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Abstract

Three new knot invariants are defined using cocycles of themgdized quandle
homology theory that was proposed by Andruskiewitsch andi&raVe specialize
that theory to the case when there is a group action on the cieets.

First, guandle modules are used to generalize Burau repetEms and Alexan-
der modules for classical knots. Secog@et;ocycles valued in non-abelian groups are
used in a way similar to Hopf algebra invariants of classicqadtk. These invariants
are shown to be of quantum type. Third, cocycles with groupoastion coefficient
groups are used to define quandle cocycle invariants for blatbsical knots and
knotted surfaces. Concrete computational methods areideevand used to prove
non-invertibility for a large family of knotted surfaces the classical case, the in-
variant can detect the chirality @&colorable knots in a number of cases.

1. Introduction

Quandle cohomology theory was developed [10] to define iamts of classical
knots and knotted surfaces in state-sum form, called qeacaitycle (knot) invariants.
The quandle cohomology theory is a modification of rack coblogy theory which
was defined in [17], and studied from different perspectivise cocycle knot invari-
ants are analogous in their definitions to the Dijkgraaft®¥itinvariants [13] of trian-
gulated 3-manifolds with finite gauge groups, but they usandle knot colorings as
spins and cocycles as Boltzmann weights.

Two types of topological applications of cocycle knot irigats have been es-
tablished and are being investigated actively: non-iibbdity [10, 39] and the min-
imal triple point numbers [40] of knotted surfaces. A knot nsn-invertible if it
is not equivalent to itself with the orientation reversedilesithe orientation of the
space is preserved. In both applications, quandle cocysariants produced results
that are not obtained by other known methods; specificallyjkrmown methods (e.g.,
[15, 19, 30, 38]) of proving non-invertibility of knotted gaces do not apply directly
to non-spherical knots (except Kawauchi’'s [28, 29] gerieatibn of the Farber-Levine
pairing). Furthermore concrete methods to compute these haen implemented via
computers. The triple point numbers (the minimal numberrigfig points in projec-
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tions) have been determined for some knotted surfaces &fitst time by using the
guandle cocycle invariants.

In this paper, we generalize the quandle cocycle invariantaree different direc-
tions, using generalizations of quandle homology theoivigled by Andruskiewitsch
and Grdia [1], and Rourke and Sanderson ([37], and private comnatioig). The
original and the generalized quandle homology theoriesbteagompared to group co-
homology theories, with trivial and non-trivial group amts on coefficient groups, re-
spectively. Thus the generalization of the homology theamrg knot invariants are sub-
stantial and essential; the original case is only the vescisph case when the action
is trivial. Examples in wreath product of groups are givenSection 3 after prelim-
inaries are provided in Section 2. Algebraic aspects ofetlesamples are also stud-
ied. The three directions of generalizations are as folldvitst, the actions of quandle
modules (defined below) are regarded as generalizationseoBtirau representation of
braid groups. Thus we define invariants for classical kntsSection 4, using such
quandle modules, in a similar manner as Alexander modulesdeafined from Burau
representations. Second, quandle 2-cocycles with nolieabeoefficients are used to
define invariants for classical knots, defined in a similamne as invariants defined
from Hopf algebras [27], by sliding beads on knot diagranms Section 5. General-
izations of quandle cocycle invariants are given for clzlsknots in Section 6 and
for knotted surfaces in Section 7, respectively. Compomati methods, examples, and
applications are provided. The invariant for the classlaabts detect chirality of the
3-colorable knots through 9-crossings. As a main appbecatf the invariant for knot-
ted surfaces, we show that majority of 2 -twist spun of 3-raidte knots in the clas-
sical knot table up to 9 crossings, as well as surfaces daatdirom them by attaching
trivial 1-handles, are non-invertible.
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2. Preliminary

Quandles and knot colorings. A quandle X, is a set with a binary operation
(a, b) — a = b such that
() Foranyae X,a*xa =a.
(I) For anya,b € X, there is a uniqguee X such that c=b
() For any a,b,c € X, we havedxb ¥c =d=xc ¥ Hxc.)
A rack is a set with a binary operation that satisfies (Il) and (lll).
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C(oc)=a>/C(B):b
\C(y):c:a* t

Fig. 1. Quandle relation at a crossing

Racks and quandles have been studied in, for example, [429,626, 34]. The
axioms for a quandle correspond respectively to the Reidgenemoves of type I, Il,
and 11l (see [16, 26], for example). Quandle structures Hasen found in areas other
than knot theory, see [1] and [4].

In Axiom (Il), the elementc that is uniquely determined frorivem a, b € X
such thate = *b , is denoted by &x b. A function f : X — Y between quandles
or racks is ahomomorphisnif f(a xb) = f(a) x f(b) for any a, b € X .

The following are typical examples of quandles. A grokip G= hwitfold con-
jugation as the quandle operatiom* b  bZab™" ©k b  b="ab" . We denote by
Conj(G) the quandle defined for a grodp by b bab—t. Any subset ofG that is
closed under such conjugation is also a quandle.

Any A(=Z[t,t1])-module M is a quandle witxb =z +@r b)ag hbe M , that
is called anAlexander quandleFor a positive integen Z,[t, t~1]/(h(r)) is a quandle
for a Laurent polynomiak ¢( ). It is finite if the coefficients t¢ifie highest and lowest
degree terms ofi are units i,.

Let n be a positive integer, and for elementsi ¢ {, 0.1,n — } 1, define
i*j=2j—1i (modn). Thenx defines a quandle structure calleddimedral quan-
dle, R,. This set can be identified with the set of reflections of auleg:-gon with
conjugation as the quandle operation, but also is isomorfthian Alexander quandle
Za[t,t71/(t+1). As a set of reflections of the regular -gaR, can be aereid as
a subquandle of Cori{, ) wherE, denotes the symmetric group @iters.

Let X be a fixed quandle. LeK be a given oriented classical kndink dia-
gram, and letR be the set of (over-)arcs. A vector perpendicular to an arthéndi-
agram is called aormal or normal vector We choose the normal so that the ordered
pair (tangent, normal) agrees with the orientation of thenpl This normal is called
the orientation normal A (quandle)coloring C is a mapC: R — X such that at every
crossing, the relation depicted in Fig. 1 holds. More spatificlet 8 be the over-arc
at a crossing, and ¥ be under-arcs such that the normal ofvtreaoc points from
a to y. (In this casep is called theource arcand y is called thearget arc) Then
it is required thatC(y) = C(«) * C(B). The colorC(y) depends only on the choice of
orientation of the over-arc; therefore this rule defines ¢hkring at both positive and
negative crossings. The colof4«), C(8) are calledsourcecolors.
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Quandle Modules. We recall some information from [1], but with notation
changed to match our conventions.

Let X be a quandle. Lef2 X ) be the frégalgebra generated by, ,, 7., for
x,y € X such thatp, , is invertible for every, y € X . Defirfg(X) to be the quotient
Z(X) = Q(X)/R whereR is the ideal generated by

Nxsey,zMx,y = Nxxz,yxzMx,z
Nxsey,zTx,y — Tasez,yxzlly,z

Txsy,z — NMasz,yrz T,z — Tasz,yxzTy,z

A w bR

‘Cx,x + Nxx — 1

The algebraZ(X) thus defined is called thquandle algebraover X . In Z(X), we
define elements , = n;;ly’y andt,, = -7, ,T.sy,. The convenience of such gquantities
will become apparent by examining type Il moves.

A representationof Z(X) is an abelian groug;  together with (1) a collection of
automorphisms), , € Au ), and (2) a collection of endomorphisms € End(G)
such that the relations above hold. More precisely, therenialgebra homomorphism
7(X) — End(G), and we denote the image of the generators by the sgméols.
Given a representation &(X) we say thatG is &(X)-module, ora quandle module
The action ofZ(X) on G is written by the left action, and denoted hy, ¢ =) pg
(=p-g=p(g)), forge G andp € EndG ).

ExavpLe 2.1 ([1]). Let A = Z[t,t] denote the ring of Laurent polynomials.
Then any A -moduleM is &(X)-module for any quandle&X , by, a( ) T« and
Tyy(0) = (1 — 1)) for anyx ,y € X .

The groupGy =(x € X | x xy =yxy™Y) is called theenveloping group1]
(and the associated groupin [16]). For any quandleX , anyGxy -modul&Z/ is a
Z(X)-module byn,, ¢ )=ya ande,, § )=(xxy X ), where,ye X a,beM

We invite the reader to examine Figs. 2 and 3 to see the geionmettivation for
the quandle module axioms. For the time being, ignore theder, , in the figures.
Detailed explanations of these figures will be given in Sectd.

Generalized quandle homology theory. Consider the free leftZ(X)-module
C.(X) = Z(X)X" with basisX” (forn = 0,X° is a singleton{xo}, for a fixed ele-
mentxp € X). In [1], boundary operator8 &, C,+1(X) — C,(X) are defined by

n+l
B(re, s Xwe1) = (1Y (D) Myl (VL B X
i=2
n+l
— (—1y*? Z(—l)’ (X1 Xy oo oy X1 % Xy Xity - e oy Xn41)
i=2
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c=Nyy(a)+ Ty (b)

+ny

Z=X*y
a—nz¢cﬁr2¢b)

Fig. 2. The geometric notation at a crossing

zZ=Xx*y

d=n xty,z Mxy(@) d="Nyxzyxz Nx,z(a)

+ N X*y,z T X’y( b) + T X*Z,y*Z n Y.z (b)

+ Txry,z (€) +(Mxzyz Txz+ T oxrzyzly,z)(C)

+ Mooy 2K xy)* Koy z ||+ wiz,yz K x 2T xig vz Ky 2k Koz vy

J
> = X
g ¥

X y z X y z

Fig. 3. Reidemeister moves and the quandle algebra definitio

+ (_ 1)n+lt[xl,x3,444,x,,+;|_],[xz,xa ...... Xn+1] (x2’ S x/1+l)7

where

[x1, x2, -, 0] = ((-- - (1 % x2) * x3) * -+ ) * xy,

for n > 0, and dp(x) = —Tra.xo¥o fOr n = 0. The notational conventions are slightly
different from [1]. In particular, the condition to be a 2eymle for a 2-cochain
k: Ca(X) = Z(X) (or (k: C2(X) = G) € C*X;G) = Homyx)(C2(X), G) when a
representatiorZ(X) — G is fixed to define the twisted coefficients) in this homology
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theory is written ascy

nx*y,z(/(x,y) t Kxsy,z = Makz,ynz (Kx,z) + Toaz,yiz (K_\‘,z) + Kxxz,yxzs

in Z(X) (or in G) for anyx,y,z € X, wherec,, meansx(y ) fox(y X2 We
call this ageneralized(rack) 2-cocycle conditionWhenk further satisfies,, =0 for
any x € X, we call it ageneralized quandl@-cocycle

Dynamical cocycles. Let X be a quandle ands be a non-empty set. Let
a: X xX — Fun(@§ x S,5) =555 be a function, so that for,y € X andbe S
we havea, , ¢, b )e S .

Then it is checked by computations thtx X is a quandle by theatipa
(a,x) % (b, y) = (ax,y(a,b), x *y), wherex x y denotes the quandle productXn , if
and only if« satisfies the following conditions:

1. oyy(@,a)=a foralxeX andaesS;

2. oy y(—,0):S— S is a bijection for allx,y € X and foralb e S ;

3. Oyuyz(@r,y (@, D), ¢) = Qpug sz @x 2 (@, )y (b, ¢)) for all x,y,z € X anda, b, c
es.

Such a functione is called dynamical quandle cocyclgl]. The quandle con-
structed above is denoted ISyx, X , and is called ekeensionof X by a dynamical
cocyclea . The construction is general, as Andruskiewitsoth Grdia show:

Lemma 2.2 ([1]). Let p: Y — X be a surjective quandle homomorphism be-
tween finite quandles such that the cardinality jof!(x) is a constant for allx € X .
ThenY is isomorphic to an extensidhx, X  ®f by some dynamical ooyt the
setS such thatS| = [p~(x)|.

ExavmpLE 2.3 ([1]). LetG be aZ(X)-module for the quandl& , and be a gen-
eralized 2-cocycle. Fout,b € G , let

ax,y(aa b) = Nx,y (a) +T,y (b) t Ky y.

Then it can be verified directly that is a dynamical cocycte phrticular, even with
k = 0, aZ(X)-module structure on the abelian grodp  defines a quandletate
G x4 X.

3. Group extensions and quandle modules

The purpose of this section is to provide examples of quandbelules and co-

cycles from group extensions and group cocycles. LebON > E 5> H — 1
be a short exact sequence of groups that expresses the groga tweisted semi-
direct productE =N x4y H by a group 2-cocyclé® , wher® is an abelian group (see
page 91 of [5]). Thus we have a set-theoretic sectiofl - E thabrmalized, in
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the sense that @ ) =gl , and the elementsEof can be written &s (paik) where
a € N andx € H, by the bijectiond, x }»> i d s)x ). We have

s()s(y) =i(0(x, y))s(xy), x,y € H,

and the multiplication rule it is given byi(x - p{y ) =(xtb( Px(y ,dy ), whe
x(b) denotes the action of oW that givés the structure of a édistemi-direct
product, E =N x, H. Recall here that the group 2-cocycle condition is

O(x,y) +0(xy,z) =x0(y,2) +0(x, yz), x,y,z€ H.

Llet0— N > E 5> H — 1 be an exact sequence, afid N=xy, H be the cor-
responding twisted semi-direct product. Consider &hd  amdjes, Conjf ) and
Conj(H), respectively, where b &ab~'. Lemma 2.2 implies thaE is an extension
of H by a dynamical cocyclee H x H — NV*N

Proposition 3.1. The dynamical cocycle, in this caseis written by, (a, b) =
Nyy(@) + 7oy (b) + &y, fOr anyx, y € H anda, b € N, wheren, y(a) = ya, 7, ,(b) =
(A—x*y)®), and

Key =00, x) — yx0( 1 y) +0(yx, y1).

Similarly, if the quandle structure is defined bys = s~ 'rs, then we obtainy, ,(a) =
yilay Tx,y(b) = (yilx - yil)(b) and

ey = =0 y) +y 0, y) 0 xy).
Proof. For b,y )e E , one has
(b, y) = (=) -0 ),y ) = (v ) =y e y Dy Y,
and one computes

(@, x)x(b,y) = (b, y)a,x)(b, y)*
= (b+yla)— (xy HB) +0(y, x) — yxO(y L y) +0(yx, y ), yxy )
so that
ax,y(av b) = Nx,y (a) +Tey (b) + Ky
y@) +(L—xxy)B)+[0 (¢, x)— yx0 ¢~ y) +0(yx, y )],

and we obtain the formulas. Note that by expanding the teems)(b, y)~* first, we
obtain an equivalent formula

Key = —yx0(" L y) +y0(x, y ) +6(y, xy ™),



506 J.S. @GRTER, M. ELHAMDADI, M. GRANA AND M. SaITO

which follows from the group 2-cocycle condition from thesfiformula, as well. The
second case is similar. U

Thus the second item in Example 2.3 occurs in a semi-diremtiymt of groups,
whenf =0 and hence =0. Note also that the second case of Riopd3il agrees
with the quandle action considered by Ohtsuki [36].

ExampLE 3.2. The wreath product of groups gives specific examplesobmafs.
Let N = (Z,)" for someqg € {0 1...} . (Incasg =0, theN is the direct product
of the integers, and whep = 1, thew is trivial.) The symmetiioup H =%,
acts onN by permutation of the factossxi(...,x,) = o(X) = (xo-1(1), - - -, Xo-1(n)),
foroc € ¥, andXx = (xj)?:l € N. In this situation,E is called a wreath product and
denoted byE =1%,): X,. In this casex = 0, and the quandle module structure can
be computed explicitly by matrices ové,. In [8], such computations were used to
obtain non-trivial colorings of some twist-spun knots byndgnical extensions oR,

Next we consider the 2-cocycle in terms of sections. In thmugrcase, recall
that the equalitys X s X ) F X,y }) Xy ) expresses the group 2-caeyclas an ob-
struction to the section being a homomorphism. There is alainnterpretation for
guandle 2-cocycles.

Lemma 3.3. The2-cocyclex inProposition 3.1 satisfiess(x)*s(y) = i (kx,y)s (x*

y)-
Proof. One computes
s()#s(y) = (0,x)% (0 y) =(xy (@ O)x % y) =huy X%y ) =i iy Y fxy)
as desired. U
Lemma 3.4. Let«x be as above. Then we havg, =6(y, x) — 6(yxy 1, y).
Proof. From Lemma 3.3 we have
s()s)s() 7 = ikey)s(rxy ™),
1O, x)s(yx) = ileey)s(xy s(y)
= iy )i(OOay ™ ¥))s(yxy ),
and we obtain the formula, which is simpler than that of Peitgan 3.1. U

Lemma 3.5. Letx andé be as above.  is a coboundatigen so isx .
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Proof. For a certain group 1-cochajn ,

0(x,y) =dgy(x,y) =y xy) —y(x) —xy (),

where §; (resp.§p ) denotes the group (resp. quandle) cobourfaamomorphism.
By Lemma 3.4,

Key =y (xy™) = yy(x) — (L= yxy )y (y) = 8oy (x. y)

as desired. ]

Thus functors from group homology theories to quandle hogwltheories are ex-
pected.

Let E =N x4 H be as above, a twisted semi-direct product. Ket be a subquan-
dle of Conj# ), andX = 7~(X), wherexr :E — H is the projection. TheX is a
subquandle of Conf ), and induces the quandle homomorphisti — X, which
is a dynamical extension.

ExampLe 3.6. Let X =R, be the dihedral quandle of order (a positive inte-
ger), which is a subquandle of Comj{ ). L&t Z,):X, be the wreath product as
in Example 3.2,

0> N=(@Z,) > E=Z)1%, > %, -1

Then X = 7~%(X) is a subquandle of Corf{ ), anll = (Z,)" x, X is a dynamical
extension ofX .

As for the first cocycle groups, we have the following intetption. LetX be
a quandle,A d(X)-module. Consider the dynamical extensianx, X  Xf My
with the dynamical cocycler,, ., +., as before. For a given 1l-cathéic
CY(X; A) = Homyx)(Z(X) X, A), define a sectiory : X — Ax, X by f(x) = (f(x), x),
which is indeed a sectiont o f = idyx for the projectionr :A x, X — X .

Lemma 3.7. The sectionf is a quandle homomorphism if and only ff €
ZY(X; A).

Proof. The 1-cocycle condition is written g8x £y )ig,f x ( k&, f y () for
any x,y € X . Thus we compute

Flxy) = (flxxy), x*y)
FO) % FO) = (s (FE) FON x %) = (ney fE)+ Ty fO)xxy). O
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ey

\W

X X Xy

Fig. 4. A gquandle coloring of a braid worad

Alternatively, it can be stated that there is a one-to-ongespondence between
ZY(X; A) and the set of sections that are quandle homomorphisms.

4. Knot invariants from quandle modules

Quandle modules and braids. A braid wordw (ofk -strings), or & -braid word,
is a product of standard generaters ..., o,_1 Of the braid groups; of k-strings and
their inverses. A braid wordv represents an element [ ] of ttedbgroup B;. Ge-
ometrically, w is represented by a diagram in a rectangular Wwith £ end points at
the top, andk end points at the bottom, where the strings gondmenotonically.
Each generator or its inverse is represented by a crossirgg dragram. We use the
same letterw for a choice of such a diagram. et = denote thsumoof the di-
agramw . Quandle colorings ab  are defined in exactly the sameneraas in the
case of knots. However, the quandle elements at the top antidtiom of a diagram
of w do not necessarily coincide. For the closure ~, the quamitments at the top
and the bottom of a diagram af  coincide, when we consider aricg) of a link w .

Let X be a quandle. Ley, ...,y be the bottom arcs ofv . For a given vector
* = (x1,...,x;) € X*, assign these elements, ..., x; on yi, ...,y as their colors,
respectively. Then from the definition, a coloriggof w by X is uniquely determined
such thatC(y;) =x;, i =1, ..., k. We call such a coloring the coloring induced from
X. Let 8, ..., 8 be the arcs at the top. L&t= (y1, ..., w) = (C(81), ..., C(8)) € X*
be the colors assigned to the top arcs, that are uniquelyndieted fromXx. Denote
this situation by a left actiony = w-X. The colorsX¥ andy are calledbottomand top
colors or color vectors respectively. See Fig. 4.

Let X be a quandle andi be a quandle module. For a dynamical leoeye
n +t +x—which acts ond, b ) G2 by a,,(a,b) = 0.y (@) + 1., () +«,, for any
(x,y) € X°—let X =G x, X be the dynamical extension. #= ((a1, x1), ..., (ax, x¢))
ands = ((by, y), - .., (bx, y¢)) € X* are bottom and top colors af € B; by X, re-
spectively, then we write this situation by = M(w, %) - 4, whered = (a1, ..., ),
b=(by,...,b) € G*. Thus M (v, X) represents a mapf w(x): G — G*.

Lemma 4.1. If [w] =[w] € By, then M(w, ¥) = M(w', ¥): G* — G*.
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Proof. The invariance under the braid relations are chedi@d the definitions.
In particular,

M (010201, (x, ¥, 2)) - (@, b, c)
= (€2 my2(B) +7y,2(€) Fioy 2 Meny 2y (@) Fhsyz Ty (0) FTany,z (€) Fhrsyz bexy ) Hxny2)
M (020102, (x, ¥, 2)) - (a, b, ¢)
= (€ my.z(b) +7,.2(c) +ky s
Masz,yra e,z (@) + Tonzyae Ny (B) F (Mnzyie Trz + Tanz,yra Ty.2)(€)

+ Nxsz, iz (Kx,z) + Trsz,yaz (Ky,z) + Kx*z.,_\'*z)

and the equality follows from the quandle module conditicared the generalized

2-cocycle condition. O
This is not a braid group representation 6, as it dependshercolor of w
by X. However, in the case in which the coloring By s trivial 0= x, = - -+ = x,

andx = 0, then it is a braid group representation. We call the Md—, X): B, —
Map(G*, G*) acolored representatian

For a standard braid generator, this situation is diagrainally represented as
depicted in Fig. 2, the left figure for a negative crossingd #me right one for posi-
tive. In the calculations given in this section, the left figuepresents the braid gener-
atoro; , and the right represents the inverse. In the figurecthers by X are assigned
to arcs. Elements of; are put in small circles on arcs. We ineghese circles slid-
ing up through a crossing, at which the dynamical cocycle s aad changes the ele-
ments when a circled elements goes under a crossing. Gommgaoerossing does not
change the element in a circle. From type Il Reidemeisteramothe definition ofy
andT is recovered. Fig. 3 shows that the quandle module condittmmrespond to the
type Il move with this diagrammatic convention.

Module invariants. Let w be ak -braid word, and denote by ~ the closure of
w. Let X be a quandle andF be a quandle module. &et =t + be a dynamical
cocycle, which acts ona(b ¢ G2 by a, ,(a, b) =1, (@) +t., () for any &,y )e X2

Theorem 4.2. Let L be a link represented as a closed braid wherew is a
k-braid word, and Coly (L) be the set of colorings of. by a quande . Fore
Colx (L), let ¥ be the color vector of bottom strings af that is the restantiof C.
Then the family

O(X,a ;L) = {G*/Im(M(w, ¥) — I)}CeCOIX(L)

of isomorphism classes of modules presented by the i@dps, X) — I), wherel de-
notes the identityis independent of choice @ that represefits as its closedlbra
and thus defines a link invariant.
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Proof. By the Lemma 4.1M u{ ) # u(, X) does not depend on the choice of
a braid word. We use Markov’s theorem to prove the statemerdt Rote that the set
of colorings remains unchanged by a stabilization, in theseethat there is a natu-
ral bijection (the colorings on bottom stringsi(..., x;) of a braid wordw extend
uniquely to the coloringy, . . ., x;, x) of wo!, a stabilization ofw ). There is a bi-
jection of colorings between conjugates, as well. Hences isufficient to prove that,
for a given coloring, the isomorphism class of the modulergefiin the statement re-
mains unchanged by conjugation and stabilization for arahinduced coloring. The
invariance under conjugation is seen from the fact that ugatjon by a braid word
induces a conjugation by a matrix, and the module is isonmorphder conjugate pre-
sentation matrices. So we investigate the stabilization.

We represent maps @ by by matrices whose entries represaps ofG .
The braid generatos;, in the stabilizati(mmkil is represented by the matrid o )=
L1 ® [ '] wherel denotes the identity map 6f , ahd  denotes the identity
map onG* . This is because tite th ard ( + 1)st strings receivedime olor. The
block matrix [ ;] in particular, represents the map

(@, b) = (b, ox x(a, b)) = (b, nx.x(@) + 72, ()

where x =x;, so thatW corresponds to the action:py , and hé#ice is@n i
morphism of G . The fact that,, corresponds to the mafrix W folldvesn the
conditionn, , +7,, =1 in a quandle algebra.

Express the matri f ), where is regarded asca ( + 1)-braid vedietr sta-
bilization, though originally a -braid word, by a matrix

M]_]_"' M]k 0

My -+ My O
o .. 0 I

whereM;; , 1<i ,j <k, are maps a& , and w( ) was written asca ( %1} ( +1)
matrix of these maps] denotes the identity mapn . Thewo, (  gpsesented
by the matrix

My - M1 4g-1)0 My
M(w)M(or) =

My -+ My 4—1) O My
o ... 0] wiIi-Ww
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Hence

My —1--- Mj ¢—1) 0O My

M(w)M(ox) — Iks1 = Mg—1y1 - Mgy g—y— 1T O My_1yi |°

My - My -1 —I My
(0] (0] W —-W
which is column reduced to

My —1--- My ¢y 0O My

Mg-1y1- Me-1) e-—1 O M 1y
My - My (-1 —I My — 1
o .- @) w @)

and is further row reduced to

My —1--- Mj -1 O My

Mg-1) 1 -+ Mg-1) ¢-1y—1 O My_1);
My - My «-1) O My —1
o . 0 W o0

that represents a module that is isomorphic to that predeseM (w)— I, sinceW is
an isomorphism. The invariance under stabilizationo’gg‘yL follows similarly. ]

This theorem implies that the following is well-defined.

DerinimioN 4.3, The family of modulesb(X, o; L)={G¥/Im(M (w, X)—1I)}cecoly (1)
is called thequandle module invariant

Specific examples can be constructed from wreath produetsXLbe a subquan-
dle of ConjE&,), andE be a wreath product extension®y Zz){ whereq,n are
positive integers, so that

L

0>N=@) >E>Sx%, > 1,

and E = ;)" x %,. Let X = 7 YX), as before, and letx be the corresponding
dynamical cocycle, so thaX = (Z,)" x« X.

ExavpLE 4.4. LetX =R, denote the -element dihedral quandle, regardea as
subset of%, . The action o  Z" is by permutations. Then the quandle module
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invariant is defined as above, with = 0. We ran program&aple Mathematica
and/or C, independently, to compute the quandle module invaridotsy = 3, 5, 7,
11, and 13, through the nine-crossing knots. There are 84 gtime knots in the ta-
ble. We used Jones’s [24] table in which knots are given iridbfarm. Forn = 3,
5, 7, 11, and 13, there are 33, 17, 10, 7, and 7 knots that ardrim@ily colored
by R,, respectively. We summarize our data in Table 1 and 2Rfpand Rs, respec-
tively, below. For each knot we list the torsion subgroupe tank of the free part,
and whether the coloring is trivial or not. Thus the entry mble 1 for knot 8 indi-
cates that there are three trivial colorings @§ &hich give the invarianZzs®Z2, and
six colorings give the invarianf, @ Z*. For colorings byR7, R11 and Ry3, the results
are summarized as follows, where@  denotes the determinaatgifen knot.
e All 7-colorable knots up to 9-crossings, excepf;,9have the module invariant
(Zp)® @ 77, for 7 trivial colorings, andZ© for 42 non-trivial colorings. For 4, it
is (Zp)® @ Z7 for 7 trivial colorings, andZ!° for 336 non-trivial colorings.
e All 11-colorable knots up to 9-crossings have the modulaiiant Zp)° @ Z,
for 11 trivial colorings, andZ® for 110 non-trivial colorings.
e All 13-colorable knots up to 9-crossings have the moduleiant €)% @ 73,
for 13 trivial colorings, andzZ*® for 156 non-trivial colorings.

We expect that the monotony of values for 7, 11, and 13 is dubedact that the
knots considered are all of relatively small crossing numlad/or bridge numbers.

RemARk 4.5. The construction of the quandle module invariant isilamto the
construction of Alexander modules from Burau represemtatiAlso, the cokernel ap-
pears in the definition of the Bowen-Franks [3] groups for bght dynamical sys-
tems. Thus relations to covering spaces, as well as dynasystems related to braid
groups, are expected.

In [31, 41] group representations of knot groups are used afine twisted
Alexander polynomials. In that situation, the represémtatan be viewed as a ma-
trix (which depends on the image of the meridian) assigned twossing. The quan-
dle module invariant is related when the quandle colorings given by knot group
representations. The general relation can be underst@é&as calculus.

5. Knot invariants from non-abelian 2-cocycles

Non-abelian 2-cocycles. Let X be a quandle and/ a (not necessarily abelian)
group. A functiong :X x X — H is arack 2-cocycle[1] if

,B(xl, xz),B(xl % X2, X3) = ,B(X]_, X3),3()C1 kX3, X2 % X3)

is satisfied for anyi, x2, x3 € X. If a rack 2-cocycle further satisfie® x,(x ) =1 for
any x € X, then it is called auandle 2-cocycle[1]. The set of quandle 2-cocycles
is denoted byZéQ(X ; H). Two cocyclesg 8/ areohomologousf there is a function
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Table 1. A table of module invariants for 3-colorable knots
|Knot| Tor |Rank| Coltype [[Knot| Tor [Rank| Col type |
3 3 3 3 Trivial 911 33 3 3 Trivial
0 4 6 Non-trivial 0 4 6 Non-trivial
6, 9 3 3 Trivial 95 39 3 3 Trivial
0 4 6 Non-trivial 0 4 6 Non-trivial
T4 15 3 3 Trivial 96 39 3 3 Trivial
0 4 6 Non-trivial 2 4 6 Non-trivial
77 21 3 3 Trivial 917 39 3 3 Trivial
0 4 6 Non-trivial 0 4 6 Non-trivial
85 21 3 3 Trivial 93 45 3 3 Trivial
2 4 6 Non-Trivial 0 4 6 Non-trivial
810 27 3 3 Trivial 94 45 3 3 Trivial
2 4 6 Non-trivial 2 4 6 Non-trivial
811 27 3 3 Trivial 95 51 3 3 Trivial
0 4 6 Non-trivial 2 4 6 Non-trivial
815 33 3 3 Trivial 99 51 3 3 Trivial
2 4 6 Non-trivial 0 4 6 Non-trivial
818 3, 15| 3 3 Trivial 934 69 3 3 Trivial
3 4 | 24 Non-trivial 0 4 6 Non-trivial
819 3 3 3 Trivial 935 3, 9 3 3 Trivial
2 4 6 Non-Trivial 0 4 18 Non-trivial
80 9 3 3 Trivial 2 4 6 Non-trivial
2 4 6 Non-trivial ||| 937 3, 15| 3 3 Trivial
81 15 3 3 Trivial 2 4 6 Non-trivial
2 4 6 Non-trivial 0 4 18 Non-trivial
9, 9 3 3 Trivial 935 57 3 3 Trivial
0 4 6 Non-trivial 0 4 6 Non-trivial
9% 15 3 3 Trivial 9 |5 15| 3 3 Trivial
0 4 6 Non-trivial 4 4 6 Non-trivial
9 21 3 3 Trivial 96 3, 3 3 3 Trivial
0 4 6 Non-trivial 0 4 18 Non-trivial
% 27 3 3 Trivial 2 4 6 Non-trivial
0 4 6 Non-trivial ||| 947 3, 9 3 3 Trivial
910 33 3 3 Trivial 0 4 24 Non-trivial
0 4 6 Non-trivial ||| 94g 3, 9 3 3 Trivial
0 4 18 Non-trivial
2 4 6 Non-trivial
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Table 2. A table of module invariants f&colorable knots

[Knot]| Tor |[RanK  Col type [[[Knot] Tor [Rank  Col type ||
4, 5 5 5 5 Trivial 9, 15, 15 5 5 Trivial
0 7 |20 Non-trivial 0 7 | 20 Non-trivial
5, 5 5 5 5 Trivial 9, 35, 35 5 5 Trivial
0 7 |20 Non-trivial 0 7 | 20 Non-trivial
Ty 15, 15 5 5 Trivial 93 45, 45 5 5 Trivial
0 7 |20 Non-trivial 0 7 | 20 Non-trivial
8; 25, 25 5 | 5 Non-trivial {||9.4 45, 45 5 5 Trivial
0 7 20 Trivial 0 7 | 20 Non-trivial
8s 25, 25 5 5 Trivial 931 55, 55 5 5 Trivial
0 7 |20 Non-trivial 0 7 | 20 Non-trivial
816 35, 35 5 5 Trivial 9; |3, 3, 15, 1% 5 5 Trivial
0 7 |20 Non-trivial 0 7 | 20 Non-Trivial
8s (|3, 3, 15, 1% 5 5 Trivial 939 55, 55 5 5 Trivial
2, 2 7 |20 Non-trivial 0 7 | 20 Non-trivial
81 15, 15 5 5 Trivial 99 |5 5, 15, 15 5 5 Trivial
0 7 |20 Non-trivial 5 7 |120 Non-Trivial
9% |5 5 5 5| 5 5 Trivial
0 7 | 120 Non-trivial

y: X — H such that

B'(x1, x2) = y (x1) " B(x1, x2)y (x1 * x2)

for any x1, x» € X. An equivalence class is calledc@homology classThe set of co-
homology classes is denoted lﬁgéQ(X; H). These definitions agree with those in [10]
if H is an abelian group. Wher{  is not necessarily abelian, t@clesg are
called (constant) 2ocyclesin [1]. We call such a 2-cocycl@mon-abelianwhen H is
not an abelian group.

Let S be a set an®s denotes the permutation group 6h . LBt S=< X and
B e ZéQ(X;SS). Then the binary operation oA

(a]_, xl) * (az, xz) = (al : ,B(xl, xz), X1 * XZ)

defines a quandle structure an . We call tilis  the non-abekéension of X by
B, and denote it byt % X, S,B8 ).

A quandle X isdecomposablgl] if it is a disjoint union X =Y U Z such that
YsX =YandZxX =Z, whereY * X ={yxx |y €Y, x e X} . A quandle
is indecomposabléf it is not decomposable. For a rack , ¢t X: — X be the
guandle isomorphism defined by, x ( )F=*xy x,e X . The subgroup Xhn( ) ef th
group Aut(X ) of automorphisms ok generated by y.,e X , is called itheer
automorphism group. The same groups are defined for quandtenarphisms for a
quandleX .
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Lemma 5.1 ([1]). SupposeY is indecomposable affd Y — X is a quandle
surjective homomorphism such that = ¢, if f(x) = f(y) for x,y € Y. ThenY is a
non-abelian extensioss x4 X  for somee Z&y(X; Ss).

The following construction was given in [1] (Example 2.18et X be an inde-
composable finite rackyy € X a fixed elementG = Ini ), andl €, be the
subgroup ofG whose elements figy. Let S be a finite set ang H — Sg be a
group homomorphism. There is a bijectiag?t/H — X given py— g xo){ Fix a
set-theoretic section X — G . Thusx (- o =x for all x € X.

Lemma 5.2([1]). The element(x, y) = s(x)pys(x xy) L is in H for anyx, y €
X, and B(x, y) = p(¢(x, y)) is a rack 2-cocycle.
The 2-cocycle is a quandl@-cocycle if and only ifo(¢y,) = 1 € Ss.

Definitions. We define a new cocycle invariant using the non-abelian desyc
Let L = K; U---U K, be a classical oriented link diagram on the plane, where
Ki, ..., K, are connected components, for some positive integer .7ZLefor, i =
1,...,r, be the set of crossings such that the under-arc is from dhgacnent; .

Let X be a quandleH a groug, ZéQ(X; H). Let C € Colx (L) be a coloring
of L by X. Let (b, ..., b,) be the set of base points on the compone#is (.., K,),
respectively. Let (fj), e, r,f{j).)) be the crossings iff;, j =1,...,r, that appear in this
order when one starts fromy;, and travéls  in the given oriesnati

At a crossingt , letx, be the color on the under-arc from which nloemal of
the over-arc points; ley, be the color on the over-arc. Butzmann weightat t
is B(t,C) = B(x., y:)™, wheree ¢ ) is+ 1 depending on whether is positive or
negative, respectively. For a group elemént H , denote/by [e]dbnjugacy class
to which 2 belongs.

Derinimion 5.3.  The family of vectors of conjugacy classes

W(L) = Yx.mp)(L) = (Wu(L, CO)]. ... [¥AL, CO))cecoly 1)

where

k(i)
@)
Wi(L,C) = [ [ Blx,0. y,0) ),
J J

j=1

is called theconjugacy quandle cocycle invarianf a link.

These cocycle invariants include abelian cocycle invasiaefined in [10] as a
special case (whe#/ is abelian).
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X y y
S 25
B(X,Hy) B(X\,y)l

Fig. 5. The beads interpretation of the invariant

a b a b
B(a, b)
c B(b, C% c
< fB(c, a
Fig. 6. Making a beads necklace with trefoil

RemARK 5.4. The invariant has the following interpretation of sigl beads along
knots, similar to Hopf algebra invariants defined in [27].t lze knot diagramK and
its coloring C by a finite quandleX be given, and I8t(K) be the conjugacy quan-
dle cocycle invariant with a 2-cocyclg € Z%Q(X ; H) for a (non-abelian) coefficient
group H .

Put a bead on the underarc just below each crossing as showig.irb. Each
bead is assigned the weight at the crossing, as in the letheoffigure for a positive
crossing and as in the right for a negative crossing, resgdct This process is de-
picted in Fig. 6 in the left for the trefoil.

Pick a base point (which is depicted By in the figure) on thgydim, and push
it in the given orientation of the knot. With it the beads artesiped along in the order
the base point encounters them. When the base point comé&stdatear the origi-
nal position, it has collected all the beads. This situaimepicted in Fig. 6 in the
right. The beads, read from the base point, are aligned inotder 8 @,b), 8 b,c),
and 8 ¢, a) in this order in the figure, and the conjugacy clgss:. [b(B c,)a)8(b, c)]
is the contribution to the invariant for this coloring.

Theorem 5.5. The conjugacy quandle cocycle invariabitis well defined. Specif-
ically, let L,, L, be two link diagrams of ambient isotopic linkand ¥(L1), ¥(L,)
be their conjugacy quandle cocycle invariants. The(L,) and ¥U(L,) are equal as a
set of conjugacy classes.
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Yy Y(XY) 2

X | Y)Yz
X*y A g
y (x*y) Y ((x*y)*2)

Fig. 7. Canceling beads terms

Proof. The fact thatl does not change by Reidemeister moves for fixed base
points is similar to the proof in [10] for the knot case andttiva [6] for the link
case, proved for abelian cocycle invariants, except oneghbserves that the order of
group elements is also preserved under Reidemeister moves. ]

Proposition 5.6. The cocycle invariant¥ is trivial (i.e, ¥ consists of vectors
whose entries are the conjugacy class of the identity el@niethe cocycle used is a
coboundary

Proof. The proof is similar to the proof of an analogous teeorin [10]. If
B € ZéQ(X;H) is null-homologous, them x(y ) 3 x(y)x(x y ~} for some func-
tion y: X — H. Let Bk,y), B * y,z) be consecutive Boltzmann weights in
V;(K,C), a contribution to the cocycle invariant for a coloriggfor the i th compo-
nent. Then iny; K, C), they form a product--g8 x,y A A(* y,z )-- , which is equal
to - ( )y (exy) H(y (exy)y((xxy)xz) 1) - - -, and the middle terms cancel. The left
and the right terms cancel with the next adjacent terms, dmairoV; (K, C) = 1. This
proves the proposition. The situation is easier to viseatlmgrammatically. The bead
representings X, y ) is represented by two separate orderedshbegdesentings x( )
and y (¢ = y )t as depicted at the left crossing in Fig. 7. Thus all the beaisel
after going around each component once. Ul

Recall that an action of a grou on a sét is sk if forall he H, x € X
one has that: -x = implied =1.

Proposition 5.7. Let H Cc Sg and 8 € ZéQ(X; H). If the invariant U(L) is triv-
ial, then any coloring ofL byX extends to a coloring BYX, S, 8). Conversely if
any coloring of L byX extends to a coloring B(X, S, 8), then (L) is trivial, pro-
vided that the action or§ of the subgroup Bf generated by ttegénofs is free.

Proof. This proof is similar to the proof of the corresporglitheorem in [6].
Pick an elementy € S and color the arc with the base poibt  on the th compo-
nent by §o,x) € E = E(X, S, B), where E is identified withS x X . Go along the
component, and after passing under the first crossing, the ob the second arc is
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required to be spB8(x, y), x * y), if the over-arc is colored by € X . Continuing this
process, when we come back to the base point, the colafpis (L, C), x), and the
proposition follows. ]

The freeness requirement is satisfied, for example, if H = Hnd regarded as
a subset oSy (as permutations off ) via multiplication on the right.

When a 2-cocycle constructed by the method of Lemma 5.2 id tselefine the
invariant, we have the following interpretation that is aml@gue of Proposition 5.6.
Let L =K,U---UK, be an oriented link diagram, ard, ..., b, arbitrarily chosen and
fixed base points on each component. Bet be a 2-cocycle ceotetrin Lemma 5.2,
so thatB &,y )=p (& y)) forany y inaquandl® ,and,§@ )y 6y xHy 1)
From the proof of Proposition 5.6 the contribution to the yabe invariant is written
as

(@) (1) (i)
W(L,C) = ﬂ(le(’_)’ yrl(’_))e(rl ) ﬂ(xfz(’)’ yrzm)e(rz ) ,B(X 03,0 )e(tk(;))

T 7 Tk

_ (p <s(x1{,-))¢yr¥)s(xré,-))—l)) . (p <s (xté;))d)yrg)s(xréf))_l)) L
' (p ( (xr:zz)%,;;;)s(xr:zﬁ)_l))
- (s () (B g gy ) S(xr&%)_l)
Thus we obtain the following.

Lemma 5.8. If a 2-cocycle constructed ihemma 5.2is used to define the con-
jugacy cocycle invariantthen the contribution to theé th componewdt(L,C) is com-
puted by

v, (L,C)=p (s (xtf)) . (q’)yr{i) d)yrg) .- '¢>}&3)) . s(xrf))l) .

The expressioryff) ) is the sequence of colors that one encounters traveling
along the component, picking up.» as one goes under thg th crossing. Thus this
J
sequence corresponds to the longitudinal element in thdafmental group.

Constructions. We follow Lemma 5.2 to construct explicit examples of non-
abelian cocycle invariants from conjugacy classes of gsoljet X be a conjugacy
class in a finite group and let &) be the subgroup generated byet xd € G
be a fixed element andl Z,, = {x € G | xox = xxp}. Let «: G — Inn(X) be the
map induced from the conjugation — x (= gxg ). Then the kernel ox is the
centerZ G ) and InrX ) is isomorphic t6/Z G( ).

To evaluate cocycle invariants for specific examples,Xlet thHeeconjugacy class
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i) (K
B D).(h K)
K 1 K 2
B(h k.G )

Fig. 8. Hopf link

consisting of transpositions df, for a fixed> 5, théh (¥ X7 , and(¥=
G. Let xo=(1 2), then

H={12).6¢j)2<i<j<n)ZZyx T2

and N (), the normal closure ofg in H, is equal to( (1 2) ={ 1 (1 2), so that
H/N(xp) = X,_2, whereSz 4., is identified with the symmetric groul,_,. Thus
take S ={3 4...,n} and regard//N x{) asSs. Let the mapp :H — H/N £p) =

Ss be the projection. Them x§) = 1, so that the condition for a quandle cocycle is
satisfied. Lets ;X — G be defined byi ( ) =@ )R ), then defines a section
By Lemma 5.2, this set up defines a 2-cocygle ZéQ(X;SS).

ExampLE 5.9. Letn =5, then, for examplgg ((1.4) (2 3)) can be computed as

B((14).(23) =p(r (@ 4) (23)

P(s((1 ez 33((1 4)x (2 3)7)
p(2 92 3k (2 3 92 )
p((2 4)(2 3)(2 4)
(3 4)
3 4).

I
—~N

ExampLE 5.10. We evaluate the cocycle invariant using the prece@ogcycle
for a Hopf link L =K; U K, depicted in Fig. 8.

Let » = 5 as in Example 5.9. There are two arcs in a Hopf link, alsooted
by K; and K. In the figure, the colorsi(j ) and:(k ) are assigned. Consider the
case { j )=(1 4) andih(k )= (2 3), which certainly defines a colodhgf L. By the
computation in Example 5.9, the contribution to the invairid (L) is

Wi(L,C) = B((1 4). (2 3) =(34)=U(L.0),

which contributes the pair ([(3 4)] [(3 4)]) of conjugacy skes 0fS(3 45 = Xs.
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The non-abelian cocycle invariant is a quantum invariant. Let X be a fi-
nite quandle,G a finite group an@ X x X — G a 2-cocycle. LB({L) =
([w1(L,C)], ..., [¥AL,C)]) be the invariant given in Definition 5.3.

Let p: G — Aut(V) be a representation @ . L& GX® V with the braiding
given byc(f ®@v)® (Qw)) =0 Qw)® cxyQ®v-pB,y)). SinceX and; are
finite, W is a (right-right) Yetter-Drinfeld module over sorfieite group, (see [1]) and
we can consider the quantum link invariants coloring linsW (the ribbon structure
is the identity map, see [20]). Denote this invariant WyZ, %  heml we have the
following, an analogue of [20].

Proposition 5.11. tr(pW(L)) = W(L, W). (Here tr(oW(L)) = [T tr({pWi(L, C)])
is the trace in the tensor product via the inclusidat(V) x - -- x Aut(V) — End(V ®
---® V) (r components.

Proof. ConsiderZ. as the closure of a braid o2 ---0;" € B,, wheree; =+ 1.
Let z € £, be the projection of in the symmetric group. To computeL, W/ ) we
take the trace of the map defined by

z: W€1®...®W5~ — Wf?(1)®...®W€Ru)’

wheree; =4 1 andW~? stands forW* . To compute this trace we take the basis
of CX, a basis{v; | i € I} ofV and the basis ® v; | x € X,i € I} d&F
Notice that the first components of the braiding W are giventie quandleX .
Thus, if we apply the mag to an element of the form ® v;,) ® --- @ (x, ® v;, ),
this element will not contribute to the invariant unless veeaive x4, ..., x, as the
first components; i.e. ifx, ..., x,) € X" defines a coloring of. . Consider therefore
the colorings of L . Take a particular coloring given by, ..., x, at the top of the
braid. For any: -tuple of elemenis,, ..., v;, in the basis ofV , we apply successively
ofll, el a,.f’ and notice that the; ’s change Iy exactly in the same way asedefin
in the invariant¥. Now, tr(pW) is the sum over the colorings of traces of products of
p(ﬁi%) for severalx ,y 's, andV is the sum over colorings of traces opsnmade
by ,Bji for the same pairs y as for trf). The last step is to notice that the order
of the 8’s used in the definition of’ is the same one that one gets by taking traces,
thanks to the following remark: Lef, ..., f, € End(V ) be linear maps and consider
the mapF € End¥“ ® --- ® V) given by

FOp! @ @xy) =2(f{' () ® - ® £ (xy).

Write z = (p1, - -+ Pay)(Pag+1s - - - » Pagtas) =+ (Pagtta,_y#1s - - - » Pay+-+a,) the decomposi-
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tion of z in disjoint cycles. Then

,
_ 61)(1,1+...+l,j71+1) 6P(up...»q,’.ipz) 517(1,1+...+,,j)
trF - Htr (fl’(ul+...+uj,1+1) fP(ul+...+uj-,1+2) U 17(ul+---+uj') ) .
j=1
This is easy to see. Let us illustrate it with the easy exampteo, € B»; we must
prove then that

tr((v ® w) = (g(w) ® £(v))) = tr(fg).

but the left hand side of the equation}s, ; g;:fi.;  (hefig and are thebmatr
coefficients of f ande in the basiz;} d&f ) and this coincides with tight hand
side. ]

6. Knot invariants from generalized 2-cocycles

Definitions. Let X be a finite quandle and(X) be its quandle algebra with gen-
erators{nﬂ}x‘yex and{r, y}..yex . Recall (Example 2.1) that the enveloping gratyp
of a quandleX is a quotient of the free groupX ( ) &an  defineddy (x=¢
X | x*y = yxy ). ThenZ(X) maps onto the group algeb@Gx by n., — v,
T,y = 1 —x %y so that any lefZGx-module has a structure of A(X)-module [1].
Let G be an abelian group with thi&(X)-module structure. In fact, a homology the-
ory in this case wherGx  acts on coefficients, as well as knoti@wes when regions
are colored, was defined and studied earlier in [37]. In timd the next sections, we
investigate such invariants when the action is given by theathh product of groups.
Let ¥ be a generalized quandle 2-cocycleXf  with the coefficggoup G . Thus the
generalized 2-cocycle condition, in this setting, is werittas

ZKx,y t Kysyz T ((x * )k Z)Ky.,z =Ky T O * 2 )Kx, 2 T Kxnz,yrz-

We define a cocycle invariant using this 2-cocycle.

A knot diagramK is given on the plane. Recall that it is orientend has orien-
tation normals. There are four regions near each crossingled by the arcs of the
diagram. The unique region into which both normals (to owerd under-arcs) point
is called thetarget region. Lety be an arc from the region at infinity of the plane to
the target region of a given crossimg , that inters€ct  indipitmany points trans-
versely, missing crossing points. Let i, =.1.,k , in this order,the arcs ofK
that intersecty from the region at infinity to the crossingt Cebe a coloring ofK
by a fixed finite quandleX

Derinimion 6.1, TheBoltzmann weightB(C, r, y) for the crossing- , for a color-
ing C, with respect toy , is defined by

B(C,r,y) = £(C(ar)“IC(az) - - C(a) )k, , € ZG,
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Fig. 9. Weights on arcs

wherex ,y are the colors at the given crossing ( is assigned @rutider-arc from
which the normal of the over-arc points, and is assigned &adber-arc), and the
product

(C(al)e(al)c(az)e(az) . C(ak)e(ak)) € Gy

acts onG via the quandle module structure. The sign in fronleermined by
whetherr is positive (+) or negative-( ). The exponeni; ( ) is thi# arcy crosses
the arca; against its normal, and s 1 otherwise, for ,=1,k

The situation is depicted in Fig. 9, when the arc intersests arcs with colorsu
andv in this order.

Lemma 6.2. The Boltzmann weightioes not depend on the choice of the arc
so that it will be denoted by(C, r).

Proof. Refer to [16] for a proof that the coefficient(§1)“)C(ap)< ) - ..
C(a;)<)) is preserved when the arc is homotoped. O

DeriniTion 6.3. The family®, € ) ={(>_, B C,r)}¢ is called thequandle cocycle
invariant with respect to the (generalized) 2-cocyele

The invariant agrees with the quandle cocycle invaridgt K ( efingd in [10]
when the quandle module structure of the coefficient graup trivdal, and with
d4(K) defined in [7], modulo the Alexander numbering conventiorthe Boltzmann
weight in [7], when the coefficient groug is @[, r~}]-module and the quandle
module structure is given by, y a( )em and, b ()=4kb) ,forye X a,beG
In the above papers, the state-sum form is used, insteadhilida. In this section we
use families since it is easier to write for families of vesto

We note that this definition contains the following data thegre chosen and
fixed: X, G, «, andK .
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YxZ
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Fig. 10. Reidemeister type Ill move and 2-cocycle condition

Theorem 6.4. The family®,(K) does not depend on the choice of a diagram of
a given knat so that it is a well-defined knot invariant.

Proof. The proof is a routine check of Reidemeister moved, itiis straightfor-
ward for type | and Il. The type lll case is depicted, for onetlud orientation choices,
in Fig. 10, whereg denotes the sequence of colors of arcs fimaa before the arc
y intersects the crossings in consideration. It is seen frioenfigure that the contri-
bution of the Boltzmann weights from these three crossimyslved do not change
before and after the move. The other orientation possdslican be checked similarly.

]

Lemma 6.5. If x =8 for somex e C1(X; A), then the cocycle invarian®, (1)
is trivial for any link L. Moreover cohomologous cocycleslgithe same invariants.

Proof. The proof follows the same idea as in [10], and Prdjorsb.6. ]

Proposition 6.6. In the case when the quandRecocyclex is expressed by a
group 2-cocycle as inProposition 3.1the invariant @, (K) is trivial for knots K (not
necessarily for links

Proof. LetK denote a knot (not a link). Let  #,(S°\ K) denote the fun-
damental group of the complement. The fundamental quangle my&) (see for
example [16]) hasr as its enveloping grodh,, = . LBt Axy G be an
extension of a groupgG by an abelian grodp  twisted by a groupcyate 6 €
Zéroup(G;A). A gquandle coloring ofK by Conff ) is induced by a quandlerfomnor-
phism f 17y — Conj(G ) which naturally lifts to a group homomorphistn = — G,
denoted by the same letter. There is an actionrof Aon  givenhdagtoup homo-
morphism f . Explicitly, ifx e 7 anda € A , thenx -a 5 A A ))a(s) A M )} where
s: G — E is the section that gives rise to the descriptibn A=y G, andi :A — E
is the inclusion.
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The sphere theorem gives thst \ K is a K (r, 1)-space, and sHémup(n;A) is
trivial. Hence any group 2-cocycle is a coboundary for . Tiniplies that for gen-
eratorsa ,8 ofr ormy corresponding to arcs of a given knot diagréyp,, rs) =
f*0(a, B) = Sy, and by Lemma 3.5k (). sy = f*Soy. Then Lemma 6.5 implies
that the invariant is trivial. ]

Braids and the cocycle invariants. Let a knot or a linkL be represented as a
closed braidw™, wherev is & -braid word. L& be a quandle @d beaadle
module, keeping the setting given at the beginning of thidice.

DerFINITION 6.7.  Let¥ = (x1,..., x) € X* for some positive integet . Define a
weighted surmon G* with respect toé by

k
WS;(a) = Zuiai = (xg -+ - xp)ay + (xg - - - xg)ag + -+ - +xpar-1 +ay,
i=1

whered = (a1, ...,a;) € G¥ andu; =x;---xjsp fori=1,...,k— 1, andu; =1.

Let w be ak -braid wordx = (x1,...,x;) € X be a vector of colors assigned to
the bottom strings ofw , and be the unique coloring ofv by¥ determined By
Let the vectory = (y1,...y) € X* denote the color vector on the top strings that is
induced by the vectok = (xi,...x;) € X* which is assigned at the bottom. Fix this
coloring C. Let a;{y =1y, +17,,, be a quandle 2-cocycle with coefficient groGp  with
k =0, whereG is anX -module. Then any color vecior (a1, ..., ;) € G* at the
bottom strings uniquely determines a color veckor (b1,...,b) € G* at the top
strings ofw with respect ta , that i%,= M(w, X) - a. Recall that in this section the
guandle module structure is given by ths,  -module structure.

Lemma 6.8. Let af’y = nyy + 7,y De a quandle2-cocycle withx = 0, and b=
M(w,X)-d, as above. Then we haw/S;(d) = WS;(b).

Proof. It is sufficient to prove the statement for a generatud its inverse. The
inverse case is similar, so we compute the case wheno; =  for gprhec i < k.
The only difference in the weighted sum, in this case, isitlheand { + 1)st terms.
Let u =x; - - - x;+2. For the bottom colors, the th and ( + 1)st terms are

WS (@) = -+ +uxiaa; Y uapa +--- .
On the other hand, one computes
WS;(B) = tulxg * xpe)aie Fulxiea; + (L — x; % xpe1)aien] + - -

which agrees with the above. O
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Theorem 6.9. Let w be ak -braid word with crossings,, £ =1,...,h,andx a
bottom color vector by a quandl® . Let , =1, ,+17,,+«,,, be a quandle2-cocycle
with coefficient groupG, a Gx-module and b = M(w, ¥) - a. Here the mapM corre-
sponds tow with possibly non-zeko . Then we have

h
WS;(b) — WS:(@) = — ) B(C. p0).

=1

Proof. LetM°w,*) denote the map corresponding to the 2—cocyx§]§: =Nyt
T.,y, Which is obtained fromx by setting = 0. The theorem followsnfr induction
once we prove it for a braid generator and its inverse, and veav¢he casaw =;
as the inverse case is similar. Then we compute

WS;(B) = WS;(M(0;, ) - @) = WS;(M%(0;, %) - @) + B(C, o)
= WS:(@) - B(C, a1),

where the first equality follows from the definitions, and thecond equality follows
from Lemma 6.8. Note that the braid generator representsgatime crossing in the
definition of the quandle module invariant, and a positivessing in the cocycle in-
variant, so that there is a negative sign for the weight, of). ]

Theorem 6.10. If a coloring C of L by X extends to a coloring of by the
extensionE = G x, X, then the coloring contributes a trivial terrfi.e., an integer in
ZG) to the generalized cocycle invariad, (L).

Proof. A given coloring agrees on the bottom and top strirggs,thatx = y.
If the given coloring extends t& , we have= M(c;, %) -@ = a, and in particular,
WS;(Z) = WS;(a). Then this theorem follows from Theorem 6.9. [l

Remark 6.11. In Livingston [33], the following situation is exaneid. Suppose
that E is a split extension of a groug by an abelian group , sb@ha A —
E — G — 1 is a split exact sequence. Lpt 7: 5(S®\ K) — G denote a ho-
momorphism. Then since there is an action®f 4n via conjogait E, there is
a corresponding action of oA given via . Livingston examimg®n there is a
lift of pto p: m — E thereby generalizing Perko’s theorem that argntomorphism
p. 1 — X3 lifts to a homomorphismp "7 — X4. In this situation, the permutation
group X3 acts on the Klein 4 grouf, x Z, = {(1), (12)(34) (13)(24) (14)(23) via
conjugation and the obvious section X3 — X4 Livingston shows that there is a
one-to-one correspondence between -conjugacy classéfsodfl p and elements in
H(w, {A}) where the coefficient$A} are twisted by the actionmof An

Consider a quandle coloring of a kn& by a quandle Genj( ).hSaquandle
coloring is a homomorphism from the fundamental quandige,K , ©f )X, to ConjG ).
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Fig. 11. Colors and arcs for braids

The fundamental groupr  can be thought ofas Gz, (x). Thus a quandle coloring
is a homomorphisnp as above.

Thus, we have the following cohomological characterizatid lifting colorings. If
a coloring lifts, then the coloring contributes a constairt to the cocycle invariant
by Theorem 6.10 above, and it corresponds to a 1-dimensiotadmology class of
H(z, {A)}).

Computations. In this section we present a computational method usingedlos
braid form. We take a positive crossing as a positive genetaborthis section Let
w=w;---w, be a braid word, wherev, er;(fj)) is a standard generator or its inverse
for eachs =1...,h . The braids are oriented downward and the norwiatgpto the
right. Then the target region is to the right of each crossing

Let X be a quandle and be a coloring ofw™ byX . Let & i,C) be the color
of the i th string from the left, immediately above the th ciog<z,) for C. Take the
right-most region as the region at infinity, and take the wlesof a given braid to the
left, as depicted in Fig. 11. As an ajc  to the target regioke tan arc that goes
horizontally from the right to left to the crossing, see Fid.. Then the Boltzmann

weight at thes th crossing is given by
B(C,t5) = (c(s,n,C) -+ c(s, j +2,C))Kes.},C).c(s,j+1.C)

for a positive crossing (whem s( ) = 1), and the 2-cocycle eat@tun is replaced by
Ke(s+1,1.0).¢(s,j,c) fOr @ negative crossing, and with a negative sign in frontteNbat the

expression in front ok represents the action of this growgmeint on the coefficient
group, so that in the case of wreath product, for exampls, ¢hn be written in terms
of matrices. Also, if; =n — 1, then the expression in front is usti@od to be empty.
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This formula can be used to evaluate the invariant for knotslosed braid form, and
can be implemented in a computer.

ExampLE 6.12. We implemented the above formula #®s in Maple and obtained
the following results, confirmed also bWlathematica The action is in the wreath
product; thusRs acts on Z,)% by transpositions of factors. We also represent ele-
ments of R3 by {1, 2 3 with the following correspondence in this example: (2=3),
2=(13)and 3=(1 2).

For ¢ = 0, any 2-cocycle gave trivial invariant (each coloricmntributes the zero
vector, and the family of vectors is a family of zero vectpfey all 3-colorable knots
in the knot table up to 9 crossings. Thus we conjecture ¢hat gives rise to the
trivial invariant.

Let n(i, j) = T(f1(i, j), f=(, j), fa(i, j)) denote a vector valued 2-cochain. Then
for ¢ = 3, the following defines a 2-cocycle:

fl(3’ 1) :f3(3’ 1) :fl(z’ 3) :fl(z’ 1) :f3(2’ 1) = :L
f2(37 1) :f2(3a 2) :f2(17 3) :fl(lv 2) :f2(17 2) =2

and all the other values are zeros. Then we obtain the fallgwesults.

o @, (K)=1{ug(0,0 0} for K = 6,810, 811, 820, 91, 96, 923, 924, Where {Lig(0, O, O)
represents the family consisting of 9 copies of (0 0 0) (@imilotations are used be-
low).

o &(K)={u3(0,0, 0)ue(l, 1, 1} for K =3, 74, 77, 910, 9.

o & (K)={u3(0,0 0)u6(2 2 2) for K =8, 85, 819, 821, %, 94, 911, 915, 916, N7,
928, 99, 934, Y0

o @ (K)={ug(0, 0 0)Lng(l, 1, 1)} for K = s, 947, Y.

o &, (K)={u3(0,0 0) (1, 1, 1) U12(2, 2 2)} for K = 8s.

o @ (K)={u15(0,0 0) gL, 1, 1) Lis(2, 2 2) for K =S, 9e.

Remark 6.13. With the same cocycle as the preceding example, we wechp
the invariants for the mirror images with the same orieoteti The results are such
that the values 1 and 2 are exchanged in all values (thus wgeatore that this is
the case in general, at least f&). For example, the mirror image of the trefoil has
®,.(K) = {us(0, 0, 0) Lg(2, 2, 2) as its invariant. Hence those with asymmetric values
of the invariant are proven to be non-amphicheiral by thigiiant. Specifically, 22
knots among 33 are detected to be non-amphicheiral.

7. Invariants for knotted surfaces

Definitions. The cocycle invariants are defined for knotted surfaces spake in
exactly the same manner as in Section 6 as follows. Xet be g finiandle and
Z(X) be its quandle algebra with generathg%,}x,yex and {7 y}r,yex - LEtG be an
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abelian group that is &x -module. Recall that this induceés(d)-module structure
given byn,,g =yg andr,, £ )=(kx*xy 9 fogeG and yeX .let,., bea
generalized quandle 3-cocycle &f  with the coefficient gréupThus the generalized
3-cocycle condition, in this setting, is written as

WKy, y,z + Kxsz,yxz,w + ((y * Z) * w)’(.\‘,z,w +Ky,z,w

= (((x * .V) * Z) * w)K)'.z.,w +Kreyzw T (Z * w)’(.x,y.w + Kxsw, ysw, zxw -

We require further thak, ., #%.,, =0. A cocycle invariant of knottatfaces will
be defined using such a 3-cocycle.

A knotted surface diagrank is given in 3-space. We assume utface is ori-
ented and use orientation normals to indicate the oriemtatin a neighborhood of
each triple point, there are eight regions that are sepmhiayethe sheets of the sur-
face since the triple point looks like the intersection o€ tB-coordinate planes in
some parametrization. The region into which all normalspds called thetarget re-
gion. Lety be an arc from the region at infinity of the 3-spacehe target region
of a given triple pointr . Assume that interse®ts  transvgraela finitely many
points thereby missing double point curves, branch poiatg] triple points. Lets; ,
i =1, ...k, in this order, be the sheets @f that intersgct  from théoregt in-
finity to the triple pointr . LetC be a coloring ofK by a fixed finite quandlg

Derinimion 7.1.  TheBoltzmann weighiB(C, r, y) for the triple pointr , for a col-
oring C, with respect toy , is defined by

B(C,r,v) = £(Clar)*™C(az)™ - - - C(ax) @)k, . . € ZG,

wherex ,y ,z are the colors at the given triple pointx ( is assigoedhe bottom
sheet from which the normals of the middle and top sheetst,paimd y is assigned to
the middle sheet from which the normal of the top sheet ppmusl z is assigned to
the top sheet). The sigit in front is determined by whether ositpe (+) or neg-

ative (—). The exponent af ) is 1 is the agc  crosses thesarc  dgisnaormal,

and is— 1 otherwise, foj =,1..,k

Lemma 7.2. The Boltzmann weight does not depend on the choice of the ,arc
so that it will be denoted by(C, r).

Proof. As in the classical case, the coefficient is presemwbdn the arcy is
homotoped, cf. [16]. O

Derinimion 7.3, The family®, K ) ={3_, B C, r)}ceconx) is called the quandle
cocycle invariant with respect to the (generalized) 3-ctey .
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((Ocy)yz)*w) K(y,z,w)

Fig. 12. Contributions for the tetrahedral move

Theorem 7.4. The family®,(K) does not depend on the choice of a diagram of
a given knotted surfaceso that it is a well-defined knot invariant.

Proof. The proof is a routine check of Roseman moves, ana®gfl Reidemeis-
ter moves. In particular, the analogue of the type Il Reiditer move is called the
tetrahedral move, and is a generic plane passing througlori that is the triple
point formed by coordinate planes. In Fig. 12, such a moveejgiaied. A choice of
normal vectors and quandle colorings are also depictederfifure. The sheet labeled
w is the top sheet, and the next highest sheet is labeled by hattem isx . The re-
gion at infinity is chosen (for simplicity) to be the region tae top right, into which
all normals point. The Boltzmann weight at each triple pdsitalso indicated. The
sum of the weights for the LHS and RHS are exactly those for3wecycle condi-
tion. Other choices for orientations, and other moves, aexked similarly. In partic-
ular, by assuming that the cocycte satisfies the quandleitoomad, , , =« , =0,
we ensure that the quantity is invariant under the Rosemave no which a branch
point passes through another sheet. Ul

A proof similar to that of Lemma 6.5 implies the following, ete the distribution
of coboundary terms is depicted in Fig. 13.

Lemma 7.5. If « =8¢ for some: e C%(X; A), then the cocycle invarian®, (F)
is trivial for any knotted surfaceé” . Moreover cohomologousycles yield the same
invariants.

Computations. We develop a computational method, based on Satoh's
method [39], of computing this cocycle invariant for twigun knots using the
closed braid form. First we review Satoh’s method. A movisadiption of one full
twist of a classical knotk is depicted in Fig. 14 from (1) thgbu(5). Strictly
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Fig. 13. Coboundary terms distributed
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Fig. 14. A movie of twist spinning

speaking,K is a tangle with two end points, and the tangle isté@ about an axis
containing these end points. For the twist-spun trefoil,iagichm of the trefoil (with
two end points) goes in the place &f

It is seen from this movie that branch points appear betwégrarid (2), and (4)
and (5), when type | Reidemeister moves occur in the movigl€elpoints appear
when K goes over an arc between (2) and (3), and goes undemiedet(3) and (4).
Each triple point corresponds to a crossing of the diagkam his Tovie will provide
a broken surface diagram by taking the continuous tracehefnovie, which is de-
picted in Fig. 15. Horizontal cross sections of Fig. 15 cgpand to (1) through (5)
as indicated at the top of the figure. Thus between (1) andh@gtis a branch point,
for example. A choice of normal vectors is also depicted byrishrrows.

Now we apply this method to closed braid form. et be a diagcanmespond-
ing to a braid word ofn strings. Then construct a tangle witlo tend points at top
and bottom, by stretching the left-most end points and efpsill the other end points
of the braid, as depicted in Fig. 16. L&  be this tangle, a3 aglthe corresponding
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Fig. 15. A part of a diagram of twist-spun trefoil

Fig. 16. A tangle construction from a braid

knot and knot diagram. A choice of normal vectors are alsdotiegh. Let Tw K ) be
the diagram of the -twist spun af  obtained by Satoh’s method.

Let w (as a braid word, written as the same letter as the didgiaew, ..., wy,
where eachw, is a standard generator or its invengeé“')). In this section we use
the positive crossing as a standard generator. Recall #et erossing gives rise to
a triple point in the diagram of a twist-spun knot, when Satohethod is applied. In
Fig. 17, the triple point corresponding to, o5 is depicted.sTfigure represents a
triple point Tll(s) that is formed when the crossing;  goes through a sheet batwe
steps (2) and (3) in Fig. 15 fof #s( ) andw({ > 0 (i.eu is the th thrgener-
atoro;, and the crossing is positive). There is another tyuimt 77 (s) formed by the
same crossing between steps (3) and (4). The superstript » egpresents that they
appear in the left and right of Fig. 15, respectively. It isarsehatTl’(s) and 7y (s) are
negative and positive triple points with the right-handefulespectively, with respect to
the normal vectors specified in Figs. 15 and 16. Then thereagyair of triple points
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Fig. 17. The weight at a triple point

T!(s) and T” ¢ ) for the left and right, respectively, for the th twis

Let a coloringC by a quandlexX of the diagram Twk( ) be given. At the triple
point Tl[(s), the triple of colors that contribute to the cocycle ingat are depicted in
Fig. 17 asf {, j,C), ¢(s, j,C) andc (s, j +1C) for the top, middle, and bottom sheet,
respectively. Heref represents a color of the face left todtwssingw, , and;j in
c(s, j,C) represents thg th string from the left in the braid (@s o;= )e Tolor
of the horizontal sheet in Fig. 17 at the right-most regionsimie of the braid is the
same as the color (%,C) of the kth string of the braidv at the top and bottom,
since the tangle goes through the th string, see Figs. 16 andHus we obtain

f(svj’ C) = (((((C(l,k,C) ;C(S,k,C)) ;C(S’k - 1s C)) ;"');C(S, jv C))),

where for anyb ¢ € X the unique elememte X  witkb c¢= is denotedabycx&.
From Figs. 15 and 17, it is seen that the target regiorT{gf) is to the bottom right.
Thus from the region at infinity, we choose an arc  as depiateHig. 17, that goes
through the sheet with color (%, C), then hits all the sheets corresponding to the
nth through § +2)th braid strings, to the target region. Othlg first sheet is oriented
coherently with the direction of the arc we chose. Hence #tusnce of quandle ele-
ments in the Boltzmann weight that corresponds to theyarc is

c(L,k,C)Ye(s, n, C)e(s,n —1,C)--- (s, j +2,0C).

Similar arcs can be chosen f@ (s) as well, giving the same sequence. Thus we ob-
tain the Boltzmann weights as follows.

_(C(lv k, C)_lc(s, n, C) c C(S’ ./ + 2’ C))Kf(s.j,C). c(s,j,C), c(s,j+1,C)
if ¢ Tll(v)) <0

c(1,k, C)re(s, n, C) -+ - (s, j + 2, Chc ps,j.0). cls+1.7.C). c(s.).C)
if ¢ Tll(v)) > 0,

B(C, T{(s)) =
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Table 3. A table of cocycle invariants for twist spun knotartp

| Knot K || @,(Tw?*(K)) |

31 u9(0, 0, O).

61 u3(0v 0’ 0)’ (_q27 O’ qz)’ (q2’ q1, —q41— qQ)v (ql’ O’ _ql)’
(0, —q1,91), (—q1*q2,91—q2,0), (=92, —q1+q2, q1).

74 Us3(0, 0, 0) (—q2, =291, 2q1 + g2), (=91 * g2, 91, —q2);
(=41, 291, —q1) , (—=q1, —q1, 291), (g2, —q2,0), (=q2, 2, 0).

77 us(0, 0, 0) Uz(g1, 0, —g1), U2(0, —q1, g1), U2(—4g1. 1, 0).

85 Ug(o, 0, 0).

810 Ug(o, 0, 0).

811 U3(0, 0, 0) @2, 0, —g2), (—g2, —q1, 91+ q2), (=41, 0, q1),
0,91, —q1), (91— g2, —q1%q2,0), (g2, 91— g2, —q1)-

815 u3(0, 0, 0) U3(0, —q1, q1), Ls(—q1, q1, 0).

818 Us(0, 0, 0) Ue(q1, 0, —g1), Us(—91, g1, 0), Us(0, —q1, g1)-

819 Ug(o, 0, 0).

820 Ug(o, 0, 0).

82]_ Ug(o, 0, 0).

c(Lk,C) te(s,n, C) -+~ c(s, j +2,C)kes, j.C). c(s,j+1.0), c(Lh.C)
if eT/(s))>0
—(c(1,k,C)e(s,n,C) - cls, j +2,C)ke(s+1,).0). c(5.7.C), c(Lh.C)
if (T (s)) <O.

B(C, T (s)) =

For theu th twist, the cocycle evaluation is replaced by

K f(s.j,C)xc(Lk,C), c(s,j,C)xc(Lk,C)", c(s,j+1,C)xc(Lk,C)*

for a positive triple pointZ’ { ), and similar changes (multption by xc (1 k, C)* for
every term) are made for the other triple points accordinglyerex x y¢ denotes the
¢-fold product (- (G xy )xy)-- )ky.

With these weights the cocycle invariant is computed by

14 h
O (Tw (K) = 1> [B(C. Ti(s)+ BC. T, (s))]] :
C

u=1 s=1
This formula, again, can be implemented in computer caficuia.
ExampLE 7.6. We obtained the following calculations aple and Mathemat-

ica. Let X = Rs, the coefficient grougZ® with the wreath product action (elements
of Rz = {1, 2 3 acting onZ® by transpositions of factors, 1 = (2 3), 2 = (1 3), and
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Table 4. A table of cocycle invariants for twist spun knotsitph

[ Knot K || @, (TW(K)) I

91 |_|g(0, 0, O)
9, Us(0, 0, 0), U2(0, —g1, g1), Ua2(—q1, 1, 0), Uz(g1, 0, —q1).
9 us(0, 0, 0) u3(0, g1, —g1), Us(g1, —q1, 0).
% Us(0, 0, 0) Ua(2g1, 0, —2g1), Uz(0, —241, 291), Uz(—241, 2¢1, 0).
910 Ug(0, 0, 0) (g2 —91,0,91+q2), (92, —q1, 91— q2),
(=291, 91, 1), (=q1+q2, 291 — 92, —q1), (91 — q2, —2q1 + G2, q1).
911 |_|3(0, 0, 0) Lle(ql, 0, *ql).
915 Us(0, 0, 0) U2(0, —g1, g1), Ua(—¢1, ¢1, 0), Uz(g1, 0, —q1).
916 Uz(0, 0, 0) Ux(—g1, 0, g1), Ua(g1, —q1,0), U2(0, g1, —q1).
917 |_|3(0, 0, 0) |_|6(—L]1, 0, ql)-
93 Us(0, 0, 0) Us(0, —g1, g1), Us(—q1, q1,0).
924 |_|9(O, 0, 0)
928 Us(0, 0, 0) Us(—q1,0, g1), U3(0, g1, —q1).
99 Us(0, 0, 0) (~q2, —q1, 91+ q2), (92,0, —¢q2), (0, g1, —q1),
(=41, 0,q1), (2. 91— g2, —q1), (91— q2, —q1+ q2, Q).
934 |_|3(O, 0, 0) |_|5(—L]1, 0, ql)-
935 |—|3(05 0, O)’ l—ls(_qh Ov ql)s |—|3(Ov q1, _ql)’ (qlw Ov —111)s (qlv —dq1, 0)7 (O, —q2, 42)~

(0, 292, —2q5), (=241, 0, 2q1), (—q2, —2q1 — q2, 291 *+ 292), (91, 92, —q1— q2),
0,91+ q2, —q1 — q2), (—q1. —2q2, 91+ 2q2), (—q1,2q1 — G2, —q1+ q2),

(91, —q1+ 92, —q2), (0,91 — g2, —q1+ q2), (91 — g2, —q1+ 292, —q2).

97 us(0, 0, 0), Us(0, —g1, g1), Us(q1, 0, —q1), Uz(—q2,0, q2), (—q2, q2,0),

(=42, 91. —q1+ q2), (91 + q2, —q1, —q2), U2(q2. q1. —q1— q2),

(91, =291 — 292, g1+ 2q2), (q1, 292, —q1 — 292), (—=q1*q2,q1— 42, 0),
Ua(=¢2, —q1* g2, q1), (=q1%q2, 91— 42, 0), (g2, —q1— g2, q1).

O38 Us(0, 0, 0) (g2, —291, 291 + q2), (—q1+ g2, q1, —q2),
(—=q1. 291, —q1), (=91, —q1, 291), (92, —q2,0), (=q2, q2,0).
0 Us(0, 0, 0) Us(—q1, 0, g1), Us(0, g1, —q1).
6 L17(0, 0, 0), U3z(q1, —¢1, 0), Us(0, g1, —q1), (—g2. g2, 0), (g2, —q2.0),
(91+ 42,0, —q1 — q2), (91— q2,0,91+ q2)-
947 Us(0, 0, 0) Uia(g1, 0, —g1), U3(0, g1, —q1), Us(g1, —q1, 0),
(92, —42,0), (—=g2,42,0), (—q1 —q2,0,91+q2), (q1+q2,0, —q2 — q1).
g Us(0, 0, 0) Us3(0, —g1, g1), Us(g1. —¢1,0), Us(—q1,q1. 0), U3(0, g1, —q1),

U2(g1, 0, —q1), (92, =92, 0), (—=q2, 2, 0), (—q1, 291, —q1), (—=q1, —q1, 2q1),
(=92, =291, 291 + q2), (q1+ g2, —q1, —q2), (=291 — g2, 91, 91+ q2),
(—q1+ 92,91, —q2), (—q2, —q1* ¢, q1), (—q1+ g2, q1— g2, 0).

3=(2). Leth(,j, k) =T (i, j, k), f-G, j, k), f3(, j, k)) denote a vector valued
3-cochain, wheref, i(j,k ¥ Z. Let q1, g2 € Z be arbitrary elements. Then the fol-
lowing values, with all the other unspecified ones being zdgrjined a 3-cocyclé

-1, 3 2) =q1,
_fl(z’ 3’ 2) = an

fl(l’ 27 1) = fZ(la Z 3) = f3(3’ :L 2) = _fl(l’ 3v 1)
fl(z’ l’ 3) = f1(3’ :L 2)
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f13, 2 3) =—q1 - q2.

With this 3-cocycle the cocycle invariant for the 2-twistuspknots for 3-colorable
knots in the table are evaluated as listed in Table 3 (up too8samngs) and Table 4
(9 crossing knots). The notations used in the table for famibf vectors are similar
to those in Example 6.12.

Non-invertibility of knotted surfaces. The computations of the cocycle invari-
ant imply non-invertibility of twist-spun knots. Here is aidf overview on non-
invertibility of knotted surfaces:

e Fox [18] presented a non-invertible knotted sphere usingt kmodules as follows.
The first homologyH:1(X) of the infinite cyclic coverX of the complementy of the
sphere inS* of Fox's Example 10 iZ[r,t1]/(2—1) as aA =Z[t, t ‘]-module. Fox's
Example 11 can be recognized as the same sphere as Exampie[1&] with its ori-
entation reversed. Its Alexander polynomial is(1r 2 ), aretdfore, not equivalent to
Example 10.

Knot modules, however, fail to detect non-invertibility dfie 2-twist spun trefoil
(whose knot module i9\/ @t¢, 1 t2)). Contrarily the cocycle inaats fail to detect
non-invertibility of ribbon 2-knots such as Fox's Examplé (and 11).

e Farber [15] showed that the 2-twist spun trefoil was noreitible using the
Farber-Levine pairing (see also Hillman [22]).

e Ruberman [38] used Casson-Gordon invariants to prove tme sasult, with other
new examples of non-invertible knotted spheres.

e Neither technique applies directly to the same knot withidti1-handles attached
(in this case the knot is a surface with a higher genus). Kahiaj28, 29] has gener-
alized the Farber-Levine pairing to higher genus surfashewing that such a surface
is also non-invertible.

e Gordon [19] showed that a large family of knotted spheres iadeed non-
invertible. His extensive lists are: (1) the 2-twist spin afrational knotK is invert-
ible if and only if K is amphicheiral; (2) ifn p g are- 1, then the wist spin
of the (p,q) torus knot is non-invertible, (3) if= > 3 then the -twvispin of a
hyperbolic knotK is invertible if and only ik is (+)-amphicinal. His topological
argument uses the fact that the twist spun knots are fibelgib®. In particular, the
corresponding results are unknown for surfaces of highausggs.

e Iwakiri [23] found an infinite family of non-invertible twitsspins of 2-bridge knots
such that the non-inveritibility can be shown by Gordon’stmoel but cannot be shown
using the cocycle invariants with & R,

Then the cocycle invariant provided a diagrammatic methéddetecting non-
invertibility of knotted surfaces. In [10], it was shown ngithe cocycle invariant that
the 2-twist spun trefoil is non-invertible. Furthermors, \@as mentioned in Section 1,
all the surfaces that are obtained from the 2-twist spunoifrdfy attaching trivial
1-handles, called itstabilizedsurfaces, are also non-invertible, since the stabilized su
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faces have the same cocycle invariant as the original khatpdhere. The result was
generalized by Asami and Satoh [2] to an infinite family ofgiMpins of torus knots.

The computations given in Example 7.6 can be carried out Her 2-twist spun
knots with orientations reversed. Specifically, if the otégion of the surface is re-
versed, then the computations change in the following marfiest, the face colors
are determined by

f(S,j,C):(‘"(("'((C(l,k,C)*C(S,k,C))*C(S,k—1,6))*"')*C(S,j,C))"').

The target region off}(s) depicted in Fig. 17 is the top left region in the figure, so
that the sequence of colors that an @arc  meets is

c(s, n, C)_lc(s, n—1, C)_1 ceece(s, J, C)_l,

wherey does not cross the horizontal sheet in the figure bug tfweughk th through
jth vertical sheets from left. Thus we obtain

c(s,n,C) (s, . C) e p(s,j42.0). e(s+1j+1.0). c(5.j+LC)
if € Tll(s)) >0

_(C(Sv n, C)71 to C(S’ ja C)il)Kf(s,j+2.C), c(s,j+1,C), c(s,j.C)
if € Tll(s)) <0,

B(C. T{(s)) =

—(c(s,n, C)_l eec(s, C)_l)Kc(s+1,j+LC) c(s,j+1,C) ¢(L,k.C)
if €T{(s))<O

(s, n, C)7E (s, j, C) M5, j+1.0) ¢(5,).C) e(Lk,C)
if €(T](s)) > 0.

B(C.T{(5)) =

The computational results are presented in Tables 5 and @oByaring the com-
putational results, we conclude that such 2-twist spunskmé¢k) are non-invertible,
for those knots that give rise to distinct values for the obeyinvariants, as well as
all of their stabilized surfaces.

Furthermore, it is easily seen that if the contribution te thvariant for a col-
oring C is a vector &, b, c )e 73 for the 2-twist spunt?(K) of a classical knotk ,
then the contribution for the corresponding colorifigs the vectork &, b, ¢ ) for the
2k-twist spunt®(K) of K. Hence non-invertibility determined by this invartafor
2-twist spuns can be applied t& 2 -twist spuns for all posifivtegerk as well.

We summarize the result in the following theorem.

Theorem 7.7. For any positive integek, the 2k-twist spun of all the3-colorable
knots in the table up t® crossings excludin@,q, as well as their stabilized surfaces
of any genusare non-invertible.

The cocycle invariant in Example 7.6 fails to detect norentibility of 8,9 and
we obtain no conclusion.
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Table 5. A table of cocycle invariants with orientationsewsed, part |
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[Knot K || @, (TW?(K))

3 us(0, 0, 0), Uz(g1, 0, —q1), L2(0, —q1, g1), Uz2(—q1, 1, 0).

61 Us3(0,0,0) (Qg1,—q1), (91, —91,0), (0, —g2, 2),
(91,92, —q1—q2), (91, —q1* g2, —q2), (0,91 — g2, —q1+ q2).

74 40,0, 0) (Qq1+4q2, —q1—q2), (91, —q2, —q1+q2).
(291, —q1, —q1), (91, =291+ q2, 91 — q2), (—q1, 291 — q2, —q1+ q2).

77 U3(0, 0, 0) @1.91* 92, —291 — q2), (0, —291 — q2, 291 + q2), (0, —q1, q1),
(91,0, —q1), (91,92, —q1—¢q2), (0, —q1 — g2, q1+ q2).

85 u3(0, 0, 0), U3(2g1, —2q1, 0), U3(0, 291, —2q1).

810 U3(0, 0, 0), Uz(—g1,0, q1), (0, 91, —q1), (g1, —¢q1, 0),
(=291, 2q1,0), (0, — 21, 2q1).

811 u3(0, 0, 0) (A —q2,q2), (0,92, —q2), (91, —2q91,91), (91,91, —2q1),
(=91, 91— q2.92), (291, 92, —291 — q2).

815 U3(0, 0, 0) ua(g1, 0, —g1), U2(—q1, g1, 0), U2(0, —q1, q1).

818 U10(0, 0, 0) 13(0, —q1 — g2, 91+ ¢2), Ua(q1, 0, —q1), U2(0, —q1, q1),
(—q1. 291, —q1), U2(q1, g1+ g2, =291 — q2), U2(0, —291 — g2, 291 + q2),
U2(q1, g2, —q1— q2), (91, —q1+ g2, —q2), (291, —q1+ q2, —q1 — q2),
(91, 91 — 92, —2q1 + q2).

819 Us(0, 0, 0), (g1, 291, —q1), (291, —q1, —q1), (91, —291, q1), (91, 91, —2q1).

820 I_Ig(o, 0, 0).

821 Us(0, 0, 0) @1, g1, —2q91), (291, —q1, —q1), (=91, 291, —q1), (91, —2q1, q1).

The 2-twist spins of 24 of these 3-colorable knots can bedngdjsished from their
inverses by the invariant of [10]. Theik6 -twist spins, hoee as well as thek -twist
spins of the following list and their stabilizations, can thstinguished from their in-
verses only by the current invarianti,®,0, 811, 818, 91, 9%, 923, 924, 937, 916.

Furthermore, the original invariant faRz with trivial action has non-trivial coho-

mology only with Zg, so that the invariant is trivial fori6 -twist spuns, and inrtja-
lar, unable to detect non-invertibility in this case. Thereat invariant with non-trivial
action, having a free abelian coefficient grafip, is non-trivial for any 2 -twist spuns,
if the invariant is non-trivial for the 2-twist spun.
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Table 6. A table of cocycle invariants with orientation resest, part I

[Knot K[l®,(Tw*(K))

9, Us(0, 0, 0) La(3g1, 0, —3q1), Ua(—3qa, 3¢1, 0), L2(0, —3g1, 31).
9% u3(0,0, 0) (=42,0,42), (41,0, —q1), (291, —241,0), (g2, —q1 — q2. 94),
(=41 = q2.91% 42, 0), (g1 +q2,2q1, —=3q1 — q2)-
9 Uz(0, 0, 0), (Q — 21, 291), (0, g1, —q2),
(=291, 91 — g2, 91% q2), (91,92, —91— q2)s (=91, =92, 91 % q2), (=41, g2, 41— q2).
% Us(0, 0, 0) (Q =31, 3q1), (391,00, —3q1), (1,291 +q2, —3q1 — q2),
(91, =391 — g2, 21 + q2), (291, —q1+ G2, —q1 — q2), (—q1, —q1 — q2, 291 + q2).
910 u3(0, 0, 0) (271, 92, —q2— 291), (—q1, —q2+ q1, 42),
(91, 91. —2q1), (91, —2q1, q1). (0, g2, —q2), (0, —q2, q2).
91 Us(0, 0, 0), Us(g1, —q1, 0), U3(0, g1, —q1).
95 Us(0, 0, 0) (0, g1, —q1), U2(241, 0, —241), Uz(g1, —q1, 0).
916 us(0, 0, 0), Uz(q1, 0, —q1), Ua(—q1, g1, 0), U2(0, —q1, g1).
917 Ug(o, 0, O)
93 us(0, 0, 0), @1, 91, —2g91), (291, —q1, —q1), (q1, —2q1, q1), (—q1, 291, —q1).
94 U3(0, 0, 0) Ua(—q1, 0, 1), (91, —91,0), (0, g1, —q1), (0, —2q1, 2q1), (=241, 241, 0).
98 Us(0, 0, 0) (g1, 291, —q1), (291, —q1. —q1), (—q1, —q1, 2q1).
920 u3(0, 0, 0) (Q g1, —q1), (0, —¢2,q2), (91, —¢1,0),
(91, 92 —q92—q1), (91,92 — 91, —q2), (0, —q2+q1, 92— q1).
934 ng(o, 0, 0).
935 14(0, 0, 0), U3(0, —q1, g1), Us(—q1, 1, 0), Us(0, 291, —2q1), Us(291, —241, 0),
(91, 91 —2q1), (91, —291,91), (291, —q1, —q1), (92, —q1, 91+ 92),
(91, 292, —q1 — 2q2), (91— g2, —q1% q2,0), (91 +q2, —q1— ¢2,0),
(91 + 92, 91+ 92, —2q1 — 2q2), (91, =291 — 292, 1.+ 292), (291 + g2, —q1, —q1— q2);
(=q1+q2,2q1 — 2q2, —q1 + q2).
937 (0, 0, 0) U2(0, g1, —q1), Uz(q1, —q1,0), U2(0, —q2, ¢2), Us3(0, —g2+q1, —q1+ q2),
La(g1, g2, =91 — q2), U2(q1, —q1+ g2, —¢q2),
(0, =41, q1), (=41,91,0), (0, q2. —q2), (0, 292, —2q2), (0, —q1 + g2, —q2+ q),
(91, —q2. —q1+ q2), (291 +q2,0, =241 — q2), (—q1 — g2, —q1, 291 + q2),
(g1, =292, 91+ 292), (—q1 — q2,91%+ q2,0), (g1 + g2, —q2, —q1)-
938 14(0,0,0) (Qq1+q2,—q1— q2), (91, =92, =91+ q2), (291, —q1, —q1),
(91 =291 %+ 2. 91 — q2), (=91, 291 — g2, =41 * q2).
940 Us(0, 0, 0) (~q1, 291, —q1). (291, —q1, —q1), (—q1. —q1. 2q1).
946 Li5(0, 0, 0) Ua(g1, —q1, 0), U2(0, g1, —q1), Ua(—=¢1, 0, q1), (0, —q1, q1), (—4q1, ¢1,0),
(0,92, —q2), (—q1, —92.91%+q2), (—91.91— 42, 92), (0, —q1+¢2,91— q2).
947 111(0, 0, 0) 13(0, —¢q2, ¢2), U2(0, g1, —q1), Ua(q1, —q1, 0), L2(0, g1 — g2, —q1+ q2),
(0, g2, —q2), Ua(g1: g2, —=q1— q2), U2(q1, —q1+ 92, —q2), (0,91 +q2, —q1— q2),
(0, —q1 — g2, 91 % q2).
948 Us(0, 0, 0), Ue(0, —q1, q1), Ualg1, 0, —q1), Ua(—q1, q1,0),
(O’ q1, 7q1)v (ql’ —q1, 0)’ (0’ q2, 7(12)’ (0’ —q2, 42),
(91, 92 91— q2), (91, —q1— 92,92, (91, =91+ g2, —q2),
(0, 291 — g2, =291+ q2), (291, =291+ g2, —q2), (0,91 — g2, —q1+ q2).
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