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NO 2-KNOT HAS TRIPLE POINT NUMBER TWO OR THREE
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Abstract
It is known that a2-knot has the triple point number less than two if and only
if it is of ribbon-type. We prove that there is risknot of triple point number two
or three. Hence the-twist-spun trefoil, which is known as 2-knot of triple point
number four, is one of the simplest non-ribba#knots.

1. Introduction

In classical knot theory, the knot table is usually made eding to the crossing
number of a knot, which is the minimal number of crossings ragnall possible pro-
jections into the plane. There is no classical knot of cragsiumber one or two, and
the trefoil of crossing number three is the simplest noviatiknot in this sense. It is
natural to consider a similar tabulation in surface-knatotly. A surface-knotmeans
a (possibly disconnected or non-orientable) closed serfambedded in 4-spadg*
smoothly. In particular, a surface-knot is called &t if it is a knotted 2-sphere
in R%. One remarkable table is made by Yoshikawa [17] by intraggi@ certain kind
of quantity, which he calls the “ch-index” of a surface-knbt this paper, we use an-
other criterion, theriple point numberof a surface-knot, which has a natural analogy
to the crossing number of a classical knot. Precisely, itééngéd to be the minimal
number of triple points among all possible projections ofuaface-knotk ¢ R* into
3-spaceR?, and is denoted by K ). The aim of this paper is to prove thimighg.

Theorem 1.1. There is no2-knot K with0 < t(K) < 4.

Let K be a surface-knot. We say th&t  igpseudo-ribborsurface-knot if it sat-
isfies t& ) = 0 (cf. [7]), and aibbon surface-knot if it is obtained from a split union
of trivial 2-knots by surgeries along some 1-handles cotimgchem (cf. [6]). It is
known that these families are coincident in the case of askifof. [5, 16]). Hence
Theorem 1.1 implies that iK is a non-ribbon 2-knot, then itdsothat tK )> 4.

For the import of Theorem 1.1, it is reasonable to refer tosapen problems on
triple point numbers. In [10], it is proved that any surfde®t K satisfies & )/= 1.
This result holds regardless of the genus, orientabilitycannectivity of K . The only
known example of & ) =2 is given in [11], which is a 2-compohearface-link with
non-orientable components.
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Question 1.2. Is there anorientable surface-knotk with tK ) = 2?

In the case of &K ) = 3, we have no examples everKif is non-aidet or
disconnected. More generally, we have no examples of odbk thipint numbers.

Question 1.3. Is there a surface-knadk  such thaKt(>) 1ddd?

As an orientable surface-kn&  whose triple point numb&r t& Q is concretely
determined, we have the 2-twist-spun trefoil (and its cetegk sum with an arbitrary
orientable pseudo-ribbon surface-knot) which satisfi& t 4 (cf. [13]). Hence it fol-
lows by Theorem 1.1 that the 2-twist-spun trefoil is one of $implest non-ribbon
2-knots according to the triple point number. From the vieinp of tabulation, the fol-
lowing is an important problem to be considered in future.

Question 1.4. Is there a 2-knotk with & ) = Zexceptthe connected sum of
the 2-twist-spun trefoil with an arbitrary ribbon 2-knot?

It is proved in [14] that the 3-twist-spun trefoik  satisfigk) = 6; however,
nothing on tK ) =5 follows from this result.

This paper is organized as follows. In Section 2, we reviea dbfinition of a di-
agram of a surface-knot, which is a projection imageRiwith crossing information.
In Sections 3 and 4, we provek( ) = 3 (Theorem 3.3) arid t/ ) = 2=6fém 4.5)
for any 2-knotK , respectively. This paper is motivated frommin®’s result [15] that
if a 2-knot K has a diagram with two triple points am@ branch points, therk is
a ribbon 2-knot. Hence, to provek( ) = 2, it is sufficient to sioler a diagram with
two triple points andsomebranch points.

2. Preliminaries

2.1. Double, triple, and branch points. Throughout this paper, we always as-
sume that all surface-knots are oriented. Let us fix an odhalprojectionr R* —
R3. We can isotope a surface-kn& c R* slightly so that the projection image
7(K) c R3 has only double points and triple points as its multiple fmirand has
only branch points as its singular points missing multipténgs (cf. [3]). See Fig. 1.
We denote byM,, M3, and S C n (K) the sets of double points, triple points, and
branch points, respectively. Thevf; and S appear as discrete sets, white appears
as a disjoint union of open arcs and simple closed curvese Nwit the boundary
points of each arc o, belong toM3; U S. We say that such an open arc &f; is
called anedge and in particular, éb-edge bt-edge or tt-edgeif its boundary points
are branch points both, a branch point and a triple pointripket points both, respec-
tively (cf. [12]). We will write double points, triple poist branch points, and edges in
capital letters such a® 7, B , arfd , respectively.
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2.2. Alexander numbering. We fix an Alexander numberingor the comple-
mentR3 \ 7(K), which is a numbering of the set of connected region®df\ 7 (K)
with integers such that (i) two regions separated by a shtet(&) are numbered
consecutively, and (ii) the orientation normal to the shpeints toward the region
with larger number (see [8], for example). The Alexander haring induces a map
Al MU M3U S — Z such that, for each poink € M,, M3, or S, the integer. X )
is the minimal Alexander number among the four, eight, oeg¢hregions around
respectively. In other words, X( ) is the Alexander number haf specific regionR
where all orientation normals to the bounded sheets poirtyafiom R. See Fig. 1
again, where the orientation normals to the sheets are téeply small arrows, and
the specific regions are shaded. For an eige = and a double PaointE, since the
Alexander numbei Ip ) is independent of the choicelof , we useettiended nota-
tion A(E) = (D).

2.3. A diagram of a surface-knot. For a double pointD € M,, let {DY, D-}
K denote the preimage dd  byr[x ~) such thath pY) > h(D'), whereh :R* — R
is the height function orthogonal to . Le&t"W C K (W = U, LS) be a sufficiently
small regular neighborhood of the poi®" in K. Then we say thatr NY) and
w(N') are upper and lower sheetsat D, respectively.

Similarly, for a triple pointT € Mgz, let (T, TM, TB} ¢ K denote the preimage
of T by (7|x)™! such thath {7) > W(T™) > h(T®). Let NV ¢ K (W =T, M, B)
be a sufficiently small regular neighborhood B in K. Thenz (vT), =(NM), and
w(NB) are calledtop, middle andbottom sheetsit T, respectively.

A diagram of K is a projection imager K ) with crossing information speci-
fied by breaking under-sheets at double points and middlebattdm sheets at triple
points in a similar way to classical knot diagrams (see [8F, dxample). Hence, in a
diagram, the lower sheet is divided into two pieces, and tigdi® and bottom sheets
are divided into two and four pieces, respectively. See E{).and (ii). In this paper,
we use the Greek lettek to stand for a diagram of a surface-kno

2.4. Signs and orientations. The sign of a branch pointB , denoted by B( €
{£1}, is defined according to crossing information along theeeiddgident toB . More
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precisely, the branch point illustrated in Fig. 2 (iii) hdsetsigne B ) = +1, and its
mirror image with opposite crossing information has$3 ( }= hisTdefinition does
not depend on the particular choice of an orientation of thees near a branch point
(cf. [2]).

Near a double poinD € M, we take orientation normalksy, and7_ to the upper
and lower sheets, respectively. We define a vedtat D such that the ordered triple
(7iu, 71, ¥) matches the fixed right-handed orientationfof. For an edgeE C M, the
set of vectors at the double points @&h  defines an orientatiofs. df the boundary
points of E areX and¥Y € M3 U S such that the orientation of  points frok
toward Y , we use the notatioR ¥V .K adf isa branch patht , thenoidé
tﬂ':)l’[k(B) =L (). Moreover, we have B( ) = +1 iE XB ,adB( )= 1H =
BY. See Fig. 3 (i), where the case ofB ( ) = +1 is depicted.

Near a triple pointT € M3, we take orientation normalgy, 7y, andrig to
the top, middle, and bottom sheets, respectively. We defieesign of T, denoted
by e(T) € {£1}, such thate T ) = +1 if and only if the ordered trip(&r, 7im, 7ig)
matches the fixed right-handed orientationot.
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Fig. 4.

2.5. Edges at a triple point. There are six edges incident © , which are dis-
tinguished by the orientations of top, middle, and bottoraess; the edges are denoted
by Ei(T), Eo(T), ..., Es(T) such that
(i) E1(T)U E«T), Eo(T) U Es(T), and E3(T) U Eg(T) form straight paths acrosg
which are transverse to the top, middle, and bottom sheetpectively, and
(i) the orientation normal to the sheet points frof.3(7) toward E, () fork =
1,2 3.

Then the Alexander number of each edgeT ( ) satisfies

_M1T)+1 fork=2123
HEW(T) = { MT)  fork=456

Moreover, ife (') = +1, then the orientation of; T( ) points awayrfrdl’ for k =

1,3 5 and towardl’ fok =2 4 6. Similarly, if 7{ ) = 1, then the orididga of

E(T) is opposite (cf. [1]). See Fig. 3 (ii), where a positiveptei point is depicted,
and the Alexander numbers of edges with black and white higwar arex {" ) and
A(T) + 1, respectively.

2.6. A minimal diagram. Let A be a diagram of a surface-kn&t . We denote
by 7(A) the number of triple points oA , that is,A( )|#/3|. The triple point hum-
ber of K, denoted by &K ), is the minimal number ofA ( )’s for all pdssi diagrams
of K. We say thatA is aninimal diagram ifr (A) = t( ) holds. It is known that if
A has a triple pointT’ € M3 such that at least one of the four edgedT), E3(T),
E4(T), or Eg(T) is a bt-edge, themA is not a minimal diagram (see [11], faanex
ple). Fig. 4 shows a deformation of eliminating a triple goatong a bt-edgef,(T)
or E4(T). This deformation is realized by a finite sequence of R@semmoves [9],
which are sufficient to connect any two diagrams of a surfaus:

2.7. Numbers of triple points. Assume thatA is a minimal diagram. Then the
triple points of A are divided into four classes according teether E>(T") or Es(T),
or both are bt-edges. (Recall thAs(7T) and E5(T) are transverse to the middle sheet.)
We say that thaype of a triple pointT € M3 is
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(0)y if both of E»(T) and Es(T) are tt-edges,

(2) if Eo(T) is a bt-edge andEs(T) is a tt-edge,

(5) if Eo(T) is a tt-edge andEs(T) is a bt-edge, and

(25) if both of Eo(T) and E5(T) are bt-edges.

For eache e (= 1 w e { 02 5 25, and € Z, we denote by X ) the number of
triple points of A with the sigre , typéw) , and Alexander number .rétwver, we
put 7, ) =£1(A) — - 1(1), which is equal to the sum of signs for all triple points of

w w

type (w) with Alexander numbek . Then it is proved in [12] that

1) to(A) + 262(X) + 15(2) + 2t25(2)
=to(h + 1) +12(A + 1) + 25(A + 1) + 255(2 + 1)

for any A € Z.

2.8. Double point curves. Let A be a (not necessary minimal) diagram of a
surface-knotK . By connecting diagonal edgésT ( ) dnds(7) for k = 1,2 3 at
each triple pointT’ ofA , the se,UM3US is regarded as a union of oriented curves
(circle and arc components) immersedRA. More precisely, if there is a sequence of
tt-edges

—— —
Ey=ToT1, Eo=T1T5, ..., Es1=T,2T,_1, E;, = T,,_11,,

where Ty, Ty, ..., T, = To € M3, such thatE; andE;,; are diagonal atl; foi =
1,2....,n (E;s1 = Ej), then they form a circle component. Similarly, if there is a
sequence of bt- and tt-edges

— —
Ey=BoTy, Eo=T11T>5,...,Ey_1=T, 2T,_1, E, = T,_1B,,

whereTy, Ty, ..., T,_1 € M3 and By, B, € S, such thatE; and;,; are diagonal aff;
fori=1,2...,n—1, then they form an arc component. We call such amurves
the double point curves

2.9. Decker curves. Let C be a double point curve of a diagram of a
surface-knotk . For each edgé  containeddn , tetx(~1(&) = {EY, E'} be a
pair of open arcs otk such th#&" = J,.. DV for W =U and L. Then the curve
CY = Cl(Ugcc EVY) on K is called theupper decker curvef C for W = U, and
the lower decker curvdor W = L, where Cl stands for the closure. f is a circle
component, then the corresponding decker cut¥e (W = U, L) is a circle immersed
in K. On the other hand, i€ is an arc component, tt@M is an immersed arc such
that the unionCY U C* forms a circle by connecting their boundary points (cf. [3])

Throughout this paper, we use the notation defined in thifosec
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3. Diagrams with three triple points

It is proved in [10] that any surface-knd&  satisfieXt(/) = l.nEle to prove
Theorem 1.1, it is sufficient to study the casek t( ) =2 and & pioof of tK ) £ 3
for any 2-knotK is divided into Lemma 3.1 and Proposition 3\ first consider the
types of triple points in a minimal diagra\a  withA( ) = 3.

Lemma 3.1. Assume that there is a surface-knkt  wifK) = 3. Let A be
a minimal diagram ofK whose triple points afB, 7>, and 73. Then after suitable
changes of indexesl;, and T, are of type(0), and T3 is of type (25). Moreover it
holds thatA(T1) = A(T2) = A(T3) and &(T1) = e(Tz) = —¢&(T3).

Proof. We putr; =AT;) andk; =T ) foi =.,1,2 3. We may assume that
A1 < A2 < Az Since there is no triple point oA  whose Alexander numberess|
than 11 — 1, or greater than.s, we obtain

(2 to(A1) + t2(A1) + 2t5(A1) + 2t25(21) = 0, and
(3 to(A3) + 22(A3) + t5(A3) + 225(23) = 0

by puttingA =X; — 1 and A3 in the equation (1), respectively. K; < A, then it
follows by definition that

{to(A1), 2(A1), 15(A1), t25(A1)} = {£1,0, O, O,

which contradicts to the equation (2). Here, we use the iooidt } for a multi-set,
so that the above equality means that onegff1), ..., r25(A1) is equal tog;, and the
others are zeros.

Similarly, if A, < A3, then it holds that

{t0(x3), 12(13), 15(13), 125(23)} = {€3, 0, 0, O,

which contradicts to the equation (3). Hence, we have 1, = A3. We putr, =t, ;)
regardless of o =0, 2, 5, 25), which is the algebraic numbdripfe points of type
(w). It is sufficient to consider the following three cases.

o {to, 1o, 15 o5 = {e1 + &2 +£3,0,0, 0. Sincee; +eo+e3 # 0, we have a contradiction
to (2) clearly. Hence this case does not happen.

o {to, 1o, s o5 = {e1 + 2,63, 0,00 If e1 = —ep, then it reduces to the the previous
case. Ife; = g5, then we haves; + ¢, = £2. Sincer, = t5 by (2) and (3), we obtain
to=e1+e=x2, b =15=0, andts = ¢3 = F1. This is the desired solution.

o {to, to, s, tos = {e1, €2, €3 0}. If 1o =0, we haverg+ro+2t5+2f5 =t =1 (mod 2),
which contradicts to (2). If, =0 or s = 0, it contradicts ta, = 1s. If .5 =0, we have
to+ 3, =0 by (2) and (3). However, this contradicts fig] = 1 and| 3,| = 3.

Thus we have the conclusion. O
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Fig. 5.

The following proposition is proved by counting the numbdrirdersections be-
tween decker curves oK . In [4] Hasegawa generalizes thigopition without the
condition “no triple points of typg 2 ot )5 .

Proposition 3.2. Let A be a minimal diagram of a surface-kn&t .Af has at
least one triple pointl’ of typ&25) and no triple points of type2) or (5), then the
genus ofK is positive.

Proof. LetC, be the double point curve containiigy 7 U )E;3(T) for k =
1,2, 3. SinceA has no triple points of type) 2 6r) %; and Csz are circle com-
ponents. On the other hand, sinfe is of type) 2% ,is an arc component consist-
ing of Ey(T) and Es(T). Consider the decker curves correspondingCio as shown
in Fig. 5, where we draw upper and lower decker curves by dosted solid lines,
respectively. Then the circl€y U C} intersects the circle) and C§ at T8 and
TT, respectively. SinceCt and C§ are upper and lower decker circles, respectively,
it holds thatCy # C3 by definition. Hence there is a pair of circles éh , such as
{CY U CL, ct}, with a single intersection. This is possible only if the gerof K is
positive. ]

Theorem 3.3. There is no2-knot K witht(K) = 3.
Proof. Assume that there is a 2-kn&t  withKt( ) = 3. Then any mali dia-

gram A of K has three triple points of type) (,) 0, ahd) 25 by Lemma WHich
contradicts to Proposition 3.2. O
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4. Diagrams with two triple points

In this section, we study the case&kt( )= 2. We first considertypes, Alexander
numbers, and signs of triple points in a minimal diagram  with) = 2.

Lemma 4.1. Assume that there is a surface-knkt  Wi{lK) = 2. Let A be a
minimal diagram ofK whose triple points arB and 7. ThenT; and T, are of the
same type withk(71) = A(T2) and (T1) = —&(T2).

Proof. We puth; = ( ) and; =t ) for =1, 2. We may assume thak A,.
By putting A =13 — 1 and A, in the equation (1), we obtain

4) to(A1) + t2(A1) + 2t5(X1) + 2t25(21) = 0, and
5) to(A2) + 212(r2) + 15(12) + 2r25(A2) = 0.

If X1 < Ay, then it follows by definition that

{t0(h1), t2(11), 15(A1), t25(A1)} = {£1,0, 0, O},

which contradicts to the equation (4). Hence we haye= i,. We puts, =1, ¢;)
regardless of =0, 2, 5, 25). It is sufficient to consider tblofving two cases.

o {to, 12,1515 ={e1+¢2,0,0, 0. If ¢1 =¢5, then we haves; + s, = +2, which con-
tradicts to (4). Ife; = —e», then this is the desired solution.

o {fo, 12, 15,125 = {£1, 62,0, 0}. By (4) and (5), we have, = 5. If 1, = 15 = 0, then
we havery + 2r,5 = 0. This contradicts tdr| = 1 and| 25| = 2. If 1, =15 # 0, then we
havery = 1,5 = 0, and#, = ts = £1. This contradicts to (4) clearly.

Hence we obtain the conclusion. ]

For a diagramA of a surface-knd , we denote’byr ( ) the numberafdh
points of A . The following lemma is proved by a Roseman move [9]

Lemma 4.2 (cf. [2]). Let A be a diagram of a surface-kndf . Assume that
has two branch point8; and B, € S with A(B1) = A(B2) and ¢(B1) = —&(B>). If there
is an embedded aré ih connectil®gy and B, which misses\, U M3U S except
the boundarythen K has a diagram\’ with(A") = 1(A) and b(A') = b(A) — 2.

Proof. By assumption, the att  has a neighborhood as showigin6Ki). Let
A’ be a diagram obtained from by replacing the neighborhoodh Wwig. 6 (ii).
Since the deformation fromd ta’ is a Roseman maxeé, is a diagrfarki with
t(A)=t(A) andb A )=b A )— 2. (]

We remark that, in the assumption of Lemma 4.2, if the brarmhtp do not sat-
isfy the conditionA B1) = A(B2), then L has a neighborhood as shown in Fig. 6 (iii).
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In this case, the branch points can not be canceled withdradincing a new triple
point locally.

Proposition 4.3. Let A be a diagram of a surface-knd& . Assume that has
a triple point T with Eo(T) = E3(T), which is denoted bye simply. Y bounds a
2-disk X in K such thatr (X°)N(M3US) =@, where X° is the interior ofZ, then K
has a diagramA’ withr(A") = 1(A) — 1. Alsq if Ei(T) = Eo(T), E4(T) = Es(T), or
Es(T) = E¢(T), we have a similar result.

Proof. We prove the casé E,(T') = E3(T); other cases are similarly proved.
Let T be a sufficiently thin neighborhood @ in K. See Fig. 7 (i). First assume that
7(Z°)NMy #@. Sincerr £° N M3US) =@, we can shrink®  parallel t&  iR* with-
out introducing new triple points, so that we haweX°(N M, = @. Fig. 7 (i) — (iii)
shows this deformation schematically. [We remark that fhiscess produces new dou-
ble points near a double point on ={ ), but never produce tngaits.] Hence, we
may assume that X° )M, =¢. Then it is not difficult to see that the triple poifit
can be eliminated by using the deformation as in Fig. 6-) ). (i U

The following theorem is due to Shima [15], which is our maimtivation of
this paper. Note that if a diagram  satisfiesA ( ) = 0, then theetyithg surface
in R3 (without crossing information) is an immersion. In [14] Bfa and the author
studied the minimal number of triple points for all possibiimmersed” diagrams of
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Fig. 8.

a surface-knot.

Theorem 4.4. If a 2-knot K has a diagramA  with(A) = 2 and b(A) = 0, then
it holds thatt(K) = 0.

We are ready to prove the following.
Theorem 4.5. There is no2-knot K witht(K) = 2.

Proof. Assume that there is a 2-kn&t  withkKt( ) = 2. L&t  be a malimi-
agram of K with the triple pointd; and T>. If A has a bb-edge, then we replace it
with a simple closed curve by canceling the branch pointsnakemma 4.2. Hence,
we may assume thak  has no bb-edges; in other words, any bpamthconnects to
a triple point by an edge.

By Lemma 4.1, there are four cases according to the types; aind 7». If T3
and 7, are of type( 25 both, then we have a contradiction to Proposis.2. If both
of 71 and T are of type( 0 , then it holds thdt A( ) =0 by assumption that has no
bb-edge. It follows by Theorem 4.4 thatkt( ) = 0, which conicéglto the assump-
tion that A is a minimal diagram. If both df; and 7, are of type( % , then this case
reduces to that of typeé )2 by changing the orientatiorAof

We consider the case that both Bf and 7> are of type( 2 . We may assume that
e(Th) = +1 ande () = —1 by Lemma 4.1, and put * T() = A(T>). Fig. 8 shows the
neighborhoods of; and 7, where we indicate orientations of the edges by white and
black big arrows whose Alexander numbers are +1 and , rdgplctlt holds that
A(B1) = A(B2) = A + 1. Since there is no triple point other thdh and 7>, it follows
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Eq=Eg En=Es El=Es
Fig. 9.
that
(6) {Ew(Th), Es(T1)} = {Eo(T2), E5(T2)}. and
() {Es(T), E«(T2), Ee(T2)} = {Ea(T1), Ee(T1). Es(T2)}.

First we consider the casg,(71) = E1(T»). There is an embedded curve connect-
ing B, and B, satisfying the assumption in Lemma 4.2. More precisely, wg ta&e
a parallel curveL along the sequence of edges

— — —
Ex(Ty) = BTy, Ey(T1) = E1(T2) = T1T>, and Ex(T3) = T2B>.

By applying Lemma 4.2 toA , this case reduces to that of type He Tases
E(Th) = Ex(T») for k =3, 4, 6 are similarly proved. O

Thus we may assume th&y, Tif # Ex(T>) for i =1, 3 4 6. It follows by (6) that
E1(Th) = E3(T,) and E3(T1) = E1(T»). Then there are three cases by (7).
° E5(T1) = E4(T1), E4(T2) = E6(T1), and Ee(Tz) = E5(T2). We can apply Proposi-
tion 4.3 to one of the looped edgdss(T1) = E4(T1) and Eg(T2) = Es(T2). To see
this, it is sufficient to check that the preimage of the ne@hbod is connected as
shown in Fig. 9, where we writ&)¥ = E}¥(T;); in fact, sincek is a 2-sphere, each of
EL(T1) = E5(T1) and EJ(T2) = EJ(T) bounds a 2-disk, which does not contain triple
points and branch points. Not&  has no triple and branch p@nrtept{T1, 7>} and
{B1, B2}. Hence, this contradicts to the assumption that is a minuliedram.
o E5(Ty) = Eg(T1), E4(T2) = Es(T2), and Eg(T2) = E4(T1). This case is the mirror
image of the previous one. Hence we have a similar contiadidb the assumption
that A is a minimal diagram.
o E5(Th) = Es(T3), E4(T>) = Ee(Th), Es(T2) = E4(T1). We have three double point
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curvesCy, C,, and C3 consisting of

Ci1: E1(Th) = E3(T2) and Ee(T2) = E4(T1),
C2: Ex(Th), Es(Th) = Es(T2), and Ex(T>),
Cs: E3(Th) = Ex(T2) and E4(T2) = Es(T1).

Then there is a pair of circles ok with a single intersectifmm;example, the circle
C5 U C} intersectsCy, C, C§, andC} at 7], 7B, T/, and T2, respectively. This
contradicts to the assumption that  is a 2-knot.

Hence we have the conclusion.
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