )

where are primitive -th roots of unity with = , have the same orbits, hence
also the same rings of invariants. Now Lemma 3.9 shows that ( )is isomorphic to

. This proves the result.

EXAMPLE 3.17. If is parabolic and admits a nonzero homogeneous locally
nilpotent derivation of degree 0 then = C[ ] and = . In fact, by the
classification above ( ) is the pair1 0 i.e., = 0, = 1, = and = in Ex-
ample 3.14.

REMARKS 3.18. 1. We note that the derivation in Example 3.14 naturally ex-
tends to Frac(0)[ 1] giving the derivation

(5) = +1 +1 =

where 1 = . Indeed, from = and = we obtain

( ) = 1 = +1 and ( ) = 1 +1 = +1

2. By virtue of Lemma 3.6, ker =C[ ]. Hence : A1
C is the orbit map of the

C+-action on generated by . As is homogeneous of degree = ( ) 0,
the C -action on acts non-trivially on this affine ruling and on itsbase. Therefore
can have at most one degenerate fiber1(0), which is the fixed point curve + = A1

C

of the C -action. Moreover, div( ) = + (see [17, Remark 3.7]).

Corollary 3.19. A normal affine surface = Spec ,where = 0[ ], admits
a horizontal C+-action if and only if 0 = C[ ] and the fractional part of the
Q-divisor on = A1

C is supported at one point or is zero.

Proof. This follows immediately from Theorem 3.16; note that in the case 0 =
C[ ] we have = 0[ ] = 0[ ], see [17, Corollary 3.4 and Proposition 3.8].
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Let us provide for the ‘only if’-part an independent geometric argument. For this
consider more generally a morphism : of a normal affine surface onto
a smooth affine curve with only irreducible fibers. We claim that if there exists an
affine ruling : different from then = A1

C and has at most one multiple
fiber. Clearly, this claim implies our assertion (see Remark 3.13.2). To show the claim,
we let = A1

C be a general fiber of , and we assume on the contrary that has at
least two fibers of multiplicity 2, = 0 1. As : is dominant
it follows that = A1

C, and so : can be viewed as a non-constant
polynomial C[ ]. We also may assume that0 = 1(0) and 1 = 1(1). As
is a general fiber of it meets at smooth points of only, with theintersection
multiplicities in ( ) being a multiple of ( = 0 1). Thus 0, 1, divides the
multiplicity of any root of the polynomial , 1, respectively. Hence = 0 = 1 +
1 for some non-constant polynomials C[ ]. The pair ( ) defines a dominant
map A1

C 0 1, where 0 1 is the smooth plane affine curve 0 1 = 1. But
the existence of such a map contradicts the Riemann-Hurwitzformula, which proves
our claim.

3.4. Hyperbolic case. In this subsection we assume that is hyperbolic, so
that = 0. If is a homogeneous locally nilpotent derivation onof degree with

0 then by reversing the grading of we obtain a derivation of positive degree.
Thus it is sufficient to classify the hyperbolic pairs ( ) as inDefinition 3.1.

Lemma 3.20. If ( ) is a hyperbolic pair then stabilizes 0 , and
( 0 ) is a parabolic pair of horizontal type.

Proof. It follows immediately from the definitions that (0 ) is a parabolic
pair. If it were of fiber type then the orbits of the corresponding C+-action on =
Spec would be the fibers of : = Spec0. As the general fiber of isC ,
this leads to a contradiction.

Thus by Theorem 3.16 ( 0 ) is isomorphic to the ( )-pair , where =
deg and = ( 0) = ( ) (see 3.4 and Lemma 3.9). In particular,0 = C[ ] and

0 = 0[ ( )[0]] Frac( 0)[ ], where 0 is the origin inA1
C = Spec 0 (see

Example 3.14). Moreover is given as in (4) or, alternatively,as in (5). The following
lemma is crucial in our classification.

Lemma 3.21. Let + be Q-divisors on := Spec 0 with 0 = C[ ] satis-
fying + + 0, where + = ( )[0] with 0 and gcd( ) = 1. The
derivation : 0[ +] 0[ +] of degree 0 as in (5) extends to

= 0[ + ] Frac( 0) 1
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if and only if the following two conditions are satisfied.
(i) If (0) = then ( 1) (0) 0 i.e., ( +(0) + (0)) 1 .
(ii) If A1

C with = 0 and ( ) = 0 then 1 ( ) 0.

Proof. Note that extends in a unique way to a derivation of Frac( 0)[ 1]
also denoted . We must show that stabilizes if and only if (i) and (ii) are satis-
fied.

Let us first treat the case = 1 so that = 0 and+ = 0. Then (i) and (ii) can
be reduced to the condition

(6) 1 ( ) 0 A1
C

Moreover, = 1 and so according to (5) = acts on a homogeneous element
( ) C( ) by

(7) ( ( ) ) = ( )

Thus stabilizes if and only if ( ) ( 0) implies ( )
or, equivalently,

(8) div + 0
div + ( ) 0 if 0

div + ( ) + 0 if 0

If (6) is satisfied then for any A1
C

div + ( ) ( ) div + ( ) 1 ( ) div + ( )

where div ( ) denotes the order at . Thus (8) is satisfied if 0, and since

+( ) = 0 and ( ) 0, it also follows for 0.
Conversely, assume that stabilizes . Consider such that thedivisor

is integral. For A1
C with ( ) = 0 we let := ( ); thus 0. Consider a

polynomial without zero at such that

( )

By assumption (( ) ) = ( ( ) 1 + ( ) ) + and so

div ( ( ) 1 + ( ) ) + ( ) ( ) 0

The term on the left is equal to 1, hence we obtain

1 + ( ) ( ) = 1 ( ) 0

as required in (6).
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In case 2 we consider the normalization of in Frac( ) as in
Lemma 3.9, and we let :A1

C = Spec 0 A1
C = Spec 0, , be the cov-

ering induced by the inclusion 0 0. By loc. cit. 0 = C[ ] with = and
= ker , deg = 1, and extends to the derivation = on0 and as

well on Frac( ). If stabilizes then stabilizes (see Lemma 1.8). Moreover,
can be written as = (see the proof of Theorem 4.15 in [17]). So,by [17,

Proposition 4.12],

= 0 + Frac( 0) 1

where + = 0 and = ( + + ). Using the first part of the proof we get that
( ) 0 implies 1 ( ) 0. If = ( ) = 0 then ( ) = ( ), hence

(ii) follows. Similarly, if ( ) = 0 then ( ) = + (0) and (i) follows.
Conversely, assume that (i) and (ii) are satisfied. Reversing the reasoning above

we obtain that 1 ( ) 0 if ( ) = 0. Thus by the first part stabilizes .
Taking invariants stabilizes = ( )Z , as desired.

Summarizing we state now our main classification result for hyperbolic pairs.

Theorem 3.22. If ( ) is a hyperbolic pair with := ( 0) and := deg
0, then 0 = C[ ] and = 0[ + ] for two Q-divisors + on A1

C with + +
0, where the following conditions are satisfied:

(i) + = ( )[0] with 0 and 1 mod .

(ii) If +( ) + ( ) = 0 then ( +( ) + ( )) 1 = 0

= 0
.

(iii) is defined by(5) in Remark 3.18.
Conversely, given twoQ-divisors + and onA1

C with + + 0 satisfying(i)
and (ii) there exists a unique, up to a constant, locally nilpotent derivation of degree

on = 0[ + ], and this derivation is as in(iii). In particular, isomorphism
classes of hyperbolic pairs are in1-1 correspondence to pairs( ), where
is a Q-divisor on A1

C satisfying(ii).

Proof. By Theorem 3.16, ( 0 ) is isomorphic to the parabolic pair . In
particular, (i) and (iii) are satisfied. By Lemma 3.21 also (ii) holds, proving the the-
orem.

Corollary 3.23. A two-dimensional normal gradedC-algebra = Z

with = 0 admits a homogeneous locally nilpotent derivation of positive degree
if and only if 0 = C[ ] and = 0[ + ], where the fractional part + is
supported at one point or is zero.
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In order to study more closely the structure of the affine ruling which corresponds
to the C+-action with generator as above, we need a simple lemma. We let =

0[ + ] Frac( 0)[ 1] be a normal gradedC-algebra, and we consider the
associatedC -fibration : = Spec := Spec0 over the curve . It was
shown in [17, Theorem 4.18] that the fiber over a point with+( ) + ( )
0 consists of twoC -orbit closures ¯ . Moreover, if +( ) = ( + +), ( ) =

, where + 0, 0 and gcd( ) = 1, then

(9) ( ) = +[ ¯+] [ ¯ ] and div = +[ ¯+] + [ ¯ ] +

where the terms in dots correspond to points in+ different from . Letting
be an element with = 0 near , we have the following observation.

Lemma 3.24. (a) The orbit closures¯ = SpecC[ ] are smooth affine lines.
(b) div( +) = ( )[ ¯ ] and div( ) = ( )[ ¯+], where ( ) := + +.

Proof. With the same argument as in the proof of Proposition 3.8 (b) in [17] we
can reduce to the case where0 = C[ ] and + is the point = 0 =A1

C.
We may also suppose that+(0) + (0) 0. Recall (see the proof of Theorem 4.15
in [17]) that = up to a constant inC .

(a) The ideal of ¯+ coincides with the radical , see the proof of Theo-
rem 4.18 in [17]. Thus it suffices to show that

=
+∤

As + we have the inclusion ‘ ’. To deduce ‘ ’ we note first that
. Suppose that , where 0 and+ ∤ , and let us show that

. For this we need to prove that = divides in for
0 or, equivalently, that . This amounts to

(10) ( ) + ( ) +(0) 0 ( + +(0)) + +(0)

Because of our assumptions and+ ∤ we have + +(0) 0 and

+(0) Z, so + +(0) 0. Hence (10) is satisfied for 0, as required.
(b) follows from (9) by virtue of the equalities

div + = + div + + div and div = div + div

We consider below a hyperbolic pair ( ) as in Theorem 3.22, andwe let
be a generator of over 0 = C[ ] (cf. Lemma 3.6). Then : = Spec

= A1
C provides an affine ruling which is the quotient map of theC+-action on

induced by . In the next proposition we describe the multiplicities which occur in
the degenerate fibers of this affine ruling (cf. Remark 3.18.2).
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Proposition 3.25. The fiber of the affine ruling : = A1
C over a point

= 0 is smooth, reduced and consists of just oneC+-orbit, whereas the fiber over
= 0 is a disjoint union ofC -orbit closures isomorphic to affine lines, one for each

point with +( ) + ( ) 0. Moreover

(11) div( ) = +

A1
C

( ) ( +( ) + ( )) ¯

where the integer ( ) 0 is defined by ( ) = ( ) ( ) with gcd( ( )
( )) = 1.

Proof. As is homogeneous of degree =+ := ( 0) the affine ruling
: A1

C is equivariant if we equipA1
C with the C -action = . This im-

plies that for every point = 0, the fiber of over is smooth, reduced and consists
of just oneC+-orbit. By the previous lemma, div( ) is a linear combinationof the di-
visors ¯ , where runs through all points of =A1

C with +( ) + ( ) 0. We
compute the multiplicities separately in the cases where = 0and = 0.

If = 0 then +(0) = ( + +) with + = and (0) = with = (0),
= (0), so by Lemma 3.24 the coefficient of̄0 in div( ) is (0) = + +

+ = + ( +(0) + (0)), which agrees with (11).
If = 0 then +( ) = 1 and so ( ) = ( )( +( ) + ( )). Letting 1

be an element generating1 over 0 near , we can write = + , where 0

is a unit near i.e., ( ) = 0. By Lemma 3.24̄ occurs with multiplicity ( ) in
div( ), and so it occurs with multiplicity + ( ) = + ( )( +( ) + ( )) in div( ),
as required in (11).

REMARK 3.26. We note that div( ) is the exceptional divisor of the birational
morphism + : + = Spec 0 induced by the inclusion 0 . Indeed, the
divisor div( ) = + + on + is supported by the fixed point curve+ = A1

C of the
C -action on + (see Remark 3.18). For every point =A1

C with +( )+ ( )
0 there is a unique point over on+, and + is the affine modification consisting
in an equivariant blowing up of + with center supported at all those points +

and deleting the proper transform of the divisor+ (see [17, Remark 4.20]).

If is a unit in then + + = 0, : A1
C 0 is the quotient map, and

all fibers of are smooth affine lines. More precisely the following result holds.

Corollary 3.27. Let ( ) be a hyperbolic pair and := ( 0). If one of the
following two conditions is satisfied:
(i) := deg = 0,or
(ii) contains a unit of non-zero degree,
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then

= C 1 ( = A1
C C ) and =

wheredeg = and deg = .

Proof. In case (i) Theorem 3.22 (i) shows that = 1 and = 0, so+ = 0, and
moreover by 3.22 (ii) +( )+ ( ) = 0 for all closed points A1

C. Thus + = =
0 and = 0[ 1] for some element 1. By 3.22 (iii) and Remark 3.18.1 is
the derivation = , which proves the result.

In case (ii), by [17, Remark 4.5], + = , and by Theorem 3.22, + =
( )[0]. Therefore, is the semigroup algebra generated overC by all monomi-

als with 0, Z (cf. the proof of Theorem 4.15 in [17]). Choose
Z with = 1 and consider the elements

:= 1 and := with deg = deg =

so that = and = . As we have noticed above, a monomial =
belongs to if and only if 0. Thus =C[ 1 ]. The

orbits of the C+-action on SpecC[ 1 ] = A1
C C given by are necessarily

contained in the fibers of the projection toC , and ker =C[ 1] (cf. Lemma 3.6).
Since is homogeneous of degree , we get = for suitable C ,

Z, N with = 0. As is also locally nilpotent this forces = = 0
and so = . Replacing by , the result follows.

Next we describe explicit equations for hyperbolic pairs inthe case that =

0[ + ] with + = 0. Similarly as in 3.4 we let = ( 0) be the minimal posi-
tive integer such that = for every 0.

Corollary 3.28. Let ( ) be a hyperbolic pair, and suppose that = 0[ +

] with + = 0, so that 0 = C[ ] with deg = 1and deg = 0. If := ( 0)
and := deg 0 then is the normalization of the graded domain

= := C[ ] ( ) with deg =

where

(12) ( ) =
=1

( ) C[ ] ( 1 and = for = )

is a unitary polynomial uniquely determined by = div and satisfying

(13) gcd( 1 ) = 1 and



956 H. FLENNER AND M. ZAIDENBERG

for = 1 . The derivation is given (and uniquely determined) by the conditions

(14) ( ) = 0 ( ) = ( ( ) = ( ) )

Conversely, given a polynomial as in(12) and (13) there is up to a constant
a unique locally nilpotent derivation of degree of the normalization of sat-
isfying (14).

Proof. As was shown in [17, Example 4.10 and Proposition 4.11], is the
normalization of the algebra , where is a unitary polynomialuniquely de-
termined by = div( ) . Since is minimal with integral, we have
gcd( 1 ) = 1. By Theorem 3.22 (ii), (iii) it follows that and that

has the stated form (14). Conversely, given the normalization of is iso-
morphic to 0[ + ] with + = 0 and = div( ) . If for all then
the conditions (i), (ii) in Theorem 3.22 are fulfilled for , sothere is a locally nilpo-
tent derivation of satisfying (14), and is uniquely determined up to a constant
factor.

REMARKS 3.29. 1. Over each of the points = A1
C, the surface = Spec

considered in Corollary 3.28 has a unique fixed point of theC -action. This point
is a quotient singularity of type ( ), where = with coprime

and 0 , mod . This follows from Theorem 4.15 in [17], since

+( ) = 0 and ( ) = . In particular, the surface is smooth if and onlyif
for all (cf. Corollary 4.16 in [17]).

2. A description of the automorphism group Aut for a smooth surface :=
Spec , where is as in Corollary 3.28, can be found in [6, (2.3)–(2.4)] and
[27, Theorem 1].
3. For any the derivation described in Corollary 3.28 stabilizes the ring
and induces aC+-action (actually, a -action, see Lemma 2.2) onA3

C which leaves
the surface = Spec A3

C invariant. In case , however, does not induce
a derivation on . The simplest example of such a surface is with = 3 and

= 2, = 1. Here the element ( ) = 32 1 is not in but is integral over as its
square is equal to 9 .
4. The C+-action associated to the derivation in Corollary 3.28 is

(15) ( ) = ( + ( + )) C+

with fixed point set = 0 . Again, for thisC+-action extends toA3
C.

In the case + = ( )[0] = 0 a suitable cyclic covering of = Spec can be
described as in Corollary 3.28. This leads to the following alternative description of
arbitrary hyperbolic pairs ( ).
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Corollary 3.30. We let ( ) be a hyperbolic pair with invariants := ( 0),
:= ( 0), := deg 0.If = 0[ + ], where + = ( )[0] and (0) =
( ), then there exists a unitary polynomial C[ ] with (0) = 0 and div( ) =

. Moreover if = is the normalization of

(16) = C[ ] ( ) where ( ) := ( ) +

then the groupZ = acts on and also on via

(17) = = and =

so that = Z . Furthermore, 1 mod and, up to a constant factor, is the
restriction of the derivation to .

Proof. The inequality +(0)+ (0) 0 is equivalent to + 0. This implies
that there are unitary polynomials ( ) C[ ] and ( ) C[ ] such that div( ) =

and ( ) = ( ) + .
The isomorphism = Z was established in Example 4.13 and Proposition 4.14

of [17]. The derivation commutes with theZ -action (17), and so restricts to
a homogeneous locally nilpotent derivation of degree on , iff 1 mod
(see Theorem 3.22 (i)). Thus by Corollary 3.28 it is equal to up to a constant. The
rest of the proof can be left to the reader.

4. Applications

4.1. Preliminaries. Sometimes the surfaces = Spec as above admit two
C+-actions with different orbit maps; see e.g. Example 2.8. The following example is
also well known.

EXAMPLE 4.1. We let be the normalization of the ring1 = C[ + ] ( +

( )), where C[ ] is a unitary polynomial and the grading is given by deg = 0,
deg = 1. By Corollary 3.28, for every 1 there are homogeneous locally nil-
potent derivations of degree as well as of degree on . More explicitly these are
given (up to a constant factor) by

(18) + = + + ( ) 1
+ and = + ( ) 1

+
;

cf. (14). Note that ker( ) =C[ ], hence the correspondingC+-actions + and
preserve the affine rulings : C of = Spec , respectively. These rulings are
different provided that is a non-constant polynomial.

In view of (15) + is given by

( + ) = + + +
1

+ + + C+
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As ker( ) =C[ ] the conjugated locally nilpotent derivation

:= 1 Der

has kernel ker( ) =C[ ], where

:= ( ) = 1
+ ( + +) = +

deg

=1

( )( )
!

1
+

As C+ varies, the affine rulings : A1
C also vary in a continuous family.

DEFINITION 4.2. One says that twoC+-actions on an affine variety = Spec
are equivalent if their general orbits are the same, or in other words, if they define
the same affine ruling on .

If and Der are the associated locally nilpotent derivationsthen the
C+-actions are equivalent if and only if ker = ker , and if and only if =
for some elements ker (see [24, Lemma 2.1] or Proposition 1.1(b)). Conse-
quently, any two equivalent locally nilpotent derivationsand commute: [ ] = 0.

We recall [24, 36] that theMakar-Limanov invariantof an affine variety =
Spec is ML( ) = ML( ) = ker , where runs over the set of all locally nilpotent
derivations of .

Certainly, a surface has a trivial Makar-Limanov invariant ML( ) = C if and
only if admits two non-equivalentC+-actions, or two different affine rulings over
affine bases, or else two non-equivalent nonzero locally nilpotent derivations of .

A useful characterization of surfaces with a trivial Makar-Limanov invariant is the
following result due to Gizatullin [20, Theorems 2 and 3], Bertin [7, Theorem 1.8],
Bandman and Makar-Limanov [5] in the smooth case, and to Dubouloz [13] in the
normal case.

Theorem 4.3. For a normal affine surface non-isomorphic toC C and
C A1 , the following conditions are equivalent.
(i) The Makar-Limanov invariant of is trivial.
(ii) The automorphism groupAut 6 acts on with an open orbit such that the
complement is finite.
(iii) admits a compactification by azigzag that is, by a linear chain of
smooth rational curves.

Thus an affine ruling A1
C on a normal affine surface is unique (in other

words, any twoC+-actions on are equivalent) unless admits a smooth compact-

6Which is not necessarily an algebraic group, see Example 5.3 below.
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ification by a zigzag. In the latter case there are, indeed, atleast two different affine
rulings A1

C, hence also two non-equivalentC+-actions on .
Note that all surfaces as in Theorem 4.3 are rational and allow a constructive de-

scription, see [20, Proposition 3] or [13]. The automorphism group Aut of such a
surface is infinite dimensional and admits an amalgamated free product structure
[12].

4.2. C -surfaces with trivial Makar-Limanov invariant. Some interesting
classes of normal affine surfaces with a trivial Makar-Limanov invariant were dis-
cussed e.g., in [4, 5, 9, 10, 14, 15] and [28].If , for instance, such a surface is
smooth and its canonical bundle is trivial(e.g., if is a smooth complete inter-
section) then = SpecC[ ] ( ( )) for a polynomial C[ ] with simple
roots [5] (cf. Example 4.1). Here we concentrate on such surfaces which also admit a
C -action. From Theorems 3.3 and 3.16 we deduce:

Corollary 4.4. A normal affine surface with an elliptic or a parabolic
C -action has a trivial Makar-Limanov invariant if and only if = = A2

C Z

is an affine toric surface as inExample 2.8.

Actually as in the corollary admits a parabolicC -action, and so by Re-
mark 3.13.1 (i) it has aC+-action of fiber type and also aC+-action of horizontal type
(see Examples 2.8 and 3.14).

The following theorem together with Corollary 4.4 describes all normal affine
C -surfaces with a trivial Makar-Limanov invariant.

Theorem 4.5. We let = 0[ + ], where 0 = C[ ] and + are
Q-divisors onA1

C with + + 0. The following conditions are equivalent.
(i) The Makar-Limanov invariant of is trivial.
(ii) admits two homogeneous locally nilpotent derivations+ of positive and
negative degree, respectively, such that the orbits of the correspondingC+-actions are
generically different.
(iii) There are(not necessarily distinct) points + A1

C such that the fractional
part of is zero or is supported in , and + + = 0.

Proof. The implication (ii) (i) is evident. For the proof of the converse, as-
suming (i) there exist two non-equivalent locally nilpotent derivations on , which
means that they have different kernels. By Lemma 3.6 not bothof them can be lin-
ear combinations of derivations of positive degrees, and similarly not both of them can
have homogeneous components of only negative degree. Thus there are also homoge-
neous locally nilpotent derivations on of positive and of negative degree. To show
that the correspondingC+-actions are not equivalent, we let+ and be generators
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of the 0-modules + and , respectively, where+ := ( 0) and := ( 0).
By Lemma 3.6 ker =C[ 1] . Thus, if + and were equivalent then
would be units and so by Corollary 3.27 we would have= C[ +

1
+ ]. As the

latter ring does not admit two non-equivalentC+-actions, (ii) follows.
(iii) (ii). Assuming (iii) Corollary 3.23 shows that there are homogeneous

derivation + and of positive and negative degree, respectively. By our assumption

+ + = 0, hence =C and so, the elements+ and are not units (see [17,
Remark 4.5]). Thus with the same arguments as above the derivations + and are
not equivalent.

(ii) (iii). Conversely, if (ii) holds then by Corollary 3.23the first two condi-
tions in (iii) are satisfied. With the same arguments as abovecannot contain a non-
constant unit, hence again by [17, Remark 4.5] we have+ + = 0.

REMARK 4.6. For explicit equations ofC -surfaces with a trivial Makar-Limanov
invariant we refer the reader to Proposition 4.8 in [17], where for = [ ]
one must let := ( ) with := and := gcd(+ ).

We note that the two locally nilpotent derivations as in Theorem 4.5 (ii) do not
commute except in the case = A2

C. This is a consequence of the next result. Al-
though it follows immediately from Lemma 2.7 (a), we providea direct argument.

Corollary 4.7. If a normal affine variety = Spec of dimension admits an
effectiveC+-action, then = AC.

Proof. Let AC = C+ be an open orbit and consider the associated in-
clusion of C-algebras :=C[ 1 ]. The derivations := on
stabilize and the restrictions are the infinitesimal generators of the actions of
the factors ofC+ on . By Proposition 1.1 (b), for every 1 the intersection

:=
=

ker = C[ ]

has transcendence degree 1, hence =C. As acts on and decreases the degree
of polynomials in by 1, must contain a linear polynomial + and
hence also . It follows that = , as required.

For a normal affine surface = Spec with two different affine rulings

+ : A1
C, Miyanishi and Masuda [28] introduced a useful invariant (+ )

N, called the intertwining numberof + and , which is the intersection number
of two general fibers of + and , respectively. Actually (+ ) = trdeg(Frac :
C( + )).
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DEFINITION 4.8. Let us call theMiyanishi-Masuda invariantof the integer

MM( ) := min
( + )

( + )

where the minimum is taken over all possible choices of pairs( + ) as above. In
case that is endowed with an effectiveC -action, we also consider the homogeneous
version

MM ( ) := min
( + )

( + )

under the additional assumption that+ and as above are homogeneous.7

We let as before + := ( 0) and := ( 0). We recall [17, Lemma 3.5] that
( 0[ ]) is equal to the minimal integer 1 such that the divisor is integral.

Lemma 4.9. For a normal affineC -surface = Spec with a trivial Makar-
Limanov invariant the following hold.
(a) If = 0[ ] then MM ( ) = ( ).
(b) If = 0[ + ] then MM ( ) = + deg( + + ).
(c) If MM ( ) = 1 then = A2

C.

Proof. (a) In this case the grading on is parabolic, so is a toric surface
, where = ( ), and the twoC -equivariant affine rulings on are provided by

elements 0 = C[ ] and = 0 (see Corollary 4.4). Since the restriction of
onto a general fiber of has degree , the result follows.

(b) In this case the grading on is hyperbolic, and so the twoC -equivariant
affine rulings on are provided by elements with = 0 (see the
Proof of Theorem 4.5). By Proposition 4.8 in [17], is a cyclicbranch covering of

degree := gcd(+ ) of the normalization of the hypersurface +
+ ( ) = 0

in A3
C = SpecC[ + ], where := . Hence MM ( ) = deg ( ). By

Lemma 4.7 inloc. cit. we have

+ = 0 + + and = 0 div

where C[ ]. From (8) and (10) inloc. cit. we obtain

div = + div div + + div

where div = div . Therefore

(19) div = + div ( + ) = + ( + + )

7Clearly MM MM( ) , where presumably the equality holds.
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Now

MM ( ) = ( + ) = deg ( ) = 2
+ deg( + + ) = + deg( + + )

as stated.
(c) The equalities MM ( ) = deg ( ) = 1 imply that = 1 and deg ( ) = 1.

Now the assertion easily follows.

4.3. Families of C+-actions on a C -surface. We show in Corollary 4.11 be-
low that any C -surface with a trivial Makar-Limanov invariant admits a continuous
family of generically non-equivalent locally nilpotent derivations (cf. Proposition 2.4).
This is based on the following general observation.

Proposition 4.10. If a domain of finite type admits two non-commuting locally
nilpotent derivations Der , then also admits a continuous family of generi-
cally non-equivalent locally nilpotent derivations C Der .

Proof. Letting = exp( ), = exp( ) be the associatedC+-actions on , we
consider the following two families of conjugated locally nilpotent derivations on :

:= 1 and := 1

Suppose in contrary that none of these has the desired property that is, the derivations
in each family A1

C
and A1

C
are mutually equivalent. It follows that

(20) = ( ) 0 = ( ) and = ( ) A1
C

where ( ) ker , ( ) ker A1
C (see Definition 4.2 and Proposition 1.1 (b))

and (0) = (0) = 1. Moreover (ker )[ ], since is an everywhere defined ratio
of two proportional regular vector fields and0 on the affine scheme (Spec )A1

C.
Similarly, (ker )[ ]. In particular (( ( ) 1) ) = 0, so taking thelimit as 0
gives (0) ker and, similarly, (0) ker . From (20) we get:

= ( ) =
( )

id
=

( ) id
= ( )

id
+

( ) 1
id

Taking the limit as 0 we obtain

= + (0)

and, similarly,

= + (0)
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whence

[ ] = (0) = (0)

As observed above, (0) ker and (0) ker , thus and are equivalent and so
commute, contradicting our assumption.

Corollary 4.11. Any normal affine surface = Spec with a C -action and
a trivial Makar-Limanov invariant admits continuous families of C+-actions and of
generically distinct affine rulings A1

C.

4.4. Actions with a big orbit. As an application of our results we give below
a new proof for the classification due to Gizatullin [19] and Popov [31], mentioned in
the introduction. Let us recall it again.

Theorem 4.12. Let a normal affine surface admits an action of an algebraic
group with an open orbit such that is finite. If is smooth then is
isomorphic to one of the following5 surfaces:

(21) A2
C A1

C C C C (P1 P1) P2 ¯

where P1 P1 is the diagonal and¯ P2 is a smooth conic. If is singular
then is isomorphic to a Veronese cone1 for some 2 (seeExample 5.2).

REMARK 4.13. Popov [31] listed as well all affine surfaces with a big open orbit
without the assumption of normality.

Proof of Theorem 4.12. We note first that all surfaces listed in 4.12 admit an
action of an algebraic group with a big open orbit (see Examples 5.1 and 5.2). Con-
versely, suppose that admits an effective -action with a bigopen orbit. If is
solvable then by Lemma 2.9 (b) is isomorphic toA2

C, A1
C C or C 2. Otherwise

by Lemma 2.9 (c) contains a subgroup isomorphic toSL2 or PGL2. Now the con-
clusion follows from the next result.

Proposition 4.14. If SL2 acts nontrivially on a normal affine surface = Spec
then is isomorphic either to one of the surfacesP1 P1 , P2 ¯ or to a Veronese
cone 1. Moreover, any two suchSL2-actions on are conjugated inAut( ).

The proof is preceded by the following observations and by Lemma 4.17 below.

4.15. With the assumptions of 4.14, the kernel ofSL2 Aut( ) is either trivial
or equal to the center (SL2) = 2 , so one of the groups =SL2 or = PGL2

acts effectively on . We let = ( ) be the order of the center ( ) that is, = 2 if
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= SL2 and = 1 if =PGL2. The effectiveC -action on provided by the maxi-
mal torus of diagonal matricesT of defines a grading = Z = + 0 .
The Borel subgroups = (cf. Remark 2.3.2) act effectively on , and the in-
finitesimal generators of the unipotent subgroups = C+ of upper/lower triangular
matrices with 1 on the diagonal induce nonzero homogeneous locally nilpotent deriva-
tions Der of degree (see Lemma 2.2). We let Der be the infinitesimal
generator ofT so that ( ) = deg for homogeneous. If Der is a homo-
geneous derivation then [ ] = deg ; in particular

[ ] = and moreover [+ ] =

The adjoint action onT of the element = 0 1
1 0 of order 2 is given

by Ad : . Hence acts on homogeneously by reversing the grading,
i.e. ( ) = , and the action of Ad on the Lie algebrag = sl2 = C C + C

of is given by . In particular, theC -action on defined byT is hyper-
bolic.

DEFINITION 4.16. We say that two pairs (+ ) and (ˆ + ˆ ) of Q-divisors on
A1

C are equivalent if one can be obtained from the other by applying an affine trans-
formation A1

C A1
C and a shift 0 with an integral divisor 0.

Lemma 4.17. Let the assumptions be as inProposition 4.14.If = 0[ + ]
with 0 = C[ ] and + + 0 is a DPD representation for graded via the
T-action, then ( + ) is equivalent to one of the following pairs:
(1) (0 [1] [ 1]); here = 1 and = P1 P1 , see(23);
(2) ((1 2)[0] (1 2)[0] [1]); here = 1 and = P2 ¯, see(25);
(3) ( (1 )[0] (1 )[0]) with 1; here = 1 and = 2 1, see(26);
(4) ( ( )[0] (( 1) )[0]) with = 2 1 1; here = 2 and = 1,
see(27).

Proof. We start with the following

CLAIM . If the divisors are integral then, in a suitable coordinateon A1
C, one

of the following 3 cases occurs:
( ) = 2, + + = [0].
( ) = 1, + + = 2[0].
( ) = 1, + + = [1] [ 1].
In particular, ( + ) is equivalent to one of the integral pairs in (1)–(4).

To prove the claim, we note first that being integral= 0[0 + + ] is
the normalization of the ring 1 = C[ + ] ( + ( )), where C[ ] is a
unitary polynomial with div( ) = ( + + ) (see Corollary 3.28 and Example 4.1).
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After multiplying + with suitable constants we have

( ) = 0 ( ) = and ( ) = ( ) 1( ) +1

(cf. (18)). Hence

[ + ]( +) = + ( ) 1( ) +1
+ = ( ) 1( ) +

On the other hand, [+ ] = and ( +) = +, therefore

( ) 1( ) = 1

Thus either = 2 and deg = 1 or = 1 and deg = 2. Since+ + = div( ),
the claim follows.

For the rest of the proof we may assume that are not both integral. By The-
orem 4.5 (ii) (iii), the fractional parts are concentrated in points A1

C.
Clearly, yields an isomorphism0[ + ] = 0[ 0 ( ) 0 ( +)], where 0 : A1

C

A1
C is the affine transformation of Spec0 = A1

C induced by 0 := 0. By Theo-
rem 4.3 (b) in [17] there is an integral divisor0 with

(22) + = 0 ( ) + 0 = 0 ( +) 0 + + = 0 ( + + )

It follows that 0 ( ) = = 0 and so 0( ) = . With a suitable choice of
then either (i) + = = 0 is a fixed point of 0, or (ii) 0 : and = + =
0.

We claim that the case (ii) cannot occur. In fact, in this casewe have 0 = id, and
because of (22) and Theorem 3.22 we may suppose that

+( +) = ( +) = and ( ) = +( ) =

where 2, 0 and 1 mod . In particular, (+ + )( ) = ( )
0 and so theT = C -action on has a unique fixed point 1( ) over

(see Theorem 4.15 in [17]). If were singular points of , then they would be
fixed under the action of the connected group contradicting0( ) = + = . Thus

is smooth in and hence by [17, Theorem 4.15] + = 1, forcing = 1 and
= 0. The condition 1 mod then implies = 1. By Theorem 3.22 (ii) we also

have ( +( +) + ( +)) 1, which gives ( + ) 1. This is a contradiction.
Thus in fact (ii) is impossible and so+ = = 0. We can write + = ( )[0]

and = ( )[0]+ 0 on A1
C = Spec 0 with 2, where 0 is integral and + +

0. Let be a generator of over0. Due to Lemmas 1.8, 3.9 and
Remark 3.10 the fraction fields of and are equal, the normalization

of in this field is again graded, and extend to locally nilpotent derivations
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on . Thus admits again ansl2-action. Applying Proposition 4.12 in [17] =

0[ + ], where 0 = C[ ], = , and = ( ) with : . Since the
divisors are integral, their sum

+ + = ( + + ) = 2 [0] + ( 0)

is as in ( )–( ) above. In case ( ) or ( ) clearly0 = [0] with Z. In case ( )
we have 2 + = 1, and since 0 this implies = 1, so = 2 1 and
( + ) is as in (4). Similarly, in case ( ) we have 2 + = 2, = 1, so 1
mod implies = 1, = 0, thus 0 = 0 and we are in case (3).

In the remaining case ( ) we have = 1. Letting0 = [0] + 0 with 0(0) = 0,
we obtain that (2 + )[0] + ( 0) = [ ] [ ] with = . Therefore either

2 + = 0 and ( 0) = [ ] [ ] with = 0

or, up to interchanging and ,

= 0 2 + = 1 and ( 0) = [ ] = [0]

Actually this latter case cannot occur since 2 divides deg (0). Thus we must
have = 2, = 1, = 1 and = = 0. Letting e.g., = 1 we obtain that
( + ) is as in (2). This proves the lemma.

Proof of Proposition 4.14. Lemma 4.17 implies that a surfacewith an SL2-action
is isomorphic to one of the surfaces listed in the proposition. It remains to show
that this isomorphism can be chosen to be equivariant with respect to the given
SL2-actions. For this we restrict to the caseP2 ¯, the argument in the other cases
being similar.

Let = Spec be anSL2-surface as in Lemma 4.17 (2) and denote :=P2 ¯

with its standard action as in Example 5.1. Both and the affinecoordinate ring of
are equipped with the grading coming from the maximal torus in SL2, and by the

construction in Lemma 4.17 the isomorphism= is compatible with these grad-
ings. Let ( + ) be the triplet of derivations on as in 4.15, and let (+ )
denote the corresponding derivations on . Using Lemma 4.17 again = deg = 1;
as PGL2 acts on (cf. Example 5.1) we also have deg = 1.

Now Proposition 3.7 shows that the pairs ( +) and ( +) are isomorphic, so
there is a graded isomorphism : with ( ) = and (+) = +. Again
by Proposition 3.7 ( ) = for some constant C . As = [ + ] it follows
that = ( ) = ([ + ]) = [ + ] = . Hence = 1 and so ( ) = . By
Proposition 3.2 this means that the induced isomorphism= is equivariant with
respect to the Borel subgroups ofSL2 and so it isSL2-equivariant, as desired.



LOCALLY NILPOTENT DERIVATIONS ON C -SURFACES 967

REMARK 4.18. Proposition 4.14 shows in particular that anySL2-action on the
planeA2

C is conjugated in AutA2
C to the standard linear representation.

5. Concluding remarks: Examples

Here we illustrate our methods in concrete examples. According to Gizatullin’s
Theorem cited in 4.12, there are only 5 different homogeneous affine surfaces (21).
In the following example we consider more closely the last two of these surfaces
P1 P1 and P2 ¯ (cf. [31, Lemma 2]).

EXAMPLE 5.1. Let = C2 be a 2-dimensional vector space. The groupPGL2 =
PGL( ) then acts onP1 = P( ) as well as on the projectivized space of binary
quadricsP2 = P( 2 ). Since PGL2 acts doubly transitive onP1, the diagonal action
on P1 P1 has an open orbitP1 P1 , where is the diagonal. Similarly, the ac-
tion of PGL2 on P2 leaves the degenerate quadrics invariant thus providing anaction
on P2 ¯, where ¯ is the space of degenerate binary forms.

The symmetric product 2 , ( ) , induces a natural unram-
ified 2:1 covering

: P1 P1 P2 ¯

where the covering involution is the map interchanging the two factors ofP1 P1.
To make the situation more explicit, let us fix a basis0 1 of so that the

points of P( ) can be represented in coordinates [0 1] =̂ [ 0 0 + 1 1]. With re-
spect to the basis2

0, 2 0 1, 2
1 of 2 the points ofP2 = P( 2 ) have then coor-

dinates [ + ]. Clearly ¯ = ( 0 0 + 1 1)2 P( 2 ) : 0 1 has equation
:= 2

+ = 0. The map factors through

P1 P1 ˜ can
P2 ¯

where is the affine quadric = 1 A3
C = SpecC[ + ] and ˜ is the iso-

morphism given by

([ 0 1] [ 0 1])
1

0 1 1 0
(2 0 0 0 1+ 1 0 2 1 1)

This isomorphism identifies the factors interchanging involution of P1 P1 with the
map ( + ) ( + ). Thus P1 P1 = = Spec , where according to
Example 4.10 in [17]

(23) := C + +
2 + 1 = 0[ + ]

with 0 := C[ ], + = 0 and = [1] [ 1]. This isomorphism determines a
hyperbolic grading with deg = 0 and deg = 1.
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Next we turn to the surfaceP2 ¯, which is the spectrum of the invariant ring
:= Z2. As noted above the action ofZ2 on is given by ( + )

( + ). The algebra of invariants is generated by the degree 2 monomials in

:= := 2 and := 2

satisfying the relations

= ( 1) 1
+ + = 1 2

+ = ( 1)2 2
+

(observe that + = 2 1 = 1 in ). Thus =C[ ][ + +] can be
presented as

(24) = C[ ] ( 1)2 2
+ ( 1) 1

+ +
1 2

+ C( )[ +
1

+ ]

By virtue of (24) and Lemma 4.6 in [17],

(25) = 0[ + ] with + =
1

2
[0] =

1

2
[0] [1]

Indeed, according to this lemma

+ = min 0
1

2
[0] =

1

2
[0]

= min div ( 1)
div ( 1)2

2
=

1

2
[0] [1]

and so + + = [1].
With this example one can also make some of the previous results quite explicit.

For instance, ( +) = + + 0 with 0 := [0] and ( ) = [0] [1] [ 1] =

0 with : A1
C A1

C being the base change 2 = , which agrees with
Proposition 4.12 in [17] applied to the GaloisZ2-extension . Further, the frac-
tional parts of are supported at one point; compare with Theorem 4.5 above.

For every = ( + 0 ) with 2
0 = 4 + the hyperplane inP2 given by :=

0 + + + + = 0 intersects¯ in one point. It follows that the maps

: A1
C and := 2 : P2 ¯ A1

C

provide explicit families of affine rulings compatible with (cf. Proposition 4.10). By
[7, Proposition 1.11] any affine rulingP2 ¯ A1

C is given by a certain ; they can
be visualized via the Segre and Veronese embeddingsP1 P1 P3, P2 P5.

Finally it is easy to see (and left as an exercise to the reader) that the locally
nilpotent derivations defined by the unipotent subgroups PGL2 of up-
per/lower triangular matrices with 1 on the diagonal are of degree 1 and are given by
the formulas in Remark 3.18 (1) (compare also with the Proof of Lemma 4.14).
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EXAMPLE 5.2. Veronese cones. For 1 and = 1, 1 = 0 C[ ] is
the -th Veronese subring of the polynomial ringC[ ]. The standardSL2-action
on C[ ] stabilizes 1 and so, induces anSL2-action on the normal affine surface

1 := Spec 1. This SL2-action has a unique fixed point̄0 1 and is transitive
on 1 0̄ .

The algebra 1 is generated by the monomials (1)1 ( = 0 ),
and these define an embedding :1 A +1

C onto the affine cone over the degree
rational normal curve = Proj 1 in P . The morphism is equivariant with

respect to the standard irreducible representation ofSL2 on the spaceA +1
C of degree

binary forms. The groupSL2 (respectively,PGL2) acts effectively on 1 if is
odd (respectively, even). The stabilizer subgroup

:=
0 1 = 1 C+

of the binary form 1 is a cyclic extension of the maximal connected unipotent
subgroup = 1 of SL2. Clearly, 1 = SpecO(SL2 ), asSL2 = 1 0̄ and

1 is normal [31].
To represent the Veronese cones via the DPD construction, note first that the ac-

tion of the torusT = 0
0 1 C SL2 provides a grading on the ring

= C[ ] with deg = 1 deg = 1, and so induces a grading on the -th
Veronese subring 1 = ( ) = Z

( ). We consider separately the case where
is even or odd.

(1) For = 2 even, theT-action on ( ) factorizes through an action ofT Z2,
which corresponds to letting deg = 1 2 deg = 1 2. With := ( ) ( )

0 =
C[ ] and := (Frac 0) ( )

1 , we have

:= + = ( )

As ( ) = C[ ] by Lemma 4.6 in [17] ( ) = ( )
0 [ + ], where

(26) + = min
1

1
[0] =

1
[0] = min

1

1
[0] =

1
[0]

and so + + = (2 )[0].
(2) For = 2 1 odd, the torusT acts effectively on ( ). We let := ( )

( )
0 = C[ ], 1 := 1 ( )

1 and

2 1 := + 1 = +1 2 1
1

( )
2 1 + 1

As ( ) = C[ ] then by Lemma 4.6 in [17] ( ) = ( )
0 [ + ], where

+ = min
1

1

2 1
[0] =

1
[0] = min

+1 0

1

2 1
[0] = [0]
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and so, + + = (1 )[0]. We notice that

(27) ( + ) =
1

[0] [0] [0]
1

[0]

via the shift ( + ) ( + [0] + [0]).
Alternatively, the Veronese cone 1 can be obtained from the Hirzebruch surface
:= P (OP1 OP1( )) by deleting a section with 2 = and contracting the

exceptional section with 2 = [12, §11, Example 1]. This leads [12] to a de-
scription of the automorphism groups Aut(1).

In the next example we exhibit affine surfaces such that the automorphism
group Aut acts on with a big open orbit and there are algebraicgroup actions
on with an open orbit, whereas there is no such action with a big open orbit.

EXAMPLE 5.3. (Actions on surfaces with a big open orbit.) Let be two
Q-divisors on A1

C with + + 0 such that the supports of the fractional parts
are contained in (possibly the same) points . According to Theorem 4.5 the

ring := 0[ + ] with 0 := C[ ] admits locally nilpotent derivations of posi-
tive and negative degree. The associatedC+-actions + and on are not equivalent
provided that + + = 0 (see Definition 4.2).

Consider the subgroup := + Aut generated by and the
C -action on . The fixed points set of is finite as it is contained in the fixed
points set of theC -action on . Recall that has exactly one point over every
point A1

C with +( ) + ( ) 0 [17, Theorem 4.18 (b)]. We claim that acts
transitively on the complement . Indeed, the algebraic subgroup := of

acts on with an open orbit which contains 1(0). Hence for a general point
, the orbit contains 1

+ (0) 1(0) = (cf. Proposition 3.25).
Thus acts on with a big open orbit. However, such a surface does not

admit an action of analgebraic group with a big open orbit unless it is isomorphic to
one of the surfaces from Theorem 4.12. For instance, this is the case if has two or
more singular points (cf. [17, Theorem 4.15]), or is an affinetoric surface with

1.
A particular case is provided by the dihedral surfaces 1 = Spec 1, where

1 = C[ + ] ( + ) and 3. We have 1 = 0 0[ + ] with

+ = 0 and = [0] for a grading on 1 with deg = 0 deg = 1 (see
Corollary 3.28). The derivations

= + 1

with deg = 1 are locally nilpotent on 1. The associatedC+-actions + and
on 1 generate a subgroup of Aut 1. Using e.g., Remark 3.29.4 it is
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easily seen that acts with a big open orbit 1 0̄ , where0̄ 1 denotes
the unique singular point. The dihedral surfaces 1 with 3 are not isomorphic
to Veronese cones, since the exceptional set of the minimal resolution of 1 is a
chain of 1 rational ( 2)-curves, whereas it is just one rational curve for every
singular Veronese cone. Hence by Popov’s Theorem 4.12 thereis no algebraic group
action with a big open orbit on 1.

We continue with examples that illustrate Corollaries 3.28and 3.30.

EXAMPLE 5.4. Danielewski’s surfaces.These are the smooth surfaces

:= = 2 + A3
C ( 1)

Thus = Spec with ( ) := 2 + is one of the surfaces studied in Corol-
lary 3.28. So it admits aC -equivariantC+-action along the fibers of the affine ruling

: A1
C. Note that 1 = (P1 P1) has a continuous family of affine rulings

over A1
C (see Example 5.1), whereas for every 2, such a ruling on is unique

and ML( ) = C[ ]. The latter follows from Theorem 4.5 as = = 0[ + ]
with 0 = C[ ], + = 0 and = (1 )([0] + [ 1]), where the fractional part
of the Q-divisor is supported at two points (see Example 4.10 in [17]).

According to Corollaries 4.24 and 4.25 in [17] we have Pic( )= Z generated
e.g., by [¯0 ], whereas = 0.

We recall [11]8 that these surfaces provide examples of non-cancellation,that is
A1

C = A1
C N, whereas = if = .

EXAMPLE 5.5. Bertin’s surfaces. These are the smooth affine surfaces

(28) := = + A3
C;

they admit an algebraic group action with an open orbit [7]. Note that 1 = A2
C and

1 = 1 admit continuous families of affine rulings overA1
C. Thus we will sup-

pose in the sequel that 2. The defining equation of is quasihomogeneous
with weights

deg = deg = ( 1) deg = 1

To compute a DPD presentation of the coordinate ring =C[ ] ( ),
we note that 0 = C[ ] with := 1 1. Moreover the equations = and

= ( + 1) 1 ( 1) show that = 0[ 1 ( + 1) 1 ( 1)], and so by [17,
Lemma 4.6]

= 0[ + ] with + =
1

[0] and =
1

[0]
1

( 1)
[ 1]

8Cf. also [4, 16, 35].
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A homogeneous locally nilpotent derivation on of degree 1 can be given by

( ) = 0 ( ) = 1 ( ) =

According to Corollary 3.30 Bertin’s surfaces can be described as cyclic quotients of
for a suitable pair ( ). To find such a presentation one takes the normaliza-

tion of in the quotient field of [ ], where := 1 . The equation =
shows that := . Thus containsC[ ] ( ( 1) 1 ), and since
the latter ring is normal, these two rings are equal. The derivation extends to via
( ) = 0 and ( ) = 1 commuting with the homogeneousZ -action on

= 1 = and =

where is a primitive -th root of unity. This action on = Spec isfixed point
free and = Z i.e., = Z = Z , where := ( 1) and := + 1.

For every 2 the fractional part of theQ-divisor is supported at
two points. Hence according to Theorem 4.5, : A1

C gives a unique affine
ruling on over an affine base, and ML( ) =C[ ] (cf. [27]). The latter also
follows from [7, Theorem 1.8 and Example 4.11 (iii)] (cf. Theorem 4.3) due to the
fact that the dual graph of a minimal compactification of is not linear.

It can be readily seen that Pic( )= Z Z generated e.g., by [0], whereas
= 0 (see e.g., Corollaries 4.24 and 4.25 in [17]).

REMARK 5.6. Any affine surface = A2
C which admits an ellipticC -action

is singular. If is equipped with a parabolicC -action and a horizontalC+-action
then by Theorem 3.19 it has a quotient singularity. Thus being smooth the surfaces
P1 P1 , P2 ¯, and with 2 admit neither elliptic nor parabolic
C -actions.

Correction to our paper [17]. Due to an error in the printing process the letter
in Example 4.13 was printed as . Thus the first 4 lines of the second paragraph

of 4.13 have to be replaced by:
More concretely, if := ( ), := (0) and if we choose a unitary poly-

nomial C[ ] with = (div( ) ) then + + = (div( ( ) + ) ). By
Example 4.10 = is the normalization of

(12) = C[ ˜ ] ˜ ( ) where ( ) := ( ) +
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