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Abstract
Using heat kernel Gaussian estimates and related properties,we study the in-

trinsic regularity of the sample paths of the Hunt process associated to a strictly
local regular Dirichlet form. We describe how the results specialize to Riemannian
Brownian motion and to sub-elliptic symmetric diffusions.

1. Introduction

The present work is concerned with regularity properties ofthe sample paths of
symmetric diffusion processes. We will work in the context of regular strictly local
Dirichlet forms and their associated Hunt processes under some additional assump-
tions. Without such assumptions, one cannot hope to obtain the results we will de-
scribe, see [5]. Our goal is to cover such cases as Brownian motions on Riemannian
manifolds and left-invariant symmetric sub-elliptic diffusions on Lie groups.

On R , any translation invariant, symmetric, non-degenerate diffusion process
is, up to a change of coordinates, the classical Brownian motion whose distribution at
time 0 has density
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with respect to Lebesgue measure, where denotes the Euclidean norm onR .
Here we have been following the classical notation according to which Brownian mo-
tion is driven by (1 2) where = 1

2 is the Laplacian of the given Euclidean
structure. The reason for the prevalence of this choice is that the covariance matrix of

1 equals the identity matrix. In the more general context of interest to us, this choice
is not very natural and we will instead consider that the canonical Brownian motion
associated to a given Euclidean structure is driven by itself. In this normalization,
the distribution at time 0 has density
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Our aim is to discuss generalizations of the following celebrated properties of the
Brownian sample paths:
(i) The Lévy-Khinchine law of the iterated logarithm asserts that, almost surely,

lim sup
0 4 log log(1 )

= 1

See, e.g., [30, 33, 40].
(ii) L évy’s result on the modulus of continuity of Brownian paths asserts that, almost
surely,

lim
0

sup
0 1 4( ) log(1 ( ))

= 1

See, e.g., [30, 33, 40].
(iii) If 3, the theorem of Dvoretski and Erdös [15] concerning the “rate of escape”
of Brownian motion asserts that, for any continuous increasing positive function ,
one has

lim inf
0 ( )

=
+
0

almost surely iff [ (2 )] 2 converges
diverges.

The two dimensional version of this result was obtained by Spitzer [44] and reads

lim inf
0 ( )

=
+
0

almost surely iff log
1

(2 )

1 converges
diverges.

Here, we have followed our convention that Brownian motion is driven by . If
instead we consider that Brownian motion is driven by (1 2) , the factor 4 in
Lévy-Khinchine’s law of the iterated logarithm and in Lévy’s modulus of continuity
should be changed to a factor 2.

The techniques used in this paper are robust and apply without essential changes
to some other settings. The papers [21, 26, 52] contain some long time results that are
closely related in spirit to the short time results described below. Similar techniques
have been used by several authors to prove analogs of the law of iterated logarithm
and related results in various settings including fractals. See, e.g., [1, 2, 3]. Still, it is
important to realize that such results are not entirely universal (compare with Takeda’s
inequality stated in 3.8 below) and that hypotheses of some sort are needed for a Hunt
process associated with a strictly local regular Dirichletform to satisfy, say, the law of
iterated logarithm (see, e.g., [5]).

We close this introduction with a short description of the content of the paper.
Section 2 contains background information concerning Dirichlet spaces.
Section 3 describes the relations between several properties that play a crucial role
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in this paper. For instance, the doubling property (3.3) of the volume function (and
some variants of it) play an important role throughout the paper.

Section 4 contains upper bounds related to the law of iterated logarithm and the
modulus of continuity and a lower bound on the rate of escape.All these are obtained
by assuming some type of upper bound on the heat kernel (or related mean value
properties).

Section 5 contains lower bounds for the law of iterated logarithm and the modu-
lus of continuity and an upper bound for the rate of escape. The lower bounds for the
law of the iterated logarithm and the modulus of continuity are obtained by assuming
lower bound on the heat kernel (no heat kernel upper bounds are needed). The upper
bound on the rate of escape is obtained under a two sided heat kernel bound (equiva-
lently, the parabolic Harnack inequality (3.19)).

Section 6 describes explicitly how these results apply to a number of basic exam-
ples including Brownian motion on Riemannian manifolds andsymmetric sub-elliptic
diffusions.

2. Background and notation

2.1. Dirichlet spaces. One of the natural settings for the results of this paper
is that of regular, strictly local Dirichlet spaces. Thus, let be a connected locally
compact separable metric space and let be a positive Radon measure on with
full support. For any open set , letC0( ) be the set of all continuous functions
with compact support in . Consider a regular Dirichlet formE with domain D

2( ) and coreC D: a core is a subset ofD C0( ) which is dense inD for
the norm ( 2

2 + E( ))1 2 and dense inC0( ) for the uniform norm. A Dirichlet
form is regular if it admits a core. See [17]. We also assume that E is strictly local:
for any D such that the supports of and are compact and is constant in
a neighborhood of the support of , we haveE( ) = 0. See [17, p.6] where such
Dirichlet forms are called “strong local.” Any such Dirichlet form E can be written
in terms of an “energy measure” so thatE( ) = ( ) where ( ) is
a signed Radon measure for D. Moreover, satisfies the Leibniz rule and the
chain rule. See [17, pp.115–116].

It is a simple but remarkable fact that the data above sufficesto introduce
a pseudo-distance on often called theintrinsic distanceand defined as follows.
Let L1 be the set of all functions in the coreC such that ( ) , i.e.,

( ) is absolutely continuous with respect to with Radon-Nikodym derivative
bounded by 1. ThusL1 is, in some sense, a set of compactly supported Lipschitz func-
tions with Lipschitz constant 1. For each , define ( ) by

(2.1) ( ) = sup ( ) ( ) : L1

Note that is always a lower semi-continuous function and satisfies the triangle in-
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equality. For = , it might happen that ( ) = 0 (e.g., on fractals) or + (this
actually happens in some interesting cases (see e.g., [4]) but we will not be concerned
with such cases in this paper. The idea of the intrinsic distance (or at least its useful-
ness) seems to have emerged in the eighties in connection with E.B. Davies’ work on
Gaussian heat kernel bounds, see, e.g., [12, Theorem 3.2.7]. Details concerning the in-
trinsic distance in the case of general regular strictly local Dirichlet spaces are found
in [6, 7] and [46, 47, 51].

We now make a couple of crucial hypotheses about the Dirichlet space (E D
2( )), in terms of the intrinsic distance . Throughout the paper we assume that

the following properties are satisfied.
• The pseudo-distance is finite everywhere and the topology induced by is
equivalent to the initial topology of . In particular, ( ) ( ) is a continu-
ous function.
• ( ) is a complete metric space.
These hypotheses imply that ( ) is a path metric space (i.e., can be defined in
terms of “shortest paths”). See e.g., [10, 24] and [46]. Pathmetric spaces are also
called length spaces or inner metric spaces. It also impliesthat the cut-off functions

: sup ( ) 0 = ( ( ) )+

are inD C0( ) and satisfy ( ) . This is a crucial fact, see [7, 47]. It al-
lows us to extend classical arguments from the Riemannian setting to the present more
general framework.

We will denote by ( ) = : ( ) the ball of radius around .
Given a ball = ( ) we let ( ) = be its radius and ( ) be its volume rel-
ative to the measure . Our basic assumptions on ( ) implies that the closure of
the open ball ( ) is the closed ball : ( ) and that any closed ballis
compact. See [10, 46, 47, 51].

2.2. The heat semigroup. Fix a Dirichlet space (E D 2( )) as above.
As is well-known, there is a self-adjoint semigroup of contractions of 2( ),
call it ( ) 0, uniquely associated with this Dirichlet space. Moreover, () 0 is
(sub-)Markovian. Let be the infinitesimal generator of ( )0 so that =
and E( ) = , D.

We assume throughout the paper that the transition functionof the semigroup
( ) 0 is absolutely continuous with respect to , that is, there exists a non-negative
measurable function ( ) ( ), the heat diffusion kernel, such that

0 ( ) = ( ) ( ) ( )

In the present context it is useful to be a little more precisesince the above formula
does not uniquely define ( ). In what follows, we assume that ( ) ( )
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is the unique excessive densityof ( ) 0. See [8, Chapter 6]. (The reader unfamiliar
with this notion can make the a priori restrictive assumption that ( ) is continu-
ous.)

By [17, Lemma 4.2.4], the assumption that ( ) exists implies that

(2.2) 1( ) =
0

( )

is a 1-excessive function (i.e., excessive with respect to the semigroup ( ) 0).

2.3. The Hunt process. By the general theory presented in [17], there exists
a Hunt process = (( )0 P ) with continuous paths ( ) associated
to our fixed strictly local regular Dirichlet space (E D 2( )). In particular, this
process is such that

C E ( ( )) = ( )

Since we assume in this paper that the transition function ofthe semigroup ( ) 0

is absolutely continuous with respect to (i.e., the existence of the heat kernel), the
Hunt process (( ) 0 P ) is well defined for any starting point .

As the basic goal of this paper is to study properties of the sample paths of , it
would of course be very natural to start from the Hunt processhaving continuous
paths and associate to it the corresponding local Dirichletspace as in [17, Chapter 4].

3. Local properties

This section introduces a number of well-known properties such as the doubling
property for volume growth and Poincaré, Sobolev and Harnack inequalities. These
properties may or may not hold on a given Dirichlet space (E D 2( )). They
will play an important role in the sequel. When they hold, these properties yield some
control of the local geometry and analysis on . We will consider two local versions
of these various properties. In the first version, we ask thatthe given property holds
uniformly for all balls contained in a fixed ball 20 (if is a ball of radius and

0, is the concentric ball of radius ). In this case we say the property holds
around 0. In the second version, we ask that the property holds uniformly for all
balls of radius less than a fixed0. In this case we say that the property holdsup to
scale 0.

3.1. The doubling property. We say that the doubling property holds around
a fixed ball 0 if there exists a constant 0 such that, for all balls 20,

(3.3) (2 ) 0 ( )

For later references, we note a few consequences of this property.
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• If (3.3) holds then, for all and 0 such that ( ) ( )

0, we have

(3.4)
( ( ))

( ( ))
1

( ) +

for any log2 0. Actually, one can take 1 = 2
0.

• If (3.3) holds and 2 0 = then there exist 0 such that, for all balls

0,

(3.5) (0 1)
( )

( )

1

See, e.g., [43, Lemma 5.2.8] or [20, Lemma 7.16].
We say that the doubling property holds uniformly up to scale0 if there exists a con-
stant 0 such that (3.3) holds for all balls of radius at most0. In that case, (3.4)
holds uniformly over all , 0 with ( ) + 0, and (3.5) holds uni-
formly for all balls of radius at most0 such that 2 = .

3.2. Poincaŕe inequality. We say that a (scale-invariant) Poincaré inequality
holds around 0 if there exists a constant0 such that, for any ball 20,

(3.6) D 2
0

2

2
( )

where = ( ) 1 and = ( ).
It is known (see, e.g., [31] or [43, Corollary 5.3.5]) that (3.3) and (3.6) together

imply the stronger inequality

(3.7) 2 0 D 2
1

2 ( )

This inequality is equivalent to say that the lowest non-zero Neumann eigenvalue
( ) in the ball is bounded below by ( ) (1 2) 1.

We say that the Poincaré inequality holds uniformly up to scale0 if there exists a
constant 0 such that (3.6) holds for all balls of radius at most0. If the doubling
property and the Poincaré inequality hold uniformly up to scale0, then (3.7) holds
for all balls of radius at most0.

3.3. Sobolev type inequalities. We say that the Dirichlet space (E D
2( )) satisfies a (scale-invariant) Sobolev inequality around the ball 0 if there

exists a constant0 and a real 2 such that, for any ball 20,
(3.8)

D C0( )
2

0 ( )2

( )2
( ) + ( ) 2 2
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where = 2 ( 2). The exact values of and will play no role in what follows.
We say that a local Sobolev inequality holds up to scale0 if (3.8) holds true for

all balls of radius at most0.
A crucial observation that first appeared in [41] is that the doubling property (3.3)

and the Poincaré inequality (3.6) together imply the Sobolev inequality (3.8).

Theorem 3.1. Fix a ball 0 . Assume that(3.3) and (3.6) holds around 0.
Then the Sobolev inequality(3.8) holds around 0.

See [36, 43] for proofs that can be adapted to the present setting.
For completeness, we recall that (3.8) can be characterizedin terms of what is

called a Faber-Krahn inequality, i.e., an inequality relating the lowest Dirichlet eigen-
value on an open set to the volume of that open set. More precisely, let ( ) denotes
the lowest Dirichlet eigenvalue in the open set . A (scale-invariant) Faber-Krahn in-
equality holds around 0 if there are positive constants0 and such that for any ball

2 0 and any open set ,

(3.9) ( )
2

( )

( )

Theorem 3.2. Given a ball 0, the following two properties are equivalent.
1. The lowest Dirichlet eigenvalue(2 0) is positive and the scale-invariant local
Sobolev inequality(3.8) holds around 0.
2. The scale-invariant Faber-Krahn inequality(3.9) holds around 0.
This equivalence holds with the same for both inequalities if 2.

Next we recall the characterization of (3.8) in terms of heatkernel upper bounds.
Proofs that can be adapted to the present setting can be foundin [43]. See also [20].

Theorem 3.3. Fix a ball 0 .
1. Assume that the scale-invariant local Sobolev inequality(3.8) holds around 0.
Then the doubling property(3.3) holds around 0 and there exists a constant such
that for all , 0 with ( ) 2 0, we have

(3.10) ( )
( ( ))

Moreover, for any 0 there exists a constant such that, for all , 0
with ( ) 2 0 and ( ) 2 0, we have

(3.11) ( )
( ( ))

exp
( )2

4(1 + )

2. Assume that the doubling property(3.3) holds around 0. Assume also that there
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exists a constant such that(3.10) holds for all , 0 satisfying ( )
2 0. Then the scale-invariant local Sobolev inequality(3.8) holds around 0.

These three theorems admit “up-to-scale-0” versions. See [20], [41, 43] and [49,
50].

3.4. Harnack and mean value inequalities. Fix an open set . We say that a
function belongs toD loc if for any relatively compact open set with ,
there exists a function D such that = almost everywhere in .

A solution of the equation ( + ) = 0 on (where R is an open
interval and is an open subset of ) is a measurable function : R

such that ( ) ( ) 2
loc ( ), ( ) D loc and

(3.12) ( ) + ( ( ) ) = 0

for all C C0( ). It is possible to deal with solutions in a weaker sense butwe
will not pursue this here. For instance, for any = 0 1 2 , the functions ( )

( ) and ( ) ( ) are solutions of ( + ) = 0 in (0 + ) .
A subsolution is a measurable function : R such that ( )

( ) 2
loc ( ), ( ) D loc and

(3.13) ( ) + ( ( ) ) 0

for all non-negative C C0( ). For instance, for any = 0 1 2 , the functions
( ) ( ) are subsolutions of the equation ( + ) = 0 in (0 + ) .

Fix a ball 0 . We say that the Dirichlet space (E D 2( )) satisfies a
scale-invariant mean value inequality around0 if there exists a constant such that
for any reals with 0, for any such that = ( ) 20, and for
any non-negative subsolution of the equation ( + ) = 0 in = ( 2 ) ,
we have

(3.14) ( )
2 ( ( )) 2 ( )

( ) ( )

We say that (E D 2( )) satisfies ascale-invariant mean value inequality up to
scale 0 if (3.14) holds for all balls of radius at most0.

The following known result relates (3.14) to heat kernel upper bounds and to the
local Sobolev inequality (3.8).

Theorem 3.4. Fix a ball 0 .
1. Assume that the mean value inequality(3.14) holds around 0. Then for all
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and 0 such that ( ) 2 0, we have

( )
( ( ))

Moreover, for all and 0 such that ( ) ( ) 2 0, we have

(3.15) ( )
( ( )) ( ( ))

exp
( )2

4
+

( )

2. Assume that the Sobolev inequality(3.8) holds around 0. Then the mean value
inequality (3.14) holds around 0.

Proof. The first part of the first statement follows from applying (3.14) to the
function ( ) = ( ) which is a solution in (0 ) . The proof of (3.15)
follows from the proof of [43, Theorem 5.2.10]. For the proofof the second statement
based on the classical Moser iteration argument [37], see, e.g., [43, Theorem 5.2.9].

One can easily state a version of Theorem 3.4 for the case where the various
properties are considered “up to scale0.” See [41, 42, 43].

On occasion, we will also consider a weaker type of mean valueinequality. We
say that the Dirichlet space (E D 2( )) satisfies a -mean value inequality
around 0 (resp. up to scale0) if there exists afunction ( ) defined on
the set of all metric balls such that for any reals with 0, for any
such that = ( ) 2 0 (resp. for all balls of radius at most0), and for any
non-negative subsolution of the equation ( + ) = 0 in = ( 2 ) , we
have

(3.16) ( )
( )

2 ( ( )) 2 ( )
( ) ( )

To give an example, assume that the Sobolev-type inequality

(3.17) D C0(2 0)
2 0

2

0
2 0

( ) + 2

holds with = 2 ( 2) for some 2. Then Moser’s iteration can be usedto
prove for any reals with 0, for any such that = ( ) 20, and
for any non-negative subsolution of the equation ( + ) = 0 in = (2 ) ,
we have

(3.18) ( )
2+ 2 ( )

( ) ( )

That is, (3.17) implies a -mean value inequality with ( ) = ( ) () .
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We say that the Dirichlet space (E D 2( )) satisfies ascale-invariant
parabolic Harnack inequality around 0 (resp.up to scale 0) if there exists a constant

such that, for any reals with 0, for any such that = ( ) 20

(resp. for all balls of radius less or equal to0), and for any non-negative solution
of the equation ( + ) = 0 in = ( 2 ) , we have

(3.19) sup inf
+

where

+ =
2

4 2

=
3 2

4

2

2 2

Moser’s iteration technique [37] adapted as in [41, 43] and Theorem 3.1 give the fol-
lowing important result (see also [19] for a different proof).

Theorem 3.5. Fix a ball 0 (resp. 0 0).
1. Assume that(3.3) and (3.6) hold around 0 (resp. up to scale 0). Then the
parabolic Harnack inequality(3.19) holds around 0 (resp. up to scale 0).
2. There exists 0 such that if (3.19) holds around 0 (resp. up to scale 0)
then (3.3) and (3.6) holds around 0 (resp. up t scale 0). One can take take =
1 8.

The parabolic Harnack inequality (3.19) is a powerful tool.It yields good two-
sided heat kernel estimates as stated in the next Theorem (see, e.g., [43, Theo-
rem 5.4.11]).

Theorem 3.6. Fix a ball 0 (resp. 0 0). Assume that the parabolic
Harnack inequality(3.19) holds around 0 (resp. up to scale 0). Then for all
such that ( ) ( ) 0 (resp. , (0 2

0)) we have

1

( ( ))
exp 1

( )2

( ) 2

( ( ))
exp 2

( )2

This theorem admits a converse (see, e.g., [27, Theorem 5.3]). Another applications
of (3.19) is that it yields a certain regularity of the solutions of ( + ) = 0. This
is especially noteworthy in the present framework since these solutions are not even
continuous, a priori. The following are well known results.For divergence form oper-
ators inR , they are due to J. Moser [37] and the proofs go over to the present setting
without change.
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Theorem 3.7. Fix a ball 0 . Assume that the Dirichlet space(E D
2( )) satisfies the scale-invariant parabolic Harnack inequality (3.19) around

0. Then there exist two positive reals and such that for any R, any 0,
any ball 2 0 of radius , and any solution of the equation( + ) = 0 in

= ( 2 ) ,

(3.20) ( ) ( )
( ) +

sup

for all ( ) ( ) ( 3 2 4 2 4) (1 2) .

3.5. Takeda’s inequality. We will make use of the following inequality due to
Takeda [52]. The precise form of this inequality stated below is taken from [35]. For
any set and 0, set

( ) = inf ( ) : = : ( )

Theorem 3.8 ([35, 52]). Let be a compact set. Then

P sup
(0 )

( ) ( )
16 ( )

exp
2

4

The remarkable feature of this inequality is that it holds without any further assump-
tion on (E D 2( )). In [52], Takeda gives some applications to the long time
behavior of the sample paths of the associated diffusion. See also [21]. However, the
averaging over makes this inequality inappropriate for studying the short time be-
havior of sample paths. To become efficient in this context, Takeda’s inequality must
be complemented with some local mean value inequality requiring further local as-
sumptions.

Theorem 3.9. Fix a ball 0 and assume that the -mean value inequality
(3.16) holds around 0. Then there exists a constant such that, for any ,

0 with = ( ) 0, we have

(3.21) P sup
(0 )

( ) ( )
( ( + ))

( ( ))
exp

2

4

In particular, if the Sobolev inequality(3.8) holds around 0 then, for any 0 there
exists a constant such that for any and 0 such that0 2 and

= ( ) 0, we have

(3.22) P sup
(0 )

( ) exp
2

4(1 + )
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Proof. The first inequality follows immediately from Theorem 3.8 and (3.16) be-
cause

( ) = P sup
(0 )

( )

is a non-negative subsolution of ( + ) = 0.
Setting = , the second inequality follows from the first by Theorems 3.3

and 3.4. Indeed, note that the doubling property (3.3) implies that there exist 1 and
0 such that

( ( + ))

( ( ))
1 1 +

since ( + ) 2 0.
We leave to the reader the easy task to state the “up to scale0” version of The-

orem 3.9. The “up to scale0” version will be used in Section 4.2.

3.6. Visiting probabilities. Consider the process 1 = ( 1) associated with the
semigroup ( ) 0. This process takes values in where is an isolated
point added to . We set ( ) = + for any . The process1 = ( 1) can
be obtained from in the following way. Let be a real random variable, indepen-
dent of the process and withP( ) = . Then

1 =
if

if

Thus 1 is killed at the exponential time . In what follows, we will need good
estimates on the probability 1 ( ) that, starting at , 1 visits the compact set

after time . We have

1 ( ) = P (there exists such that 1 )

= P (there exists such that ; )

Of course, one can also consider ( ) =P (there exists such that ).
However, 1 if the process is recurrent and has non-empty interior, e.g., for
Brownian motion on compact Riemannian manifolds with = ( ). In such cases,

contains no information whereas1 does.
Let us also set

1 ( ) = P (there exists 0 such that 1 )

It is well known that 1 is a 1-excessive function (i.e., excessive relative to1)
which is 1-harmonic outside . Hence, there exists a positiveRadon measure
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(the equilibrium measure) supported by such that

(3.23) 1 ( ) = 1( ) ( )

where 1( ) is the Green function defined at (2.2). The 1-capacity of a given com-
pact set is defined by setting

Cap1( ) = inf ( ) + 2 : D C 1

The 1-capacity of is related to the equilibrium measure by

(3.24) Cap1( ) = ( )

For all of this, see [8].
We will need the following estimate which is in the spirit of [21, 23] and involves

the notion introduced above.

Theorem 3.10. For any compact , and any , 0, we have

1 ( ) Cap1( ) sup ( )

Proof. By the Markov property,

1 ( ) = 1 ( ) = ( ) 1 ( ) ( )

Using (3.23), (2.2) and the semigroup property, we obtain

1 ( ) = ( ) 1( ) ( ) ( )

=
0

( ) ( ) ( ) ( )

=
0

+ ( + ) ( )

= ( ) ( )

Together with (3.24) and the fact that is supported in , this gives the desired
result.

4. Using the mean value inequality

This section explores what can be said about sample paths starting in a ball 0

around which a certain -mean value inequality (3.14) holds.
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4.1. Iterated logarithm upper-bound.

Proposition 4.1. Fix a ball 0 . Assume that a -mean value inequality
(3.16) holds around 0 with a function ( ) such that, for any 0, there
exists a constant such that

(4.25) ( ) 1 + log 1 +
1

( )

Assume further that for any 0 there exist constant such that, for any ball
2 0 with radius , we have

(4.26) (0 1)
( )

( )
1 + log 1 +

1

( )

Then, for all 0,

lim sup
0

( )

4 log log(1 )
1 P -almost surely

Proof. Let 0 to be fixed later. Let 0 and 0 2 be such that
( 2 ) 2 0. Use the hypotheses with = ( + ), = ( + ), together

with (3.21) to obtain

P sup
(0 )

( )

( ) 1 + 1 + log 1 +
1 2

exp
2

4

for some constant ( ). In particular, for any 0, there exists aconstant ( )
such that

(4.27) P sup
(0 )

( ) ( ) 1 + log 1 +
1 2

exp
2

4(1 + )

Fix (0 1) and consider the events

= sup
[0 ]

( ) (1 + ) 4 log log

By (4.27), we have

P ( ) ( )(1 + )2 exp( (1 + ) log log ) ( )(1 + )2 1
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Given any 0, pick (0 2). Then the series P ( ) converges and the
Borel-Cantelli lemma shows that, almost surely, for all large enough,

sup
[0 ]

( ) (1 + ) 4 log log

It follows that, P almost surely, for all small enough,

( ) (1 + ) 4 log log

Hence, almost surely,

lim sup
0

( )

4 log log(1 )
(1 + ) 1 2

Since this holds for all (0 1) and 0, the conclusion of Proposition 4.1 follows.

4.2. Lévy’s modulus of continuity. There is an obvious difference in nature
between the law of iterated logarithm and Lévy’s result on the modulus of continuity
of Brownian paths. The former is a purely local statement whereas the latter is not.
Indeed, in Ĺevy’s modulus of continuity result, one has to let the Brownian path run
up to time 1. It should be clear that there is no hope to controlthe uniform modulus
of continuity of sample paths without some uniform local hypothesis on the geometry
of our Dirichlet space. Thus, in contrast with what was done in the previous section
where we worked under hypotheses localized around a fixed ball 0, we will work
here under uniform hypotheses “up to a fixed scale0.”

Proposition 4.2. Fix 0 0. Assume that the mean value inequality(3.16) holds
in up to scale 0 with a function ( ) such that, for any 0, there exists
a constant for which

(4.28) ( ) 1 +
1

( )

Assume further that for any 0 there exist constant such that, for any ball
with radius (0 0),

(0 1)
( )

( )
1 +

1

Then, for any , we have

lim
0

sup
0 1

( )

4( ) log(1 ( ))
1 P almost surely
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Proof. Let 0 to be fixed later. For any and 0 0 2, use the
hypotheses with = ( + ), = ( + ), together with (3.21) to obtain

P sup
(0 )

( ) ( ) 1 + 1 +
1 2

exp
2

4

for some constant ( ). In particular, for any 0, there exists aconstant ( )
such that

(4.29) P sup
(0 )

( ) ( ) 1 +
1 2

exp
2

4(1 + )

Fix and set

( ) = 4 log
1

Let also (0 1) be fixed and set

= ( ) N
2 : 0 2 2

It is clear that # 2(1+ ) , and for ( ) , we have ( )2 2 (1 ).
Consider the events

= sup
( )

( 2 2 )

(1 + ) (( )2 )
1

where 0 will be chosen later. For large enough and all ( ) , we have

( )2 0

2
(1 + ) (( )2 ) 0

2

and

P ( )
( )

P
( 2 2 )

(1 + ) (( )2 )
1

( )
( )

1 +
2

2

exp log
2

( )

2 ( )2(1+ ) 2 exp( log 2(1 ) )

= 2 ( )2 ( (1 ) 1 )

Note that, in order to obtain the second inequality above, wehave used the Markov
property and the fact that (4.29) holds uniformly for all . Now, we choose to
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be given by

(4.30) (1 ) = 1 + 2 +

For this choice of , we get

P ( ) 2 ( )2

Hence P ( ) and the Borel-Camtelli lemma implies that, forP almost
surely all , there exists an integer ( ) such that for all ( ) andfor
all ( ) ,

(4.31) ( 2 2 ) (1 + ) (( )2 )

Fix such that (4.31) holds. Fix 0 1 with 0 2(1 ) ( )

and let ( ) be such that 2(1 )( +1) 2 (1 ) . Let be the smallest
integer such that 2 and be the largest integer such that 2 . Then we
have provided that 2(1 )( +1) 2 +2. This is certainly satisfied if is greater
than 3 1, which we can assume without loss of generality. Under this condition, we
have

0 2 ( ) 2

and thus, ( ) . It follows that (4.31) applies. In particular,

(4.32) ( 2 2 ) (1 + ) ( )

Write

= 2 2 1 2 2

= 2 + 2 1 + 2 2 +

where ( ) ( ) are increasing sequences of integers greater than . Observe that, for
each , the pairs

( 2 2 1 2 +1 2 2 1 2 )

( 2 + 2 1 + + 2 2 + 2 1 + + 2 +1)

are in . Using (4.31) and the fact that ( ) is continuous, we obtain

( 2 ) (1 + ) (2 ) (1 + ) (2 )
1

2 2 1 +
1 2

2

1
(1 + ) (2 (1 )( +1))
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2

1
(1 + ) ( )

for all max 3 1 ( ) and with = 0 2 2(2 + )1 2. The same argument
yields the same upper bound for (2 ). Thus, for 0 2 (1 ) ( ), we
have

( ) 1 + 2
2

1
(1 + ) ( )

It follows that

lim
0

sup
0 1

( )

( )
(1 + )

Using the definition of at (4.30) and the fact that (0 1) are arbitrary, we see
that we can now let tend to 0 to obtain

lim
0

sup
0 1

( )

( )
1

as desired.

4.3. Local rate of escape. The aim of this section is to prove Proposition 4.4
which complements [21, Theorem 5.1]. The proof is adapted from [15, 21, 26]. First
we relate the hypothesis of this theorem to the notion of meanvalue inequality.

Lemma 4.3. Fix a ball 0 = ( 0 0). Assume that the doubling property(3.3)
and the mean value inequality(3.14) hold around 0. Then there exists a constant0
such that, for all 0 and all (0 ), we have

( ) 0

2
0

Proof. For (0 2
0), see (3.15) and (3.4). For 2

0 , use [13, Lemma 1] and
the result for 2

0 .

Proposition 4.4. Fix a 0 and set ( ) = ( 0 ), ( ) = ( ( )). Assume
that there exists 0 0 such that:
1. The doubling property holds at0 up to scale 0, that is, there exists a constant

0 such that

(4.33) 0 0 (2 ) 0 ( )
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2. There exists a constant0 such that, for all ( 0) and all (0 ), the
heat kernel is bounded by

(4.34) ( 0 ) 0

2
0

For (0 0), set

( ) =
2 0

( )

and assume that ( ) tends to as tends to0. Let ( ) be an increasing positive
function on(0 2

0) such that

(4.35)
2
0

0

1

( ( )) ( )

Then, P 0-almost surely,

lim inf
0

( 0 )

( )
=

REMARK. The function is decreasing and satisfies (2 ) ( ) (see (4.42)
below). It follows that changing to where is a positive constant has no effect
on the result of the integral test (4.35). Hence, to prove Proposition 4.4, it suffices to
show that (4.35) implies

lim inf
0

( 0 )

( )
1 P 0-almost surely

EXAMPLE. Referring to the setting of Proposition 4.4, assume that ( ) as
tends to 0, with 2. Then ( ) +2. The integral test (4.35) becomes

2
0

0

( ) 2

2

In particular, the function ( ) = [log(1 )] satisfies (4.35) if and only if
1 ( 2).

Proof of Proposition 4.4. Set

= ( 0 ) ( ) for some [ +1 ]

where ( ) is a decreasing sequence tending to 0 to be chosen later. Our aim is to
show that, assuming that satisfies the integral test (4.35),( ) can be chosen so that
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P 0( ) . If this is the case, then the Borel-Cantelli lemma shows that, P 0-
almost surely,

lim inf
0

( 0 )

( )
1

as desired.
Consider the process1 = ( 1) introduced in Section 3.6. By definition,1 is

killed at an independent exponential time . For any positive and , we have

P 0( ( 0 ) for some [ ])

= P 0( ( 0 ) for some [ ] ; )

+ P 0( ( 0 ) for some [ ] ; )

P 0( ) + P 0( ( 0
1) for some )

= 1 +P 0( ( 0
1) for some )(4.36)

Since 1 at 0, (4.36) shows that the seriesP 0( ) converges if and only
if the series and P 0( ) converge, where

= ( 0
1) ( ) for some +1

Thus it suffices to show that we can choose ( ) so that the two series

P 0( )

converge.
Next, in the notation of Section 3.6, we have

P 0( ) = 1
( ( ))( +1 0)

Hence Theorem 3.10 gives

(4.37) P 0( ) Cap1( ( ( )))
+1

sup
( ( ))

( 0 )

We need to estimate

Cap1( ( )) and sup
( )

( 0 )

We start with the second term. For any 2
0 and 0, the hypothesis gives

(4.38) sup
( )

( 0 ) 0

2
0

( )
+

2
0

( 0)
1 ( )
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with 1 = 2 0(1 + 0 3).
For Cap1( ( )) we use the very general estimate from [48, Theorem 2] (adapted

to the case of Cap1) which gives, for all ( 0),

(4.39) Cap1( ( )) 2
( )

( ) ( )

1

+ ( )

Following [21, p.85], write

( )

( ) ( )

1

2 2 ( )
= 2

2

(2 )

2

0

2

( )

=
2

0
( )

2
(4.40)

Next, by the doubling property (4.33), for (00 4), we have

( ) (2 ) =
2

( )
=

1

4

4

2 ( 2)

0

4

4

2 ( )
0

4

0

2 ( )

0

4
(2 )(4.41)

Hence

(4.42) (2 ) ( )

where = (1 + 0 4) 1. This implies that if we define = ( ) by ( 2) = ( ),
we have

4

Using = = ( ) in (4.39) and (4.40), we obtain

Cap1( ( )) 0

(1 ) ( )
+ ( )

By the definition of , we have

( ) =
2 0

( )

2 2
0

( )
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Thus

( ) 0
2

2 2
0 0

( 2)
=

2 2
0 0

( )

and

Cap1( ( )) 2

( )

with 2 = (2 2
0 + (1 ) 1) 0 5 0 + 8 2

0 .
Using this and (4.38) in (4.37) gives

(4.43) P 0( ) 1 2
( +1)

( ( ))

Consider the decreasing sequence ( ) defined by0 = 0 4 and

( +1) ( ) = 0

4
( )

By (4.41), we must have

(4.44) +1
2

Moreover,

( ) ( 1) = 0

4
( 1) = 0

4 + 0
( ) =

4 0

(4 + 0)2
( +1)

Thus, we have

2
0

0

1

( ( )) ( )

1 1

( ( )) ( )

1

( ( ))

1 1

( )

= 2
1

( ( ))
( ) ( 1)

8 0

(4 + 0)2

( +1)

( ( ))

It follows that the hypothesis (4.35) implies

( +1)

( ( ))
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Together with (4.43) and (4.44), this shows that the series

P 0( )

converge, as desired.

5. Two-sided Gaussian bounds and some consequences

5.1. Iterated logarithm lower bound. This section shows that, under some
suitable assumptions,

lim sup
0

( )

4 log log(1 )
1 P almost surely

Proposition 5.1. Fix a ball 0 and assume that the doubling inequality holds
around 0. Assume further that the heat kernel satisfies the following lower bound for
some 0. For any (0 1), there exists 0 such that for all 0 and all

such that ( ) ( ) 2 0,

( )
( ( ))

exp
(1 + ) ( )2

Then, for any starting point (1 4) 0, P -almost surely,

lim sup
0

( )

log log(1 )
1

Together with Proposition 4.1, this gives the following statement.

Corollary 5.2. Assume that the parabolic Harnack inequality(3.19)holds around
the ball 0. Then there exists a constant 0 such that for all (1 4) 0,

lim sup
0

( )

4 log log(1 )
1 P almost surely

In some cases we are able to prove that = 1 but, in general, thisseems to be a
difficult problem. See Section 6.

The proof of Proposition 5.1 given below differs slightly from classical arguments
and has the advantage to be independent of any correspondingupper bound. We need
the following simple lemma.

Lemma 5.3. Under the hypotheses ofProposition 5.1,for any (0 1), there
exists a constant 0 such that for any with0 2 and ( )
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(1 4) 0, we have

P ( ( ) ) exp (1 + )
2

Proof. Fix ( ) (1 4) 0 and (0 1). Let be a point such that ( ) =
(1 + 2) . Observe that for any 1 = ( 2) we have ( ) (1 + ) .
Moreover the ball ( ) is contained in 20 so that we can apply the heat kernel
lower bound at ( ) with (0 2), 1. This gives

P ( ( ) ) =
( )

( )
1

( )

( ( 2))

( ( ))
exp (1 + )3

2

exp (1 + )3
2

The desired conclusion follows.

Fix (0 1). For 0, set = log log(1 ) and

= ( ) = ( )

We let F be the -algebra generated by : 0 .

Lemma 5.4. Under the hypotheses ofProposition 5.1,for any (0 1) there
exists 0 such that

1 E (1 F ) log
1 (1+ ) 2

1

for all 0 and small enough.

Proof. Using the Markov property, the triangle inequality and Lemma 5.3, we
obtain

1 E (1 F ) = 1 P ( ( ) )

1 P ( ( 0 ) + )

inf
: ( )

P ( ( ) + ) 1

exp (1 + )
( + )2

( )
1
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The desired result follows because = ( ) as and tend to 0.

Proof of Proposition 5.1. Set = log and

= = ( ) = log log
1

with (0 1). We have

P ([ i.o.] ) = lim P

Thus it suffices to show thatP = 0. For any , we have

P

=

= E 1
+1

1
+1

E (1 F +1)

= E 1
+1

1 1
+1

E (1 F +1)

Applying Lemma 5.4 with chosen so that (1 + )2 = 1, we obtain

P

=

P

= +1

1
log

By induction, it follows that

P

=

1
log

( log )

As the series 1 ( log ) diverges, this proves thatP ( ) = 0. As (0 1)
is arbitrary, this finishes the proof of Proposition 5.1.

5.2. Lower bound for the Levy modulus of continuity. This section shows
that, under some suitable assumptions,

lim
0

sup
0 1

( )

( ) log(1 ( ))
1

We start with the following result.

Proposition 5.5. Fix 0 0 and assume that the doubling inequality holds up to
scale 0. Assume further that the heat kernel satisfies the following lower bound for
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some 0. For any (0 1), there exists 0 such that for all (0 2
0) and

all ,

( )
( ( ))

exp
(1 + ) ( )2

Then, for any starting point , P -almost surely,

lim
0

sup
0 1

( )

( ) log(1 ( ))
1

Before giving a proof of this proposition, we state the following theorem which is an
immediate corollary of Theorems 3.5, 3.6 and Propositions 4.2, 5.5.

Corollary 5.6. Assume that the parabolic Harnack inequality(3.19) holds up to
scale 0. Then there exists a constant 0 such that

lim
0

sup
0 1

( )

4( ) log(1 ( ))
1

Note that, in general, it seems difficult to show that one can take = 1 in the above
statement. However, for many special cases discussed belowin Section 6, it is indeed
possible to show that = 1.

Proof of Proposition 5.5. The proof follows very classical lines. Fix and
consider

= sup
0 2

( 2 ( +1)2 ) (2 )

where ( ) = log(1 ) with (0 1) to be chosen later (do not confuse this
real function with the heat kernel ( )). Here is the constant appearing in
Proposition 5.5. We claim that

(5.1) P ( ) supP ( 0)

Indeed, by the Markov property, we haveP ( ) = E (1 1P
2

( 0)). The claim
follows by induction.

Next, let (0 1) and be arbitrary. Pick a point such that ( ) =
(1 + ) (2 ). Then write

P ( 0) = 1 P ( ( 2 ) (2 )) = 1
( ) (2 )

(2 ) ( )
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1
( ) (2 )

(2 ) ( )

1
( ( (2 ))

( ( 2 2))
exp( (1 + 2 )2 log 2 )

For the last inequality we have used the heat kernel lower bound assumed in Proposi-
tion 5.5 and the fact that ( ) (1+2 ) (2 ) if ( (2 )). By the assumed
doubling property and (3.4), we have

( ( (2 )))

( ( 2 2))
1

1 ( 2 ) 2(log 2 ) 2

Hence, if we pick = = (1 ) (1 + 3 )2, we have

(5.2) P ( 0) 1 2 (1 )

for , large enough. Together with (5.1), (5.2) gives

P ( ) 1 2 (1 ) 2
exp 2

Hence the series P ( ) converges. By the Borel-Cantelli lemma, it follows that
for any (0 1),

lim sup sup
0

( 2 ( +1)2 )

2 log 2
1

When tend to zero tend to 1 and we obtain the desired result.

5.3. Upper bound for the rate of escape. The aim of this section is to prove
a converse to Proposition 4.4.

Proposition 5.7. Fix a ball 0 = ( 0 0) . Assume that the parabolic
Harnack inequality(3.19) holds around 0. Set

( ) = ( ( 0 )) ( ) =
2 0

( )

Assume that tends to at0 and let ( ) be an increasing positive function
on (0 2

0) such that

(5.3)
2
0

0

1

( ( )) ( )
=

Then, P 0-almost surely,

lim inf
0

( 0 )

( )
= 0
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REMARK. The proof of Proposition 5.7 is quite technical and is the most difficult
part of this paper. Observe that the condition that ( ) is quite harmless because

( ) = does satisfy (5.3). Note also that the remark made after Proposition 4.4
applies to Proposition 5.7 as well so that it suffices to show that

lim inf
0

( 0 )

( )
1 P 0-almost surely.

Together, Propositions 4.4, 5.7 and Theorems 3.5, 3.6 yieldthe following state-
ment.

Corollary 5.8. Fix a ball 0 = ( 0 0) . Assume that the parabolic
Harnack inequality(3.19) holds around 0. Set

( ) = ( ( 0 )) ( ) =
2 0

( )

Assume that tends to at0 and let ( ) be an increasing positive function
on (0 2

0). Then

lim inf
0

( 0 )

( )
=

0
P 0-a.s. iff the integral

2
0

0

1

( ( )) ( )
diverges
converges.

Before entering the proof of Proposition 5.7, we need to introduce some notation.
Let = inf 0: 0 (i.e., the first exit time from 0). As P 0-almost
surely 0, we can prove Proposition 5.7 by looking at the process killed at time .
This will provide us with a useful localization. Let0( ) denote the Dirichlet heat
kernel in 0 and set

0( ) =
0

0( )

Thus 0( ) is the Green function for the Laplacian with Dirichlet boundary condi-
tion in 0. By shrinking 0 if necessary, we can assume that for 2

0

(5.4) 0
0( ) 3

3
2
0

This is equivalent to say that the lowest Dirichlet eigenvalue in 0 is bounded below
by 3

2
0 . See [26, Theorem 2.5]. We will need the following inequalities concerning

0( ). For (1 2) 0 and 2
0 , we have

(5.5)
1

( ( ))
exp 1 ( )2

0( ) 2

( ( ))
exp 2

( )2

In fact, the upper bound holds for all 0, 0 2
0 . See [26, Lemma 3.9].
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Note that these estimates are available because of the assumption that the parabolic
Harnack inequality (3.19) holds around0. See Theorem 3.6. The estimates (5.4)
and (5.5) imply easily that for all (1 2)0, we have

(5.6)
4 2

0

( )2 ( ( ))
0( )

4 2
0

( )2 ( ( ))

We need estimates of the function

( ) = P ( ( 0 ) for some )

For two non-negative functions , we write to indicate that there exist finite
positive constants such that on the relevant domain.

Lemma 5.9. Under the assumptions ofProposition 5.7and assuming that(5.4)
holds, we have

( ) min 1
( ( 0 ))

( )

for all (1 2) 0 and 0 4.

Proof. It is well known that ( ) admits the representation (see, e.g., [8])

( ) =
( 0 )

0( ) ( 0 )( )

where ( 0 ) is the equilibrium measure for (0 ). From this and (5.6) it follows
that

( 0) = 1 =
( 0 )

0( 0 ) ( 0 )( ) ( )
( 0 )

( 0 )( )

Thus, using (5.6) again, if (0 ) 2 and (1 2) 0, we have

( )
( ( 0 ))

( )

Moreover, is bounded above by 1 and, if (0 ) 2 , ( ) (3 ) ( )
0 as desired.

Our next task is to bound

( ) = P ( ( 0 ) for some with )

By the strong Markov property, we have

( ) = 0( ) ( ) ( )
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Lemma 5.10. Under the assumptions ofProposition 5.7and assuming that(5.4)
holds, there exist constants 0 such that

(5.7)
( )

( )
( 0 )

( )

( )

and

( )
( )

( )

for all 0, 0 8 and [( 2)2 ( 0 8)2].

Proof. If is of order 2, the results are clear so we assume that 2. Let
be a point such that (0 ) = 2 . Note that the ball ( ) is contained in

(1 2) 0 and write

( 0 )
( )

0( 0 ) ( ) ( )
( )

( )

where the last inequality follows from Lemma 5.9, (5.5) and (3.4). This proves the
desired lower bound for (0 ).

We are left with the task of proving the upper bound

( )
( )

( )

Write

( ) =
0

0( ) ( )

=
0 ( 0 )

+
( 0 ) ( 0 )

+
( 0 )

0( ) ( ) ( )

In the first integral (0 ) , hence ( ) ( ) ( ). Moreover

0( ) ( ) 1

In the second and third integrals, use0( ) ( ) (this follows from (5.5),
the doubling property and the fact that (0 )) and Lemma 5.9. This gives

( )
( )

( )
+

1

( ) ( ) ( 0 ) ( 0 )
( ( 0 )) ( ) +

( )

( )
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Next, use integration by parts and the fact that ( ) = ( ) to estimate

( 0 ) ( 0 )
( ( 0 )) ( ) = ( ) ( )

( ) ( ) +

This yields

( )
( )

( )
+

( ) ( )
+

( )

( )

1 +
( ) ( )

+
( ) ( )

( ) ( )

( )

( )

We need to show that the factor in brackets is bounded. We have

( )

2

( )
( )

To bound

( ) ( )

( ) ( )

observe that for any 0 0, we have

( ) ( ) ( ) ( ) = [ ( ) ( )] ( ) ( )[ ( ) ( )]

( )
( )

2

and, using the volume doubling property,

( ) ( ) = ( )
2 0

( )
( )

2

( )
2

Thus, ( ) ( ) ( ) ( ). This proves that

( )
( )

( )

and ends the proof of Lemma 5.10.

Let us now consider the quantity

( ) = P ( ( 0 ) for some ( ) )
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We need the following definition.

DEFINITION 5.1. Let 0 be such that (5.7) holds true. For [0 (0 8)2],
define ( ) to be such that

( ) =
2

( )

Note that is an increasing function and ( ).

Lemma 5.11. Under the assumptions ofProposition 5.7and assuming that(5.4)
holds, we have:
1. For all ( 2)2 ( 0 8)2, 0,

( )
( )

( )

2. For all ( 2)2 ( ) ( 0 8)2,

( 0 )
( )

( )

3. For all ( 2)2 ( 0 8)2, ( 0 ),

( ) ( 0 )
( 0 ) ( )

( )

Proof. The first statement follows from Lemma 5.10 since ( ) ( ).
To prove the second statement, write

( 0 ) ( 0 ) ( 0 )

The desired result then follows from (5.7) and Definition 5.1.
To prove the third statement, observe that, by the strong Markov property, for any

0 , we have

( ) =
2 2

0

2
( )

Hence,

( ) ( 0 )
2 2

0

2
0

2
0 ( )

Assume that (0 ). By (3.20), for ( 0 ), we have

0

2
0

2
0

( 0 ) 1

( )
exp

( 0 )2
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Hence, after some computation,

( ) ( 0 )
( 0 ) ( )

( )

Proof of Proposition 5.7. Fix0 = ( 0 8)2 and define inductively by

(5.8) +1 = 1

2

with as in Definition 5.1. Note that this definition implies that, for all integers
,

(5.9) 2 ( )

Set

= ( 0 ) for some ( +1 ) where = ( +1)

Then, by Lemma 5.11 (2), there exists0 0 such that

P 0( ) = ( 0 +1 ) 0
( +1)

( ( +1))

We claim that the series

(5.10)
( +1)

( ( +1))

diverges. Indeed, for any decreasing sequence such that () ( +1) for
some 0, we have

0

+1 ( ( )) ( )
=

0 +1 ( ( )) ( )

0

1

( ( ))
+1 ( )

2
0

( +1)

( ( ))

2

0

( )

( ( ))

By the definition of the function , the sequence at (5.8) satisfies the condition
( ) ( +1) (for some 0). Hence, by (5.3), the series at (5.10) diverges

as claimed.
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If the events were independent, we could apply the Borel-Cantelli lemma to
conclude the proof of Proposition 5.7 but, obviously, the are not independent. We
will need a more sophisticated version of the Borel-Cantelli lemma which deals with
asymptotically independent events. First, we use the following elementary observation:
for any sequence of non-negative numbers such that = we can find an
increasing sequence of integers such that

= lim ( +1 ) = and 2

Let be such a sequence for the seriesP 0( ) and set

=

To show that

lim inf
0

( 0 )

( )
1 P 0-a.s.

it suffices to show that

P 0( i.o.) = 1

This will follow from the divergence of P 0( ) if we can show that the events
are asymptotically independent, that is,

(5.11) lim
P 0( )

P 0( )P( )
= 1

We claim that, indeed, (5.11) holds. To prove this claim we will show that

(5.12) lim
P 0( )

( 0 )
1 = 0

and

(5.13) lim
P 0( )

( 0 )
1 = 0

where

= = ( +1) = +1 =

Observe that these parameters satisfy

(5.14) +1

2
+1

2
( )2 2
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It follows that

( )

This will allow us to use Lemma 5.11 in what follows.
We start by proving (5.13) which is simpler. By the strong Markov property, we

have

P 0( ) = ( +1 ) 0( 0 ) ( )

Hence

P 0( ) ( 0 ) ( ) ( 0 ) 0( 0 ) ( )

+ ( 0 )P 0( )(5.15)

By (3.21) and the hypotheses of Proposition 5.7,

P 0( ) exp
2
0

4

This shows that the last term in (5.15) is harmless. To bound

( ) ( 0 ) 0( 0 ) ( )

we integrate over (0 ) and 0 ( 0 ) separately. Using Lemma 5.11 (3),
the integral over (0 ) is bounded by

( )

( ) ( 0 )

( 0 ) 0( 0 ) ( )

By the upper bound in (5.5) and the doubling property around0, we have (for a dif-
ferent constant )

( 0 )

( 0 ) 0( 0 ) ( )
2

Thus this part of the integral is bounded by

( )

( )

2

For the part of the integral over0 ( 0 ), Lemma 5.11 (1), the upper bound
in (5.5) and the doubling property around0 give the bound

( )

( )
exp
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for some 0. By Lemma 5.11 (2), we conclude that

( ) ( 0 ) 0( 0 ) ( )

( )

( )

2

2

( 0 )

Hence

P 0( ) ( 0 )
2

+ exp
2
0

4
( 0 )

By (5.14) and (5.9), 2 +1 2 ( ) 2 ( +1 ). As +1 tends
to infinity with , this proves (5.13).

We now turn to the proof of (5.12). Consider the conditional measure defined
for any Borel set by

( ) = P 0( )

By the strong Markov property, we have

P 0( ) = ( +1 ) ( )

Hence

P 0( ) ( 0 ) ( ) ( 0 ) ( )

+ ( 0 )P 0( )

By the choice of the sequence , we haveP 0( ) 2. Hence

P 0( ) 2
P 0( ) 2 exp

2
0

4

Next, set = (0 ), = 1 2 , and use Lemma 5.11 to write

( ) ( 0 ) ( )

= ( ) ( 0 ) ( )

+
0

( ) ( 0 ) ( )
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( 0 )
( 0 )

( ) +
0

( )

Set

= inf +1 : ( 0 )

Then P 0( ) = P 0( ) and by the strong Markov property, for any mea-
surable function 0, we have

( ) ( ) =
1

P 0( )
E 0 1 0( ) ( ) ( )

sup 0( ) ( ) ( ) : 0 ( 0 )

By the upper bound in (5.5) and the doubling property around0, for all
(0 ) and ( 0 ), we have

( 0 ) 0( ) ( )
+

and

0

0( ) ( ) exp

To obtain these inequalities, note that for = large enough and use
this to move the center0 of to so that these integrals can be bounded exactly
as in the proof of (5.13). As , it follows that

( ) ( 0 ) ( ) ( 0 )
2

Thus

P 0( ) ( 0 ) ( 0 )
2

+ 2 exp
2
0

4

We have 2 0 and 2 ( +1 ). As +1 tends to infinity with ,
this proves (5.12).

6. Examples

The authors started to write this paper in order to collect results concerning the
regularity of paths of diffusions in finite dimensional typesettings. There are excellent
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well known references for Brownian motion onR such as [30, 33, 40] but references
treating more general setups are harder to find. The best studied of the three problems
discussed here is probably the law of iterated logarithm andits more advanced version
due to Strassen (see, e.g., [14, 45]). The work [3] is very much in the spirit of the
present paper. There is much less literature on Dvoretzky-Erdös rate of escape [15].
For random walks inR , see [18, 39].

Below we present applications of the results proved in the previous sections to dif-
ferent natural settings such as Riemannian manifolds and sub-elliptic symmetric diffu-
sions. There are overlaps between our different examples but we hope that this presen-
tation will make it easy for the reader to find the statements concerning her preferred
example.

6.1. Brownian motion on Riemannian manifolds. As expected for an asymp-
totic result, the law of iterated logarithm holds on any smooth complete Riemannian
manifold .

Theorem 6.1. Let be a smooth complete Riemannian manifold without bound-
ary. Let ( P ) denote Brownian motion on , i.e., the diffusion process driven by
the Laplace-Beltrami operator = div grad.Then, for any , P -almost surely,

lim sup
0

( )

4 log log(1 )
= 1

Proof. This easily follows from Sections 4.1 and 5.1. The needed Gaussian heat
kernel bounds can be extracted form [34] (see also [43, 54]).

REMARK. This Theorem extends without changes to manifolds with boundary as
long as we consider “interior” starting point (i.e., pointsthat are not on the bound-
ary). In fact, the same result should hold even if the starting point is on the bound-
ary. For instance, in the half spaceR +1

+ = R [0 ), the law of iterated loga-
rithm holds from any starting point including points of the form ( 1 0). The
difficulty here is to obtain the needed Gaussian estimates upto the boundary. The pa-
per [57] gives the needed upper bound as well as some lower bound for compact man-
ifolds but fails to provide the sharp lower bound involving exp( ( )2 (4(1 + ) ))
for arbitrary small . Further work is needed to obtain the sharp form of the law of it-
erated logarithm by the approach of this paper when the starting point is on the bound-
ary.

Turning to Ĺevy’s result concerning the modulus of continuity of Brownian paths,
let us start by noting that it would be very unreasonable to expect such a result to hold
in the generality of Theorem 6.1. This is because Lévy’s result concerns the uniform
regularity of Brownian paths on the time interval [0 1]. At the very least, such a con-
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trol requires non-explosion (explosion occurs when Brownian motion goes to infinity
in finite time). For background on the explosion phenomenon on Riemannian mani-
folds, see the excellent article [22]. Even without explosion, it is likely that any Ĺevy
type result requires some uniform assumption on the local geometry of . The follow-
ing result appeals to the convenient setting of manifolds with Ricci curvature bounded
below.

Theorem 6.2. Assume that( ) is a smooth complete Riemannian manifold
(without boundary) whose Ricci curvature tensor satisfiesRic for some 0.
Let ( P ) denotes Brownian motion on . Then, for any and P -almost
surely, we have

lim
0

sup
0 1

( )

4( ) log(1 ( ))
= 1

This follows from Sections 4.2 and 5.2. The needed heat kernel estimates can be found
in [34], [54].

For complete Riemannian manifolds, the local version of theresult of Dvoretzky
and Erd̈os holds as inR .

Theorem 6.3. Let ( ) be a smooth complete Riemannian manifold(without
boundary) of dimension . Let ( P ) denotes Brownian motion on . If 3,

, and is a positive increasing function, then

lim inf
0

( )

( )
=

0
P -a.s. (2 ) 2 diverges

converges.

This follows form Sections 4.3, 5.3 and the heat kernel estimates of [34, 43]. Using
the result of [57], the same statement holds for compact manifolds with boundary (in-
cluding the case where the starting point is on the boundary). For the case where

= 2, see Section 6.3 below.

6.2. Left invariant diffusions on groups. Let be a connected real Lie group
equipped with a Haar measure (this measure may be either leftor right invariant,
it will not matter in what follows). Consider a set = 1 of left invariant
vector fields such that the Lie algebra generated by equals the Lie algebra of . In
such cases, we say that satisfies the Hörmander condition (see, e.g., [28, 38, 56]).
Consider the Dirichlet formE on 2( ) obtained as the least extension of

1

2 C0 ( )
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We let ( P ) be the associated diffusion. If is a right Haar measure, then the as-
sociated infinitesimal generator is given by =1

2. If is a left Haar mea-
sure then = 1

2
1 where = 1 and is the modular function

(as is multiplicative, the ’s are constant). See, e.g., [43,56]. The hypothesis that
satisfies the Ḧormander condition implies that the intrinsic distance = isfinite,

continuous and defines the topology of (e.g., [38, 56]). Independently of whether
is a left or right Haar measure, the volume is uniformly doubling up to scale 1 and

there exists an integer = such that ( ( )) ( ) (uniformly) for all
and all (0 1). Here ( ) = 1 if is a left Haar measure whereas ( ) = ( )if
is a right Haar measure. See [56] for how to compute the integer . This integer is
greater or equal to the topological dimension with equalityif and only if contains a
linear basis of the Lie algebra of .

Theorem 6.4. Referring to the setup above, assume that satisfies the Hörmander
condition. Then, for any , we have

lim
0

( )

4 log log(1 )
= 1 P -almost surely;

lim
0

sup
0 1

( )

4( ) log(1 ( ))
= 1 P -almost surely;

and, assuming = 2,

lim inf
0

( )

( )
=

0
P -a.s. (2 ) 2 diverges

converges

for any increasing positive function .

The proof follows from the general results of the present paper and the theory devel-
oped in [56] which provides the necessary parabolic Harnackinequality up to scale 1
(this in fact goes back to Bony [9]). The precise Gaussian heat kernel lower bound
needed to obtain the sharp form of the law of iterated logarithm and the modulus of
continuity are taken from [55].

6.3. Sub-elliptic diffusions. Let be a non-empty open set inR . Let be a
second order differential operator of the form

= 1 ( )

where , = are smooth functions and 0, ( ) 0 for all ,
( )1 R . We say that this operator is sub-elliptic if there exists 0 and 0
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such that

(6.16) C0 ( ) 2 ( 2 + )

where ( ) = ( ) and 2 is the classical Sobolev space inR . If = R , we
say that is uniformly sub-elliptic if (6.16) holds, and the functions 1 and
their partial derivatives of any order are bounded functions. We refer the reader to [32]
for an excellent exposition concerning such operators and for further references. Note
that sums of squares of Hörmander vector fields are sub-elliptic (see [28, 32]).

Consider a regular strictly local Dirichlet space (E D 2( )) where is a
manifold andC0 ( ) D. We say that (E D 2( )) is sub-elliptic if in any
small enough coordinate chart the measure has the form ( ) = ( )for
some smooth positive function and the associated infinitesimal generator restricted to
C0 ( ) is a sub-elliptic operator as defined above. Under this assumption, the intrinsic
distance is continuous and defines the topology of . For simplicity, we include
in our definition of a sub-elliptic Dirichlet space the additional global hypothesis that
( ) is complete. Two simple examples of interest are the case when =R and
the case when is a compact manifold (without boundary).

Theorem 6.5. Assume that(E D 2( )) is a sub-elliptic Dirichlet space as
defined above. Let ( P ) be the associated diffusion. Then for any , we have

lim
0

( )

4 log log(1 )
= 1 P -almost surely

The local Gaussian heat kernel estimates needed to apply Propositions 4.1, 5.1 are
given in [54, (0.5)] and [55, Theorem 2]. For background concerning the relevant
and very non-trivial local dilation structure due to Fefferman and Phong, the doubling
property and Poincaré inequalities, see [32].

Theorem 6.6. Assume that(E D 2( )) is a sub-elliptic Dirichlet space as
defined above. Assume further that either is a compact manifold(without boundary)
or = R and is uniformly sub-elliptic. Let ( P ) be the associated diffusion.
Then for any , we have

lim
0

sup
0 1

( )

4( ) log(1 ( ))
= 1 P -almost surely

This follows from Propositions 4.2, 5.5 and [54, 55]. Note that some kind of unifor-
mity is needed here.

Concerning the rate of escape, although Propositions 4.4, 5.7 apply to this situa-
tion (because the parabolic Harnack inequality (3.19) holds), it appears to be difficult
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to give an explicit sharp result in the present generality. The difficulty concerns the
precise behavior of the volume function ( ( )) for a fixed as tends to 0.
What is known (and, in a sense, follows immediately from the fact this function is
doubling) is that there are two positive reals such that

( ) ( ( )) ( )

for small . In fact, we always can take where is the topological dimension
of (see [16, p.255]).

However, if we restrict ourself to the easier case when can bewritten as a sum
of squares of smooth vector fields (Hörmander type operators [28]) a sharp local rate
of escape can be obtained. Thus assume that

(6.17) =
1

2 + 0

where , 0 are smooth vector fields. Because we assume that is self-adjoint
the vector field 0 belongs to the span of 1 and does not play an important
role here. Such an operator satisfies (6.16) in an open setR (i.e., is sub-elliptic)
if and only if there is an integer such that the vector fields1 and all their
brackets of order less than +1 spanR at any point in . Moreover, in such a case,
the volume growth function centered at point satisfies

(6.18) ( ) ( ( )) ( )

for all small enough. Here is an integer that is a lower semi-continuous function
of (see [38, Theorem 1] and also [53, (2.9)]). With this information Propositions 4.4,
5.7 give the following statement.

Theorem 6.7. Assume that(E D 2( )) is a sub-elliptic Dirichlet space as
define above, that the generator is locally of the form(6.17) and that the topolog-
ical dimension of is at least2. Let ( P ) be the associated diffusion. For each

, let 2 be such that(6.18) holds.
• If 2 then

lim inf
0

( )

( )
=

0
P a.s. (2 ) 2 diverges

converges

for any increasing positive function .
• If = 2 then

lim inf
0

( )

( )
=

0
P a.s. log

1

(2 )

1 diverges
converges
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for any increasing positive function.

It may be useful to illustrate the last result above with the following two explicit ex-
amples.

EXAMPLE (Brownian motion in the plane). Of course, Brownian motion in the
plane is recurrent. However, locall escape still occurs albeit at a very slow rate. As
mentioned in the introduction, Spitzer [44] proved the result in this case. Applying the
last statement of Theorem 6.7 we see that the local rate of escape is slower than any
power function. In fact, for planar Brownian motion and

( ) = exp log
1

log log
1

we have

lim inf
0

( )

( )
=

0
P a.s.

1
1

By using the fact that is equal in law to 1, we see that, for as above,

lim inf
( )

(1 )
=

0
P a.s.

1
1

This tells us how close to its starting point Brownian motioncan be found in the long
run. Spitzer [44] notes that this disproves a conjecture of Lévy.

EXAMPLE (Grushin’s diffusion). The simplest sub-elliptic operator is the Grushin
operator onR

2 defined by

= ( 2 2 + 2)

See, e.g., [25, 32]. For this operator, the parabolic Harnack inequality (3.19) holds
globally. The volume of small ball centred at a point is quadratic (i.e., = 2 in the
notation of Theorem 6.7) if = (0 0) and cubic (i.e., = 3) if = (0 0). The asso-
ciated diffusion is transient. Thus at all points except (0 0), the local rate of escape is
slower than any power function. At (0 0) it is up to a logarithmic factor.

6.4. Long time results. In this paper, we have focused on short time path reg-
ularity. However both the law of iterated logarithm and the problem of the rate of es-
cape have very natural long time version. For Brownian motion in Euclidean space,
long and short time results are equivalent because, in law,1 = . In the general
framework of this paper, short time and long time results aredistinct but technically
very similar. Following the proofs given in the previous sections, one easily obtains
the following theorem which complements the results obtained in [21].
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Theorem 6.8. Assume that the Harnack inequality(3.19) holds at all scales(i.e.,
up to scale 0 = ). Then there exists a constant 0 such that, for any ,

lim sup
( )

4 log log
1 P -a.s.

Moreover, if ( ) = ( ) then, for any increasing positive function,
we have

lim inf
( )

( )
=

0
P -a.s.

1 ( ( )) ( )
diverges
converges

This result applies for instance to Brownian motion on manifolds with non-negative
Ricci curvature and to left invariant diffusions on Lie groups having polynomial vol-
ume growth. Note that, in general, one cannot take = 1 in the lower bound con-
cerning the law of iterated logarithm. However, in the case of Brownian motion on a
Riemannian manifold with non-negtaive Ricci curvature andin the case of symmetric
left invariant diffusions on nilpotent Lie groups one can show that = 1. See the heat
kernel lower estimates in [34, 55] and [56, p.62].
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