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Abstract

Assume that two media are laying in a half-space and the aderfvall is par-
allel to the boundary of the half-space. We can directly plisdéhe data near the
boundary of the half-space, but we cannot directly obsers@énthe half-space. In
this situation, we try to identify these unknown things by trepan artificial ex-
plosion and observing on the boundary the waves generatédebgxplosion. In the
previous works related to this problem, only the speeds efwiaves were treated,
but we also take into account the impedances of the media irsetting.

1. Introduction

Our problem originates from a simplified model of an experitneonducted by
geophysicists. We cannot directly observe the structus@énthe earth. Then, for ex-
ample, we perform the following experiment in order to guissVe create an artifi-
cial explosion at a certain point near the earth’s surfacaved' generated by the ex-
plosion travel in the earth. We observe the waves on the 'satinface, and determine
the structure inside the earth from the observation data.

We consider this problem, in particular, in the case when aheh consists of
some layers. This problem has been studied by BartolonglicdZirilli [1], Fatone-
Maponi-Pignotti-Zirilli [2], and Hansen [3], for instancélowever, from the experi-
mental point of view, these results have some problem sineehave to know in ad-
vance, some information on the interface or transmissiarditions.

In [1] and [2], the authors consider the earth as a half-spaicé assume that each
interface wall of layers is parallel to the boundary of théfspace, and a property of
a medium of each layer is uniform, that is, the speeds of theesvéhrough the half-
space are described by a piecewise constant function. ticylar, they deal with

%g, %) = div(e(x) V,u)(r. x)

in order to express behavior of the waves inside the haléespaherec £ ) is a piece-
wise constant function. In this case, the interface or trassion conditions are char-
acterized once we know the speeds of the waves.

On the other hand, Hansen [3] considers the case of a two-thymain, whose
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- «—boundary

«—interface

Fig. 1.

boundary may be not flat, and a property of a medium of each laygy be not uni-
form. The author deals with
32 .
Au—all=0 in each layer,
012
Us = u_ on the interface wall,
(05, u)+ +(0,_u)_ =0 on the interface wall

in order to describe behavior of the waves in the domain, &heiis smooth in each

layer, and has gaps on the interface wall. In this case, thleoawassumes that the
interface or transmission conditions are independent ef gpeeds of the waves and
are known in advance.

However, it is not natural to treat the interface or transmis conditions as the
known data or the data directly given by the speeds of the svairce they actually
depend on not only the speeds of the waves but also the impesiari media.

We discuss the following problem. Assume that two media, Meedil and
Medium 2, are laying in a half-space, and the interface wajdsallel to the bound-
ary of the half-space (see Fig. 1). We assume that the spet afaves in Medium 1
and the way of the reflection by the boundary are known, butwitth of Medium 1,
the speed of the waves in Medium 2, and the interface or trassomi conditions
are unknown. In this situation, we try to identify these umkm things by using the
known data or the data which can be observed near the boundary

Now, we introduce the notations and formulate the problemvabSupposa > 2.
Let us write x’ = f1,...,x,-1), andx” = fp,...,x,) for the coordinatex =
(x1,...,x,) In R", The variablex; plays the role of the time and” the physical
space. We introduce’ for short notation when we apply the iEcuaplace trans-
formation with respect tox, ..., x,_1).

Leth > 0andQ;:={x" eR"1:0<x, <h}, Q:={x"eR"1:x, > h}. We
set Dy, = (¥i )0/0x; ), Ay =DZ +...+ D2, and D;, = (Vi )0/0&; ). Leta, be a
positive real number and sé} D( )A,» — DZ for k =1, 2. The positive number
ai describes the speed of the wavestip . IetD, () be a partial difteal operator
with constant coefficients of first order, and wri@ D.( )¢q£D., + - + ¢, Dx, *+ qo.
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Furthermore we assume the coefficignt  is not zero. Hieth,, c1, c2 be constants.
Suppose O< y, <h . Set” :=(0.., .0, 9R"tandy :=(Qy")e R".
We discuss the following equations:

@) Pi(Dy)u(x) =8(x —y), x1eR, x"€Qy,
@) Py(Dy)u(x) =0, x1€R, x" ey,

®3) O(D)u(x)l,=0=0, x eR"

(4) biu(x)y=n = c1u(®)y=n,, x € R,

®) baDy, u(x)]5,=n_ = 2Dy, u(x)|s,=p,, x € R"L

These equations describe the situation that the initish datthe delta function at a
point y” in €4 at time x; = 0 with the boundary condition (3) and the interface or
transmission conditions (4) and (5). In particular,df D,( )Ds, heh the boundary
condition is Neumann condition. Ib; = ¢; then the equation (4) expresses the con-
tinuity of the displacement of the waves on the interfacel.wBhe equation (5) ex-
presses the continuity of the stress on the interface wadl. adsume that the mixed
problem for the operator systefiP1(Dy), P2(Dy); Q(Dy); b1, c1; baDy,, c2D,,} is &
well-posed (see Section 2).

The following main result says that except some specialscage can determine
the data which we cannot directly observe, that is, the widbf Q,, the speed:, of
the waves in2, and the interface or transmission conditions to a certagrese from
the observation data x(|,)-o When the speed; of the waves in2; and the boundary
condition are known. In particular, we remark that we caredwine the interface or
transmission conditions which other authors treated asl#t@ known by some method
or the data given in advance. For example, in [1] and [2] itdsuaned that the inter-
face or transmission conditions can be derived from thergidata of the speeds of
the waves. In [3], the interface or transmission conditiame known in advance. In
our setting, the interface or transmission conditions adependent of the speeds of
the waves, and moreover their coefficients are unknown datgsther with the speed
a, of the waves inQ,. In these senses, the restriction of our setting is wealkan th
the other authors’.

Main result. Let a1, Q(D,),y, be given. Assume that the observation data
u(x)|,,=0 are given, where: x( ) denotes the solution of the equationgg}L) Then the
constantsh g, and the ratio ofbic, to bocy are determined in the following sense:

e The constant: is expressed with the known dataQ(D,), y, and the observa-
tion datau § ), -0 unlessu § ) -0 = u(x)|y,=0. Herew () is the waves in the situation
that only one medium Medium 1 is laying in the half-space, thathe solution of

Pi(Dy)u(x) =8(x —y), xeR",
Q(D,)i(x)];=0=0, x' eR"™
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e Supposer > 3. Then the ratio éfc, to bocy is expressed witly, Q(D,), y, and
u(x)|y,=0. If bibacic2 7 0 thenay is also determined.

e Supposen = 2. Then the ratio éfic, to axbocy is expressed withiy, Q(D,), y,
andu (¢ )y, =o.

We remark that the constants, b», c1, ¢2 themselves cannot be identified. Namely,
in some cases ok > 3, the observation data are the same evea ifotifficients
b1, by, c1, ¢ Of the condition (4) and (5) are different.

We mention the impedances in the case = 2, that is, the phygieae dimen-
sion is one. If we assume the continuity of the displacemdnthe waves, namely
b1 = c1, then we determine the ratio @%/a; to ¢»/a, by our main result because
is known. Hereb,/a; andc,/a, are the impedance of Medium 1 and 2, respectively.
Then, if the impedance of Medium 1 is known, we can determiree ithpedance of
Medium 2, however we cannot identify the speed of the waves idilvie 2. When
viewed from a different angle, we obtain the same obsemadiata if the impedance
of Medium 2 is same even if the speed of the waves in Medium 2 ferdiit. This
result is not obtained by [1], in which they deal with the cageen the physical space
dimension is one.

In Section 4, we state our main results more precisely, amdepthem by us-
ing the solution formula of the problem (1)-(5). The solatiformula is given by
Matsumura [4] as the fundamental solution of the mixed pmobfer the operator sys-
tem {P1(Dy), P2(D.); Q(Dy); b1, c1; b2D,,, c2D,,}. Theoretically, this formula must
describe the dependence between behavior of the solutidrinfmrmation of the me-
dia. However this dependence is rather intricate and is xptessed straightforwardly.
In this section, we give a process of reduction to clear thgeddence. This is the
main part of our methods.

Finally, we explain the plan of this paper. In Section 2, welak necessary and
sufficient conditions for the€ well-posedness for the mixed problem for the operator
system{Pi(D,), P2(Dy); Q(Dy); b1, c1; baDy,, c2Dy,}. In Section 3, we rewrite the
equations (1)—(5), construct the solution, and discussesproperties of the solution.
In Section 4, we state the main theorems in this paper andtg&eroofs.

2. The & Well-posedness

In Section 1, we assume that the mixed problem for the opesystem{P;(D,),
P>(Dy); Q(Dy); b1, c1; baDy,, 2Dy }:

(6) Pi(Dyu(x) = f(x), x1>0, x"€Q,
(7 Py(Dy)u(x) = f(x), x1>0, x" €y,
(8) u(0, x") = go(x"), x” € R"2x (0, c0),
9) Du(0, x") = g1(x"), x" € R"™2 x (0, 00),
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(10)  O(Do)u(x)ly=0 = ko(x), x" € (0, 00) x R" 2,
(A1)  bru()lg=n = cru(x)|y,=h, +k1(x'), x" € (0, 00) x R" 2,
(12)  baDy u(x)ly,=n = 2Dy u(x)|x,=n, +k2(x'), x" € (0, 00) x R"~2

is £ well-posed. In this section, we explain necessary and seifficonditions for the
well-posedness. We mainly refer to Matsumura [4] and Sakeufit

We first introduce the notations in order to refer to the rssof [4]. We setl’, =
neR":n >0, n2>daln”|? andl; :={n € R*1: (n,0) e I} fork =1 2. We
denote byA; (¢’ +in’) the root which has positive imaginary part of the equaltio 2:
P& +in',A)=0for& e R"1, n e —Ty, andk =1 2. Also we set

b
Ro(t') = 0(¢. 1) ‘ e ) ' |

a6 = Q({’, —)\I(é‘/)) boai(8) c225(8")

bl C1 '

for ¢/ =& +in’ with & e R"~! andn’ € — C;NT%). Then the Lopatinski’'s determinant
of the operator systemiPi(D,), Po(D,); Q(Dy); b, c1; baD,.,, c2D,,} for the mixed
problem (6)—(12) is defined by

R(Z') := Ro(&e MM — Ry(¢")e* 1M,
Furthermore we have the following theorem:

Theorem 1 ([4]). The mixed problen{6)}«(12) is £ well-posed if and only if the
following conditions are satisfied
() R3®) #0.
(i) There existss such thatRy(£' —iy@’) #0 for any &’ e R" ! and y > yy.
Here ¢’ := (1,0,...,0)e R* ! and R8 is the principal part of Rp. Moreover under
this condition R’ —imlog(2 +|&'|p’) # Ofor all & € R"1, wherem is a positive
real large enough.

Now, we have

, Gn\ [ bic2  bac1
s =— (- ) (%2 +520)

by calculating it. Then the condition (i) holds if and only 4§ — ¢,/a1 # 0 and
bica/az+ byci/ar # 0 hold. Hence the mixed problem (6)—(12)dswell-posed if and
only if the following conditions hold:

() g1 —qn/a1 # 0 and there exist$y, such that

0(¢" —iyo' a1(E" —iy0) 70
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forany& e R*™ 1 andy > y;.
(I bica/az+ byci/a; # 0 and there existy; such that

bicory (" — iy0') + bocir (8 — iy0') #0

forany& e R*™ 1 andy > y;.
Here the condition (1) is a condition fo© O ) and (Il) the comsts b1, by, c1, o,
and as.

We state necessary and sufficient conditions for (I1).

Proposition 2. If n =2 then (Il) is equivalent tobico/as+ boci/a1 Z0. If n > 3
then (Il) is equivalent tobicy/az + byc1/a; # 0 and the following

2, —2_,
b b
() (b33 — (1—22 ke ) >0,
a a

2 1

or

(IV) a; > ay and afbfc%b_zzc_lz — a3lbac1|* € C is not a nonnegative number and
Re(picobyer) > 0,

or

(V) a1 > ap and a bl czzbzcl — al|b1c2|4 € C is not a nonnegative number and
Re(picobycr) > 0.

Proof. For all¢g; =& — iy with & € R andy > 0, we have

b1ca5(610") + boc1A1(10") = — (@ b2c1> 51
ar a

since A{(£10") = —¢1/ax. This completes the proof in the casemof = 2.

Hereafter we assume > 3. By noting the imaginary parkjpf(Il) holds if

bica/az = baci/ay # 0,

b1c2=0 andb2c1 7‘ 0,

brc1=0 andb1C2 55 0,

al = as.

Accordingly we suppose

b%c2 b2

0165 _, 3¢t

bibocic2 70, a1 a2, —5° 7 =5
az az

hereafter. We denote by (z) the root with positive imaginary part of the equation in
viz—a2(l+v?) =0 forz € C, k =1, 2. Then (ll) holds if and only if the following
condition (VI) is satisfied since we have

+ret . N — + él .Y 2
A (E —iy0) = wy, b
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for & e R"-1 with w #0 andy > 0, wherew =/&2+...+£2 |
(VI)forall X eR andY > O,

bicovy (X — iY)?) +bocrvi (X —iY)?) #0
On the other hand, solving

{brcavi (X — iV)A)}? = {bacv} (X — iV)))
for (X —iY)?, we obtain § —iY §= M, where

- bics — bici .
(bic3/a3) — (b3ci/af)

Then (V1) holds if and only ifM > 0 or

(V) bicovy (M) + bacivi(M) #0. (M € C is not a nonnegative number.)

Here, M > 0 holds if and only if the condition (lll) holds. Fingllwe consider nec-
essary and sufficient conditions for (VII). Put

2 2
a; —a;

—, B = b]_Cz, C= b2C1
blc2 — a2b2 2

for short notation. Then;(M)? = AB? and v;(M)? = AC2. Let Z be Z? = A and
ImZ > 0. Then we have

bicavy (M) + bac1vy (M) = {sgr(ImEZB ) +sgff ImEC )} ZBC.

Hence (VII) is equivalent to InKB )InKC » 0. P B/a, anda =C/a;. Then
Im(ZB)Im(ZC)
l (llaz R @{ﬂ){

1 1
=2 |ﬁ2—a2|—(a—%—a—%> (|/3|2—|a|2)}.

Therefore Im¢ZB )ImgC )> 0 holds if and only if (IV) or (V) because

1

2
a;

aaz 1 1] 5, (1 1) ) 2}
13 — - = —al—-=-= — o >0,
13 2|2{ 2 a2l ) B -l =

and we have equality in (13) if and only if

a; > a; and @2 - 012)&2 >0,
or

a1 > a and @? — ﬂz)ﬁ2 > 0.

The proof is completed. Ul
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3. The Solution Formula and some Properties of the Solution

In this section, we construct the solution to the equatidh)s-(6), and prove a
lemma needed later. We mainly refer to Matsumura [4] and Salk@ifb] about the
construction of the solution.

We first rewrite these equations. The fundamental solutiothe forward Cauchy
problem for Pi(D,) in the whole physical spac®”,* is defined as the inverse
Fourier-Laplace transform of/Py(& +in) in the sense of the distribution:

1 eix-($+i1]) J
Ei(x) =
0= ey fR PErin ™

wheren € —s6 — 'y and6® = (1 Q..., 0)e R" with a positive reals large enough.
Moreover we definefi,(x) and Fu(x) by

(14) Fi(x) = Ex(x —y) —u(x), x" € Qu,
(15) Fo(x) =ulx), x"e€Qy,

respectively. Since the distributiofi; (x — y) describes the incident or primary propaga-
tion of the waves due to a point souréex” — y” Fi(x) in (14) describes the prop-
agation inQ2; of secondary waves caused by the primary waves, the boundalty
{x, = 0} and the interface wallx, #} . By (14) and (15), the equations(g) are
equivalent to the following equations:

(16) Pi(D,)Fi(x)=0, x;€R, x"€Q,

(17) PAD)Fax) =0, x€R, x" € Qy,

(18) O(D,)F1(x)lx,=0 = O(Dx)E1(x — ¥)lx,z0. x € R" 1,

(19) bi(Ex(x —y) = Fi(®))ls,=h. = ctFo(x)lg,=,, x' € R"7Y

(20) boDy, (E1(x — y) — F1(x))lx,=n_ = 2Dy, Fo(x)|x,=n., x € R"1.

PutZz/ ¢') :=¢ —im log(2 +&'| ' andS, :HZ/ { )& e R"!}. We can solve the
problem (16)—(20) by the Fourier-Laplace transformatitong S, , Theorem 2 and so
on, wherem is a positive real large enough (see Matsumura [d]particular, the
Fourier-Laplace transforms afi(x) and F»>(x) with respect tog’ =Z/ ' )e S, can
be expressed in the forms of

(21) (Lo F1)(5 x0) = D1(8)e ™M + Wy (¢)e™ M,
(22) (Lo F2)(E;30) = D)2,
where ®1(¢’), W1(¢') and @,(¢') are of classC* with respect ' / = 0 and contin-

uous with respect t¢’ . We remark that the Fourier-Laplacesfoam of £; can be
expressed in the following form by the inversion formula ahd residue theorem and
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SO on:

, ) i Q@ =M ey

D E . _ -nNn==———— 1 "

Q(C s X”)(‘cx l)(é‘ v Xn )’n)|xn—0 2a]2- )&'(;’) ¢ ’
j 1

L M=)
2a§ 23(8")

(Lo E)(C s x0 — Yn)lx,=h_ =

i (AN
Dx,, (‘Cx’El)(;/;xn - yn)|x,,=l1, = ﬁel)\l({ ) y”).
1

Set x1(&') = & — imlog(2 + [&'|) for & e R* 1 We remark thatS/, =

{(x1(8), &2, ..., &—1) : & € R"1). Sety €1) := x1(£10") for & € R for short nota-
tion.

Finally, we prove a lemma needed later.

Lemma 3. Let {Fi(x), Fo(x)} be the solution of the problenl6)-(20). If
Wi(x(£1)0") = 0 for all & € R, then for some; € R

®1(x(62)0") 7 —meix(sm/al

holds where ®1(¢’) and W1(¢’) are defined by(21).

Remark 4. We remark that

L —1 67“‘1‘(:,)}31 - _ i e”X(El)}'n/al.
2a3 11(5) vmgeyy  201x(E1)
indeed, we haveij(x()6) = —x(&)/as since Al(1(E)6) = (x()/as)? and

Im X(éjj_) < 0.

Proof of Lemma 3. We use reduction to absurdity. Assume

(23) 1(x(€)0) = G and Wy (x(ED8') = 0

" 2a1(&1)

for all £, € R. We have

l- /’ _}\.+ / i
(24)  0(¢. 2 1(€))Puc) + 0L, —A1(¢))Wa(g)) = @Waw 3
1 1

by (21) and the Fourier-Laplace transform of (18). By substig ¢’ = x )6’
into (24) and using the assumption (23), we have

(25) {(cu - @) x (&) + 610} e/ = {(ql + q—") x(&) + qo} e K/,
ai a
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Now, we deduce a contradiction by observing the behaviorhef équality (25) as
|&1] — oo. We have

|(the left-hand side of (25)) qu - @> X (£1) + qo| (2 + [E1])"™/™ — +o00
ap

as |&1] — oo becausey; — g, /a1 # 0 (see Section 2 (1)). On the other hand,

2+ al) "% = 0

|(the right-hand side of (25)) qu + —> x(&1) + g0

as |&,| — oo sincem is a positive real large enough. Hence we have a cactitad
O

4, The Main Theorem and its Proof

In this section, we prove the main result. For the purposst fire show that the
behavior of the waves if®; is determined by the known data and the observation data
(cf. Lemma 5). Next, we classify cases by the observatioa,datd we determine the
unknown constants for each case (cf. Cases (a), (b), (c)).

In Section 3, we rewrite the equations (1)—(5) to the equatifl6)—(20) by us-
ing (14) and (15). Since&E1(x — y)|.,=0 can be expressed concretely, we remark that
the following are equivalent:

o u(x)|,,=o0 is given.
e Fi(x)|y,=0 iS given.

We first prove that we obtain the solutidin(x) in ©; when the observation data

Fi(x)l.,=0 are given, that is, the following lemma:

Lemma 5. Let a;, Q(D), y, be given. Assume that the observation data
N(x') = Fi(x)ly,=0 are given. Then the Fourier-Laplace transform Bf(x) with respect
to¢' =2, e S, is expressed in the form of

(26) (Lo FI)(E; x0) = DY ()% + Wl (') M

where @) (¢") and WV (¢’) are defined by

oY ()= — =
on Q@A) - 0@ A
{Q({ ()0 N)(;)_;Memz(c’)yu}’
2af ()
1
\IJJI‘V(QJ):: / -\ Ry
(28) D (%))

) {Q@ ML) — 5y 2D e )} _

2a2 A
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Proof. By the discussion in Section 3£{F1)(¢’;x,) can be expressed in the
form of (26). In particular, we have

(29) CaN)(E) = 7 () + W] (6)
by (26) with x, = 0. On the other hand, we have

. /’ —)»+ / e
(B0) Q¢ APy () + 0(¢, —AI(@’))\I/M’):%—Q(; 7 f@ ) i
2a; A1)

by (26) and the Fourier-Laplace transform of (18). Siggei(¢’) # 0, we can solve
the simultaneous linear equation (29) and (30), and we oi{&d) and (28). Ol

Next, we remark that there is a possibility that the same robtien data can be
obtained even if the unknown constants are different. Thaté have the following:

Proposition 6. Let a1, Q(D,), y, be given. If the ratio ofb;c, to bocy is the
same the same solutiorfy(x) is obtained.

Proof. The Fourier-Laplace transform dfi(x) can be expressed by (21), and
®,(¢’) and W4(¢’) are expressed in the following forms:

01(¢) =i 0(¢, —1(2)
x [KA;(;’){e—iﬁ(w(h—yn) _ eixi(c')(h—y,,)}
+ )LI(;’){e—if\I(i’)(h—yn) + eix;(;')(h—y,,)”
x [222] Q¢ 1) (33(6") + 25 e
U -1
= 0(¢', =A1(€)) (k25(¢") — 21(¢)) e W}A{(;’)] ,
Ua(e) = 1O a3) — 2()
% {Q(g“’, XI({I))e_MI(;/)y” _ Q(é./’ _)Li-(é./))ei)\{(;’)y,l }
x [Zaf [ Q(&', 15(2)) (k25(¢7) + AL(g"))e MM
U -1
= 06", =21(6") (k2z(8") = 21(8) M€ M}A{(;/)] .

wherek :=bicp/boc if bycr # 0. We remark that these forms express the dependence
of ®1(¢’) and ¥1(¢’) on «, rather than that on each constant b, ci, c2. Therefore,

we obtain this proposition except the case witgn; = 0. If byc; = 0 then we can
prove it by the concrete forms ab1(¢") and W1(¢’) in the same way. Ll

From Proposition 6, we see that the constantsb,, c1, c» themselves are not
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identified even if the observation dafé(x)|.,=o iS given. However we can expect that
the ratio bicy to bycy can be determined, and it is actually true to some extent (see
Proposition 11 and Theorem 15).

In the following remark, we state particular cases. We cawethese in the same
way as Proposition 6.

RemarRk 7. Letas, Q(D,), y,, and Fi(x) be given.
(i) If bic2 =0 then the constants,, c1, ap are not identified.
(i) If bpc1 =0 then the constants,, c¢,, a, are not identified.
(i) If a2 = a; and bycy = bocq then the constamt  is not identified.
(iv) If n=2 then the constant$i, by, c1, co, anda, are not identified except the ratio
of bics to axbocy.
(V) If n=2 andaibicr = azbycy then the constant  is not identified.

Hereafter, we defin@)' (") and w;¥(¢’) by (27) and (28) for the observation data
N(x") = Fi(x)|.,-0. Before we determine unknown things, we prove a lemma needed
later.

Lemma 8. Let a1, Q(D.), y, be given. Assume that the observation data
N(x) = F1(x)|,,=0 are given. Then we have

i ey - i
bﬂuxggﬁ[ eMﬂUM—ML_i@?@qu@VukwfgqeﬂM@M]]

242 15(¢))

= bZCl[iei)\I(gl)(h_%) _ {q)iV(g/))LI(C/)eiAI(g’)h _ ‘I"iv(é’,))ni({/)e_"’q@')” }]
1

(31)

Remark 9. The equality (31) is equal to the following equality:

i1 ——_—
bicoA3(¢') — bac1ri(¢)) 1 = I _ N (! }
(b1c225(¢") — bac121(¢)) {Zaf k’[(;’)e (9

= (bacar3(8) + bac1ri () Wy (¢)e 2 MM,

(32)

Proof of Lemma 8. By Lemma 5,£( F1)(¢’; x,) can be expressed in the form
of (26). On the other hand /(- F>)(¢’; x,) can be expressed in the form of (22) by the
discussion in Section 3. So, we multiptgA3(¢") and the Fourier-Laplace transform
of (19). In the same way, we multiply; and the Fourier-Laplace transform of (20).
We subtract the latter from the former, and substitute theatgns (26) and (22) into
it. Then we have the equality (31). O

Hereafter, we determine unknown things case by case. Wecfirssider the fol-
lowing three cases:
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(@ whM(i)=o0forall¢ es),.
(b) w(¢) is not identically zero with respect o/ € S/, , but) (x(€1)9") = 0 for
all & eR.
(c) wN(x(£1)0") #0 for somet; € R.
We remark that the solutioﬁl(x) of the equations

(33) Py(Dy)Fi(x) =0, x, >0,
(34) Q(D)[Ex(x — y) — Fi(x)]l5=0=0
satisfies

= 0L, —A3())eHEm
Lo FDE s x0)lm0 = e
( ) l)(§ X )| 0 ZajZ-Q(é-/’ )\1(;/)))"1(5/)

when @xfl)(;’;xn) — 0 asx, — +o . On the other hand, the condition (a) holds if
and only if

iQ(¢, —Aj(g)e e
2a30(8', 1 (6N
Then the condition (a) means the observation data are equtiet behavior of the

waves on the boundary of the half-space under the conditiah Medium 1 is laying
in the half-space.

(LeN)(E) =

Proposition 10. Let a1, Q(D,), y, be given. Assume that the observation data
N(x") = Fi(x)|.,=0 are given. Suppose thda) is satisfied. Ifn > 3 thena, = a; and
bicy = bycy. If n =2 thenbicy/az = bacy/as.

Proof. Set

’

Vi = {sl eR: 0} (x(E)0) 7 - e"x<&>>’~/al}

2a; x (51)
i s H sl
Vo= {E e R 0) () # o5 e i, g’:z;n(g’).}.
’ { 2T 20210
Note V1 x {0} C V,. The setsV; and V, are open sinceb{ (') is continuous. They
are not empty by Lemma 3. Note the equality (32) holds by Len8naand Remark 9.

Then we have
(35) b1c223(¢") = bac1ri (L")

for ¢/ = Z; (€') with & € V, by the equality (32) and the assumptidn’(¢’) = 0.
Hence we havebica/as = baei/as by the equality (35) withy’ = )0’ and&; € V.
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Hereafter, we assume > 3. We prowg = a; and bic, = byci. By squaring the
equality (35) and substitutingico/a» = baci/as into it, we have

(b1ca — bacp)(brca + bacr)(EZ +--- +E2 1) =0

on V,. There exists’ € V, such that &, ...,&, 1) # (0,..., 0) becausé/, is open
and not empty. Hence we havegc, = +byc1. By this andbica/az = bocy/ay, we have
az = a; and byc, = boey sincea; and ay are positive. ]

Proposition 11. Let a1, Q(Dy), y, be given. Assume that the observation data
N(x") = Fi(x)|,,=0 are given. If(b) is satisfied then bica/az = byc1/a1 and the con-
stantsa, and i are expressed as

o oo ) { . 3(Dglxl)(5')¢§(e’>},
GO g 1O T T e

_ g () De)E) } o
37 h=— — , =7
4D l”’l{azA;(;') 2@ Da @l @) )

onVy:={& e R-1:WN(¢) #0, ¢’ =Z, E'), wherepl (&) and ¢) (§') are defined
by
: 2&2)\.+ "Y,—it1 )y _ CI)N /
(38) g02]]_\](5/) = (l/ 1 1(§ ))eN / 1 (C )’ é_/ - Z,/n(‘i:/),
v (¢

39) () = —20(E)Dex) ) x [alngl {

23(Z,,(E))(De ))& Hl
X1E)Dex)ENNEN ]

Proof. We remark: > 3. Set

Vs = {gl eR: dY(x(£0)0) # eix@ﬂ«“"/"l} .

" 2a1(&1)

The setV; is open sinced)(¢’) is continuous. It is not empty by Lemma 3. Note the
equality (32) holds by Lemma 8 and Remark 9. Then we have/a> = boci/a1 by
the equality (32) with¢’ =x )0’ and & € V3 since we assumal (x(£1)0) = 0.
Note bic2 # 0 holds by this and the condition (ll) (see Section 2). Tf@ewe have

i 1

ax .
)\.+ é_/ _ }L+ é./ } { — ir @y _ CI)N ;./ }
© b - 2z} {0 Sl @)

= {AZ(C/) + %AI@’)} Wy (g)e 2RO
2

by substitutingboc1 = (a1/az)bicz into (32). NoteA3(¢') + (ar/a2)A1(¢’) is not zero
because its imaginary part is positive. Sat:= (&' e R"~1: WwN(¢") #0, ¢' =7, ¢')}.
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The setV, is open since¥! (¢’) is continuous. It is not empty by the assumption.
Then by (40), we have

(41) ol (§) =RENe2HEEM (2 0)
on Vi, wherel (&) is defined by (38), an& &( ) is defined by

az23(Z,,(§") + a121(Z,, ()
azr3(Z,,() — ai(Z), ()

Note D¢, (3;(Z;,(6")) = x1(6")(De, x1)(€")/af1{(Z,,(€"). So we have

(De)E) _ 2ihM} (e 2HEE
k) a211(Z;, ()
by applying D, to the equality (41). Then we have
1 ih _ ani(Z

(42) S wEN(De 01 )(E)
a5 (Z5, () a1 2xa(E")(De x2)(E et (€7)

k()=

(De?)(E) = {

by
(De,)E) _ 205Dy x1)(E)
k(") ara221(Z,,(EN5(Z,, ()
and the equality (41). Applyin@;, to the equality (42), we obtain

{a3(Z,E N} = 05 €),
where ¢}’ (¢') is defined by (39). Squaring this equality, we have
(43) (€ —ad&i+ +&20) = {e} @)
Applying Dy, to (43), we have

2 _ 93 ()(De93)(E)

44 XE€)?—ajE;+---+& ) = .

“9 b 67— ezlez A AT

Substituting the equality (44) into the equality (43), wevdndhe equality (36) because
if & =... =¢&,.1 =0 then& ¢ V4. We determinea, because it is positive. The
constanth is expressed as the equality (37) by (42). ]

Theorem 12. Let a1, Q(D,), y, be given. Assume that the observation data
N(x') = Fi(x)|.,=0 are given. If(c) is satisfied, then the constaat is expressed as

ay(Dg, ¢3)(E1)

45 =
(45) 2i (De, x)(E1)9h (£1)
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on Vs = {& € R: W (x(&)0") # 0}, where

—(i/2ax(Ex)e /e — &Y (x(£1)6)
) '

(46) 93 (61) =

Proof. Note the equality (32) holds by Lemma 8 and Remark &nTive have

blc‘g bZCl i

- c_ = - i (El) n/ay _ N /
< az ap >{ 2a1X(§1)ex } 1 (X(Sl)e)}

b C2 sz N 2i b Ja
= (P22 22 ) W (et e
as ag

by (32) with ¢’ =x €1)0'. SetVs 1= {&; € R : W (x(£1)0") # 0}. By the condition (I1)
(see Section 2), we have

(47) ol (&1) = Kpe@x e (2 0)
on Vs, where g} (&) is defined by (46) and; is defined by

arbico+ azbycy

1= .
airbico —abx1

Applying Dg, to the equality (47) and mixing it with (47) multiplied by
(2ih/a1)(Dg, x)(&1), we have the equality (45). L]

Here, we explain whether the width  &; can be determined with the given
data or not. In the cases of (b) and (c), the constant is detedchby Proposition 11
and Theorem 12, respectively. However, in the case of (&}, i) in the case when
the observation data are equal to the behavior of the waveth@rboundary of the
half-space under the condition that only Medium 1 is layinghie half-space, the con-
stanth cannot be identified by Proposition 10 and Remarki)7{{fi » > 3), or by
Proposition 10 and Remark 7-(v) (if = 2). In other words, foaeple the case of
n > 3, if a; =a; andbic, = bycy then we obtain the same observation data defined as
the solution of (33) and (34) even if the constant is différen

Hereafter, we set

i 1 . , N D N i3 e
48) KNE&':h) ::Eme’m; Yh=y.) _ {cbf’(g Yo MM 4y (¢1)e M EN } ’
(49) KY(E'3h) 1= 53O0 ol () O — w56,
1
where¢’ =Z/ €') for the observation datd x'( ) E(x)|,,=0. Then we can rewrite
the equality (31) as the following:

(50) b1y (¢ VKN (&' h) = bacaKY (€' h), ¢ = 7. (€)).
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We remark that ifK;(¢';2) = 0 and K2'(¢’;h) = 0 hold for all ¢ € R"~! then we
have a contradiction by Lemma 3, because we hafgc’) = —(i/2a2A%(¢"))e 1€
andWwlN(¢)y=0forall ¢’ =2, E)e S,,.

By Theorem 12, the constant is determined when (c) is satisfiberefore we
determine the constamt and the ratio ofbicy to bocy; under the assumption that s
also given.

Proposition 13. Let a;, O(D,), y, and & be given. Assume that the observation
data N(x') = Fi(x)l,,=0 are given. If KN (&';h) = O [resp. K)'(¢';h) = 0] for all
& e R" 1, thenbycy = 0 [resp. bic, = 0].

Proof. By Lemma 8, we have the equality (50). We can provelye#sis propo-
sition by this equality and the remark above. Ul

Proposition 14. Supposer = 2. Let a;, Q(D,), y, and h be given. Assume that
the observation dataV(x’) = Fi(x)l,,=0 are given. Suppos& ' (¢'; k) is not identically
zero with respect t¢’ and}' (¢; k) is not identically zero with respect ' . Then
the constantbicy/asb 1 is expressed as

bica _ K (&1 h)
azbacy x(EDK] (&1 h)

on {& € R: KV (&; h) #0}.

Proof. NoteA;(x(¢1)) = —x(§1)/a2. Then we can prove this proposition in the
same way as for Proposition 13. U

Theorem 15. Supposen > 3. Let a1, Q(D,), y, and h be given. Assume that
the observation dataV(x’) = F1(x)l,,=o are given. Suppos& ' (¢'; k) is not identically
zero with respect t&’ and 2 (£';h) is not identically zero with respect & . Put
K :=bica/bocy. Then the constants, and « are expressed as

X1EN (D, KV)E ) xa(€) — KN (' ) (De,x1)(E)}
(De, KN)E R)(ES +--- +E7 )

¢'=27,¢)

(51) as =

K" (&;h)
52 =— >
(52) A5

on V7 = {§ e R KNER) # O\ {8101 & € R}, where KN(&';h) =
KY (& h)/ KY€ h).
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Proof. SetVg := {&' € R"1: KN(&';h) # 0}. The setVs is open sinced) (')
and W (¢’) are continuous. It is not empty by the assumption. Then axeeh
(53) kaz(6) = KNEG ), ¢ =2,

on Vg since we obtain the equality (50) from Lemma 8, where & &' h( yre) a
defined as the statement above. Squaring the equality (33hawe

2
(54) %xl(s’)z —KAEE+ - +ER ) = KV (E R
2

Moreover we have

2 _ KV(E h)(Dy KY)E )

K
aZ xaE)(Dex1)E)

by applying D, to the equality (54). Notel7 := Vg \ {£10': &1 € R} is not empty
becausen > 3 and is open. We obtain

2= KN (@& (D, KY)(E h)xaE) — KV h)(Dexa) (€3 b))
(De, x1)(ENEE +--- +E2))
on V7 from substituting (55) into (54). Then we have the equalli{)(by substitut-

ing (56) into (55). Hence the constamt is determined because it is positive. By (53),
the constank is expressed as the equality (52). ]

(55)

(56)

In short, we can determine unknown things from the given @atahe flowchart
in Fig. 2, where®y (¢"), WN(¢"), K{(€';h), KY(&';h) are defined by (27), (28), (48),
(49), respectively.

Last, we mention a positive large real in Remark 16.

RemarRk 16. We deal withm as a fixed number. Indeed, this depends on
the unknown constants. However, we can check whethernthis soifarge that the
Lopatinski's determinant does not vanish for the deteraghinenstants or not after we
determine the unknown constants in the above way. If this aigel enough, then
there is no problem. If thisn is not large enough, then we takarger number as
new m instead of thisn , and determine the unknown constante again. This pro-
cedure is sure to conclude since there exists a large enougtberm certainly by
Theorem 1.
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We remark Proposition 6 in any cases.

No. (2 =2)

- “] ‘.anO
No.
WY £ 0? (Case (a)) n>3?
Yes Yes|
Proposition 10,
Remark 7-(iii)

Wl (x6') £ 0?

Yes| (Case (c))
\ Theorem 12 |

(" nis reconstructed. )

Proposition 10,
Remark 7-(v)

h is not identified.
az =aj.
bico = bocy.

Proposition 11

bicz _ bacy

az ax '
a, andh are
reconstructed.

h is not identified.
bica _ bacy

az ap

K:{V = 0.| Kév = 0.|
Proposition 13, Proposition 13,
Remark 7-(ii) Remark 7-(i)

byc1=0.

ao is not identified.

No. n=2)

ap is reconstructed>
bica > bocy IS
reconstructed.

Proposition 14,

Remark 7-(iv)

bico : azbocy
is reconstructed.

Fig. 2.

b1c2 = 0.
ao is not identified.
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