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Abstract
Using heat kernel Gaussian estimates and related propengesstudy the in-
trinsic regularity of the sample paths of the Hunt proceso@ated to a strictly
local regular Dirichlet form. We describe how the resultscigize to Riemannian
Brownian motion and to sub-elliptic symmetric diffusions.

1. Introduction

The present work is concerned with regularity propertiegshef sample paths of
symmetric diffusion processes. We will work in the contextregular strictly local
Dirichlet forms and their associated Hunt processes underesadditional assump-
tions. Without such assumptions, one cannot hope to obtenrésults we will de-
scribe, see [5]. Our goal is to cover such cases as Brownidiomsoon Riemannian
manifolds and left-invariant symmetric sub-elliptic difions on Lie groups.

On R”, any translation invariant, symmetric, non-degeneraffusion processX
is, up to a change of coordinates, the classical Brownianamatvhose distribution at

time r > 0 has density
(N oof 1P
X il _ A
2t P 2t

with respect to Lebesgue measure, whérel|| denotes the Earliderm onR”.
Here we have been following the classical notation accgrdinwhich Brownian mo-
tion is driven by (¥ 2\ whereA ="} 32 is the Laplacian of the given Euclidean
structure. The reason for the prevalence of this choiceads tte covariance matrix of
X, equals the identity matrix. In the more general context ¢driest to us, this choice
is not very natural and we will instead consider that the c@®a Brownian motion
associated to a given Euclidean structure is drivenAby fitéelthis normalization,
the distribution at time > 0 has density

(N o x
X - - .
4t P 4t
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Our aim is to discuss generalizations of the following cedédd properties of the
Brownian sample paths:
(i) The Lévy-Khinchine law of the iterated logarithm asserts th&nost surely,

. X
lim supﬂ =1

t—0 \/W)

See, e.g., [30, 33, 40].
(i) Lévy’'s result on the modulus of continuity of Brownian patlssexts that, almost
surely,
i 1 X: — Xl _
im su =1
5_>00r<.v<t<l \/4(f — S) |Og(1/(l -5 ))
—S5<€

See, e.g., [30, 33, 40].

(i) If n >3, the theorem of Dvoretski and Eé$ [15] concerning the “rate of escape
of Brownian motion asserts that, for any continuous indrepgositive functiony ,
one has

converges
diverges.

|i5njgf w”(j;’\%_ - { :)-oo almost surely iff ; P @* )1_2{

The two dimensional version of this result was obtained bifz8p [44] and reads

lim inf =
M 50

[ Xl _ | +o0
diverges.

. 1
0 almost surely iff Xk: ( Iogm

)1 { converges
Here, we have followed our convention that Brownian motiendriven by A . If
instead we consider that Brownian motion is driven by (1 2)he ffactor 4 in
Lévy-Khinchine's law of the iterated logarithm and iré\y’s modulus of continuity
should be changed to a factor 2.

The techniques used in this paper are robust and apply witheaential changes
to some other settings. The papers [21, 26, 52] contain song time results that are
closely related in spirit to the short time results desdfitibelow. Similar techniques
have been used by several authors to prove analogs of the flaterated logarithm
and related results in various settings including fract8lee, e.g., [1, 2, 3]. Still, it is
important to realize that such results are not entirely ensial (compare with Takeda’s
inequality stated in 3.8 below) and that hypotheses of samease needed for a Hunt
process associated with a strictly local regular Diriclitetn to satisfy, say, the law of
iterated logarithm (see, e.qg., [9]).

We close this introduction with a short description of thextemt of the paper.

Section 2 contains background information concerningdblat spaces.

Section 3 describes the relations between several prepdhat play a crucial role
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in this paper. For instance, the doubling property (3.3) lef tolume function (and
some variants of it) play an important role throughout theepa

Section 4 contains upper bounds related to the law of itdradgarithm and the
modulus of continuity and a lower bound on the rate of escAfiehese are obtained
by assuming some type of upper bound on the heat kernel (atecelmean value
properties).

Section 5 contains lower bounds for the law of iterated litigar and the modu-
lus of continuity and an upper bound for the rate of escape. [dtver bounds for the
law of the iterated logarithm and the modulus of continuitg abtained by assuming
lower bound on the heat kernel (no heat kernel upper bourels)\eeded). The upper
bound on the rate of escape is obtained under a two sided bea¢lkound (equiva-
lently, the parabolic Harnack inequality (3.19)).

Section 6 describes explicitly how these results apply tambrer of basic exam-
ples including Brownian motion on Riemannian manifolds aythmetric sub-elliptic
diffusions.

2. Background and notation

2.1. Dirichlet spaces. One of the natural settings for the results of this paper
is that of regular, strictly local Dirichlet spaces. Thust M be a connected locally
compact separable metric space and et be a positive RadasuneeonM with
full support. For any open s& Cc M , I1€p(2) be the set of all continuous functions
with compact support i2 . Consider a regular Dirichlet fofimwith domainD c
L?(M, du) and coreC C D: a core is a subset dP N Co(M) which is dense irD for
the norm ( £|3 + E(f, £))Y/? and dense irCo(M) for the uniform norm. A Dirichlet
form is regular if it admits a core. See [17]. We also assuna &his strictly local:
for any u, v € D such that the supports of and are compact and is constant in
a neighborhood of the support af , we ha&é, v) = 0. See [17, p.6] where such
Dirichlet forms are called “strong local.” Any such Dirigil form £ can be written
in terms of an “energy measurd”  so th&fu,v) = [,,dT"(u,v) wheredrl {,v ) is
a signed Radon measure forv € D. Moreover,T" satisfies the Leibniz rule and the
chain rule. See [17, pp.115-1186].

It is a simple but remarkable fact that the data above sufficedntroduce
a pseudo-distancé oW  often called tinrinsic distanceand defined as follows.
Let £; be the set of all functions in the cor& such thatdT' , f )< du , i.e,
LC(f, f) is absolutely continuous with respect o  with Radon-Mim derivative
bounded by 1. Thug; is, in some sense, a set of compactly supported Lipschite-fun
tions with Lipschitz constant 1. For eaahy e M, defiher, X ) by

(2.1) dl,y)=Supf & = f ¢ ):f € La}.

Note thatd is always a lower semi-continuous function andsfes$ the triangle in-
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equality. Forx A~y , it might happen that x(y ) = 0 (e.g., on fragtais +oo (this
actually happens in some interesting cases (see e.g., y#jyé will not be concerned
with such cases in this paper. The idea of the intrinsic dista(or at least its useful-
ness) seems to have emerged in the eighties in connectibnBEalt. Davies' work on
Gaussian heat kernel bounds, see, e.g., [12, Theorem .33#ils concerning the in-
trinsic distance in the case of general regular strictlyaldgirichlet spaces are found
in [6, 7] and [46, 47, 51].

We now make a couple of crucial hypotheses about the Ditickace £, D,
L?(M, duw)), in terms of the intrinsic distancé . Throughout the pape assume that
the following properties are satisfied.

e The pseudo-distancd is finite everywhere and the topologyced byd is

equivalent to the initial topology oM . In particularx,(y +v» d x,(y $ ia continu-

ous function.

e (M,d) is a complete metric space.

These hypotheses imply thaM(d ) is a path metric space @.ean be defined in

terms of “shortest paths”). See e.g., [10, 24] and [46]. Pattric spaces are also
called length spaces or inner metric spaces. It also imptiasthe cut-off functions

MZYHSUFM(X’)’)—”’ q :@@’)’)—7’)

are inD N Co(M) and satisfydl” 4,u )< dup . This is a crucial fact, see [7, 47]. It al-
lows us to extend classical arguments from the Riemannitdimgeo the present more
general framework.

We will denote byB §,r ) ={y e M d £,y )< r} the ball of radius around
Given a ballB =B §,r ) we letr B ) = Dbe its radius and B( ) be its volume rel
ative to the measurg . Our basic assumptions dhd ) impliesthieaclosure of
the open ballB X,r ) is the closed baly d:x,(y 3 r} and that any closed isall
compact. See [10, 46, 47, 51].

2.2. The heat semigroup. Fix a Dirichlet space §, D, L>(M, du)) as above.
As is well-known, there is a self-adjoint semigroup of cantions of L(M, du),
call it (H,);~0, uniquely associated with this Dirichlet space. Moreovet,) (o is
(sub-)Markovian. Let—L be the infinitesimal generator &, (.¢)so thatH, =e'F
and&(f,g) =(f. Lg), f.g €D.

We assume throughout the paper that the transition funabiothe semigroup
(H,);-0 is absolutely continuous with respect to , that is, therestexa non-negative
measurable functiorns(x, y B> h t(x,y ), the heat diffusion kernel, suudt t

VxeM, t >0, H,f(x)Z/Mh(t,x,y)f(y)du(y).

In the present context it is useful to be a little more predsee the above formula
does not uniquely defing 7,(x, y ). In what follows, we assume that (— k(z, x, y)
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is the unique excessive densif (H,);-o. See [8, Chapter 6]. (The reader unfamiliar
with this notion can make the a priori restrictive assumptibats ¢, x, y) is continu-
ous.)

By [17, Lemma 4.2.4], the assumption that, X, y ) exists impliest t

o0
(2.2) Gi(x,y) = f e 'h(t, x,y)dt
0
is a 1l-excessive function (i.e., excessive with respechéosemigroupd ' H; ,).o).

2.3. The Hunt process. By the general theory presented in [17], there exists
a Hunt processXx = {; ;)o, P,) with continuous paths — X, «( ¥ M associated
to our fixed strictly local regular Dirichlet spacé,(D, L?(M, dw)). In particular, this
processX is such that

vfel,  EY(f(X:)=H f(x)

Since we assume in this paper that the transition functiothefsemigroup &; ;)0
is absolutely continuous with respect to  (i.e., the existenf the heat kernel), the
Hunt process &; ;)o, P.) is well defined for any starting point € M

As the basic goal of this paper is to study properties of thapta paths ofX , it
would of course be very natural to start from the Hunt proc¥skaving continuous
paths and associate to it the corresponding local Diricpetce as in [17, Chapter 4].

3. Local properties

This section introduces a number of well-known propertiashsas the doubling
property for volume growth and Poin&r Sobolev and Harnack inequalities. These
properties may or may not hold on a given Dirichlet spageT¥, L>(M, du)). They
will play an important role in the sequel. When they hold,stheroperties yield some
control of the local geometry and analysis #n . We will coasitlvo local versions
of these various properties. In the first version, we ask thatgiven property holds
uniformly for all balls contained in a fixed ballR (if B is a ball of radiusr and
A > 0, AB is the concentric ball of radiusr ). In this case we say thap@rty holds
around By. In the second version, we ask that the property holds uniforfor all
balls of radius less than a fixed. In this case we say that the property holgs to
scalerg.

3.1. The doubling property. We say that the doubling property holds around
a fixed ball By if there exists a constarfdg such that, for all ballsB C By,

(3.3) w(2B )< Do j.(B)

For later references, we note a few consequences of thieyop
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e If (3.3) holds then, for allk,y e M and &< s <r suchth#@ x,¢,B y,6 Q
By, we have

(3.4) w(B(x,r)) <D, <d(x, y) +r>v

w(B(y,s)) — s

for any v > log, Do. Actually, one can takeD; = DS.
e |If (3.3) holds and By # M then there exist8,y > 0 such that, for all balls
B C By,

n(B) 1"
(3.5) vVt e (Q 1) ((B) > B (;) .

See, e.g., [43, Lemma 5.2.8] or [20, Lemma 7.16].

We say that the doubling property holds uniformly up to segléf there exists a con-
stant Dy such that (3.3) holds for all ball8 of radius at mest In that case, (3.4)
holds uniformly over allx,y , O< s <r withd X,y )+ < ro, and (3.5) holds uni-
formly for all balls B of radius at mosty such that 8 /=M .

3.2. Poincaé inequality. We say that a (scale-invariant) Poingainequality
holds aroundBy if there exists a constan®, such that, for any balB c A&y,

(3.6) Vf e D, / f = fslPdp < Por? /2 RO

where f5 = B Y [, fdu andr =r B).
It is known (see, e.g., [31] or [43, Corollary 5.3.5]) that3Band (3.6) together
imply the stronger inequality

(3.7) VB C 2By, Vf €D, f |f — fsl?dp < Per/ dr(f, f).
B B

This inequality is equivalent to say that the lowest normezé&leumann eigenvalue
AN(B) in the ball B is bounded below by" B( 3 P{r?) L.

We say that the Poincarinequality holds uniformly up to scalg if there exists a
constantP, such that (3.6) holds for all ball® of radius at megt If the doubling
property and the Poincarinequality hold uniformly up to scaley, then (3.7) holds
for all balls B of radius at mostg.

3.3. Sobolev type inequalities. We say that the Dirichlet space&,(D,
L?(M, du)) satisfies a (scale-invariant) Sobolev inequality acbtime ball By if there
exists a constanfy and a realv > 2 such that, for any ballC Bg
(3.8)

vrepna®. ([ Ifl"du>2/q < SO ([ artr.+r@y [ 1w




SaMPLE PaTH of SuB-ELLIPTIC DIFFUSIONS 683

whereq =2/ ¢ — 2). The exact values gf amd will play no role in whaltoivs.
We say that a local Sobolev inequality holds up to saglé (3.8) holds true for
all balls B of radius at mostg.
A crucial observation that first appeared in [41] is that tlaiding property (3.3)
and the Poincé&r inequality (3.6) together imply the Sobolev inequality8]3

Theorem 3.1. Fix a ball B ¢ M. Assume tha{3.3) and (3.6) holds aroundB.
Then the Sobolev inequali{3.8) holds aroundB.

See [36, 43] for proofs that can be adapted to the presermgett

For completeness, we recall that (3.8) can be charactefizadrms of what is
called a Faber-Krahn inequality, i.e., an inequality fiettthe lowest Dirichlet eigen-
value on an open set to the volume of that open set. More phaciseA(U) denotes
the lowest Dirichlet eigenvalue in the open €ét . A (scalediiant) Faber-Krahn in-
equality holds around if there are positive constantg andv such that for any ball
B C 2By and any open se/ C B

(3.9) AU)= "—”(

72

Theorem 3.2. Given a ball By, the following two properties are equivalent.
1. The lowest Dirichlet eigenvalug(2By) is positive and the scale-invariant local
Sobolev inequality3.8) holds aroundBy.
2. The scale-invariant Faber-Krahn inequali(.9) holds aroundBy.
This equivalence holds with the same for both inequalities 3 2.

Next we recall the characterization of (3.8) in terms of hieatnel upper bounds.
Proofs that can be adapted to the present setting can be fouyd@]. See also [20].

Theorem 3.3. Fix a ball By C M.
1. Assume that the scale-invariant local Sobolev inequal@y8) holds around Bo.
Then the doubling property3.3) holds aroundBy and there exists a constadt  such
that for all x € M, ¢t > 0 with B(x, v/t) C 2By, we have

_c
1(B(x, V1))

Moreover for any § > 0 there exists a constar@s; such thér all x,y e M, t >0
with B(x, +/) C 2Bo and B(y, \/t) C 2By, we have

(3.10) h x, x)<

(3.11) hg x,y)<

Cs d(x, y)?
(B, 1) eX'C’<_4(1 +3)t> ‘

2. Assume that the doubling properg.3) holds aroundBy. Assume also that there
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exists a constanC  such thg3.10) holds for all x € M, t > 0 satisfying B(x, v/t) C
2By. Then the scale-invariant local Sobolev inequali8/8) holds aroundB.

These three theorems admit “up-to-scajéversions. See [20], [41, 43] and [49,
50].

3.4. Harnack and mean value inequalities. Fix an open sef2 . We say that a
function u belongs taDq o if for any relatively compact open set  with c €,
there exists a functiorf € D such thatu =f almost everywhere i

A solutionu of the equationd, 4.1 =0 or x Q (wheré C R is an open
interval andQ2 ¢ M is an open subset df ) is a measurable funatiohx Q@ — R
such that {,x }> du ,x X L2 x Q,dt ® du), x + u(f, x) € Dg.joc and

loc

(3.12) /Ma,u(t,.ww/Mdrw-M):o

for all ¢ € C N Cy(2). It is possible to deal with solutions in a weaker sense \beit
will not pursue this here. For instance, for ahy =0 1.2 , thecfioms ¢, x )—~
akn(t, x,y) and ¢,y )~ dfh ¢, x, y) are solutions of)( £ u) =0in (Oce ) M

A subsolutionis a measurable functiom I x € — R such that {,x )+
du(t, x) € LI x Q,dt ® du), x — u(t, x) € Dg joc and

loc

(3.13) fMa,ue,owu +/de¢,-)¢)so

for all non-negativep € C N Co(R2). For instance, for ang =,0,1,2.. , the functions
(t, x) — |3h(t, x, y)| are subsolutions of the equatiody ( Z+u ) =0 in (Got+x WM

Fix a ball By ¢ M. We say that the Dirichlet spacé&,(D, L?(M, du)) satisfies a
scale-invariant mean value inequality arour} if there exists a constar@ such that
for any realss,r withr > 0, for anx € M such th@&& Bx,¢ Q Bg and for
any non-negative subsolution of the equation (L# ) =00n s=(?2 s) x B,
we have

C s
(3.14) ul,x)< 2(B(x. 1) ffrz /B(X’r) u(t, y)du(y)dt.

We say that §, D, L?(M, dyu)) satisfies ascale-invariant mean value inequality up to
scalerg if (3.14) holds for all ballsB of radius at mosg.

The following known result relates (3.14) to heat kernel emppounds and to the
local Sobolev inequality (3.8).

Theorem 3.4. Fix a ball B c M.
1. Assume that the mean value inequali8/14) holds aroundBy. Then for allx €
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M andt > 0 such thatB(x, «/t) C 2By, we have

C
M) = B vy
Moreover for all x,y € M and ¢ > 0 such thatB(x, 1), B(y, +/t) C 2By, we have
C d(x, y)*  d(x,)
(3.15) hg x,y)< ex (— + )
5 VB ORBO. V) TN

2. Assume that the Sobolev inequal{®.8) holds aroundBy. Then the mean value
inequality (3.14) holds aroundB.

Proof. The first part of the first statement follows from apmly (3.14) to the
function u ¢, y) = h ¢, x, y) which is a solution in (c X M . The proof of (3.15)
follows from the proof of [43, Theorem 5.2.10]. For the praifthe second statement
based on the classical Moser iteration argument [37], see, [43, Theorem 5.2.9].

One can easily state a version of Theorem 3.4 for the caseewther various
properties are considered “up to scale See [41, 42, 43]. Ll

On occasion, we will also consider a weaker type of mean valaquality. We
say that the Dirichlet spacef (D, L?(M,du)) satisfies aC-mean value inequality
around By (resp. up to scaley) if there exists afunction B — C(B) defined on
the set of all metric balls such that for any reals with> 0, foya ¢ M
such thatB =B £,r )C Bg (resp. for all ballsB of radius at mosg), and for any
non-negative subsolution of the equatioh (L+ ) =000 s=<r% s) x B, we
have

B
r?u(B(x, ) /Hz fB(x.,) u(t, y)du(y)d.

To give an example, assume that the Sobolev-type inequality

(3.16) ul,x)<

2/q
(317) Vf €D NCol2Bo). ( /2 ) Iflqdu) < 5o ( /2 ar( )+ Iflzdu>

holds withg = 2/ ¢ — 2) for somev > 2. Then Moser's iteration can be used
prove for any reals,r with- > O, for any e M such thAt B=x,{ C) Bg and
for any non-negative subsolution of the equation (L &« ) =02n s=(2s)x B,
we have

C S
t,y)d dt.
o / / L))

That is, (3.17) implies & -mean value inequality wish— C B ( ¥s B £ B)(".

(3.18) ul,x)=<
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We say that the Dirichlet spaceS (D, L?(M,du)) satisfies ascale-invariant
parabolic Harnack inequality around, (resp.up to scalerg) if there exists a constant
C such that, for any reals,r with> 0, for anye M  such tiat B=,( C) Bp2
(resp. for all ballsB of radiug less or equal ), and for any non-negative solution
u of the equationd, 4 1 =0inQ =s(—r? s) x B, we have

(3.19) supu} < C infu}
o_ 0+

where
0.= (s 55) < B(v3).
o_ = (s—%{s—é)xB(x,%).

Moser’s iteration technique [37] adapted as in [41, 43] anéofem 3.1 give the fol-
lowing important result (see also [19] for a different prpof

Theorem 3.5. Fix a ball Bo ¢ M (resp.rg > 0).
1. Assume that(3.3) and (3.6) hold around By (resp up to scalerp). Then the
parabolic Harnack inequality(3.19) holds aroundBy (resp up to scalery).
2. There exists§ > 0 such that if(3.19) holds around By (resp up to scalerg)
then (3.3) and (3.6) holds around§By (resp up t scaledrg). One can take také =
1/8.

The parabolic Harnack inequality (3.19) is a powerful toiblyields good two-
sided heat kernel estimates as stated in the next Theoreey ésg., [43, Theo-
rem 5.4.11)).

Theorem 3.6. Fix a ball By ¢ M (resp ro > 0). Assume that the parabolic
Harnack inequality(3.19) holds aroundBy (resp up to scalerg). Then for allx, y, ¢

such thatB(x, /1), B(y, /t) C Bo (resp x,y € M, t € (0,r2)) we have

d(x, y)?

C1 C2 d(x’y)z
u(B(x,ﬁ»exp(_Cl M(B(x,ﬁ»exp<_” ‘ )

This theorem admits a converse (see, e.g., [27, Theoren). ABpther applications
of (3.19) is that it yields a certain regularity of the sotuts of @, +L ¢ = 0. This
is especially noteworthy in the present framework sincesghsolutions are not even
continuous, a priori. The following are well known resulEor divergence form oper-
ators inR", they are due to J. Moser [37] and the proofs go over to the pressting
without change.

)sh(t,x,y)s
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Theorem 3.7. Fix a ball By ¢ M. Assume that the Dirichlet spac&, D,
L?(M,du)) satisfies the scale-invariant parabolic Harnack inequal{8.19) around
Bo. Then there exist two positive reals and  such that for any R, any r > 0,
any ball B C 2By of radius r, and any solutionu of the equatiof®, + L)u = 0 in
Q0=(s—r?%s)xB,

(3.20) 6 x)—uy) SA[d(x,y) +r\/|r—t|}

supful}
o
for all (¢, x),(z,y) € (s —3r?/4,s —r?/4) x (1/2)B.

3.5. Takeda’s inequality. We will make use of the following inequality due to
Takeda [52]. The precise form of this inequality stated wels taken from [35]. For
any setA c M and- > O, set

d(x, A) =inf{d(x, y): y € A}, A, ={ye M:d(y, A) <r}.

Theorem 3.8([35, 52]). Let K be a compact sefThen

[o7 (gt xa- )< 2582 (F oo ).

The remarkable feature of this inequality is that it holdsheut any further assump-
tion on €, D, L?(M,dw)). In [52], Takeda gives some applications to the long time
behavior of the sample paths of the associated diffusion. &&o [21]. However, the
averaging overK makes this inequality inappropriate foditug the short time be-
havior of sample paths. To become efficient in this conterke@ia’s inequality must
be complemented with some local mean value inequality remuifurther local as-
sumptions.

Theorem 3.9. Fix a ball By ¢ M and assume that th€ -mean value inequality
(3.16) holds aroundBy. Then there exists a constadt  such thir any x € M,
€,r > 0 with B = B(x, €¢) C By, we have

- W(B(x,e+r) (Vi r?
(321) b (é(lcj).?)d(x’ )= r) = ACE) n(B(x, €)) ( r )exp( 4t) '

In particular, if the Sobolev inequality3.8) holds aroundBg then for any § > 0 there
exists a constan€s; such that for anye M and- > 0 such that0 < ¢t < r2 and
B = B(x,r) C Bg, we have

r2
3.22 P, | sup d(x, X; <Csexp| ———-
(3:22) (.ve(O,?) (v, X:) > r) ’ p< 4(1 +8)t)
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Proof. The first inequality follows immediately from Theore3.8 and (3.16) be-
cause

u(t,x) =P, ( sup d(x, X;) > r)
se(0,1)
is a non-negative subsolution o, ( I+u) =0.
Setting e = 4/t, the second inequality follows from the first by Theorems 3.3
and 3.4. Indeed, note that the doubling property (3.3) iegpthat there exisD; and
v > 0 such that

H(B(x, AT+ 1) < : )
v Y < 1+ —
we vy — o\

since B , +/t +r) C 2Bg.
We leave to the reader the easy task to state the “up to sgakersion of The-
orem 3.9. The “up to scaley” version will be used in Section 4.2. Ol

3.6. Visiting probabilities. Consider the procesk® = (X1) associated with the
semigroup €' H, ).o. This process takes values M U {oo}  whexe is an isolated
point added toM . We set x(co ) =oe for anye M . The proceéss= (X1) can
be obtained fromX in the following way. Let be a real randomialale, indepen-
dent of the procesX and wifA(§ > r) =e~'. Then

X it <&
oo if t>E&.

Xl

1

Thus X! is X, killed at the exponential tim& . In what follows, we will e& good
estimates on the probability (¢, x) that, starting atc X! visits the compact sek c
M after timer . We have

Vi(t, x) = P (there existss > ¢+ such that! e K)
= P, (there existss > ¢t such that; e K s;<& .)

Of course, one can also considék ¢, )Pr(there existss >t such that, € K).
However,yx = 1 if the procesX is recurrent akd  has non-emptyiontes.g., for
Brownian motion on compact Riemannian manifolds wkh B=,{ r).such cases,
Yk contains no information whereag; does.

Let us also set

¥ (x) = P,(there existss > 0 such that?! e K).

It is well known thaty: is a 1l-excessive function (i.e., excessive relative Xt
which is 1-harmonic outsidek . Hence, there exists a posiReglon measurey
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(the equilibrium measure) supported &y  such that
(3.23) VA= [ G ) due()
M

where G1(x, y) is the Green function defined at (2.2). The 1-capacity ofvargcom-
pact setK is defined by setting

Capl(K):inf{/Mdr(f, A+1fPdu:dpeDNC, dlx > 1}.
The 1-capacity ofK is related to the equilibrium measuge by
(3.24) Cap(K) = vk (K).
For all of this, see [8].

We will need the following estimate which is in the spirit &1, 23] and involves
the notion introduced above.

Theorem 3.10. For any compactk, and anyx € M, ¢t > 0, we have

Vi (t, x) < Cap(K) /‘00 Suph §,x,yp *ds.

t yeEK

Proof. By the Markov property,
VAR = IR = [ e WE0)du)
M
Using (3.23), (2.2) and the semigroup property, we obtain
Vi = [ [ et )6t dve@ dn)
MJIM
= [ [ [ e thr e s, v, 20 ds dviete) duty)
MJIMJO
) / / ¢ h(t +s,x, z) ds dvg (z)
M JO

:/M/Iwe_sh(s,x,z)deVK(Z)o

Together with (3.24) and the fact thak is supportedkin , thieg the desired
result. ]

4. Using the mean value inequality

This section explores what can be said about sample pathtgtan a ball By
around which a certai© -mean value inequality (3.14) holds.
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4.1. lIterated logarithm upper-bound.

Proposition 4.1. Fix a ball By ¢ M. Assume that aC -mean value inequality
(3.16) holds aroundBy with a function B — C(B) such that for any n > 0, there
exists a constanC, such that

(4.25) CB)<C, (1 + Iog( 1 +T;))>n.

Assume further that for any > 0 there exist constanD,, N, such thdbr any ball
B C 2By with radius r, we have

wB) _ o, L))
(4.26) vee @D TS <D <1+'°g<1+@>> ‘

Then for all x € By,

lim sup dx. X,)

I e S — 5 1’
1—0 +/4tloglog(Yt)

Proof. Letn > O to be fixed later. Let € By and 0 < ¢ < r? be such that
B(x, 2r) C 2By. Use the hypotheses witR B x,(vf +r), € = /t/(/t +r), together
with (3.21) to obtain

P, -almost surely

P, ( sup d(x, X;) > r>

s€(0,r)

e ) () oon(s2) ol )

for some constanC n( ). In particular, for ary > 0, there existsoastantC 4,4 )
such that

1 2n r2
(4.27) P, (Sg(lé’;:r))d(x, X;) > r) <C(n,9) (1 + |09(1 "‘;)) eXp(—m) .

Fix o € (0, 1) and consider the events

A = { sup d(x, X;) > (1 +8)/40' log Iogoi} .

te[0,01]
By (4.27), we have

P.(A;) < C'(n, 8)(1 +i)* exp(= (1 +8 )loglogr— )< C” §, 8 )(1 + 12,
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Given anys > 0, pickny € (08/ 2). Then the serigs IP,(A;) converges and the
Borel-Cantelli lemma shows that, almost surely, forsall gkarenough,

up d(x, X;) < (L +68)/40" loglogo —".
1

S
te[0,0"

It follows that, P, almost surely, for alk small enough,
[t o
d(x, X,) < (1+6),/4—log Iog;.

o

. d(xv Xf)
limsup—————=——
1—»0 /4t loglog(/t)

Since this holds for alb € (0 1) andl> 0, the conclusion of Propamsi4.1 follows.
U]

Hence, almost surely,

<@L +8p Y2

4.2. Lévy's modulus of continuity. There is an obvious difference in nature
between the law of iterated logarithm anéJy’s result on the modulus of continuity
of Brownian paths. The former is a purely local statement r@ag the latter is not.
Indeed, in lévy’'s modulus of continuity result, one has to let the Brawnpath run
up to time 1. It should be clear that there is no hope to contreluniform modulus
of continuity of sample paths without some uniform local bgesis on the geometry
of our Dirichlet space. Thus, in contrast with what was domehe previous section
where we worked under hypotheses localized around a fixeld Raalwe will work
here under uniform hypotheses “up to a fixed soglé

Proposition 4.2. Fix ro > 0. Assume that the mean value inequaliBy16) holds
in M up to scalery with a function B — C(B) such that for any n > 0, there exists
a constantC, for which

(4.28) c®)=<C, <1+T;))ﬂ.

Assume further that for any > 0 there exist constanD,, N, such thdbr any ball
B c M with radiusr € (0, ro),

u(B) —N, 1\"
A 0,1 <D i+ .
€ e( ’ )’ /J,(EB) —_ 7]6 r

Then for any x € M, we have

d(X,, X
lim sup (X, X1)

<1, P, almost surely
€=>005<r<1 \/4(f — S) |0g(1/(l — S ))
1—s<e€
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Proof. Letn > O to be fixed later. For anye M  and<0¢,r < ro/2, use the
hypotheses withB B x(, /7 +1), € =/t/(«/t +r), together with (3.21) to obtain

Ny 1 2y 2
(g sa-r)seafoe 5" (2) oo (-2

for some constanC n( ). In particular, for ady > 0, there existsoastantC 4,3 )
such that

1 2n I‘2
(4.29) P, (é(lég)d(y, X5) > r) < C(n,9) (1 + ;) exp<—74(l +8)t) :

Fix x € M and set
h(s) =4s |Og%.
Let alsos € (Q 1) be fixed and set
K,={(,j)eN*:0<i<j<2, j—i=<2").

It is clear that &, < £% and for (,j)e K,, we have (—i )2 < 209,
Consider the events

A, =1 sup d(Xion, ).(jkt’) > 1
(. f)eks VKL +8)(( —i)2™)

wherek > 0 will be chosen later. Far large enough and ialf (€ K, , weeha
. e ro . ro
G=02"<Z.  kL+(G-)2")< 7.

and

d(X,'z—n, ij—u)
P.(A,) < P, >1
s 2 ()

2n
2n 2
<Ccmé) Y (1+/— eXp<—k log— )
(irj)ekn ]t )

< 2C(n, )21 21 exp(—k log 2+~)
=2C (n’ 3)2—!1(k(1—6)—1—8—n)‘

Note that, in order to obtain the second inequality above,haee used the Markov
property and the fact that (4.29) holds uniformly for ale M .Wawve choosek to
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be given by
(4.30) k(1—8)=1+3 .
For this choice oft , we get
P.(A,) < 2C(n, 8)27°".

Hence Y P,(A4,) < oo and the Borel-Camtelli lemma implies that, @ almost
surely allw € Q, there exists an integer » ( ) such that forralb m o () dod
all (i, j) € Kn,

(4.31) d Kizn, Xj20) < V(L +8h(( —i)2").

Fix w €  such that (4.31) holds. Fix8s <t < 1with8r—s < —§9ne
and letn > m ) be such that 290+ < s _ g < 2-0-9 et be the smallest
integer such that <i 2 ang be the largest integer such that <2¢ n Wee
havei < j provided that 21-9)¢+1) > 2-7*2_ Thjs is certainly satisfied ifi is greater
than 31, which we can assume without loss of generality. Under toisdition, we
have

O<j—i<2(t—s)< 2"
and thus, i, j K, . It follows that (4.31) applies. In particular,
(432) d (X,‘27H, ijn) < k(l +8)h (t — S).

Write

l-2711 _ Tlll _ 271,{2 — e,
j2—11 +2—v1+2—v2+_”

N

t

where {; ) ¢; ) are increasing sequences of integers greatarrth®bserve that, for
each! , the pairs

(i2_” — M. 2_“I+1’ [ A, o N 2—u,)’
(j2" + 274427V 2 +2—v1+._.+2—v,+1)

are in K, . Using (4.31) and the fact that> X, o ( ) is continuous, weaiobt

d(Xs, Xip=) < Z\/k(l +8)h(271) < Vk(1 +5)h(zn)z 2—a/2 (1 + O‘>1/2

I>n a>1

278n
<4/ 1 3‘/k(1 +§)h (2-1-9)n+D))

n
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278/1
+ _
<A 1_(S\/k(l Sh( —s)

for all n > max 3, m(w)} and with A =)",_,27*/%(2 +«)"2 The same argument
yields the same upper bound farX -, X,). Thus, for 0< ¢t —s < 209 we
have

dXs, X) < [1+24 )\/k(1+6)h(z—s)

It follows that

( LRl Xf)
lim su <Vk(d+3$
E%00<s<tp<l A/ ( - ( )

I—s<e€

Using the definition oft at (4.30) and the fact thaty € , (0 1) areiteaty, we see
that we can now lep,§ tend to O to obtain

d(X,, X
lim sup ( )

€>005<1<1 4/ h(t - S) o

1—s<e€

as desired. |

4.3. Local rate of escape. The aim of this section is to prove Proposition 4.4
which complements [21, Theorem 5.1]. The proof is adaptedhffl5, 21, 26]. First
we relate the hypothesis of this theorem to the notion of medue inequality.

Lemma 4.3. Fix a ball By = B(xg, ro). Assume that the doubling proper(g.3)
and the mean value inequali{.14) hold around By. Then there exists a constaay
such that for all x, y € Bp and all ¢ € (0, c0), we have

)

Proof. Fort € (0r2), see (3.15) and (3.4). Far> rZ, use [13, Lemma 1] and
the result fort < rZ. O

h(t,x,y) <

Proposition 4.4. Fix a xo € M and setB(r) = B(xo, r), V(r) = u(B(r)). Assume
that there existsg > 0 such that
1. The doubling property holds at; up to scalery, that is there exists a constant
Dg such that

(4.33) VO<r < ro, V(2r) < DoV (r).
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2. There exists a constanf, such that for all y € B(rg) and all t € (0, c0), the
heat kernel is bounded by

Co

)

(434) he.xo.3) <

For r € (0, rp), set

(%0 sds
m(r) —/r m

and assume that:(r) tends toco as tends t0. Let ¢(t) be an increasing positive
function on(0, r2) such that

g 1

Then P,,-almost surely

jiminf 400 X0
0 (1)
Remark. The functionm is decreasing and satisfies s (2 }m s () (see (4.42)
below). It follows that changingg té¢ where is a positive camsthas no effect
on the result of the integral test (4.35). Hence, to provep®siion 4.4, it suffices to

show that (4.35) implies

>1  P,-almost surely

ExavpLe. Referring to the setting of Proposition 4.4, assume that ~(r} asr
tends to 0, withn > 2. Them: r( 4 r~"*2. The integral test (4.35) becomes

2 ¢(s)n72

2 ds < oo.

0

In particular, the functionp () =/7[log(1/¢)]"" satisfies (4.35) if and only ify >
1/(n — 2).

Proof of Proposition 4.4. Set
A, ={d(xo0, X;) < ¢(t,) for somet € f,+1, 1,]}

where ¢, ) is a decreasing sequence tending to 0 to be chosem @ur aim is to
show that, assuming thgt satisfies the integral test (4(39)can be chosen so that



696 A. BENDIKOV AND L. SALOFF-COSTE

> Py(A,) < oo. If this is the case, then the Borel-Cantelli lemma shotest,tP,, -
almost surely,

fiminf 460 X0) >1
t—0 d)(l‘)

as desired.
Consider the procesk® = (X1) introduced in Section 3.6. By definitioX?! is X,
killed at an independent exponential tirge . For any positive s’ andr , we have

P, (d(xo, X;) < r for somer € f,s'])
=P, (d(xo, X;) < r for somer € §,s"];t > &)
+ Py, (d(x0, X;) < r for somer € f,s' 1;t <§)
<P (s = &) + P, (d(x0, X}) < r for some > s )
(4.36) =1—e " +P(d(x0, X}) < r for some > s )

Since 1- ¢ ~ s’ at 0, (4.36) shows that the ser}esP,,(A,) converges if and only
if the series} "1, and_P,,(B.) converge, where

B, = {d(x0, X}) < ¢(t,) for somet > t,41} .
Thus it suffices to show that we can choose ( ) so that the twiesser

Yt Y Py(B)

converge.
Next, in the notation of Section 3.6, we have

Py (Bn) = 1//113(¢(,”))(fn+1, X0).

Hence Theorem 3.10 gives

(4.37) ]P)XD(B”) = Capl(B(¢(til))) sup A(s, xo, y)e *ds.
In+1 yEB(¢(frz))

We need to estimate

Cap'(B(r)) and /00 suph(s, xo, y)e * ds.

yeB(r)

We start with the second term. For any< r2 andr < ro, the hypothesis gives

o0 s ds r2
4.38 / sup a(s, xg, y)e *ds < C / + 0 < Cim(V/t
( ) ; yeB(;P) (s, x0, ¥) o( V() V(ro)> 1m(v/1)
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with C1 = 2Co(1 + D0/3)
For Cap(B(r)) we use the very general estimate from [48, Theorem 2} gt
to the case of Cap which gives, for allr’ € £, ro),

, -1
(4.39) Cap(B(r)) < 2 ( / %) V0.

Following [21, p.85], write
/r, (s —r)ds - 1/” sds _z/r’/z sds
F V)=V T2k Vi) TS V(29)
2 /’//2 sds
> -
~ Do J, V(S)

(4.40) = Dio (m(r) —m (%)) :

Next, by the doubling property (4.33), fare ,(&/4), we have

m(s)—m(Zs):/zy Tdrt _1/45 tdrt

V(r) 4)y V(z/2)
<& » rdr Dofrordr
T4 Jo V() T 2 V(1)
(4.41) < @m(Zf)-
4
Hence
(4.42) m(2)>em§)

wheree = (1 +Dg/4)~1. This implies that if we defing 5 () by p( 2) &m r( ),
we have

o > 4r.

Usingr’ =p =p ) in (4.39) and (4.40), we obtain

Cap(B()) < o+ V(o).

By the definition ofm , we have

o 7 dt 2r§

"= Ve S vy
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Thus
27‘0D0 ZGFgDO
m(p/2)  m(r)

Vip) < DoV (5) =
and

Cap(B(r) < 2

m(r)
with C; = (267‘5 +(1- 6)71)Do <5Dg+ 87'3
Using this and (4.38) in (4.37) gives
m(\/ tn+1)
(4.43) P, (B,) < CiC .
S m(d ()

Consider the decreasing sequenge ( ) definedybyro/4 and
D
(/1) = (/i) = 2 m(/).
By (4.41), we must have
(4.44) o1 <+

Moreover,

m(V1a) — m(Vtu-1) = —m(«/T) («/—) (V).

(4+D )2

Thus, we have

G 1 !
/0 @OV Z/ @OV "
1 o1
=2 o ), v

—_— 1 —
"2 gy (MW )

- m(\/ tn+l)
= @+ Doy Z m@(t)”

It follows that the hypothesis (4.35) implies

m(\/ tn+1)
2ty =%
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Together with (4.43) and (4.44), this shows that the series

Zt”’ Z]P)xg(Bn)

converge, as desired. U

5. Two-sided Gaussian bounds and some consequences

5.1. lterated logarithm lower bound. This section shows that, under some
suitable assumptions,

lim sup d(x, X1)

— >
-0 /4t loglog(Yr)

Proposition 5.1. Fix a ball By and assume that the doubling inequality holds
around By. Assume further that the heat kernel satisfies the followawvgelr bound for
somekx > 0. For any € € (0, 1), there existscc > 0 such that for allz > 0 and all
x,y € M such thatB(x, /1), B(y, v/t) C 2Bg,

P,almost surely

h(t,x,y) >

c. (L+e)d(x, yP
(B V1) exp(_ t )

Then for any starting pointx € (1/4)Bo, P.-almost surely

lim sup d(x, X/)

_— > 1
—»0 +/ktloglog(l/t)

Together with Proposition 4.1, this gives the followingtstaent.

Corollary 5.2. Assume that the parabolic Harnack inequal{8:19) holds around
the ball By. Then there exists a constant> 0 such that for allx € (1/4)Bo,

. d(x, X
¢ <lIim supL <1 P, almost surely
1—»0 /4t loglog(Yt)
In some cases we are able to prove that = 1 but, in general,sd@ms to be a

difficult problem. See Section 6.

The proof of Proposition 5.1 given below differs slightlyoifn classical arguments
and has the advantage to be independent of any correspongdpey bound. We need
the following simple lemma.

Lemma 5.3. Under the hypotheses &¢froposition 5.1for any ¢ € (0, 1), there
exists a constant. > 0 such that for anyx,z,r with0 < r < r2 and B(x,r) C
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(1/4)By, we have
P.(d(x, X;) > 1) > c. exp(— (1 +e )I:—j) .

Proof. FixB{,r)C (1 4Bo ande € (Q 1). Lett be a point such thdtx,E )=
(1 +€/2)y . Observe that for any € By = B(£,er/2) we haved £,y )< (L4 5 .
Moreover the ballB {,r ) is contained inBd so that we can apply the heat kernel
lower bound at# x,y ) withr € (0r?), y € By. This gives

BL(d(x, X,) = ) = W, x. y)dy = / W, x. y)dy

d(x,y)>r 5

1(B(§, €r/2)) r?
=it (-0 *75)

2
>l exp(— 1 +e )’3—) .
Kt
The desired conclusion follows. O
Fix n € (0, 1). Forr > 0, set;, =./ktloglog(l/t) and
Ay ={d(x, X;) = 1}, Af:{d(x,X,)<r,}.
We let F; be theo -algebra generated bY¥, =<0 <t}

Lemma 5.4. Under the hypotheses &froposition 5.1for any € € (0, 1) there
existsc, > 0 such that

—(L+e?
14 EY (14,1 F) = ce (Iog ;) 1y
forall r > s >0 andz, s/t small enough.

Proof. Using the Markov property, the triangle inequalitydabemma 5.3, we
obtain

1A5EX(1A,|‘7:3) = 1A§:HDXS(d(xa X)) =)
> 1A§IPXY(d(XO, ths) >t rs)

z( inf Pz(d(z,x,_x)zrms)) 1.

zid(x,z)<ry

> (c; exp(— (1 +e M)) 1.

k(t —s)
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The desired result follows because oz ( )ras ayid tend to O. ]

Proof of Proposition 5.1. Set, &"'°9" and

1
A, = A, = {d(X,Xt,,) >}, r; =n,/Kktlog lOQ;

with n € (0, 1). We have

Pi([4, i0]) = lm P, (ﬂ A;) .

k>m

Thus it suffices to show thak, (., Af) = 0. For anyn > m , we have

<ﬂ AC) ]E/\ 10” +1 A% 1A IEX (1A |Em+l)]
=B [Ty, a0 (3= 1ag BN (L, 1 F50)) ] -

Applying Lemma 5.4 withe chosen so that (k+?2)= 1, we obtain

(ﬂ AC) = <k—D+1Ai> (1_ mlggm>‘

k=m

By induction, it follows that

n n c .,
P Ac) < < o= 2mcl/k |ng).
X(g ") _1;[< klogk) €

As the seriesy . ALK log ) diverges, this proves tiaf,., A7) =0. Asn e (Q 1)
is arbitrary, this finishes the proof of Proposition 5.1. Ul

5.2. Lower bound for the Levy modulus of continuity. This section shows
that, under some suitable assumptions,

lim sup d(X;, Xi)
E%00<s<1<1 \/(l‘ — S') |Og(1/ (t — Y))

We start with the following result.

Proposition 5.5. Fix ro > 0 and assume that the doubling inequality holds up to
scale ro. Assume further that the heat kernel satisfies the followowet bound for
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somex > 0. For any € € (0, 1), there existsc. > 0 such that for allf € (0, r2) and
all x,yeM,

h(t, x,y) > _M).

o Ce exp<
1(B(x, V1)) Kt

Then for any starting pointx € M, P,-almost surely

d(X,, X
lim sup ( 1) >1

€=00s<r<1 Vet =s)log(L/ ¢ —s)) ~

Before giving a proof of this proposition, we state the fallog theorem which is an
immediate corollary of Theorems 3.5, 3.6 and Propositioi2s 8.5.

Corollary 5.6. Assume that the parabolic Harnack inequal{8.19) holds up to
scalerg. Then there exists a constant> 0 such that

. d(XA'v XI)
c<Ilim sup <1
<>00<s<r<1 VA —s)log(l/ ¢ — s))

Note that, in general, it seems difficult to show that one et = 1 in the above
statement. However, for many special cases discussed hel@ection 6, it is indeed
possible to show that =1.

Proof of Proposition 5.5. The proof follows very classicialek. Fixk < n and
consider

Ak = : sup d(Xjon, X(j+1y2n) < h(2_”)}
O<j<2*

whereh §) =./nktlog(l/t) with n € (O 1) to be chosen later (do not confuse this
real functions with the heat kerndl 7,(x, y )). Hewe is the constgmpearing in
Proposition 5.5. We claim that

k
(5.1) P.(A}) < (supPz(A,?) :

zeM
Indeed, by the Markov property, we haWg(A%) = E,(1,1Pyx, ,(AJ). The claim
follows by induction.

Next, lete € (Q 1) andz € M be arbitrary. Pick a poiat such that, &( ) =
(A +e)r(27"). Then write

P.(AD) = 1—P.(d(z, X2) > h(2 ")) = 1— / h(2™", z, y)du(y)
d(z,y)>h(2™")
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<1- / @ 2, y)du(y)
d(E.y)<eh(2™)
_ccu(B(§, €n(27))
n(B(z, 27/2))

For the last inequality we have used the heat kernel lowenth@ssumed in Proposi-
tion 5.5 and the factthaf z(y ¥ (1€21) (2 )ife B&(eh (2 )). By the assumed
doubling property and (3.4), we have

W(B(. €h(2")) _
w(B(z,27/2)) —

Hence, if we pickn = = (¢ ) (1+3? we have

exp(— (1 +2 ¥nlog 2").

Dy H(e®ni)"?(log 2"y /2.

(5.2) P.(A9) <1—c 27"
for n > n., n. large enough. Together with (5.1), (5.2) gives
]P)x(AZ) < (1 _ Cé Tn(lfe))zl < eXp(_C; Zn) )

Hence the seried, P,(A])) converges. By the Borel-Cantelli lemma, it follows that
for anye € (Q 1),

. d(Xpo—, X n
limsup sup Xez, Xewzr) 4
n—00 O<k<n +/Nek27"l0Qg2

Whene tend to zerg), tend to 1 and we obtain the desired result. O

5.3. Upper bound for the rate of escape. The aim of this section is to prove
a converse to Proposition 4.4.

Proposition 5.7. Fix a ball By = B(xg,rg) C M. Assume that the parabolic
Harnack inequality(3.19) holds aroundBy. Set

2rg
Ve) = u(Blo.r).  m() = / %

Assume thain tends toec & and let¢(r) < 4/ be an increasing positive function

on (0, r2) such that

I’O 1 _
(5-3) fo @OV () & T

Then P, -almost surely
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Remark. The proof of Proposition 5.7 is quite technical and is thestrdifficult
part of this paper. Observe that the condition that <y is quite harmless because
o(t) = /t does satisfy (5.3). Note also that the remark made after Ritipn 4.4
applies to Proposition 5.7 as well so that it suffices to shioat t

d X
liminf d(xo. X,) <1  P,-almost surely.
1—0 (1)

Together, Propositions 4.4, 5.7 and Theorems 3.5, 3.6 \ledfollowing state-
ment.

Corollary 5.8. Fix a ball By = B(xg,r0) C M. Assume that the parabolic
Harnack inequality(3.19) holds aroundB,. Set

2rg d

VO =aBo ), me)= [

Assume thatn tends too & and let¢(r) < +/tr be an increasing positive function
on (0, 72). Then

fim inf 460 X0)

2

0 . . "o
— = P,,-a.s. iff the mtegral/
=0 ¢(t) { 0

1 diverges
(0.@)

m(p(s))V(/5) g converges.

Before entering the proof of Proposition 5.7, we need tooiice some notation.
Let t = inf{r > 0: X, € M\ Bo} (i.e., the first exit time fromBy). As P, -almost
surelyr > 0, we can prove Proposition 5.7 by looking at the psedélled at timer .
This will provide us with a useful localization. Léf(z, x, y) denote the Dirichlet heat
kernel in By and set

go(x, y) = /0 ho(t, x,y)dt.

Thus g%, y) is the Green function for the Laplacian with Dirichlet balary condi-
tion in Bo. By shrinking By if necessary, we can assume that for r2

(5.4) Vz,y € Bo, ROt, z, y) < Cae™@/"s,

This is equivalent to say that the lowest Dirichlet eigeneain By is bounded below
by C3r0_2. See [26, Theorem 2.5]. We will need the following inequeditconcerning

ho(t, x, y). Fory,z € (1/ 2)Bo andt < r2, we have
d(y, z)z)
—C2 .

(5.5)
c1 _ Cad(y, 2)? 0 C
(B 1) exp( ' ) R T ICW0) exp( ‘

In fact, the upper bound holds for afl, z € By, 0 < t < rZ. See [26, Lemma 3.9].
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Note that these estimates are available because of the pissonthat the parabolic
Harnack inequality (3.19) holds arounB,. See Theorem 3.6. The estimates (5.4)
and (5.5) imply easily that for al,z € (1 B, we have

o5 ds 5 ds
.6 - 0 ,2) < - .
(5.6) /«) WBO. ) S8 A= C/d(y.z)z W J5)

We need estimates of the function
u,(z) = P,(Xy € B(xp, r) for somes < 1)

For two non-negative functiong, g , we write~ ¢  to indicate thatréhexist finite
positive constants, C such thag < f < Cg on the relevant domain.

Lemma 5.9. Under the assumptions d¢froposition 5.7and assuming tha(5.4)
holds we have

(@)~ min {2, 0D |

m(r)

for all z € (1/2)By and r < ro/4.
Proof. It is well known thats, { ) admits the representatione(se.g., [8])

ur(z) = / 8%z, ¥) dvp(o.n ()
9 B(xo,r)

where vp, ) iS the equilibrium measure foB x{, r). From this and (5.6) it follows
that

u(x)=1= f %00, ¥) AV () ~ m(r) / Ao (Y).
9 B(xo,r) il

B(xo,r)

Thus, using (5.6) again, @ x§, z) > 2r andz € (¥ 2By, we have

m(d(xo. 2))

uy(z) ~ i)

Moreover, u, is bounded above by 1 and,difxo(z) < 2r, u,z) = cm (3 )mE) >
¢ > 0 as desired. ]

Our next task is to bound
vr(z,1) = P,(Xy € B(xg, r) for somes withr <s <1)

By the strong Markov property, we have

vz, 1) = / mO(t, z, y)u,(y) d(y).
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Lemma 5.10. Under the assumptions &froposition 5.7and assuming that5.4)
holds there exist constant€, ¢ > 0 such that

m(V1) _ m(v/1)
(57) C n’l(r) = v,(xo, t) < Cm
and
vl‘(27 t) < Cm(ﬁ)
m(r)

for all z € By, r <ro/8 and ¢ € [(r/2)?, (ro/8)].

Proof. If ¢ is of orderr?, the results are clear so we assume that r2. Let
x be a point such that x¢, x) = 2./t. Note that the ballB X, +/7) is contained in
(1/2)By and write

m(/1)

m(r)

vr(xo, 1) > / ROt xo, Y)u,(y) diu(y) = ¢
B(x,v/1)

where the last inequality follows from Lemma 5.9, (5.5) ar@4]. This proves the
desired lower bound foo, xf, 1).
We are left with the task of proving the upper bound

m(1)

m(r)

Ur(Z’ l) <C
Write
0(z,1) = f 1Ot 2. y)ur (v) dy
Bo

= (/ +/ +/ )ho(t,z,y)ur(y)du(y)-
Bo\ B(x0,+/) B(x0,~/1)\B(x0,r) B(xo,r)

In the first integrald %o, y) > +/f, henceu, ¢ )< Cm (/t)/m(r). Moreover
[ 1z dnt) <1

In the second and third integrals, us®{, z, y) < C/V (/1) (this follows from (5.5),
the doubling property and the fact thate B xo(+/7)) and Lemma 5.9. This gives

m(/1) .\ 1 V(r) ) .

(2, 1) < C d(xo,y))d —
e =€ (05 S st O
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Next, use integration by parts and the fact thats (J)s/V s () toneste

NG
m(d(xo. y)) du(y) = f m(s)dV(s)
< m(JOV(D) +1.

v/B(xo. VO\B(x0,7)

This yields

- m(/1) ! 4%
v (2. 1) < C( mr)  VomG) VW?))

; C<1+ C L, VEmE) )m(ﬁ).
VD " VmED) m)

We need to show that the factor in brackets is bounded. We have

21 g ds
C/f V()_Cm(J)

t
V(Vt) ~
To bound
V(r)m(r)
V(V1)m(/1)

observe that for any & r < R < rg, we have

V(R)m(R) = V(r)m(r) = [V(R) = V(r)]m(R) — V(r)[m(r) — m(R)]

‘V(’)f éf? =

and, using the volume doubling property,

2}’0 2R
> 2
V(R)m(R)—V(R)f v<)—V( )/ = ek

Thus,V ¢ n ¢ )< CV R n R). This proves that

m(/1)
m(r)

and ends the proof of Lemma 5.10. O

v(x, 1) <C

Let us now consider the quantity

vp(x,s,t) =P.(X, € B(xo, r) for somea € §,1) a<71)
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We need the following definition.

Derinimion 5.1. LetC > ¢ > 0 be such that (5.7) holds true. Foe , [/8)2],
defined ¢ ) to be such that

(i) = 22 (J60)

Note that6 is an increasing function asd< 6 s ().

Lemma 5.11. Under the assumptions &froposition 5.7and assuming that5.4)
holds we have
1. Forall (r/2 <s <t < (r0/8)?, x € Bo,

m(+/s)

m(r)

v(x,s,1) <K

2. Forall (r/2P2 <s <6(s) <t < (ro/8)%

m(y/s)

m(r)

3. Forall (r/2? <s <t < (r0/8)%, x € B(xo, +/5),

d(xo,x))“ m(+/s)
Vs m(r) -

Proof. The first statement follows from Lemma 5.10 singex, s(t < ), x,s(. )
To prove the second statement, write

vr(x0, 5, 1) &

|U,~(x, s’ t) - Ur(x0v Sa t)| S K (

vr(x0, 8, 1) > v, (x0, 8) — v, (x0, 7).

The desired result then follows from (5.7) and Definition.5.1
To prove the third statement, observe that, by the strong daptoperty, for any
0<s <t, we have

ve(x,s,1) = / vy (z, %, t — %) h° (%,x, Z) du(z).

Hence,

s )= 0G0l = [or (2500 = 3) 10 (30.2) = 0 (G0, 2) [

Assume thatr € B X, +/s). By (3.20), forx € B (o, /), we have

R e G ok
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Hence, after some computation,

|vr(x, S, l‘) — vr(xO’ s, l‘)| <K <d(XO,x)>“ m(\/?) -

Vs m(r)

Proof of Proposition 5.7.  Fixy = (ro/8)* and definer, inductively by

(5.8) frer = 61 (%)

with 6 as in Definition 5.1. Note that this definition impliesath for all integers
n<m,

(5.9) ty < 27mn)yp
Set
A, ={d(xo, X5) < r, for somes € f41,1,), s < T} wherer, =¢ (,+1).

Then, by Lemma 5.11 (2), there existg> 0 such that

IP>)c0(An) =V, (an th+1, tn) > CO%-
We claim that the series
m(\/ t/1+l)
(>10) 2 o)

diverges. Indeed, for any decreasing sequemce  suchmthgt,) & em(\/f,+1) for
somee > 0, we have

N

fo ds 3 n ds
/ m@$NV(5) ? f m(())V (v/5)

- 1 " ds
B 20: m((t:) ., V(V5)
N N
<2y MWi) 2 5n mlvi)

5 m@() T € T m(d(n)

By the definition of the functiord , the sequenge  at (5.8) Bafisthe condition
m(/t,) > em(/1,+1) (for somee > 0). Hence, by (5.3), the series at (5.10) diverges
as claimed.
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If the eventsA, were independent, we could apply the Borelt&llanemma to
conclude the proof of Proposition 5.7 but, obviously, the e aot independent. We
will need a more sophisticated version of the Borel-Cantethma which deals with
asymptotically independent events. First, we use thevialig elementary observation:
for any sequence of non-negative numbeys such ¥at, oo = we cdnafin
increasing sequence;  of integers such that

E Am; = 00, lim (m;s1 —m;) =00 and a,, > mfz.
- i—0o0
1

Let m; be such a sequence for the serflesP,,(A4,) and set

Al = Ay,
To show that
.. o d(xo, X
lim inf (xo, X1) <1 P,as
1—0 (1)
it suffices to show that
Py (A! i.0)=1

This will follow from the divergence o), P, (A}) if we can show that the events;
are asymptotically independent, that is,

511 | ]P)xo(A; N A,j)

. m ——=

G-11) ijoo Py (A))P(A))
i<j

We claim that, indeed, (5.11) holds. To prove this claim wéd show that

P, (A/|A"
(5.12) im | eIl
i,j—>00 U,.l_f()Co, g, 9,')
i<j
and
. P, (A}
(5.13) lim () 4l_g
i—oo | vy(xo, 07, 0;)
where
r,‘/ =Tm; = ¢(tm,-+1)a o; = tm,-+1 - tmja 9[ = tm,- - tmja i< ]

Observe that these parameters satisfy

I b ,
(514) g; € (’T+l, [m,-+1) s 0; € (7', lml.> s (rl,)2 < 20;.
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It follows that
oi < 0(0;) < 6;.

This will allow us to use Lemma 5.11 in what follows.
We start by proving (5.13) which is simpler. By the strong Markproperty, we
have

Py (A)) = / [ R R A tmj)ho(tmj, X0, 2) du(z).
Hence
IPa(A7) = vy a0, 01,01 = [ 102000 = v 01, )1, 30, 2) 2
(5.15) + vy (x0, 07, 0:)Po (T < 1))

By (3.21) and the hypotheses of Proposition 5.7,

2
Pio(t < tw,) < Kexp(—4§° ) )

This shows that the last term in (5.15) is harmless. To bound
f [0,z 0. 6:) — v (30, 07, )0t X0, 2) d1a()

we integrate overB xp, \/0;) and Bo \ B(xo, ,/5;) separately. Using Lemma 5.11 (3),
the integral overB Xy, \/o;) is bounded by

<"/ (d(xo, x)
m(r{) B(x0,/07) i

> ho(tm/., x0, x) du(x).

By the upper bound in (5.5) and the doubling property aroBgdwe have (for a dif-
ferent constank )

d L) * tlﬂ' a/z
/ ( (xo x)) ho(t,nj,xo,x) du(x) <K (—J> .
B(x0,/37) A/ Oi o]

Thus this part of the integral is bounded by
(M) ()
m(r!) o; '

For the part of the integral oveBo\ B(xo, ,/0;), Lemma 5.11 (1), the upper bound
in (5.5) and the doubling property arourR} give the bound

K exp(—é—a')

m(r;)

I‘Hj
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for somee > 0. By Lemma 5.11 (2), we conclude that
[ 101z 010) = v . 05,618, 30, ) 02

e ()"

- m(r!) o
t /2
m;

<K (—) vy (xo0, 0, 6;).
e/} !

Hence

1 m;

, tm; o/2 rg
Py (A) — vp(x0, 00, 6) < K [ [ —= +exp a v,/ (x0, 07, 0;)
/ e /

By (5.14) and (5.9)tm,/0i < B;/tm+1 < 2-(mj=mi) < p=(mii=mi) " Ag ;. —m; tends

to infinity with i, this proves (5.13).
We now turn to the proof of (5.12). Consider the conditionaasure)r defined
for any Borel setE ¢ M by

ME) = }P’XO(X,”,]_ €E, tn, < 1:|A’j).
By the strong Markov property, we have
Poo(A1A)) = / 0 (2 1 — o g — ) d(2).
Hence

|PX0(A:|A;) - Ur,.'(an 0, 91)| =< / |Ur,-’(Za 0, 0[) - Ur,-’(xo, 0, 61)| d)»(Z)

+ Uri, (-XO’ Oi, Gi)PXO(T < tmf |A;)

By the choice of the sequenee; , we hatg(A’) > m;z. Hence

2
,
Pyo(T < tm,|A}) < miPy(T < tn)) < Kmi§ exp<—4t° ) '
mj

Next, setB; =B fo,./0;), i =1, 2 ..., and use Lemma 5.11 to write
/ v (2, 01, 0;) — v (x0, 01, 6;)| dA(2)
= / ’vr;(zv Uiaei)_ vr,-’(XOv Utvel)yd)\'(z)
B;

+/ vy (2. 07, 6;) — vy (x0, 07, 6;)| dA()
Bo\B;
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< Kv,(x0, 07, 6;) ( /B | (d(f/‘)(;_ix) )a dr(x) + /B - dx(x))

i

Set
¢ =inf{t > 1,410 d(x0, X;) < 7, ).

ThenP,(A)) = Py (¢ < tm;, ¢ < 7) and by the strong Markov property, for any mea-
surable functionf > 0, we have

! E
Po(A)

< sup{/ hO(s, z, x) f(x)du(x): 0 < s < tm;» d(xo0,27) < r,,,j} .

[ r@aw - (86t oo [ 10, = € X)) )

By the upper bound in (5.5) and the doubling property arousad for all s €
(0, ,,) andz € B fo, rn;), We have

d(x0, x)\“ Fm; ¥/ “
[, (P52 s (= 75)

and
/ hO(s, z, x)du(x) < K eXp(—g) .
Bo\B; S

To obtain these inequalities, note thgb; +r,,, ~ \/o; for i # j large enough and use
this to move the centety of B; to z so that these integrals can be bounded exactly
as in the proof of (5.13). As,,, < /tu,, it follows that

/2
I,

/ v (2. 01, 6;) — v (x0, 07, 6,)| dA(2) < Ky (x0, 07, 6;) (—j) .
i 13 I} U'

1

Thus

tm a/2 2
Py, (AfIA)) — vy (x0, 01, 6;)| < Kvy(x0, 07, 6;) ((-) +m? exp(—r—‘))) .
; ; .

i 4ty j

We havet,,, < 2™ty andt,,/o; < 2==m) As m;sy —m; tends to infinity withi ,
this proves (5.12). ]

6. Examples

The authors started to write this paper in order to collesults concerning the
regularity of paths of diffusions in finite dimensional typettings. There are excellent
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well known references for Brownian motion d such as [30, 33, 40] but references
treating more general setups are harder to find. The besedtod the three problems
discussed here is probably the law of iterated logarithm itsxdhore advanced version
due to Strassen (see, e.g., [14, 45]). The work [3] is very lmincthe spirit of the
present paper. There is much less literature on DvoretzlsErate of escape [15].
For random walks ifR", see [18, 39].

Below we present applications of the results proved in tlevipus sections to dif-
ferent natural settings such as Riemannian manifolds aheekiptic symmetric diffu-
sions. There are overlaps between our different examplesvbéhope that this presen-
tation will make it easy for the reader to find the statememtscerning her preferred
example.

6.1. Brownian motion on Riemannian manifolds. As expected for an asymp-
totic result, the law of iterated logarithm holds on any sthocomplete Riemannian
manifold M .

Theorem 6.1. Let M be a smooth complete Riemannian manifold without bound-
ary. Let (X,,P,) denote Brownian motion o, i.e., the diffusion process driven by
the Laplace-Beltrami operatoA = — divgrad. Then for any x € M, P,-almost surely

dx, X
lim sup—(x’ ) =1

t—0 \/W)

Proof. This easily follows from Sections 4.1 and 5.1. ThedeekeGaussian heat
kernel bounds can be extracted form [34] (see also [43, 54]). O

Remark. This Theorem extends without changes to manifolds withndawy as
long as we consider “interior” starting point  (i.e., poirtgt are not on the bound-
ary). In fact, the same result should hold even if the stgrpoint x is on the bound-
ary. For instance, in the half spad** = R" x [0, c0), the law of iterated loga-
rithm holds from any starting point including points of therrh (xq, ..., x,,0). The
difficulty here is to obtain the needed Gaussian estimate® upe boundary. The pa-
per [57] gives the needed upper bound as well as some lowerdbfom compact man-
ifolds but fails to provide the sharp lower bound involvingpé-d (x, y)?/(4(1 +€ X))
for arbitrary smalle . Further work is needed to obtain thergtfarm of the law of it-
erated logarithm by the approach of this paper when theirgggpoint is on the bound-
ary.

Turning to Lévy’s result concerning the modulus of continuity of Brommipaths,
let us start by noting that it would be very unreasonable foeek such a result to hold
in the generality of Theorem 6.1. This is becausa/y’s result concerns the uniform
regularity of Brownian paths on the time interval, [0 1]. Aktlery least, such a con-
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trol requires non-explosion (explosion occurs when Br@mnimotion goes to infinity
in finite time). For background on the explosion phenomenaonRiemannian mani-
folds, see the excellent article [22]. Even without expdosiit is likely that any levy
type result requires some uniform assumption on the locainggry of M . The follow-
ing result appeals to the convenient setting of manifoldth \Wicci curvature bounded
below.

Theorem 6.2. Assume thatM, g) is a smooth complete Riemannian manifold
(without boundary whose Ricci curvature tensor satisfiRec > —K g for somekK > 0.
Let (X;,P,) denotes Brownian motion oM. Then for any x € M andP,-almost
surely, we have

. d(st Xl)
lim sup =
€00<s<r<1 VA —s)log(l/ ¢ — s))

This follows from Sections 4.2 and 5.2. The needed heat keistenates can be found
in [34], [54].

For complete Riemannian manifolds, the local version of régult of Dvoretzky
and Erds holds as inR”".

Theorem 6.3. Let (M, g) be a smooth complete Riemannian manif@ldthout
boundary of dimensionn. Let (X;,P,) denotes Brownian motion oM. If n > 3,
x € M, and v is a positive increasing functipthen

cocdle, X)) [0 _rw_2 | diverges
lim It VOV { oo Fx S & szwz ) converges.

This follows form Sections 4.3, 5.3 and the heat kernel estis of [34, 43]. Using
the result of [57], the same statement holds for compact fimldsi with boundary (in-
cluding the case where the starting point is on the bound#y) the case where
n =2, see Section 6.3 below.

6.2. Left invariant diffusions on groups. Let G be a connected real Lie group
equipped with a Haar measuge  (this measure may be eithepdafght invariant,
it will not matter in what follows). Consider a sé&t &;1,...,&]} of left invariant
vector fields such that the Lie algebra generatectby equaldith algebra ofG . In
such cases, we say that satisfies th@rrsander condition (see, e.g., [28, 38, 56]).
Consider the Dirichlet forn€ on L?(G, v) obtained as the least extension of

k
fH/(;Xl:I&flzdu, f e C(G).
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We let (X,;,P,) be the associated diffusion. Jf is a right Haar measuren the as-
sociated infinitesimal generaterL  is given by Z:’{ g2, If wis a left Haar mea-
sure then—L =42 — %y wherer; =m~1&m andm is the modular function
(asm is multiplicative, the\; ’'s are constant). See, e.g., B&, The hypothesis that
& satisfies the Brmander condition implies that the intrinsic distante d.= finste,
continuous and defines the topology 6f (e.g., [38, 56]). preaelently of whether
w is a left or right Haar measure, the volume is uniformly dindplup to scale 1 and
there exists an intege¥  ¥; such thatB ¢, ) x V) (uniformly) forale G
and allr € (Q 1). Herec X ) =1 ifu is a left Haar measure whereas (m) x if( g
is a right Haar measure. See [56] for how to compute the intdge This integer is
greater or equal to the topological dimension with equdfitgnd only if & contains a
linear basis of the Lie algebra @

Theorem 6.4. Referring to the setup abovassume tha satisfies théHnander
condition Then for anyx € G, we have

X
lim M =1, [P.-almost surely
=0 /4t loglog(1/t)
. d(Xs, X
lim sup ( ) =1, P,-almost surely
5%0075<t<1 \/4(t — S) |Og(1/(l — s ))

and assumingN = N; > 2,

diverges
converges

fiminf 402 X0 _ { 0

. —k\N—2
N v 1 P,-a.s. < ijw(z ) {

for any increasing positive functiotf .

The proof follows from the general results of the presentepamd the theory devel-
oped in [56] which provides the necessary parabolic Harnaekuality up to scale 1
(this in fact goes back to Bony [9]). The precise Gaussiarn keenel lower bound
needed to obtain the sharp form of the law of iterated logariend the modulus of
continuity are taken from [55].

6.3. Sub-elliptic diffusions. Let 2 be a non-empty open set R'. Let L be a
second order differential operator of the form

L= —U_l Z Bi(va,-,jaj)
i,J

wherev ,a; ; =a;; are smooth functions and> P, ;a;; x %), > OforakQ
(v1)] € R". We say that this operatat  is sub-elliptic if there exists ngl& > 0
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such that

(6.16) Yu € C5°(R2), lullwz < C/(|u|2 +ulu)dn

wheredu &) =v f Ydx andW? is the classical Sobolev space Rf. If @ = R", we
say thatZ is uniformly sub-elliptic if (6.16) holds, and thenttionsv, v1,a; ; and
their partial derivatives of any order are bounded functiove refer the reader to [32]
for an excellent exposition concerning such operators andurther references. Note
that sums of squares ofdimander vector fields are sub-elliptic (see [28, 32]).

Consider a regular strictly local Dirichlet spac€, O, L2(M, 1)) where M is a
manifold andC5°(M) C D. We say that &§, D, L3(M, 1)) is sub-elliptic if in any
small enough coordinate chatt  the measwre  has the fumx  (v)x=dx(for
some smooth positive functiom and the associated infini@sgenerator restricted to
Cg°(U) is a sub-elliptic operator as defined above. Under thisirapion, the intrinsic
distanced is continuous and defines the topologyMbf . For &byl we include
in our definition of a sub-elliptic Dirichlet space the adlulital global hypothesis that
(M, d) is complete. Two simple examples of interest are the casenw/ =R" and
the case wherM is a compact manifold (without boundary).

Theorem 6.5. Assume tha(&, D, L?(M, 1)) is a sub-elliptic Dirichlet space as
defined abovelet (X,,P,) be the associated diffusiofhen for anyx € G, we have

d(x, X;)

rILmO V4t loglog(Y/t)

The local Gaussian heat kernel estimates needed to apppo$itions 4.1, 5.1 are
given in [54, (0.5)] and [55, Theorem 2]. For background enig the relevant
and very non-trivial local dilation structure due to Feffem and Phong, the doubling
property and Poincérinequalities, see [32].

=1, P,-almost surely

Theorem 6.6. Assume tha(&, D, L?(M, 1)) is a sub-elliptic Dirichlet space as
defined aboveAssume further that eithet is a compact manif@ldthout boundary
or M = R" and L is uniformly sub-ellipticLet (X,, P,) be the associated diffusion
Then for anyx € G, we have

. d(XSa Xf)
lim sup =
5%007252?1 \/4(t — S) |Og(1/@ -5 ))

1, P.-almost surely

This follows from Propositions 4.2, 5.5 and [54, 55]. Notatttsome kind of unifor-
mity is needed here.

Concerning the rate of escape, although Propositions 474apply to this situa-
tion (because the parabolic Harnack inequality (3.19) $iold appears to be difficult
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to give an explicit sharp result in the present generalitye Wifficulty concerns the
precise behavior of the volume functien— u B ,¢ )) for a fixed ras deeto O.
What is known (and, in a sense, follows immediately from thet fthis function is
doubling) is that there are two positive realsp such that

c()r® < u(B(x,r)) < C)r’

for small r. In fact, we always can take > n  whete is the topoldgiimension
of M (see [16, p.255]).

However, if we restrict ourself to the easier case wiien cawititten as a sum
of squares of smooth vector fields @Hnander type operators [28]) a sharp local rate
of escape can be obtained. Thus assume that

k
(6.17) L ==Y &+&
1

where§; , 0<i < k are smooth vector fields. Because we assumd.that If-adg@nt
the vector fieldsy belongs to the span dk, ..., &} and does not play an important
role here. Such an operator satisfies (6.16) in an opefsetR” (i.e., is sub-elliptic)

if and only if there is an integeN such that the vector figjds. . ., & and all their
brackets of order less thas +1 sp&f at any point inQ2 . Moreover, in such a case,
the volume growth function centered at point satisfies

(6.18) ey =puBe.r)<Cey™

for all » small enough. Herev, is an integer that is a lower seomitioauous function
of x (see [38, Theorem 1] and also [53, (2.9)]). With this imf@tion Propositions 4.4,
5.7 give the following statement.

Theorem 6.7. Assume tha(€, D, L3(M, 1)) is a sub-elliptic Dirichlet space as
define abovgethat the generatorl. is locally of the forif6.17) and that the topolog-
ical dimension ofM is at leask. Let (X,,P,) be the associated diffusiofror each
x € M, let N, > 2 be such tha{6.18) holds
e |If N, >2then

diverges
converges

fiminf 46 X0 { 0

—k\N,—2
it v = | oo P, a.s. & ijxp(z ) {

for any increasing positive functioff .
e |If N, =2then

.. .d(x, X)) [0
Ilrtn_>|(r)1f o0 { o P, as. <— ;(Iog

)_1 { diverges

1
P(27%) converges
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for any increasing positive functiog.

It may be useful to illustrate the last result above with thBofving two explicit ex-
amples.

ExampLE (Brownian motion in the plane). Of course, Brownian motion the
plane is recurrent. However, locall escape still occursitlat a very slow rate. As
mentioned in the introduction, Spitzer [44] proved the heguthis case. Applying the
last statement of Theorem 6.7 we see that the local rate afpesis slower than any
power function. In fact, for planar Brownian motion and

o) = exp(— (Iog%) (Iog Iog%)a>

H H d(x’ XT)
lim inf
MY 60

By using the fact thatX, is equal in law tX,-:, we see that, fop as above,

.. d(x,X;) [0 >1
I|m£f ) —{OOIP)X a.s. <— a{fl

This tells us how close to its starting point Brownian motwan be found in the long
run. Spitzer [44] notes that this disproves a conjecture @yl

we have

{O {>l
= P, a.s. < «
o0 <1

ExampLE (Grushin’s diffusion). The simplest sub-elliptic openais the Grushin
operator. onR? defined by

L=—(y%97+ 7).

See, e.g., [25, 32]. For this operator, the parabolic Haraequality (3.19) holds

globally. The volume of small ball centred at a pomt is qusidr(i.e., N, =2 in the

notation of Theorem 6.7) ip /=(0 0) and cubic (i.&v, =3)if = (0. The asso-

ciated diffusion is transient. Thus at all points except {0 tBe local rate of escape is
slower than any power function. At (0 0) it ig7 up to a logarithmic factor.

6.4. Long time results. In this paper, we have focused on short time path reg-
ularity. However both the law of iterated logarithm and threlgpem of the rate of es-
cape have very natural long time version. For Brownian mmofio Euclidean space,
long and short time results are equivalent because, ind&w; = X,. In the general
framework of this paper, short time and long time results distinct but technically
very similar. Following the proofs given in the previous ts&ts, one easily obtains
the following theorem which complements the results oleim [21].
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Theorem 6.8. Assume that the Harnack inequality.19) holds at all scalegi.e.,
up to scalerg = o0). Then there exists a constant>- 0 such that for any x € M,

. d(x, X
¢ < limsup (x, X,)

' < 1’
1—o0o /4t loglogr —

Moreover if m(r) = froosds/V(s) < oo then for any increasing positive functiogp,
we have

IiminfM:{o P-as. < /WL{diverges
=00 (1) o T 1 m(p(s))V(y/5) | converges

P.-a.s.

This result applies for instance to Brownian motion on meldg with non-negative
Ricci curvature and to left invariant diffusions on Lie gpsuhaving polynomial vol-

ume growth. Note that, in general, one cannot take = 1 in tlheerddbound con-

cerning the law of iterated logarithm. However, in the cafdmwnian motion on a

Riemannian manifold with non-negtaive Ricci curvature amdhe case of symmetric
left invariant diffusions on nilpotent Lie groups one carowhthatc = 1. See the heat
kernel lower estimates in [34, 55] and [56, p.62].
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