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Abstract
In this paper, we mainly prove that principal orbits of an @ctiof Hermann
type on a symmetric space of non-compact type are curvaiepted and proper
complex equifocal. The proof is performed by showing thahgipal orbits of the
action are partial tubes over a totally geodesic singulait @nd investingating the
shape operatores of the partial tubes over a submanifold sgnametric space of
non-compact type.

1. Introduction

Let G/K be a symmetric space of compact type akid be a symmetric sub
group of G (i.e., the group of all fixed points of an involutiofi 6). The H -action
on G/K is called aHermann action Recently, A. Kollross has classified hyperpolar
actions on irreducible symmetric spaces of compact typeo#ting to the classifica-
tion, a hyperpolar action on the symmetric space is a Hernention or a cohomo-
geneity one action. It is known that each principal orbit ohyperpolar action on a
symmetric space of compact type is an equifocal submandaldl that conversely any
homogeneous equifocal submanifold is catched as a princip& of a hyperpolar ac-
tion (see [13]). Thus any homogeneous equifocal submahiéblcodimension bigger
than one in a symmetric space of compact type is catched aeipad orbit of a
Hermann action. For a submanifold in a symmetric space ofammnpact type, the
equifocality is not a rigid property. So we [17] have recgrdefined a rigid property
of the complex equifocalityfor a submanifold in the symmetric space. L@} K be a
symmetric space of non-compact type aHd be a symmetric supguf G . In this
paper, we call thed -action o6/K  acttion of Hermann typeWe [19] showed that
principal orbits of the action are complex equifocal. A pd@Riemannian submersion
# of a pseudo-Hilbert space ont6/K is defined in a natural marses [17]). For
each complex equifocal submanifold  @/K , the inverse imagé(M) is com-
plex isoparametric in the sense of [17]. In this paper, if eerse imagep—1(M) is
proper complex isoparametric in the sense of [17], then wie Maa proper complex
equifocal submanifoldin [19], we introduced the notion of a complex hyperpolar ac
tion on a symmetric space of non-compact type. In this paperfirst prove the fol-
lowing fact.
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Theorem A. Actions of Hermann type on a symmetric space of non-compact
type are complex hyperpolar.

The main theorem of this paper is as follows.

Theorem B. Principal orbits of an action of Hermann type on a symmetric
space of non-compact type are curvature adapted and propemptex equifocal.

Remark 1.1. By imitating the proof of Theorem B in this paper, we cédmows
that principal orbits of a Hermann action on a symmetric spaft compact type are
curvature adapted.

Here we propose one problem.

Problem. Is any homogeneous complex equifocal submanifold of codgios
bigger than one catched as a principal orbit of an action afrtden type?

If this problem is solved positively, then it is shown thatyammogeneous com-
plex equifocal submanifold of codimension bigger than ang@roper complex equifo-
cal.

In Section 2, we recall basic notions and facts. In Sectiomw@,investigate the
shape operators of partial tubes over submanifolds withttide systematic normal
bundle in a symmetric space of non-compact type. In Sectjomedprove Theorems A
and B.

2. Basic notions and facts

In this section, we recall some notions introduced in [17¢ @ome facts related
to them. First we recall the notion of a complex equifocalrsahifold. LetN =G/K
be a symmetric spaceg,(@) be its orthogonal symmetric Lie algebra apdbe the
eigenspace for- 1 o& . The subspages identified with the tangent spacEx N
of N at eK, wheree is the identity element ¢f . L&f be an immersedreui-
fold in N and 71 M be its normal bundle. If, for each X €)M g;TM is an
abelian subspace i, then M is said tchave abelian normal bundlélso, if the nor-
mal connection ofM is flat and has trivial holonomy, théh  igds@i have globally
flat normal bundle In [17], we defined the notion of complex focal radii as imagi
nary focal radii of submanifolds in a symmetric space of wompact type as follows.
Let M be an immersed submanifold with abelian normal bundla Bymmetric space
N = G/K of non-compact type. Denote by the shape tensoMof .LetT M
andX € T\M  =gK). Denote by, the geodesic m with ~ (Op= . The Jacobi
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field Y alongy, withY (0) =X andr’ (0) =A,X is given by
Y(5) = (Py, 10, © (D50 — sD3 0 Ay))(X),

whereY’ (0) =5UY Py, 10 1S the parallel translation along,[jo s,

D¢ = g, o cogfv/—1 adg; v)) o g;*
and

sin(/—T adge: ™)
J1adeg t)

(see [25] or [16] in detail). Here ad is the adjoint repreagah of the Lie algebra
of G. Since M has abelian normal bundle, all focal radii (otheant conjugate radii)
of M are strong focal radii in the sense of [18] (see the prooTloéorem 2 in [18]).
Hence all focal radii (other than conjugate radii) of alopg re aatched as real
numbersso with Ker(DS, — soD3! o A,) # {0}. So, we call a complex numbep
with Ker(Dg, — zoD3;, o A7) # {0} acomplex focal radius of along, and call
dimKer(D¢, — zoDg,, o A7) the multiplicity of the complex focal radiugo, where DS,
(resp.D: ) implies the complexification of a magc cadt1zoad@; v))og; Y)lrm
(resp. g.o[{ sing/=1zoad@;))}/{v/—1z0ad@;*v)}]ogsY)Ir, i) from T, M to T,N°.
Also, for a complex focal radiugg of M along y,, we callzgv (e TXLMC) a com-
plex focal normal vector ofM ak. Furthermore, assume th&f  has globally flat
normal bundle. Letv™ be a parallel unit normal vector field Mf Assume that the
number (which may be 0 ando ) of distinct complex focal radorg y; is inde-

pendent of the choice af € M . Furthermore assume that the numbeot equal

sl —
D;, =g.o0

to 0. Let{r;x | i =1 2...} be the set of all complex focal radii alopg, where
[Fix] < |risnx] OF “Irix| = rivrc] & Rerix > Reriyg” OF “|ri | = |ris1x] & Rer;, =
Reriyiy & Imriy = —IMriyg, > 0 Letr;, (¢ =1,2...) be complex valued func-
tions on M defined by assigning, to eaehe M . We call these functigns

(i =1,2...)complex focal radius functions fai. We call r;v° acomplex focal nor-
mal vector field forv. If, for each parallel unit normal vector field ™ @ff , the nuenb
of distinct complex focal radii along;_ is independent of the choice afe M , each
complex focal radius function for ~ is constant af and it haastant multiplicity,
then we callM acomplex equifocal submanifoldet ¢ : H°([0, 1], g) — G be the
parallel transport map fo6 (see [17] about this definitionilar : G — G/K be the
natural projection. It is shown in [17] thaz is complex ega#l if and only if each
component of £ o ¢ Y(M) is complex isoparametric. In particular, if each compo-
nent of ¢r o ¢ Y1(M) is proper complex isoparametric, then we caéll praper com-
plex equifocal See [17] about the definitions of the complex isoparametgs and the
proper complex isoparametricness. In this paper, we asshateall complex equifocal
submanifolds are properly immersed complete ones.
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Next we recall the definition of a complex hyperpolar actionabosymmetric space
of non-compact type defined in [19]. Léi/K  be a symmetric spdceon-compact
type andH be a closed subgroup @f . If there exists a compldteotily geodesic
submanifoldX meeting alH -orbits orthogonally, then we d¢hk H -action onG/K
a complex hyperpolar actionlt is known that all principal orbits of the complex hy-
perpolar action are complex equifocal (see Theorem 12 df).[10 H is a symmetric
subgroup ofG (i.e., a group of all fixed points of an involutienof G), then we
call the H -action amaction of Hermann typelLet 6: G — G be the Cartan involu-
tion associated wittG/K 1§ (resp.h) be the Lie algebra oK (resgd ) andbe the
eigenspace fo- 1 of,, . Also, let*/K be the compact dualGofk . Assumage t
oof=60oc. Then we seh* :=hNf+/—1hNp. Let H* be the connected subgroup
of G* whose Lie algebra is equal tg*. It is clear thatH* is a symmetric subgroup
of G*, that is, theH* -action oiG*/K is a Hermann action. Thus the oeaci the
dual action of the Hermann action. On the other hand, in cdse© # 0 o o, there
exists an automorphism & withpeoop Hob =00 (pooop ) in terms of
Lemma 10.2 of [1]. From these facts, it follows that the -@mtis conjugate to the
dual action of a Hermann action.

At the end of this section, we recall the notion of a curvatadapted submani-
fold. Let M be a submanifold in a symmetric spaGe¢ K ahd be theeskeypsor
of M. Also, let R be the curvature tensor 6f/K . If, for each normetterv of M,
the operatorR (v 9 preservé& M x ( : the base poinvof ) invariantisndmmutes
with A,, then M is called acurvature adapted submanifoldRegrettably, examples of
a curvature adapted submanifold have not been known venhmuc

3. Shape operators of partial tubes

In this section, we investigate the shape operators ofgbartbes over a subman-
ifold with Lie triple systematic normal bundle in a symmetspace of non-compact
type. See [16] about the notion of a submanifold with Lie l&igystematic normal
bundle. LetM be a submanifold with Lie triple systematic nafrbundle in a sym-
metric spaceG/K of non-compact type. e ( ) be a connected suifsithin the
normal bundle7*M ofM such that, for any curye 5[0 B M Py 1 M(N)
Tﬂi(O)M) =¢(M)N Tﬁi(l)M holds, whereP;- is the parallel transport alofig ~ with respect
to the normal connection. Denote By  the set of all criticahpoof the normal ex-
ponential map exp of . Assume thatM(N)F @= . Then the restrictiop"e )
of expt tor () is an immersion of M ) int@G/K . Give the metric induckdm
that of G/K tot (M ). Thust ¥ ) is a (Riemannian) submanifold dfy K isamnet
cally immersed by exp|;(). We call such a submanifold M ) artial tube overM.
This terminology of partial tube was first used for submddgoin a Euclidean space
by Carter-West ([9]). Define a distributioW  onM( ) by Bt M( ﬂ)TT}(S)M)
(¢ € t(M)), wherer is the bundle projection af*M . We call this disatibn aver-
tical distributionon ¢ (M ). LetX € T, M. Take a curvex inM  withe™ (0) X . Let
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be a parallel normal vector field alorg  wigh (0¥= . We dendt@) by X. and call

it the horizontal lift of X to&. Define a distributiond o M ) byH: 45@ | X €
TryM} (¢ € t(M)). We call this distribution ehorizontal distributionon ¢ (M). As-
sume that # ) is contained in an -tubeM ( )Ee T M ||| eF . Define a sub-
bundleN of 7tr M) byNe =T;t M N exp. Tz £ M DT, M) (§ € 1(M)). Clearly
we haveT:r f ) =H:®V; (orthogonal direct sum) aﬂ!‘p‘t M( V@ Span }(1) (or-
thogonal direct sum), wherg:  is the geodesicGpK with ~ (@ = nde by A
(resp. A" ) the shape tensor &  (respM ( )). Also, denoteAby that submani-
fold #(M)NT;"M in exp" (I;"M ) immersed by exXp|;)~7:um- In the sequel, we omit
exp- unless otherwise mentioned. For a real analytic functioandé € T,xG/K ,
we denote the operatgr,o F  (ad(£))og-t by F(ad€ )) for simplicity. Then we can
obtain the following relations.

Proposition 3.1. Let& € #(M) andn € Ng.
(i) For v e Vg, we have

t — 27(®) — A7(8)
AvV =A@y Ay = AT
(i) For X € Ty¢yM, we have
Al )X = P, (—adg)sinh(ad{ )Y +cosh(asl( }X).

(iii) Assume thag; ! Sparé, ] is abelian wherey is the element oTni(s)M satisfying
exp*%§ (7 ) =n e regardn as an element ng(Tni(E)M) under the natural identification

of T,.yM with Ti(T},)M)). Then for X € T,)M, we have

A'Xe = P, (- ad@ ) sinh(ad( ¥ %)Aﬁx

N cosh(adf )} id sinh(ad€ ))— adf
( adg)  adgy

Yadinex ).

Proof. In this proof, we omit exp . Sinc&/ has Lie triple sysaim normal
bundle, the submanifold ekarf(E)M) is totally geodesic. From this fact, we can eas-
ily show the relations in (i). Now we shall show the relation(ii). Let 8: [0, 1] > M
be a curve withg(0) = X andf be a parallel normal vector field alogg with 0) =
£. Define a two-parameter mafy: [0, 1] x [0, 1] — G/K by 84(¢, s) := exp* (;E@))
((z,s) € [0,1] x [0, 1]). Define a vector field/ along: by s() :=9§1/91)(0, s)

(s €[0,1]). SinceJ is a Jacobi field along  with (0)% add (0)A:X ,itis
described as

J(s) = Py (D??X - SDEQ(ASX)) .
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Hence we have

(3.1) Xe =J (1) =P, (DX — DY (A¢X ) € P, Txe)M),
which implies H: =P,, (> M). Furthermore we have

~ 081 d . d iy
Vy — =J()=pP —| D)X —-(— DL ) (Ae X
Xe Bs s=1 @ " ((ds s=1 55) (ds s:ls SE)( ¢ )>

P, (ad(g)sinh(acﬂ )X — cosh(agl( ) X),

which belongs tol: ( M )) because &; P, T(;)M). Hence we have

~ 001
Vi oy

— 1y
=1

After all we obtain the relation in (ii). Next we shall showethelation in (iii). Lets
and£ be as above angl ~ be the parallel normal vector field gonith W0) =7,
wheren is the element d‘l‘l yM as in the statement (iii). Define a three parameter
mapé;: [0, 1]*x [0, /2] — G/K by 8a(t, s, u) := exp- 6 (cosiE { )+£/Ilnll )iy 7°()))
(¢, s,u) € [0, 1]% x [0, w/2]). For simplicity, setn® =4£/nll ¥ »n° :=e(lnlln)” and
E(n,u):=cos& +sim 4/||nl[ n) . Define a vector figlg (uo € [0, 7/2]) along yr.uo)

by Ju,(s) = (98/01)li=0.u=4o (s € [0, 1]). Since J,, is a Jacobi field along ., with
Jup(0) =X and J; (0) = —Agu0) X, it is described as

JHD(S) = PV;(E.HO)I[O..\] (Dm(n uo)X SD;é(ﬁtto)(AE(ﬁ-Mo)X)) .

In particular, we have/,,(1) = PeG.uq) Be(ruo) X, WNere Be(rug) = D¢l X — Diug) ©
Ag(m.u0)- Furthermore, we have
~ 08 ~ 08 ~
XE_ = V’? 3— = V,]sJM(l)
du s=1,u=0 t t=0,5=1

1
[lmog <P501|[0"] u(l) J0(1)>

t!ino u <(P501 |[0 ] V€(17.u))(B§(’7-“ )X) - PV$ B§X> )

where B; =D’ —Dy'o A; . Sinceg; ! Spari¢, 7} is abelian, we hawg *
P,,. Hence We have

01- | [0.4] Pys(ﬁ.u) -

~ 06
V=

X Bu

1
P (1m0 - 5:))

d
Py, ((- Bsmm) X)
du u=0

s=1,u=0
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=P, (ad(n“’" ysinh(ag( ¥ — %aedf))f‘ﬂsx

cosh(adf )} id sinh(ad€ ) adf —
(e T ey ) 2 nex),

which belongs toP,, Tr)M) = He(C T¢((M))). Hence we havé/s, 96/0u |)1.u=0 =
—A;g}?g. After all we obtain the relation in (iii) by noticing® =¢{|nll n) angf =
(e/1miDn -

As a corollary of this proposition, we have the following t&c

Corollary 3.2. Let& € #(M) andn € N:. Alsg let 7(§) = gK.
() Leta be a maximal abelian subspace wpfcontainingg¢ andp =a+ Y aen, Do
be the root space decomposition with respectitdf A; X = AX and g;1X € p,, then
we have

45 -~ "6 tanhe g, 1) +ha(s, ) ¢
n7E a(g: &) — Atanhe @2 7€) '
(i) Assume thag_!Sparié, ] is abelian. Leta be a maximal abelian subspace jof

containing g;* Sparé, nf andp =a+ ... bo be the root space decomposition with
respect toa. If A:X =1X, A;X =pX and X € p,, then we have

_ 1 o 1 1
= e | e et ) e )

. (1_ tanha_@l**lg)
(g §)

A'X,

) a(g T +tanh é*lé)u}ffg-

Proof. These relations follow from the relations in (ii) ardiii) of Proposi-
tion 3.1 and (3.1). O

4. Proofs of Theorems A and B

In this section, we first prove Theorem A.

Proof of Theorem A. LetG/K be a symmetric space of nhon-compgm gnd
H be a symmetric subgroup @ . Let be the cohomogeneity of Hhectiora Ac-
cording to the proof of Theorem 3 of [19], there exists a -digienal abelian sub-
spacet of T, H(eK)(C p = T,k G/K) and £ = exp t is a flat totally geodesic sub-
manifold in G/K meeting orthogonally to allf -orbits through , evh exg is the
normal exponential map off ek ). We have only to show that/ll bisrmeetX .
Take an arbitrary poinp € G/K . Leyy be a curve @/K with  (0) eX and
y(1) = p. The H -orbits give a Riemannian foliation (with singulaaves) andG/K



606 N. Koike

intersect?

expt [k HeK )
=L/HNK

a principal orbit of
the isotropy action of./H N K

Fig. 2.

is complete. Hence, by imitating the proof of Lemma 2.1 of, [fle can show that
there exists a rectanglé :,J0 ¥} ,[0 X} G/K  such that the curve> §t,s ()
is orthogonal to theH -orbits for every € [0 1], the curve—~ & ¢,5( ) isn€o
tained in aH -orbit for each € [0 1] and ¢ ) 3 ¢ () for eache ,[0 1]. Let
B() :=46(t, 0). Since the curvgd is orthogonal #& -orbits, we sed thés contained
in anotherr -dimensional flat totally geodesic submanifald hrotgheK (see Fig. 1).
Thus Hp meets exp I[x H ek )). Furthermore, since the intersectidngf@rbits
with exp* (T;x H €K )) are regarded as the orbits of the isotropy actiba symmetric
spacelL./H N K (see the proof of Lemma 4.2) aid is regarded as a sedtibe
isotropy action, it follows thatHp meet® (see Fig. 2). This ptetes the proof.
O

Next we prove Theorem B. For its purpose, we shall prepare lemumas. Let
g = f +p be the Cartan decomposition associated with a symmetricespa K of
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non-compact type, wherg (resp.f) is the Lie algebra ofG (respK ). Také € p.
Let h be the Lie algebra of a symmetric subgroip @®f . 86t K [ Jh=c H |
exp(—Zh expZ € K}, which is the isotropy group of thE -orbit ((eXpK ) t) a
(expZ)K . Denote byn{[f] the Lie algebra ofN7 K ]. Then we have

ny[f1 = {X € b | Ad(exp(-Z)X € f},

where Ad is the adjoint representation 6f  gn Denote byng[ﬂL the orthogonal
complement ofn/[f] in h. We have

expZ;* (Tiexpzx (H((€XPZ )K ) ={(Ad(expEZ )Y ) | Y € nf[f]*).
Take X € n{[f]* and & € expZ, (T, H(EXPZ K ).
Lemma 4.1. Let A be the shape tensor of the orlit((expZ )X ) Then we have
Aexpz)6(EXPZ ) (Ad(expt-Z )X ) = —expZ, [Ad(exp&Z X ), §].

Proof. Define acurve () irH ((exp K) )byt ():=(exf eXpK) and define

a normal vector fieldt #() ofH ((exd § ) alongz () byt () := (exk . ) (eXp.&)
which is parallel with respect to the normal connection of tirbit by Theorem 2.1

of [15]. Also, define a curver #() irG by t() = exX e#p . Easily we csimow
c(t) = g(t)«(Ad(expZ))X ). Seta §) =g ¢ ylg(r +s). By using a relation in the
proof of Lemma 2.2 of [15], we have

Ven& () = Vet adiexpe 2 ), £ (1)
= g(t)« (%‘Szoa(s)llg(l)llé(f +5) + [(Ad(exp(~=Z))X ), "E])
= g(1):[(Ad(exp(=Z))X ¥, &],

whereV is the Levi-Civita connection @ /K . On the other hand,hﬂeevgb)S(t) =
0, whereV* is the normal connection ¢f ((eXpk ) ). Hence we havgc(r) =
—g(t)«[(Ad(exp(—=Z))X ), £]. Substitutings = 0 into this relation, we can obtain the
desired relation. ]

Next we show the following fact in terms of this lemma.

Lemma 4.2. There exists a symmetric subgroup’ conjugateHo satisfying
the following conditiongi) and (ii):
(i) The orbit H'(eK) is totally geodesic
(i) Each H’-orbit is a partial tube overH'(eK) contained int.(H'(eK)) for some
positive numbeg .
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Proof. Let# be the Cartan involution af associated with K and abhe
involution of G with Fix(c) = H . According to Lemma 10.2 of [1], éne exists an in-
ner automorphismp of;  withdoo op™)of =0o(pooopl). Seto’ :=pocop?
and H' := Fixg’), which is conjugate t&/ . First we show ttat sassfihe condi-
tion (i). Let iy’ be the Lie algebra ofi’ . Clearly we haw%,[f] =fNn, where 0 is the
zero element of. Hence the tangent spadex H'(eK( )) is identified with the orthog-
onal complementj( )+ of N in §’. Fromo’'of =0oo’, we havey’ = fnh' +pNi’
and hencef(Op’)* = pNp’. Let A be the shape tensor &' eX ). By using Lemma 4.1,
we haveA; X, = —[Xj, ] (X € n) [f]}). Since X € n) [fI* = pNb’ C p, we haveX; =
0 and henced: X, = 0. This implies thatH’ dK ) is totally geodesic. Next we show
that H' satisfies the condition (ii). Note that the orbit eK( ) hads triple systematic
normal bundle by Lemma 2.4 of [15]. Denote by éxi@*H' eK( —)G/K  the nor-
mal exponential map o’ e ). Sinc€/K is of non-compact type &K (is )
totally geodesic, exp is a diffeomorphism 8f-H’ ek ) in®/K . Takeabitrary
H'-orbit H'(gK) and set¥ = expt }(H'(gK)). Take an arbitrar € TN T% H'(eK).
Also, take an arbitrary (exp K) € H e ), where exp is the exponémtiap of G
andY e ng,[f]L = (fNp)*. Define a curvee : [0 1}> H' dK ) by t() := (exy K
From §NbH)L =pNnh Cp, we haveY € p. Hence the curve is a geodesic Gy K
According to Theorem 2.1 of [15], (exlp*uﬁ(H,(eK) coincides with the parallel trans-
lation P alongc with respect to the normal connection#feK( ). etenve have
exp' (PLE) = ypie (1) = Meprye(1) = (eXpY o y: )(1) = ex (expé E H' K ), that
is, P& € . It follows from this fact thatP," € N T H'(eK)) = T N T,y H'(eK)
holds for every geodesig : [0 > H’ ¢K ). Furthermore, it followsrh this fact
that P;- €N Ty H'(eK)) = SNTy)H'(eK) holds for every curves : [0 1> H' oK ).
That is, H @K ) is a partial tube ovell’ ¢eK ). S&t :=FiXp6 ). Apakk,(HNK )
is a symmetric pair and a submanifokin 75 H'(eK) in T,z H'(eK) is regarded as a
principal orbit of the linear isotropy representation oé tiymmetric spacé./H' N K
(see [13]). Henc&NT, % H'(eK) is contained in a hypersphere My H' eK ) centered
0 (0: the zero element of x H' ek )). Let be a radius of the hypersphEhen we
have¥ C r.(H'(eK)). This completes the proof. U

Next, by using Theorem A, Corollary 3.2 and Lemma 4.2, we profieorem B.

Proof of Theorem B. LetH be a symmetric subgroup®f . Take acpréal
orbit M of the H -action onG/K . According to Lemma 4.2, we may assuihat the
orbit H(eK) is totally geodesic and tha? is a partial tube o¥£rK ( cohtained in
t.(H(eK)) for some positive numbes . Letbe ar -dimensional abelian subspace of
TX H(eK) and = :=exp t, wherer is the cohomogeneity of thé -action. As stated
in the proof of Theorem A, the orbitY med& . Let éxp £ € t) be a intersection
point of M and X . Leta be a maximal abelian subspace of= 7,xG/K contain-
ingtandp =a+) .. b. be the root space decomposition with respecttd-or
simplicity, denotea by po. Since H €K ) has Lie triple systematic normal bundle, we
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have T.x H €K' ) =) ,cn.u0/(P« N Tex H(eK)). Denote byA the shape tensor of
Since H €K ) is totally geodesic antf  is a partial tube with alpeli@rmal bundle
over H K ), we can show

A5 Xe = —a(€)tanha € X: (X € py N Tox H(eK)),
4.1) A, X: = —a(7) tanke £ X;
(X € pa NT.xH(eK), 1€ Tgy .M N Sparty: (1)*)

in terms of Corollary 3.2, wherer € A,U{0} andn is the element ofx H ek )
corresponding to expln e Ti(T,%xH(eK)) under the natural identification of
T:(T; H(eK)) with T,% H(eK). Let p’ = T, H(eK). Sincep’ is a Lie triple sys-
tem andt is a maximal abelian subspace jgf we have the root space decomposition
p'=t+} 4., s With respect tot. On the other hand, we haye=t+3_,_, (paNPp"),
where we again use the fact that is a Lie triple system. It is clear thaty =
ZaeAﬁ(pa np", vzhereA,g ={a € Alaly = B}. Hence we have\, = {a|; | o €
A.}. Denote byA the shape tensor oM N explk H eK )) in ex@fH eK )).
Since M N exp [k H €K )) is regarded as a principal orbit of the isgtragtion
of a symmetric space of non-compact type, we ha@yg.:(M Nexp* X H €K))) =

3 e, (BXPE L) = X yen, (€XPE ) fu N p)). AlsO, we have

Agv = tagk(i)e ) (v € (expé ) pa N ")),
(4.2) ~ 0
Ay = %ﬁ) ((v € (expg ) o N ")),

wheren andp  are as above. On the other hand, according tosRimp@®.1, we have

(4.3) A}-,E(l)v = A}-,E(l)v, Anv = va,
wherev € Texp ¢ (M Nexp* (Ix H €K ))). Also, it is easy to show that

(expg ) '7:(1) =¢ € a,
(4.4) (expt)'n=nea  (by the abelianity of Spdg, n}),
(expt ), *Xe = coshw € X € po(X € po N Tux H(eK)).

From (4.1)-(4.4) and the homogeneity &f , it follows thdt  isvature adapted.
Furthermore, by noticing tanh&( J = 1, we see thidt  is properpiermequifocal
in terms of (ii) of Theorem A in [17]. ]
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