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Abstract
In this paper, we mainly prove that principal orbits of an action of Hermann

type on a symmetric space of non-compact type are curvature adapted and proper
complex equifocal. The proof is performed by showing that principal orbits of the
action are partial tubes over a totally geodesic singular orbit and investingating the
shape operatores of the partial tubes over a submanifold in asymmetric space of
non-compact type.

1. Introduction

Let be a symmetric space of compact type and be a symmetric sub-
group of (i.e., the group of all fixed points of an involution of ). The -action
on is called aHermann action. Recently, A. Kollross has classified hyperpolar
actions on irreducible symmetric spaces of compact type. According to the classifica-
tion, a hyperpolar action on the symmetric space is a Hermannaction or a cohomo-
geneity one action. It is known that each principal orbit of ahyperpolar action on a
symmetric space of compact type is an equifocal submanifoldand that conversely any
homogeneous equifocal submanifold is catched as a principal orbit of a hyperpolar ac-
tion (see [13]). Thus any homogeneous equifocal submanifold of codimension bigger
than one in a symmetric space of compact type is catched as a principal orbit of a
Hermann action. For a submanifold in a symmetric space of non-compact type, the
equifocality is not a rigid property. So we [17] have recently defined a rigid property
of the complex equifocalityfor a submanifold in the symmetric space. Let be a
symmetric space of non-compact type and be a symmetric subgroup of . In this
paper, we call the -action on anaction of Hermann type. We [19] showed that
principal orbits of the action are complex equifocal. A pseudo-Riemannian submersion

of a pseudo-Hilbert space onto is defined in a natural manner (see [17]). For
each complex equifocal submanifold in , the inverse image1( ) is com-
plex isoparametric in the sense of [17]. In this paper, if theinverse image 1( ) is
proper complex isoparametric in the sense of [17], then we call a proper complex
equifocal submanifold. In [19], we introduced the notion of a complex hyperpolar ac-
tion on a symmetric space of non-compact type. In this paper,we first prove the fol-
lowing fact.
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Theorem A. Actions of Hermann type on a symmetric space of non-compact
type are complex hyperpolar.

The main theorem of this paper is as follows.

Theorem B. Principal orbits of an action of Hermann type on a symmetric
space of non-compact type are curvature adapted and proper complex equifocal.

REMARK 1.1. By imitating the proof of Theorem B in this paper, we can show
that principal orbits of a Hermann action on a symmetric space of compact type are
curvature adapted.

Here we propose one problem.

Problem. Is any homogeneous complex equifocal submanifold of codimension
bigger than one catched as a principal orbit of an action of Hermann type?

If this problem is solved positively, then it is shown that any homogeneous com-
plex equifocal submanifold of codimension bigger than one is proper complex equifo-
cal.

In Section 2, we recall basic notions and facts. In Section 3,we investigate the
shape operators of partial tubes over submanifolds with Lietriple systematic normal
bundle in a symmetric space of non-compact type. In Section 4, we prove Theorems A
and B.

2. Basic notions and facts

In this section, we recall some notions introduced in [17] and some facts related
to them. First we recall the notion of a complex equifocal submanifold. Let =
be a symmetric space, (g ) be its orthogonal symmetric Lie algebra andp be the
eigenspace for 1 of . The subspacep is identified with the tangent space
of at , where is the identity element of . Let be an immersed submani-
fold in and be its normal bundle. If, for each (= ) , 1 is an
abelian subspace inp, then is said tohave abelian normal bundle. Also, if the nor-
mal connection of is flat and has trivial holonomy, then is said to have globally
flat normal bundle. In [17], we defined the notion of complex focal radii as imagi-
nary focal radii of submanifolds in a symmetric space of non-compact type as follows.
Let be an immersed submanifold with abelian normal bundle ina symmetric space

= of non-compact type. Denote by the shape tensor of . Let
and ( = ). Denote by the geodesic in with ˙ (0) = . The Jacobi
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field along with (0) = and (0) = is given by

( ) = [0 ] ( ) ( )

where (0) = , [0 ] is the parallel translation along [0 ] ,

= cos 1 ad( 1 ) 1

and

=
sin( 1 ad( 1 ))

1 ad( 1 )
1

(see [25] or [16] in detail). Here ad is the adjoint representation of the Lie algebrag
of . Since has abelian normal bundle, all focal radii (other than conjugate radii)
of are strong focal radii in the sense of [18] (see the proof ofTheorem 2 in [18]).
Hence all focal radii (other than conjugate radii) of along are catched as real
numbers 0 with Ker(

0 0 0
) = 0 . So, we call a complex number0

with Ker(
0 0 0

c) = 0 a complex focal radius of along and call
dim Ker(

0 0 0

c) the multiplicity of the complex focal radius0, where
0

(resp.
0

) implies the complexification of a map ( cos( 1 0 ad( 1 )) 1)
(resp. ( sin( 1 0 ad( 1 )) 1 0 ad( 1 ) 1) ) from to c.
Also, for a complex focal radius0 of along , we call 0 (

c
) a com-

plex focal normal vector of at . Furthermore, assume that has globally flat
normal bundle. Let ˜ be a parallel unit normal vector field of .Assume that the
number (which may be 0 and ) of distinct complex focal radii along ˜ is inde-
pendent of the choice of . Furthermore assume that the numberis not equal
to 0. Let = 1 2 be the set of all complex focal radii along̃ , where

+1 or “ = +1 & Re Re +1 ” or “ = +1 & Re =
Re +1 & Im = Im +1 0.” Let ( = 1 2 ) be complex valued func-
tions on defined by assigning to each . We call these functions
( = 1 2 ) complex focal radius functions for̃. We call ˜ acomplex focal nor-
mal vector field for˜ . If, for each parallel unit normal vector field ˜ of , the number
of distinct complex focal radii along ˜ is independent of the choice of , each
complex focal radius function for ˜ is constant on and it has constant multiplicity,
then we call acomplex equifocal submanifold. Let : 0([0 1] g) be the
parallel transport map for (see [17] about this definition) and : be the
natural projection. It is shown in [17] that is complex equifocal if and only if each
component of ( )1( ) is complex isoparametric. In particular, if each compo-
nent of ( ) 1( ) is proper complex isoparametric, then we call aproper com-
plex equifocal. See [17] about the definitions of the complex isoparametricness and the
proper complex isoparametricness. In this paper, we assumethat all complex equifocal
submanifolds are properly immersed complete ones.
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Next we recall the definition of a complex hyperpolar action on a symmetric space
of non-compact type defined in [19]. Let be a symmetric space of non-compact
type and be a closed subgroup of . If there exists a complete flat totally geodesic
submanifold meeting all -orbits orthogonally, then we callthe -action on
a complex hyperpolar action. It is known that all principal orbits of the complex hy-
perpolar action are complex equifocal (see Theorem 12 of [19]). If is a symmetric
subgroup of (i.e., a group of all fixed points of an involutionof ), then we
call the -action anaction of Hermann type. Let : be the Cartan involu-
tion associated with ,f (resp.h) be the Lie algebra of (resp. ) andp be the
eigenspace for 1 of . Also, let be the compact dual of . Assume that

= . Then we seth := h f + 1h p. Let be the connected subgroup
of whose Lie algebra is equal toh . It is clear that is a symmetric subgroup
of , that is, the -action on is a Hermann action. Thus the -action is the
dual action of the Hermann action. On the other hand, in case of = , there
exists an automorphism of with ( 1) = ( 1) in terms of
Lemma 10.2 of [1]. From these facts, it follows that the -action is conjugate to the
dual action of a Hermann action.

At the end of this section, we recall the notion of a curvatureadapted submani-
fold. Let be a submanifold in a symmetric space and be the shape tensor
of . Also, let be the curvature tensor of . If, for each normal vector of ,
the operator ( ) preserves ( : the base point of ) invariant andit commutes
with , then is called acurvature adapted submanifold. Regrettably, examples of
a curvature adapted submanifold have not been known very much.

3. Shape operators of partial tubes

In this section, we investigate the shape operators of partial tubes over a subman-
ifold with Lie triple systematic normal bundle in a symmetric space of non-compact
type. See [16] about the notion of a submanifold with Lie triple systematic normal
bundle. Let be a submanifold with Lie triple systematic normal bundle in a sym-
metric space of non-compact type. Let ( ) be a connected submanifold in the
normal bundle of such that, for any curve : [0 1] , ( ( )

(0) ) = ( ) (1) holds, where is the parallel transport along with respect
to the normal connection. Denote by the set of all critical points of the normal ex-
ponential map exp of . Assume that ( ) = . Then the restriction exp ( )

of exp to ( ) is an immersion of ( ) into . Give the metric inducedfrom
that of to ( ). Thus ( ) is a (Riemannian) submanifold in isometri-
cally immersed by exp ( ). We call such a submanifold ( ) apartial tube over .
This terminology of partial tube was first used for submanifolds in a Euclidean space
by Carter-West ([9]). Define a distribution on ( ) by = ( ( ) ( ) )
( ( )), where is the bundle projection of . We call this distribution a ver-
tical distribution on ( ). Let ( ) . Take a curve in with ˙ (0) = . Let



ACTIONS OF HERMANN TYPE 603

be a parallel normal vector field along with (0) = . We denote˙(0) by and call
it the horizontal lift of to . Define a distribution on ( ) by =

( ) ( ( )). We call this distribution ahorizontal distributionon ( ). As-
sume that ( ) is contained in an -tube ( ) := = . Define a sub-
bundle of ( ) by := ( ) exp ( ( ( ) ( ) )) ( ( )). Clearly
we have ( ) = (orthogonal direct sum) and ( ) = Span ˙ (1) (or-
thogonal direct sum), where is the geodesic in with ˙ (0) = . Denote by
(resp. ) the shape tensor of (resp. ( )). Also, denote by that of a submani-
fold ( ) in exp ( ) immersed by exp ( ) . In the sequel, we omit
exp unless otherwise mentioned. For a real analytic function and ,
we denote the operator (ad(1 )) 1 by (ad( )) for simplicity. Then we can
obtain the following relations.

Proposition 3.1. Let ( ) and .
(i) For , we have

˙ (1) = ( )
˙ (1) , = ( )

(ii) For ( ) , we have

˙ (1) = ad( ) sinh(ad( )) + cosh(ad( ))

(iii) Assume that 1 Span ¯ is abelian, where ¯ is the element of ( ) satisfying
exp (¯) = (we regard¯ as an element of ( ( ) ) under the natural identification
of ( ) with ( ( ) )). Then, for ( ) , we have

= ad(¯) sinh(ad( )) +
sinh(ad( ))

ad( )
¯

+
cosh(ad( )) id

ad( )

sinh(ad( )) ad( )

ad( )2
ad(¯)

Proof. In this proof, we omit exp . Since has Lie triple systematic normal
bundle, the submanifold exp (( ) ) is totally geodesic. From this fact, we can eas-
ily show the relations in (i). Now we shall show the relation in (ii). Let : [0 1]
be a curve with˙ (0) = and be a parallel normal vector field along with (0) =
. Define a two-parameter map1 : [0 1] [0 1] by 1( ) := exp ( ( ))

(( ) [0 1] [0 1]). Define a vector field along by ( ) := (1 )(0 )
( [0 1]). Since is a Jacobi field along with (0) = and (0) = , it is
described as

( ) = [0 ] ( )
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Hence we have

(3.1) = (1) = ( ) ( ( ) )

which implies = ( ( ) ). Furthermore we have

1

=1

= (1) =
=1 =1

( )

= ad( ) sinh(ad( )) cosh(ad( ))

which belongs to ( ( )) because of = (( ) ). Hence we have

1

=1

= ˙ (1)

After all we obtain the relation in (ii). Next we shall show the relation in (iii). Let
and be as above and ¯ be the parallel normal vector field along with ¯(0) = ¯,
where ¯ is the element of ( ) as in the statement (iii). Define a three parameter
map 2 : [0 1]2 [0 2] by 2( ) := exp ( (cos ( )+( ¯ ) sin ¯( )))
(( ) [0 1]2 [0 2]). For simplicity, set := ( ) , ¯ := ( ¯ )¯ and
(¯ ) := cos +sin ( ¯ )¯. Define a vector field0 ( 0 [0 2]) along (¯ 0)

by 0( ) = ( ) =0 = 0 ( [0 1]). Since 0 is a Jacobi field along (¯ 0) with

0(0) = and
0
(0) = (¯ 0) , it is described as

0( ) = (¯ 0) [0 ] (¯ 0) (¯ 0)( (¯ 0) )

In particular, we have 0(1) = (¯ 0) (¯ 0) , where (¯ 0) := (¯ 0) (¯ 0)

(¯ 0). Furthermore, we have

=1 =0

=
=0 =1

= (1)

= lim
0

1 1
01 [0 ]

(1) 0(1)

= lim
0

1
( 1

01 [0 ] (¯ ))( (¯ ) )

where := . Since 1 Span ¯ is abelian, we have 1
01 [0 ] (¯ ) =

. Hence we have

=1 =0

= lim
0

1
( (¯ ) )

=
=0

(¯ )
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= ad(¯ ) sinh(ad( ))
sinh(ad( ))

ad( )
¯

cosh(ad( )) id

ad( )

sinh(ad( )) ad( )

ad( )2
ad(¯ )

which belongs to ( ( ) ) = ( ( ( ))). Hence we have ( )=1 =0 =

. After all we obtain the relation in (iii) by noticing = ( ) and̄ =
( )¯.

As a corollary of this proposition, we have the following facts.

Corollary 3.2. Let ( ) and . Also, let ( ) = .
(i) Let a be a maximal abelian subspace ofp containing 1 and p = a +

+
p

be the root space decomposition with respect toa. If = and 1 p , then
we have

˙ (1) =
( 1 )2 tanh ( 1 ) + ( 1 )

( 1 ) tanh ( 1 )

(ii) Assume that 1 Span ¯ is abelian. Leta be a maximal abelian subspace ofp

containing 1 Span ¯ and p = a +
+
p be the root space decomposition with

respect toa. If = , ¯ = and p , then we have

=
1

( 1 ) tanh ( 1 )
( 1 ) ( 1¯) tanh ( 1 )

+ 1
tanh ( 1 )

( 1 )
( 1¯) + tanh ( 1 )

Proof. These relations follow from the relations in (ii) and(iii) of Proposi-
tion 3.1 and (3.1).

4. Proofs of Theorems A and B

In this section, we first prove Theorem A.

Proof of Theorem A. Let be a symmetric space of non-compact type and
be a symmetric subgroup of . Let be the cohomogeneity of the -action. Ac-

cording to the proof of Theorem 3 of [19], there exists a -dimensional abelian sub-
spacet of ( )( p = ) and := exp t is a flat totally geodesic sub-
manifold in meeting orthogonally to all -orbits through , where exp is the
normal exponential map of ( ). We have only to show that all -orbits meet .
Take an arbitrary point . Let be a curve in with (0) = and

(1) = . The -orbits give a Riemannian foliation (with singular leaves) and
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intersect?

Fig. 1.

exp ( )
=

a principal orbit of
the isotropy action of

Fig. 2.

is complete. Hence, by imitating the proof of Lemma 2.1 of [7], we can show that
there exists a rectangle : [0 1] [0 1] such that the curve ( )
is orthogonal to the -orbits for every [0 1], the curve ( ) is con-
tained in a -orbit for each [0 1] and ( ) = ( ) for each [0 1]. Let

( ) := ( 0). Since the curve is orthogonal to -orbits, we see that is contained
in another -dimensional flat totally geodesic submanifold through (see Fig. 1).
Thus meets exp ( ( )). Furthermore, since the intersections of -orbits
with exp ( ( )) are regarded as the orbits of the isotropy action of a symmetric
space (see the proof of Lemma 4.2) and is regarded as a sectionof the
isotropy action, it follows that meets (see Fig. 2). This completes the proof.

Next we prove Theorem B. For its purpose, we shall prepare twolemmas. Let
g = f + p be the Cartan decomposition associated with a symmetric space of
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non-compact type, whereg (resp. f) is the Lie algebra of (resp. ). Take p.
Let h be the Lie algebra of a symmetric subgroup of . Set [ ] :=
exp( ) exp , which is the isotropy group of the -orbit ((exp ) ) at
(exp ) . Denote bynh [f] the Lie algebra of [ ]. Then we have

nh [f] = h Ad(exp( )) f

where Ad is the adjoint representation of ong. Denote bynh [f] the orthogonal
complement ofnh [f] in h. We have

exp 1
(exp ) ( ((exp ) )) = (Ad(exp( )) )p nh [f]

Take nh [f] and exp 1( (exp ) ((exp ) )).

Lemma 4.1. Let be the shape tensor of the orbit((exp ) ). Then we have

(exp ) (exp ) (Ad(exp( )) )p = exp [Ad(exp( ) )f ]

Proof. Define a curve ( ) in ((exp ) ) by ( ) := (exp exp ) and define
a normal vector field ( ) of ((exp ) ) along ( ) by ( ) := (exp ) (exp ),
which is parallel with respect to the normal connection of the orbit by Theorem 2.1
of [15]. Also, define a curve ( ) in by ( ) := exp exp . Easily we canshow
˙( ) = ( ) (Ad(exp( )) )p. Set ( ) := ( ) 1 ( + ). By using a relation in the
proof of Lemma 2.2 of [15], we have

˙( ) ( ) = ( ) (Ad(exp( )) )p ( )

= ( )
=0

( ) 1 ( ) 1 ( + ) + [(Ad(exp( )) )f ]

= ( ) [(Ad(exp( )) )f ]

where is the Levi-Civita connection of . On the other hand, wehave ˙( ) ( ) =
0, where is the normal connection of ((exp ) ). Hence we have( ) ˙( ) =

( ) [(Ad(exp( )) )f ]. Substituting = 0 into this relation, we can obtain the
desired relation.

Next we show the following fact in terms of this lemma.

Lemma 4.2. There exists a symmetric subgroup conjugate to satisfying
the following conditions(i) and (ii):
(i) The orbit ( ) is totally geodesic,
(ii) Each -orbit is a partial tube over ( ) contained in ( ( )) for some
positive number .
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Proof. Let be the Cartan involution of associated with and bean
involution of with Fix( ) = . According to Lemma 10.2 of [1], there exists an in-
ner automorphism of with ( 1) = ( 1). Set := 1

and := Fix( ), which is conjugate to . First we show that satisfies the condi-
tion (i). Let h be the Lie algebra of . Clearly we haven0

h [f] = f h , where 0 is the
zero element ofp. Hence the tangent space ( ( )) is identified with the orthog-
onal complement (f h ) of f h in h . From = , we haveh = f h +p h

and hence (f h ) = p h . Let be the shape tensor of ( ). By using Lemma 4.1,
we have p = [ f ] ( n0

h [f] ). Since n0
h [f] = p h p, we have f =

0 and hence p = 0. This implies that ( ) is totally geodesic. Next we show
that satisfies the condition (ii). Note that the orbit ( ) has Lie triple systematic
normal bundle by Lemma 2.4 of [15]. Denote by exp : ( ) the nor-
mal exponential map of ( ). Since is of non-compact type and ( )is
totally geodesic, exp is a diffeomorphism of ( ) into . Take anarbitrary

-orbit ( ) and setT := exp 1( ( )). Take an arbitrary T ( ).
Also, take an arbitrary (exp ) ( ), where exp is the exponential map of
and n0

h [f] = (f h ) . Define a curve : [0 1] ( ) by ( ) := (exp ) .
From (f h ) = p h p, we have p. Hence the curve is a geodesic in .
According to Theorem 2.1 of [15], (exp ) ( ) coincides with the parallel trans-
lation along with respect to the normal connection of ( ). Hence we have
exp ( ) = (1) = (exp ) (1) = (exp )(1) = exp (exp ) ( ), that
is, T. It follows from this fact that (T (0) ( )) = T (1) ( )
holds for every geodesic : [0 1] ( ). Furthermore, it follows from this fact
that (T (0) ( )) = T (1) ( ) holds for every curve : [0 1] ( ).
That is, ( ) is a partial tube over ( ). Set := Fix( ). A pair ( )
is a symmetric pair and a submanifoldT ( ) in ( ) is regarded as a
principal orbit of the linear isotropy representation of the symmetric space
(see [13]). HenceT ( ) is contained in a hypersphere in ( ) centered
0 (0: the zero element of ( )). Let be a radius of the hypersphere. Then we
haveT ( ( )). This completes the proof.

Next, by using Theorem A, Corollary 3.2 and Lemma 4.2, we prove Theorem B.

Proof of Theorem B. Let be a symmetric subgroup of . Take a principal
orbit of the -action on . According to Lemma 4.2, we may assumethat the
orbit ( ) is totally geodesic and that is a partial tube over ( )contained in

( ( )) for some positive number . Lett be a -dimensional abelian subspace of
( ) and := exp t, where is the cohomogeneity of the -action. As stated

in the proof of Theorem A, the orbit meet . Let exp ( t) be a intersection
point of and . Leta be a maximal abelian subspace ofp = contain-
ing t and p = a +

+
p be the root space decomposition with respect toa. For

simplicity, denotea by p0. Since ( ) has Lie triple systematic normal bundle, we
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have ( ) =
+ 0 (p ( )). Denote by the shape tensor of .

Since ( ) is totally geodesic and is a partial tube with abelian normal bundle
over ( ), we can show

˙ (1) = ( ) tanh ( ) p ( )

= (¯) tanh ( )(4.1)

p ( ) exp Span ˙ (1)

in terms of Corollary 3.2, where + 0 and ¯ is the element of ( )
corresponding to exp 1 ( ( )) under the natural identification of

( ( )) with ( ). Let p := ( ). Since p is a Lie triple sys-
tem andt is a maximal abelian subspace ofp , we have the root space decomposition
p = t+

+
p with respect tot. On the other hand, we havep = t+

+
(p p ),

where we again use the fact thatp is a Lie triple system. It is clear thatp =
(p p ), where := + t = . Hence we have + = t

+ . Denote by ¯ the shape tensor of exp ( ( )) in exp ( ( )).
Since exp ( ( )) is regarded as a principal orbit of the isotropy action
of a symmetric space of non-compact type, we haveexp ( exp ( ( ))) =

+
(exp ) p =

+
(exp ) (p p ). Also, we have

¯ ˙ (1) =
( )

tanh ( )
(exp ) (p p )

¯ =
(¯)

tanh ( )
( (exp ) (p p )

(4.2)

where and ¯ are as above. On the other hand, according to Proposition 3.1, we have

(4.3) ˙ (1) = ¯ ˙ (1) = ¯

where exp ( exp ( ( ))). Also, it is easy to show that

(exp ) 1 ˙ (1) = a

(exp ) 1 = ¯ a by the abelianity of Span(4.4)

(exp ) 1 = cosh ( ) p p ( )

From (4.1)–(4.4) and the homogeneity of , it follows that is curvature adapted.
Furthermore, by noticing tanh ( ) = 1, we see that is proper complex equifocal
in terms of (ii) of Theorem A in [17].
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