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IN PLANE-STRATIFIED MEDIA
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Abstract
Assume that two media are laying in a half-space and the interface wall is par-

allel to the boundary of the half-space. We can directly observe the data near the
boundary of the half-space, but we cannot directly observe inside the half-space. In
this situation, we try to identify these unknown things by creating an artificial ex-
plosion and observing on the boundary the waves generated bythe explosion. In the
previous works related to this problem, only the speeds of the waves were treated,
but we also take into account the impedances of the media in oursetting.

1. Introduction

Our problem originates from a simplified model of an experiment conducted by
geophysicists. We cannot directly observe the structure inside the earth. Then, for ex-
ample, we perform the following experiment in order to guessit: We create an artifi-
cial explosion at a certain point near the earth’s surface. Waves generated by the ex-
plosion travel in the earth. We observe the waves on the earth’s surface, and determine
the structure inside the earth from the observation data.

We consider this problem, in particular, in the case when theearth consists of
some layers. This problem has been studied by Bartoloni-Lodovici-Zirilli [1], Fatone-
Maponi-Pignotti-Zirilli [2], and Hansen [3], for instance.However, from the experi-
mental point of view, these results have some problem since we have to know in ad-
vance, some information on the interface or transmission conditions.

In [1] and [2], the authors consider the earth as a half-space, and assume that each
interface wall of layers is parallel to the boundary of the half-space, and a property of
a medium of each layer is uniform, that is, the speeds of the waves through the half-
space are described by a piecewise constant function. In particular, they deal with

2

2
( ) = div( ( ) )( )

in order to express behavior of the waves inside the half-space, where ( ) is a piece-
wise constant function. In this case, the interface or transmission conditions are char-
acterized once we know the speeds of the waves.

On the other hand, Hansen [3] considers the case of a two-layer domain, whose
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Fig. 1.

boundary may be not flat, and a property of a medium of each layer may be not uni-
form. The author deals with

2

2
= 0 in each layer,

+ = on the interface wall,

( + )+ + ( ) = 0 on the interface wall

in order to describe behavior of the waves in the domain, where is smooth in each
layer, and has gaps on the interface wall. In this case, the author assumes that the
interface or transmission conditions are independent of the speeds of the waves and
are known in advance.

However, it is not natural to treat the interface or transmission conditions as the
known data or the data directly given by the speeds of the waves since they actually
depend on not only the speeds of the waves but also the impedances of media.

We discuss the following problem. Assume that two media, Medium 1 and
Medium 2, are laying in a half-space, and the interface wall isparallel to the bound-
ary of the half-space (see Fig. 1). We assume that the speed ofthe waves in Medium 1
and the way of the reflection by the boundary are known, but thewidth of Medium 1,
the speed of the waves in Medium 2, and the interface or transmission conditions
are unknown. In this situation, we try to identify these unknown things by using the
known data or the data which can be observed near the boundary.

Now, we introduce the notations and formulate the problem above. Suppose 2.
Let us write = ( 1 1), and = ( 2 ) for the coordinate =
( 1 ) in R . The variable 1 plays the role of the time and the physical
space. We introduce for short notation when we apply the Fourier-Laplace trans-
formation with respect to (1 1).

Let 0 and 1 := R
1 : 0 , 2 := R

1 : . We
set := (1 )( ), := 2

2
+ + 2 , and := (1 )( ). Let be a

positive real number and set ( ) :=2 2
1

for = 1, 2. The positive number
describes the speed of the waves in . Let ( ) be a partial differential operator

with constant coefficients of first order, and write ( ) =1 1 + + + 0.
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Furthermore we assume the coefficient is not zero. Let1, 2, 1, 2 be constants.
Suppose 0 . Set := (0 0 ) R

1 and := (0 ) R .
We discuss the following equations:

1( ) ( ) = ( ) 1 R 1(1)

2( ) ( ) = 0 1 R 2(2)

( ) ( ) =0 = 0 R
1(3)

1 ( ) = = 1 ( ) = + R
1(4)

2 ( ) = = 2 ( ) = + R
1(5)

These equations describe the situation that the initial data is the delta function at a
point in 1 at time 1 = 0 with the boundary condition (3) and the interface or
transmission conditions (4) and (5). In particular, if ( ) = then the boundary
condition is Neumann condition. If1 = 1 then the equation (4) expresses the con-
tinuity of the displacement of the waves on the interface wall. The equation (5) ex-
presses the continuity of the stress on the interface wall. We assume that the mixed
problem for the operator system 1( ), 2( ); ( ); 1, 1; 2 , 2 is E

well-posed (see Section 2).
The following main result says that except some special cases we can determine

the data which we cannot directly observe, that is, the widthof 1, the speed 2 of
the waves in 2 and the interface or transmission conditions to a certain degree from
the observation data ( )=0 when the speed1 of the waves in 1 and the boundary
condition are known. In particular, we remark that we can determine the interface or
transmission conditions which other authors treated as thedata known by some method
or the data given in advance. For example, in [1] and [2] it is assumed that the inter-
face or transmission conditions can be derived from the given data of the speeds of
the waves. In [3], the interface or transmission conditionsare known in advance. In
our setting, the interface or transmission conditions are independent of the speeds of
the waves, and moreover their coefficients are unknown data,together with the speed

2 of the waves in 2. In these senses, the restriction of our setting is weaker than
the other authors’.

Main result. Let 1 ( ) be given. Assume that the observation data
( ) =0 are given, where ( ) denotes the solution of the equations (1)–(5). Then the

constants , 2 and the ratio of 1 2 to 2 1 are determined in the following sense:
• The constant is expressed with the known data1 ( ) and the observa-
tion data ( ) =0 unless ( ) =0 ( ) =0. Here ( ) is the waves in the situation
that only one medium Medium 1 is laying in the half-space, thatis, the solution of

1( ) ( ) = ( ) R

( ) ( ) =0 = 0 R
1
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• Suppose 3. Then the ratio of1 2 to 2 1 is expressed with 1 ( ) and
( ) =0. If 1 2 1 2 = 0 then 2 is also determined.

• Suppose = 2. Then the ratio of1 2 to 2 2 1 is expressed with 1 ( )
and ( ) =0.

We remark that the constants1 2 1 2 themselves cannot be identified. Namely,
in some cases of 3, the observation data are the same even if the coefficients

1 2 1 2 of the condition (4) and (5) are different.
We mention the impedances in the case = 2, that is, the physical space dimen-

sion is one. If we assume the continuity of the displacement of the waves, namely

1 = 1, then we determine the ratio of2 1 to 2 2 by our main result because1
is known. Here, 2 1 and 2 2 are the impedance of Medium 1 and 2, respectively.
Then, if the impedance of Medium 1 is known, we can determine the impedance of
Medium 2, however we cannot identify the speed of the waves in Medium 2. When
viewed from a different angle, we obtain the same observation data if the impedance
of Medium 2 is same even if the speed of the waves in Medium 2 is different. This
result is not obtained by [1], in which they deal with the casewhen the physical space
dimension is one.

In Section 4, we state our main results more precisely, and prove them by us-
ing the solution formula of the problem (1)–(5). The solution formula is given by
Matsumura [4] as the fundamental solution of the mixed problem for the operator sys-
tem 1( ), 2( ); ( ); 1, 1; 2 , 2 . Theoretically, this formula must
describe the dependence between behavior of the solution and information of the me-
dia. However this dependence is rather intricate and is not expressed straightforwardly.
In this section, we give a process of reduction to clear the dependence. This is the
main part of our methods.

Finally, we explain the plan of this paper. In Section 2, we explain necessary and
sufficient conditions for theE well-posedness for the mixed problem for the operator
system 1( ), 2( ); ( ); 1, 1; 2 , 2 . In Section 3, we rewrite the
equations (1)–(5), construct the solution, and discuss some properties of the solution.
In Section 4, we state the main theorems in this paper and givethe proofs.

2. The E Well-posedness

In Section 1, we assume that the mixed problem for the operator system 1( )

2( ); ( ); 1, 1; 2 2 :

1( ) ( ) = ( ) 1 0 1(6)

2( ) ( ) = ( ) 1 0 2(7)

(0 ) = 0( ) R
2 (0 )(8)

1 (0 ) = 1( ) R
2 (0 )(9)



INVERSE PROBLEM FOR THE WAVE EQUATION 617

( ) ( ) =0 = 0( ) (0 ) R
2(10)

1 ( ) = = 1 ( ) = + + 1( ) (0 ) R
2(11)

2 ( ) = = 2 ( ) = + + 2( ) (0 ) R
2(12)

is E well-posed. In this section, we explain necessary and sufficient conditions for the
well-posedness. We mainly refer to Matsumura [4] and Sakamoto [5].

We first introduce the notations in order to refer to the results of [4]. We set :=
R : 1 0 2

1
2 2 and := R

1 : ( 0) for = 1 2. We
denote by +( + ) the root which has positive imaginary part of the equation in :

( + ) = 0 for R
1, , and = 1 2. Also we set

0( ) := +
1( )

1 1

2
+
1( ) 2

+
2( )

1( ) := +
1( )

1 1

2
+
1( ) 2

+
2( )

for = + with R
1 and ( 1 2). Then the Lopatinski’s determinant

of the operator system 1( ) 2( ); ( ); 1 1; 2 2 for the mixed
problem (6)–(12) is defined by

( ) := 0( )
+
1( )

1( )
+
1( )

Furthermore we have the following theorem:

Theorem 1 ([4]). The mixed problem(6)–(12) is E well-posed if and only if the
following conditions are satisfied:
(i) 0

0( ) = 0.
(ii) There exists 1 such that 0( ) = 0 for any R

1 and 1.
Here := (1 0 0) R

1 and 0
0 is the principal part of 0. Moreover, under

this condition, ( log(2 + ) ) = 0 for all R
1, where is a positive

real large enough.

Now, we have

0
0( ) = 1

1

1 2

2
+ 2 1

1

by calculating it. Then the condition (i) holds if and only if1 1 = 0 and

1 2 2 + 2 1 1 = 0 hold. Hence the mixed problem (6)–(12) isE well-posed if and
only if the following conditions hold:
(I) 1 1 = 0 and there exists1 such that

+
1( ) = 0
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for any R
1 and 1.

(II) 1 2 2 + 2 1 1 = 0 and there exists1 such that

1 2
+
2( ) + 2 1

+
1( ) = 0

for any R
1 and 1.

Here the condition (I) is a condition for ( ) and (II) the constants 1 2 1 2,
and 2.

We state necessary and sufficient conditions for (II).

Proposition 2. If = 2 then (II) is equivalent to 1 2 2 + 2 1 1 = 0. If 3
then (II) is equivalent to 1 2 2 + 2 1 1 = 0 and the following:

(III) ( 2
1

2
2

2
2

2
1) 1

2
2

2

2
2

2
2

1
2

2
1

0

or
(IV) 2 1 and 2

1
2
1

2
2 2

2
1

2 2
2 2 1

4
C is not a nonnegative number and

Re( 1 2 2 1) 0,
or
(V) 1 2 and 2

2 1
2

2
2 2

2
2
1

2
1 1 2

4
C is not a nonnegative number and

Re( 1 2 2 1) 0.

Proof. For all 1 = 1 with 1 R and 0, we have

1 2
+
2( 1 ) + 2 1

+
1( 1 ) = 1 2

2
+ 2 1

1
1

since +( 1 ) = 1 . This completes the proof in the case of = 2.
Hereafter we assume 3. By noting the imaginary part of+, (II) holds if

• 1 2 2 = 2 1 1 = 0,
• 1 2 = 0 and 2 1 = 0,
• 2 1 = 0 and 1 2 = 0,
• 1 = 2.
Accordingly we suppose

1 2 1 2 = 0 1 = 2

2
1

2
2

2
2

=
2
2

2
1

2
1

hereafter. We denote by+( ) the root with positive imaginary part of the equation in
: 2(1 + 2) = 0 for C, = 1 2. Then (II) holds if and only if the following

condition (VI) is satisfied since we have

+( ) = + 1
2
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for R
1 with = 0 and 0, where = 2

2 + + 2
1 :

(VI) for all R and 0,

1 2
+
2 ( )2 + 2 1

+
1 ( )2 = 0

On the other hand, solving

1 2
+
2 ( )2 2

= 2 1
+
1 ( )2 2

for ( )2, we obtain ( )2 = , where

=
2
1

2
2

2
2

2
1

( 2
1

2
2

2
2) ( 2

2
2
1

2
1)

Then (VI) holds if and only if 0 or
(VII) 1 2

+
2 ( ) + 2 1

+
1 ( ) = 0. ( C is not a nonnegative number.)

Here, 0 holds if and only if the condition (III) holds. Finally, we consider nec-
essary and sufficient conditions for (VII). Put

=
2
2

2
1

2
1

2
1

2
2

2
2

2
2

2
1

= 1 2 = 2 1

for short notation. Then +
1 ( )2 = 2 and +

2 ( )2 = 2. Let be 2 = and
Im 0. Then we have

1 2
+
2 ( ) + 2 1

+
1 ( ) = sgn Im( ) + sgn Im( )

Hence (VII) is equivalent to Im( ) Im( ) 0. Put = 2 and = 1. Then

Im( ) Im( )

=
1

2
1 2

2 2 2
Re( )

1
2
1

1
2
2

2 2 1
2
1

1
2
2

2 2

Therefore Im( ) Im( ) 0 holds if and only if (IV) or (V) because

(13) 1 2
2 2 2

1
2
1

1
2
2

2 2 1
2
1

1
2
2

( 2 2) 0

and we have equality in (13) if and only if

2 1 and ( 2 2) 2 0

or

1 2 and ( 2 2)
2

0

The proof is completed.
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3. The Solution Formula and some Properties of the Solution

In this section, we construct the solution to the equations (1)–(5), and prove a
lemma needed later. We mainly refer to Matsumura [4] and Sakamoto [5] about the
construction of the solution.

We first rewrite these equations. The fundamental solution of the forward Cauchy
problem for 1( ) in the whole physical spaceR 1 is defined as the inverse
Fourier-Laplace transform of 1 1( + ) in the sense of the distribution:

1( ) :=
1

(2 ) R

( + )

1( + )

where 1 and := (1 0 0) R with a positive real large enough.
Moreover we define 1( ) and 2( ) by

1( ) := 1( ) ( ) 1(14)

2( ) := ( ) 2(15)

respectively. Since the distribution1( ) describes the incident or primary propaga-
tion of the waves due to a point source ( ),1( ) in (14) describes the prop-
agation in 1 of secondary waves caused by the primary waves, the boundarywall

= 0 and the interface wall = . By (14) and (15), the equations (1)–(5) are
equivalent to the following equations:

1( ) 1( ) = 0 1 R 1(16)

2( ) 2( ) = 0 1 R 2(17)

( ) 1( ) =0 = ( ) 1( ) =0 R
1(18)

1 1( ) 1( ) = = 1 2( ) = + R
1(19)

2 1( ) 1( ) = = 2 2( ) = + R
1(20)

Put ( ) := log(2 + ) and := ( ) : R
1 . We can solve the

problem (16)–(20) by the Fourier-Laplace transformation along , Theorem 2 and so
on, where is a positive real large enough (see Matsumura [4]).In particular, the
Fourier-Laplace transforms of1( ) and 2( ) with respect to = ( ) can
be expressed in the forms of

(L 1)( ; ) = 1( )
+
1( ) + 1( )

+
1( )(21)

(L 2)( ; ) = 2( )
+
2( )(22)

where 1( ), 1( ) and 2( ) are of class with respect to = 0 and contin-
uous with respect to . We remark that the Fourier-Laplace transform of 1 can be
expressed in the following form by the inversion formula andthe residue theorem and
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so on:

( )(L 1)( ; ) =0 =
2 2

1

( +
1( ))

+
1( )

+
1( )

(L 1)( ; ) = =
2 2

1

1
+
1( )

+
1( )( )

(L 1)( ; ) = =
2 2

1

+
1( )( )

Set 1( ) := 1 log(2 + ) for R
1. We remark that =

( 1( ) 2 1) : R
1 . Set ( 1) := 1( 1 ) for 1 R for short nota-

tion.
Finally, we prove a lemma needed later.

Lemma 3. Let 1( ), 2( ) be the solution of the problem(16)–(20). If

1( ( 1) ) 0 for all 1 R, then for some 1 R

1 ( 1) =
2 1 ( 1)

( 1) 1

holds, where 1( ) and 1( ) are defined by(21).

REMARK 4. We remark that

2 2
1

1
+
1( )

+
1( )

= ( 1)

=
2 1 ( 1)

( 1) 1

Indeed, we have +
1( ( 1) ) = ( 1) 1 since +

1( ( 1) )2 = ( 1) 1
2 and

Im ( 1) 0.

Proof of Lemma 3. We use reduction to absurdity. Assume

(23) 1 ( 1)
2 1 ( 1)

( 1) 1 and 1 ( 1) 0

for all 1 R. We have

(24) +
1( ) 1( ) + +

1( ) 1( ) =
2 2

1

+
1( )

+
1( )

+
1( )

by (21) and the Fourier-Laplace transform of (18). By substituting = ( 1)
into (24) and using the assumption (23), we have

(25) 1
1

( 1) + 0
( 1) 1 = 1 +

1
( 1) + 0

( 1) 1
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Now, we deduce a contradiction by observing the behavior of the equality (25) as

1 . We have

(the left-hand side of (25)) = 1
1

( 1) + 0 (2 + 1 ) 1 +

as 1 because 1 1 = 0 (see Section 2 (I)). On the other hand,

(the right-hand side of (25)) = 1 +
1

( 1) + 0 (2 + 1 ) 1 0

as 1 since is a positive real large enough. Hence we have a contradiction.

4. The Main Theorem and its Proof

In this section, we prove the main result. For the purpose, first we show that the
behavior of the waves in 1 is determined by the known data and the observation data
(cf. Lemma 5). Next, we classify cases by the observation data, and we determine the
unknown constants for each case (cf. Cases (a), (b), (c)).

In Section 3, we rewrite the equations (1)–(5) to the equations (16)–(20) by us-
ing (14) and (15). Since 1( ) =0 can be expressed concretely, we remark that
the following are equivalent:
• ( ) =0 is given.
• 1( ) =0 is given.

We first prove that we obtain the solution1( ) in 1 when the observation data

1( ) =0 are given, that is, the following lemma:

Lemma 5. Let 1, ( ), be given. Assume that the observation data
( ) = 1( ) =0 are given. Then the Fourier-Laplace transform of1( ) with respect

to = ( ) is expressed in the form of

(26) (L 1)( ; ) = 1 ( )
+
1( ) + 1 ( )

+
1( )

where 1 ( ) and 1 ( ) are defined by

1 ( ) :=
1

( +
1( )) ( +

1( ))

( +
1( ))(L )( )

2 2
1

( +
1( ))

+
1( )

+
1( )

(27)

1 ( ) :=
1

( +
1( )) ( +

1( ))

( +
1( ))(L )( )

2 2
1

( +
1( ))

+
1( )

+
1( )

(28)
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Proof. By the discussion in Section 3, (L 1)( ; ) can be expressed in the
form of (26). In particular, we have

(29) (L )( ) = 1 ( ) + 1 ( )

by (26) with = 0. On the other hand, we have

(30) +
1( ) 1 ( ) + +

1( ) 1 ( ) =
2 2

1

+
1( )

+
1( )

+
1( )

by (26) and the Fourier-Laplace transform of (18). Since+
1( ) = 0, we can solve

the simultaneous linear equation (29) and (30), and we obtain (27) and (28).

Next, we remark that there is a possibility that the same observation data can be
obtained even if the unknown constants are different. That it, we have the following:

Proposition 6. Let 1, ( ), be given. If the ratio of 1 2 to 2 1 is the
same, the same solution 1( ) is obtained.

Proof. The Fourier-Laplace transform of1( ) can be expressed by (21), and

1( ) and 1( ) are expressed in the following forms:

1( ) = +
1( )

+
2( )

+
1( )( ) +

1( )( )

+ +
1( )

+
1( )( ) +

+
1( )( )

2 2
1

+
1( ) +

2( ) + +
1( )

+
1( )

+
1( ) +

2( ) +
1( )

+
1( ) +

1( )
1

1( ) =
+
1( ) +

2( ) +
1( )

+
1( )

+
1( ) +

1( )
+
1( )

2 2
1

+
1( ) +

2( ) + +
1( )

+
1( )

+
1( ) +

2( ) +
1( )

+
1( ) +

1( )
1

where := 1 2 2 1 if 2 1 = 0. We remark that these forms express the dependence
of 1( ) and 1( ) on , rather than that on each constant1, 2, 1, 2. Therefore,
we obtain this proposition except the case when2 1 = 0. If 2 1 = 0 then we can
prove it by the concrete forms of 1( ) and 1( ) in the same way.

From Proposition 6, we see that the constants1, 2, 1, 2 themselves are not
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identified even if the observation data1( ) =0 is given. However we can expect that
the ratio 1 2 to 2 1 can be determined, and it is actually true to some extent (see
Proposition 11 and Theorem 15).

In the following remark, we state particular cases. We can prove these in the same
way as Proposition 6.

REMARK 7. Let 1 ( ) , and 1( ) be given.
(i) If 1 2 = 0 then the constants2 1 2 are not identified.
(ii) If 2 1 = 0 then the constants1 2 2 are not identified.
(iii) If 2 = 1 and 1 2 = 2 1 then the constant is not identified.
(iv) If = 2 then the constants1 2 1 2, and 2 are not identified except the ratio
of 1 2 to 2 2 1.
(v) If = 2 and 1 1 2 = 2 2 1 then the constant is not identified.

Hereafter, we define 1 ( ) and 1 ( ) by (27) and (28) for the observation data
( ) = 1( ) =0. Before we determine unknown things, we prove a lemma needed

later.

Lemma 8. Let 1, ( ), be given. Assume that the observation data
( ) = 1( ) =0 are given. Then we have

1 2
+
2( )

2 2
1

1
+
1( )

+
1( )( )

1 ( )
+
1( ) + 1 ( )

+
1( )

= 2 1
2 2

1

+
1( )( )

1 ( ) +
1( )

+
1( )

1 ( ) +
1( )

+
1( )

(31)

REMARK 9. The equality (31) is equal to the following equality:

1 2
+
2( ) 2 1

+
1( )

2 2
1

1
+
1( )

+
1( )

1 ( )

= 1 2
+
2( ) + 2 1

+
1( ) 1 ( ) 2 +

1( )

(32)

Proof of Lemma 8. By Lemma 5, (L 1)( ; ) can be expressed in the form
of (26). On the other hand, (L 2)( ; ) can be expressed in the form of (22) by the
discussion in Section 3. So, we multiply2 +

2( ) and the Fourier-Laplace transform
of (19). In the same way, we multiply1 and the Fourier-Laplace transform of (20).
We subtract the latter from the former, and substitute the equations (26) and (22) into
it. Then we have the equality (31).

Hereafter, we determine unknown things case by case. We firstconsider the fol-
lowing three cases:
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(a) 1 ( ) 0 for all .
(b) 1 ( ) is not identically zero with respect to , but1 ( ( 1) ) 0 for
all 1 R.
(c) 1 ( ( 1) ) = 0 for some 1 R.

We remark that the solution1( ) of the equations

1( ) 1( ) = 0 0(33)

( )[ 1( ) 1( )] =0 = 0(34)

satisfies

(L 1)( ; ) =0 =
( +

1( ))
+
1( )

2 2
1 ( +

1( )) +
1( )

when (L 1)( ; ) 0 as + . On the other hand, the condition (a) holds if
and only if

(L )( ) =
( +

1( ))
+
1( )

2 2
1 ( +

1( )) +
1( )

Then the condition (a) means the observation data are equal to the behavior of the
waves on the boundary of the half-space under the condition that Medium 1 is laying
in the half-space.

Proposition 10. Let 1, ( ), be given. Assume that the observation data
( ) = 1( ) =0 are given. Suppose that(a) is satisfied. If 3 then 2 = 1 and

1 2 = 2 1. If = 2 then 1 2 2 = 2 1 1.

Proof. Set

1 := 1 R : 1 ( ( 1) ) =
2 1 ( 1)

( 1) 1

2 := R
1 : 1 ( ) =

2 2
1

1
+
1( )

+
1( ) = ( )

Note 1 0 2. The sets 1 and 2 are open since 1 ( ) is continuous. They
are not empty by Lemma 3. Note the equality (32) holds by Lemma8 and Remark 9.
Then we have

(35) 1 2
+
2( ) = 2 1

+
1( )

for = ( ) with 2 by the equality (32) and the assumption1 ( ) 0.
Hence we have 1 2 2 = 2 1 1 by the equality (35) with = (1) and 1 1.
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Hereafter, we assume 3. We prove2 = 1 and 1 2 = 2 1. By squaring the
equality (35) and substituting1 2 2 = 2 1 1 into it, we have

( 1 2 2 1)( 1 2 + 2 1)(
2
2 + + 2

1) = 0

on 2. There exists 2 such that (2 1) = (0 0) because 2 is open
and not empty. Hence we have1 2 = 2 1. By this and 1 2 2 = 2 1 1, we have

2 = 1 and 1 2 = 2 1 since 1 and 2 are positive.

Proposition 11. Let 1 ( ) be given. Assume that the observation data
( ) = 1( ) =0 are given. If (b) is satisfied, then 1 2 2 = 2 1 1 and the con-

stants 2 and are expressed as

2
2 = 1( )

2
2 + + 2

1
1( )

3( 1 1)( ) 2 ( )

( 1 2 )( )
(36)

= 1
1

2
+
2( )

1
+
1( )( 1 1 )( )

2 1( )( 1 1)( ) 1 ( )
= ( )(37)

on 4 := R
1 : 1 ( ) = 0 = ( ) , where 1 ( ) and 2 ( ) are defined

by

1 ( ) :=
( 2 2

1
+
1( ))

+
1( )

1 ( )

1 ( )
= ( )(38)

2 ( ) := 2 1( )( 1 1)( ) 1 1

+
1( ( ))( 1 1 )( )

1( )( 1 1)( ) 1 ( )

1

(39)

Proof. We remark 3. Set

3 := 1 R : 1 ( 1) =
2 1 ( 1)

( 1) 1

The set 3 is open since 1 ( ) is continuous. It is not empty by Lemma 3. Note the
equality (32) holds by Lemma 8 and Remark 9. Then we have1 2 2 = 2 1 1 by
the equality (32) with = (1) and 1 3 since we assume 1 ( ( 1) ) 0.
Note 1 2 = 0 holds by this and the condition (II) (see Section 2). Therefore we have

+
2( ) 1

2

+
1( )

2 2
1

1
+
1( )

+
1( )

1 ( )

= +
2( ) + 1

2

+
1( ) 1 ( ) 2 +

1( )

(40)

by substituting 2 1 = ( 1 2) 1 2 into (32). Note +
2( ) + ( 1 2) +

1( ) is not zero
because its imaginary part is positive. Set4 := R

1 : 1 ( ) = 0 = ( ) .
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The set 4 is open since 1 ( ) is continuous. It is not empty by the assumption.
Then by (40), we have

(41) 1 ( ) = ( ) 2 +
1( ( )) (= 0)

on 4, where 1 ( ) is defined by (38), and ( ) is defined by

( ) = 2
+
2( ( )) + 1

+
1( ( ))

2
+
2( ( )) 1

+
1( ( ))

Note 1(
+( ( ))) = 1( )( 1 1)( ) 2 +( ( )). So we have

( 1 1 )( ) =
( 1 )( )

( )
2 1( )( 1 1)( )

2
1

+
1( ( ))

( ) 2 +
1( ( ))

by applying 1 to the equality (41). Then we have

(42)
1

2
+
2( ( )) 1

= 1
+
1( ( ))( 1 1 )( )

2 1( )( 1 1)( ) 1 ( )

by

( 1 )( )

( )
=

2 1( )( 1 1)( )

1 2
+
1( ( )) +

2( ( ))

and the equality (41). Applying 1 to the equality (42), we obtain

2
+
2( ( ))

3
= 2 ( )

where 2 ( ) is defined by (39). Squaring this equality, we have

(43) ( 1)2 2
2( 2

2 + + 2
1)

3
= 2 ( )

2

Applying 1 to (43), we have

(44) ( 1)2 2
2( 2

2 + + 2
1)

2
= 2 ( )( 1 2 )( )

3 1( )( 1 1)( )

Substituting the equality (44) into the equality (43), we have the equality (36) because
if 2 = = 1 = 0 then 4. We determine 2 because it is positive. The
constant is expressed as the equality (37) by (42).

Theorem 12. Let 1 ( ) be given. Assume that the observation data
( ) = 1( ) =0 are given. If(c) is satisfied, then the constant is expressed as

(45) =
1( 1 3 )( 1)

2 ( 1 )( 1) 3 ( 1)
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on 5 := 1 R : 1 ( ( 1) ) = 0 , where

(46) 3 ( 1) :=
( 2 1 ( 1)) ( 1) 1

1 ( ( 1) )

1 ( ( 1) )

Proof. Note the equality (32) holds by Lemma 8 and Remark 9. Then we have

1 2

2

2 1

1 2 1 ( 1)
( 1) 1

1 ( ( 1) )

= 1 2

2
+ 2 1

1
1 ( ( 1) ) 2 ( 1) 1

by (32) with = ( 1) . Set 5 := 1 R : 1 ( ( 1) ) = 0 . By the condition (II)
(see Section 2), we have

(47) 3 ( 1) = 1
2 ( 1) 1 (= 0)

on 5, where 3 ( 1) is defined by (46) and1 is defined by

1 := 1 1 2 + 2 2 1

1 1 2 2 2 1

Applying 1 to the equality (47) and mixing it with (47) multiplied by
(2 1)( 1 )( 1), we have the equality (45).

Here, we explain whether the width of1 can be determined with the given
data or not. In the cases of (b) and (c), the constant is determined by Proposition 11
and Theorem 12, respectively. However, in the case of (a), that is, in the case when
the observation data are equal to the behavior of the waves onthe boundary of the
half-space under the condition that only Medium 1 is laying inthe half-space, the con-
stant cannot be identified by Proposition 10 and Remark 7-(iii) (if 3), or by
Proposition 10 and Remark 7-(v) (if = 2). In other words, for example the case of

3, if 2 = 1 and 1 2 = 2 1 then we obtain the same observation data defined as
the solution of (33) and (34) even if the constant is different.

Hereafter, we set

1 ( ; ) :=
2 2

1

1
+
1( )

+
1( )( )

1 ( )
+
1( ) + 1 ( )

+
1( )(48)

2 ( ; ) :=
2 2

1

+
1( )( )

1 ( ) +
1( )

+
1( )

1 ( ) +
1( )

+
1( )(49)

where = ( ) for the observation data ( ) =1( ) =0. Then we can rewrite
the equality (31) as the following:

(50) 1 2
+
2( ) 1 ( ; ) = 2 1 2 ( ; ) = ( )
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We remark that if 1 ( ; ) 0 and 2 ( ; ) 0 hold for all R
1 then we

have a contradiction by Lemma 3, because we have1 ( ) ( 2 2
1

+
1( ))

+
1( )

and 1 ( ) = 0 for all = ( ) .
By Theorem 12, the constant is determined when (c) is satisfied. Therefore we

determine the constant2 and the ratio of 1 2 to 2 1 under the assumption that is
also given.

Proposition 13. Let 1 ( ) and be given. Assume that the observation
data ( ) = 1( ) =0 are given. If 1 ( ; ) 0 [resp. 2 ( ; ) 0] for all

R
1, then 2 1 = 0 [resp. 1 2 = 0].

Proof. By Lemma 8, we have the equality (50). We can prove easily this propo-
sition by this equality and the remark above.

Proposition 14. Suppose = 2. Let 1 ( ) and be given. Assume that
the observation data ( ) = 1( ) =0 are given. Suppose 1 ( ; ) is not identically
zero with respect to and 2 ( ; ) is not identically zero with respect to . Then
the constant 1 2 2 2 1 is expressed as

1 2

2 2 1
= 2 ( 1; )

( 1) 1 ( 1; )

on 1 R : 1 ( 1; ) = 0 .

Proof. Note +
2( ( 1)) = ( 1) 2. Then we can prove this proposition in the

same way as for Proposition 13.

Theorem 15. Suppose 3. Let 1 ( ) and be given. Assume that
the observation data ( ) = 1( ) =0 are given. Suppose 1 ( ; ) is not identically
zero with respect to and 2 ( ; ) is not identically zero with respect to . Put

:= 1 2 2 1. Then the constants2 and are expressed as

2
2 = 1( ) ( 1 )( ; ) 1( ) ( ; )( 1 1)( )

( 1 )( ; )( 2
2 + + 2

1)
,(51)

=
( ; )

+
2( )

= ( )(52)

on 7 := R
1 : 1 ( ; ) = 0 1 : 1 R , where ( ; ) :=

2 ( ; ) 1 ( ; ).
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Proof. Set 6 := R
1 : 1 ( ; ) = 0 . The set 6 is open since 1 ( )

and 1 ( ) are continuous. It is not empty by the assumption. Then we have

(53) +
2( ) = ( ; ) = ( )

on 6 since we obtain the equality (50) from Lemma 8, where and ( ; ) are
defined as the statement above. Squaring the equality (53), we have

(54)
2

2
2

1( )2 2( 2
2 + + 2

1) = ( ; )2

Moreover we have

(55)
2

2
2

=
( ; )( 1 )( ; )

1( )( 1 1)( )

by applying 1 to the equality (54). Note 7 := 6 1 : 1 R is not empty
because 3 and 6 is open. We obtain

(56) 2 =
( ; ) ( 1 )( ; ) 1( ) ( ; )( 1 1)( ; )

( 1 1)( )( 2
2 + + 2

1)

on 7 from substituting (55) into (54). Then we have the equality (51) by substitut-
ing (56) into (55). Hence the constant2 is determined because it is positive. By (53),
the constant is expressed as the equality (52).

In short, we can determine unknown things from the given dataas the flowchart
in Fig. 2, where 1 ( ), 1 ( ), 1 ( ; ), 2 ( ; ) are defined by (27), (28), (48),
(49), respectively.

Last, we mention a positive large real in Remark 16.

REMARK 16. We deal with as a fixed number. Indeed, this depends on
the unknown constants. However, we can check whether this isso large that the
Lopatinski’s determinant does not vanish for the determined constants or not after we
determine the unknown constants in the above way. If this is large enough, then
there is no problem. If this is not large enough, then we take alarger number as
new instead of this , and determine the unknown constants once again. This pro-
cedure is sure to conclude since there exists a large enough number certainly by
Theorem 1.
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We remark Proposition 6 in any cases.

�� ��=0 are given.

:= [ 1( )
] =0

1 0?

No.
(Case (a)) 3? No. ( = 2)

Proposition 10,
Remark 7-(v)�

�
�
�

is not identified.
1 2

2
= 2 1

1
.

Yes.
Proposition 10,
Remark 7-(iii)�

�
�
�

is not identified.
2 = 1.

1 2 = 2 1.

Yes.

1 ( ) 0? No. (Case (b))

Proposition 11'
&

$
%

1 2

2
= 2 1

1
.

2 and are
reconstructed.

Yes. (Case (c))
Theorem 12�� ��is reconstructed.

1 0 and

2 0? 1 0. 2 0.
Proposition 13,
Remark 7-(ii)�

�
�
�2 1 = 0.

2 is not identified.

Proposition 13,
Remark 7-(i)�

�
�
�1 2 = 0.

2 is not identified.

Yes.

3? No. ( = 2)

Proposition 14,
Remark 7-(iv)�

�
�
�1 2 : 2 2 1

is reconstructed.

Yes.
Theorem 15�

�
�
�

2 is reconstructed.
1 2 : 2 1 is

reconstructed.

Fig. 2.
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