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Introduction

The Hecke algebr&{(G, A) of a groupG relative to its subgroup is a gener-
alization of the group algebr&G of G, whose structure and representations are in-
teresting mathematical objects as well as thoseCof. As is well known, the Hecke
algebras ofGL,(F) where F is ap -adic field relative to its open subgroups take
a significant part in Number Theory or more precisely in theotly of modular forms.

On the other hand, Hecke algebras of finite groups have begledtin connec-
tion with the irreducible decomposition of various induaggresentations (cf. [2], [6],
[7], [10]). Recently, it has emerged that they play an imaottrole in Graph Theory.

In fact, certain families of double cosets of a finite grodp thwiespect to its sub-
group A vyield vertex transitive graphs with vertex $8f A and the spectra of those
graphs are determined with the help of the irreducible attara of the Hecke algebra
H(G, A) (see for example [5]). In this setting, A. Terras et al][dnd R. Evans ([3])
have studied the structure and characters{¢; Lo(F,), K) where F, is a finite field
and K is the anisotropic torus @FL(F,). In our previous paper ([9]), we have con-
sidered the structure of{(GLx(F,), A) where A is the split torus ofGL,(F,) and
described the multiplication table with respect to the d#d basis of it. The aim
of the present article is to determine all the irreduciblerelsters ofH(G La(F,), A)
and describe the character table with respect to the stwruasis of it. Throughout
the paper, we assume that is a power of an odd prime.

The paper is organized as follow&l contains several results concerning a finite
field F,, which are useful for computing the character valuesHgt;, A). Here we
put G = GL»(F,) for simplicity. In §2 we give a complete sek of representatives
of the double coset spac&\G/A and the standard basig[g]; ¢ € R} of H(G, A).

In §3 we give the irreducible decomposition of the induced ctteral; (see Theo-
rem 3.3). As a by-product, we get the et of all irreducible characters of(G, A).

In §4 we describe the character table(g])) ;cr yega Of H(G, A) in Main Theorem.

In order to calculate the value of([g]), it is essential to decide the conjugacy class
of ag for a € A and g € R, which is performed in Lemma 4.3.

The results of the paper and ([9]) will be applied to the camgion of ver-
tex transitive graphs oveG/A and the determination of the spectra of those graphs,
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which will be discussed in a subsequent paper. We also nmertiat our results
about the Hecke algebr&(G, A) will be useful for the study of the Hecke algebra
of GL»(F) relative to its certain open subgroup wherfe ipa -adic field

1. A finite field with g elements

Let F = F, be a finite field withg elements whewe is a power of an odd
prime p. Let F* = F — {0} be the multiplicative group of* . The#* is a cyclic
group of orderg — 1. Fix a generatop of F*, so thatF* = {p*;k=0,1...,q—2}.
Let Fy* be the subgroup of > consisting of squares af *, and putF;* = F* — F".
ThenFy = {p¥;j=0,1...,(q —3)/2}, F={p¥*;j=0,1...,(¢ — 3)/2}, and
henceF;* = pFy‘. Since—1 = pla=1/2 it follows that —1 € Fy if and only if g = 1
(mod 4). In the following ifr =p? € FJ*, then we writey/7 for p/. Let F* be the set
of all characters ofF *. Define the charactek, of F* by M\ (p/) = e2™%i/la=1) where
k=01....,g—2andi =y=1. ThenF* = {\;k=0,1...,¢4 —2}. In particular
we write 1r =)o (the trivial character ofF*) and or = A\, _1)/2. The characterr
has the property thats(r) =1 for r € F; andor(r) = —1 for t € F*. We extendor
to a multiplicative function onF by putting £(0) = 0.

Let E=F(/p)={(=x+y,/p; x,y € F} be the quadratic extension & . Then
E is a finite field withg? elements. It is well known thaj? = x—yy/p for ( =x+y,/p.
Let N : E — F be the norm map. Thew (Y= ((? = x? — y?p for ( =x +y,/p. Let
E* be the multiplicative group off . The®* is a cyclic group of ordegg? — 1.
Choose a generatar of E* satisfying79*' = p and7/ € F* (I = 1,...,q). Note
that N : EX — F* is a surjective homomorphism. Fere F* we put E = {¢ €
E*; N(¢) = t}. Then it is easy to check thaf = {r/¢=1; j =0,1....¢4}, ES =
{r¢;¢ € E{}, E; = {1(;¢ € E{} and Eép = {t(;¢ € ES} forr € F*. Let
E* be the set of all characters @ *. Define the charactefy(k = 0, 1,...,¢% — 2)
for EX by Ou(r7) = ¢2riki/@=D Then EX = {6;;k = 0,1,...,¢2 — 2}. Note that
6f = 6, if and only if 6, = \x o N where \, € F*, and Oc|rx = 1r if and only if
k =1(q — 1) wherel =0 1...,q. The following lemmas will be used later in the
proof of the main theorem.

Lemma 1.1. Putl+F; ={l1+r;re Fy'} and1+F ={1+t;te F}.
(i) If ¢g=1 (mod 4),then

qg—1
(L+F)NFS| = A+ F)NFS | = |1+ F)NF)| = ——,

4
qg—5

@+ r Ny = 122,
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(i) If ¢ =3 (mod 4),then

A+ F)NFS| = |Q+F)NFX| = |1+ F) N F| = qff’,
+1
@+ rynE| = 4=
Proof. First we show
(1.2) A+ F)NF| =@+ F)NFY|.

Letu € (1+F)NFy". Thenu—1 € F* and hencey—1)"! € F*. Since 1+{—1)"'=
u(u — 1)t andu € Fy', it follows that 1 + ¢ — 1)~% € (1 + F) N F}*. Conversely
let v e (1+F)NF. Thenv—1 € F* and hencey—1)~! € F*. Since 1+¢—1)~1=
v(v—1)"t andv € F*, it follows that 1+ ¢ — 1)~! € (1 + F;*) N F4. Consequently
the mapf : (1#,)NF; — (L+F)NF defined byf ¢ ) = 1+(—1)"1 is a bijection.
Thus (1.1) holds. Since-1 € F;* if and only if ¢ = 3 (mod 4), namely, G 1+ F*
if and only if ¢ =3 (mod 4), it follows that

0 (@g=1 (mod 4))

1+FX| = |QA+F)NEX| + |1+ FX)NFX
1+ F| = [+ P N+ |1+ F) 1|+{1 (g =3 (mod 4))

Since |1+ F*| = |F[‘| = (¢ — 1)/2, it follows from (1.1) that

% (g =1 (mod 4))
(1.2) |(1+F1X)QF0X‘:‘(1+F1X)0F1X|: _
—— (¢=3 (mod 4))
4
Note that
(L+F)U@+F)=1+F* = F — {1} = (F;' — {1}) U i U {0},

This yields that

(1.3) (L+FF)NF)U(A+F )N Fy) = Fy — {1}
and
(1.4) (Q+FS) N EF) UL+ FX) N ) = FY.

From (1.2) and (1.3), we have

(g =1 (mod 4))

A+ F )N Fy| =

q9->°
4

q9-3
4

(g =3 (mod 4))
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and from (1.2) and (1.4), we have

|+ FS)NFY| = — @=1 (mod4) ]
0 1
—— (¢=3 (mod 4))

Lemma 1.2. Letr € F*. Define the subsetsy(r) and Fi(r) of F by
Fo(ry={ue F;u*—re Fy}, Fu(ry={ue F;u®—re F}.
Then we have

-3 1
1% e F), 1= (rery.
i AE)=4 2

|F0(r)| = 1
(r € F{), = (re FY).

_Q
[any

2

Proof. SinceFy(s?r) = sFo(r) and Fi(s?r) = sFi(r) for s € F*, it follows that
|Fo(r)| = [Fo)l, [Fa(r)| = |F(D)] if r € Fg* and |Fo(r)| = [Fo(p)l, |Fi(r)| = [F1(p)|
if » € F*. Therefore it is enough to consider the cases = 1 andp. Note that
if ¢ = 1 (mod 4), then—1 € F;° and hence Oc Fy(1), while if ¢ = 3 (mod 4),
then —1 € F* and hence 0= Fi(1). Assumeq = 1 (mod 4). Ifu € Fo(1) — {0},
thenu? € (1+ F§) N Fy*. Conversely ifu € (1+Fg) N Fy*, then£u € Fy(1) — {0}.
Therefore by Lemma 1.1, we have

_ X x| _4—95
[Fo(1) = {0} = 2|(1+ Fg) N o' | = =~
and hence Fo(1)| = (¢ — 3)/2. Assumeg = 3 (mod 4). Ifu € Fy(1), thenu € F*
andu? € (1+F,) N Fy'. Conversely ifu? € (1+Fy) N Fy, then+u € Fy(1). Conse-
quently by Lemma 1.1, we have
_ X w1 _q9—3
|Fo(1)] = 2|(L+ Fg) N Fg'| = —

Similar argument yields thaltF1(1)] = (¢ — 1)/2. Next we considerFy(p) and Fi(p).
Note that if¢ = 1 (mod 4), then—p € F;* and hence 0= Fi(p), while if ¢ = 3
(mod 4), then—p € F;* and hence G Fy(p). Assumeqg = 1 (mod 4). Ifu € Fo(p),
thenu? € (p+ Fy*) N Fy. Note that p+ Fy*) N Fy* = p((1 + F{) N F). Conversely
if u? € (p+ Fy')N Fy, then£u € Fo(p). Therefore by Lemma 1.1, we have

qg—1
|F0(p)|:2’(1+F1X)mF1X‘ :T~

Similarly we get|Fi(p) — {0} = 2|(p + F*) N Fy'| = 2|(1 + Fy*) N F*|, and hence
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|Fi(p)| = (¢ + 1)/2. The casey = 3 (mod 4) is treated in the same way. So we omit
it. O

Lemma 1.3. Letr € F*.
(i) Put f,(r)=27Y(+rt=1) for r € F*. Then ifr € Fy', the mapf,: F*—{+\/r} —
Fo(r) is a two to one surjectignwhile if r € F,, the map f,: F* — Fo(r) is a two
to one surjection
(i) Putg.(z)=2"Yz+z9) for z € EX. Then ifr € Fy', the mapg,: EX — {£\r} —
Fi(r) is a two to one surjectignwhile if » € F*, the mapg,: EX — Fi(r) is a two
to one surjection

Proof. (i) If f,(t) = f;(2) (t1,22 € F*), thent, =11 Or £ = rtfl and hencef,
is a two to one mapping. Moreovef ¢+ 3 r = (271(t — rt71))?, so thatf, { )e Fo(r)
unlesst? = r. Thus f, F* — {£\/r}) C Fo(r) if r € FJ, and f, F*) C Fo(r) if
r € F[*. Since f, is two to one|f.(F* — {£/r})| = (g — 3)/2 and |f,(F*)| =
(¢g—1)/2. Whereas by Lemma 1.2Fo(r)| = (¢—3)/2 if r € Fy* and|Fo(r)| = (¢—1)/2
if r € F*. Thereforef, is a surjection in each case.

(ii) If gl z1) =g (z2) for z1 = x1+y1/p, 22 = x2+y2¢/p € E, thenx; = xo. Moreover
sincex? —y?p = x2—y2p =r, we havey, = +y;. Henceg, £1) = g-(z2) implies z2 = z1
or zp =z4. Thusg, is a two to one mapping. Singe z () r = (27 1z — z9))? = y?p
for z = x +y/p € E, it follows that if z € EX — F* theng, ¢) € Fi(r). Note
that EX — F* = EX —{£\/r} if r € FJ*, while E} — F* = EX if r € F*. Therefore
we haveg, € — {£\/r}) C Fi(r) if r € Fy, while g.(EX) C Fi(r) if r € F.
Sinceg, is two to one anfE | =g +1, it follows that|g,(EX —{x+\/r })| = (¢ —1)/2
and [g.(E))| = (¢ +1)/2. Whereas by Lemma 1.2F1(r)] = (¢ — 1)/2 if r € Fy
and |Fi(r)| = (¢ +1)/2 if r € F*. Thusg, is a surjection in each case. O

Lemma 1.4. Let 6,1 (! =0, 1...,q9) be the characters oE*, which have
the propertyf,,—1)|rx = 1. Then

q (1=0),
010—1)(1 + =
CGE;Z{l} ig-1(1 +C) {(_1)1+1 (=1....9).

Proof. Recall thate) = {r/4«=D; j =0,1...,q}. Since¢ € E; — {-1}, we
can write¢ = 7/4—1 where 0< j < ¢ with j # (g + 1)/2. Therefore we have 14=
77 (1) + 779). Since¢ # —1, it follows thatr/ + 7/9 € F>* and hencedy,_1)(r/ +
7/4) = 1. Consequently

> O-n+Q)= > Oiig-1 (),

CEES —{-1} 0<j<q.j#(g+1)/2
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which equals

Z 6727rijl/(q+1) _ (_1)1‘

0<j<q
Since
Z o~ 2riil/(a+1) = {q +1 (=0)
Ogqu O (l:L,q),
we obtain the lemma. O

2. The Hecke algebraH(G, A)

Let G = GL2(F) be the general linear group of 222 non-singular matrices
over F . The ordetG| of G is known to be equal tgq g( +1)(-1)>. There are several
important subgroups of; appearing in this paper:

A:{a(x,y):(gS) ;x,yEFX},
U:{u(x):<é)§_) ;xEF},

Note thatA is isomorphic t&F* x F* so that|A| = (¢ — 1)?, U is isomorphic to
the additive groupF so that/| = ¢, K is isomorphic toE* so that|K| =¢? — 1. It
is known that

(2.1) G =UAUUwUA.
where

_(0-1
(2.2) w —<1 0 )

In fact if g = (¢%) with ¢ =0, theng € UA, while g = (¢5) with ¢ € F*, then we
can verify

(2.3) g =ulac Hwu(cd(detg Y Ha(c, c tdetg) e UwUA.
From (2.1) it follows that the coset spacg/A can be written as

G/A={u(x)A;x € F}U{u(y)wu(z)A; y,z € F}.
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Now we consider the double coset spateG/A.

Theorem 2.1. Let R be the subset of; which is defined by
(2.4) R ={e, w,u(1), wu(l),uQwu )}t (r € F)

wheree is the identity matrixThenR is a complete set of representativesA{G /A,
namely

(2.5) A\G/A={AgA; g e R}
and consequentlyA\G/A| = g + 4.

Proof. It is enough to sed\G/A C {AgA; g € R}. Assumeg =u £ £,t )e
UA. ThenAgA =Au (¢ A . Since

ux) =alx, Du(La 1 1) forx e F*

we have Au (A =A forx =0 andAu (4 HAu (¥ forx e F*. Assumeg =
u(y)wu(z)a(s,t) € UwUA. ThenAgA =Au § wu ¢ A . In particular ify = =0, then
Au(y)wu(z)A = AwA. If y=0andz #0, thenAwu ¢ A =Awa ¢, 1y (1) {1, 1A=
Awa(z, D)w~twu(1)A. But sincewa £, Ip~1c A, so we obtainAwu { ) =Awu (1) .
Similarly if y # 0 andz = 0, we haveAu y(wA HAu (YA . Finally if both and
z € F*, then we will show

(2.6) Au()wu @A =Au (Lwu (7 A.
Sincey € F*,
Au(y)wu(z)A = Aa(y, Du(La (Y Dwu(z)A.
Moreover sincewta(y~%, )w =a(L y~b), it follows that
Au(Quww™ta(y™h Dwu()A = Au(Qwa (L y~u(z)A.
Using a (1 y Hu(z)a(l, y) =u(yz), we have
Au(Dwa (L y Hu()A = Au(Lwu (y2)A.

Thus we obtain (2.6). Sinc& EHAUUwU A, the assertiod\G/A C {AgA; g € R}
is completed. O

For g € G, we put

(2.7) indg) =|A/A,| where A, =ANgAg™".
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We notice that ind{ ) is equal to the number of Idft -cosetshie double coseAgA

and hence it depends only on the double casetd . A simple catipatyields
that A, =A, =A whileA, =Z G ) forg € R — {e, w}. Therefore we have

1 =
(2.8) inde) :{ (g =e w),

g—1 (g€R—{e w}).
Let CG be the group algebra af ovél. Definec € CG by
(2.9) €= |A|71Za.

acA

Then e is an idempotent ofCG, which satisfiess? = ¢, ac = ea’ = ¢ for a,a’ € A.
This means thatCGe is a subalgebra of G, which we call the Hecke algebra «f
relative to A . From now on, we writé{(G, A) instead ofeCGe. Clearly H(G, A) is
spanned byge (g € G). Put

(2.10) e[g]l =ind(g)ege for g € R.

Note thate[e] = ¢ is the identity element of{(G, A) and ¢[g] depends only on the
double cosetAgA . It can be easily seen tHafg]; ¢ € R} forms a linear basis
of H(G, A), which we call the standard basis. We remark ([8]) that

(2.11) ele] = (A" D

heAgA

The multiplication table ofH(G, A) is given in ([9]).

3. lrreducible decomposition of the induced character §

In this section, we provide the irreducible decompositidntlee induced char-
acter § , which is induced from the principal charactey 1 Af Go Let G
be the set of all irreducible characters 6 , and B¢ be the subset ofG
consisting of thosey € G which appear in the irreducible decomposition df 1 .
Throughout the paper, we denote by [ ] the conjugacy clasg &f G. Let [G] be
the set of all conjugacy classes 6f . Then it is known ([4])t tha

[G] =[Gl U[G]lu U[Glm U[G]iv
where

(3.1) [G]y = {[a(x, x)]; x € F*},
(3.2) [G]y = { [(g i)} = [a(x, x)u(x"H]; x € FX},
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e fEI M) ) MM P AN 0
A N D IO D) 0 S GRACO)

(3.3)
(3.4)

[Glu = {la(x, V] =[a(y.0)]; x,y € F*,x #y},
[Clv ={[s()] = [£(*)]; z € E* — F*}.

Furthermore the numbers of elements in the conjugacy damse given by

[a(x, ]| =1, |[a(x, x)u(x"N]| = ¢*—1,
la(x, V1| =q(g +1), |[£@E)]] =4q(g —1).

Here we bring out the character table Gf
decide the character values dof 1 .

(3.5)

for convenience ¢akble 1). Now we

Lemma 3.1. The induced charactet§ takes the following values ifiG].

15 (fax, D) = 4(q + 1)
15 (fax, x)u(x ) = 0
15 (fa(x, »)]) = 2
([ = 0

for [a(x, x)] € [G],

for [a(x, x)u(x )] € [Gly,
for [a(x, y)] € [G]w,

for [k(2)] € [G]wv.

Proof. The value of § on the conjugacy clags [ ] is given by

|G| [[8] N A |[g] NA|
Al L8l L&l |

It is an easy task to checkafr(x ) A = {a(x,x)}, [a(x,x)u(x"H] N A = ¢,
[a(x, )] N A = {a(x, y),a(y, x)} and [(z)] N A = ¢. From this and (3.6), the lemma
follows immediately. U

13 (leD =

=q(@+1)

Remark 3.2. Lemma 3.1 yields that

13 (la(x, x)g]) = 1 ([g]) for any a(x, x) € Z(G).
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Theorem 3.3. The irreducible decomposition of the induced charactéf is
given by

lg =Uo+2Vo+ Vy_py2 + Z Wig—1—k * Z Xig-1)
1<k<(g—3)/2 1<I<(g-1)/2

and hence

A -3 -1
G* = {Uo, Vo, Vig—1)/25 Wig—1-k (1 <k< qT) , Xig—-1) <1 <I< %) } .
Proof. To show the theorem, it is enough to compute the innedyzt

(619, = 1617~ x(@)15 ()
g€eG

=G > I8l (gD 15 (&)
[gl€[G]

for eachy € G. Applying the above lemma, we obtain

(X,lﬁf)G:IGl‘l{q(qH) > e +2 ) I[g]lx([g])}-

[sl€lG [el€lGlm

Since|G| = q(g+1)(g—1)% |[g]| = 1 for [¢g] € [G], and|[g]| = q(g+1) for [g] € [G]u,
we have

(x 1§)G=(q—1)2{ > xah+2 > x([g])}-

lel€lGh [el €[GTm

Using (3.1) and (3.3), we get

(3.6) (x,li)G:(q—l)—z{Zx([a(x,x)])+ > x([a(x,y)])}.

XEFX X, yEFX xZy

Before starting the case by case consideration, we rematkiah \;, \, € F* the fol-
lowing identity holds.

(3.7 Z k()i (x) =

XEFX

g—1 (k+1=0 (modg — 1)),
0 (otherwise)
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Casel. x=U, 0<k<qg-1).
Applying Table 1 to (3.6), we have

(Un18) 6= - 1)‘2{ dONW+ Y Ak(x)Ak(y)}.

xXeFX xX,yEFX xZy

Since

2
> MM = (Z Ak(x)> - > M),

X, YyEFX x#y XEFX XEFX

it follows that

2
(00 19)g =0~ 1) ( 5 Mx)) |

XEFX

Applying (3.7) with! =0, we get

1 (k=0)
0 (otherwise)

1), {

CAase2. x=V, 0<k<qg-1).
Applying Table 1 to (3.6), we have

(Vie13) 5= —1)—2{q PIRHOEEEDY Ak(x)Ak(y)}.

XEFX X, yEFX xZy

As in Case 1, we obtain

2
(Vi 18) g =@ - 172 {(q -1 ) M+ ( > )\k(x)> } :

XEFX XEFX

Using (3.7) withk =l , we have

XEFX 0 (otherwise)
Therefore we get
2 (k=0)
Gy  — g-—1

0 (otherwise)

803
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CAase3. x=Wi; 0<k<l<qg-1).
Applying Table 1 to (3.6), we have

(Wer, 1) = (@—1)7? {(61 T MM+ D eNO) + /\k()’)/\l(x))} :

XeFX xX,yEFX xZy
Since
Z (/\k(x)/\l()’)+/\k(Y)/\1(x)):2{ (Z )\k(x)) (Z )\l()’)) - Z )\k(x))\l(x)},
X, yEFX xZy xCF* yeFr> XEFX

it follows that

(Wern18) =@ -1)72 {(q 1) ) M) +2 ( > )\k(x)) ( > A/()’)) } :

xXEFX xXEFX yEFX
But sincel # 0, we haveZ}EFX X(y) =0, and hence
(Wi 1) = (@ =17 Y M)
xXeFXx
Applying (3.7) where X k <[ < g — 1, we obtain
1 (l:q—l—k, 1§k§q—;3>,

(Wk-l’ 15%;)6 = {

0 (otherwise)

CAsE4. x=X, 1<n<g?>-1,qg+1{n, X, = Xug)-
Applying Table 1 to (3.6), we have

(X0.19) =@ =D D Oux).
xeFX*
Note that
-1 n|lFx = 1 s
3 b, = {q Ol = 1r)

verx 0 (otherwise)

But we know 8, |rx = 1p if and only if n is of the formn =l § — 1) where/ =
1,2...,q. Sincel g — 1)g = (¢ — ( — 1))(@ — 1) (modg? — 1) and henceX;,_1) =
X(g-(-1)@-1), We get

1 (n:l(q—l), 1§lsq—;1),

0 (otherwise)

(Xn, 1)G ={
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Before proceeding the next section, we recall some pragseri the characters
of H(G, A) (see [2]). Every irreducible charactgr € G can be regarded as an ir-
reducible character oG, by extending it linearly. The restriction of to the sub-
algebra™(G, A) is either 0 or an irreducible character &f(G, A). Moreover every
irreducible character oH(G, A) is obtained by the nonzero restriction of some irre-
ducible character of; . Since

(3.8) X@) =AY x@) = (x 1a)a = (- 19) 4

acA

where the last equality comes from the Frobenius reciprokitv, the restriction
of x € G to H(G, A) is nonzero if and only ify € G4.

4. The Character Table of H(G, A)

In this section, we write down the character tableH{G, A). Here we mean that
the character table of(G, A) is the matrix

(x(cleD) ger. yedn

where {¢[g]; g € R} is the standard basis d(G, A) introduced in (2.10) and;* =
{x€G; (x.15), #0}, which is given explicitly in Theorem 3.3.

Main Theorem. LetG = GLy(F,) whereF, is a finite field wity elementé/e
assume thay is a power of an odd primend we putF = F, for simplicity. Let A
be the subgroup of; consisting of diagonal matricesGofThe character table of the
Hecke algebraH (G, A) is given byTable 2described below

Before proving Main Theorem, we require some preliminargules. First we
transform x(¢[g]) into more convenient form. Since[g] = ind(g)ege (g € R), it fol-
lows that

x(elg]) = ind(g)x(ege) = ind(g)x(e°¢) = ind(g)x(cg)

and hence

(4.2) X(elg)) =ind(g)[A| ™) x(ag).

acA

Since every element € A can be written uniquely as

4.2) a=al,xua@y,1) yeFX)

and since every € G* has the property

(4.3) x(ax, x)g) = x(g) (x € F™)
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Table 2.
Wig—1—«

Xi(g-1)
U Vo Vig-1/2 (l<k< 1<1<(g—1)/2
(¢ —3)/2) (1<1<(-1)/2)

€ 1 2 1 1 1
1 =1 d 4
E[UJ] 1 O (q mo ) (_1)k (_1)l+1

-1 (g =3 mod 4)
e[u()] qg—1q-2 -1 -1 -1
mod 4)

1 k+1 !

elwu()] |¢g—-1 -1 {1 (@ =3 mod 4) (1) (1)

-1 (=1 mod4) 1 /

Aa@ul fg-1 -1 g 0T Py D (1)

elu(Vwu(l)] |¢g—1 g —2 -1 -1 -1

elu(V)wu(r)]
re Jg-1 -2 Yoo ards) D M) = Y O-n(L+C)

F* —{1}) SEFX—{Lr} tEFX —{L1r} ceEX,

Where ¢.(s) =s(s — 1)(s —r) "t and E) , ={( € EX; ¢ =1—r}.
(see Remark 3.2), it follows that

(4.4) x(elg)) =ind(g)(g — 1™ Y xla(y. Dg)

YEFX

In order to computey(e[g]) explicitly, it is necessary to investigate the conjugaxass
of a(y, 1)g. The following lemma is useful for that purpose. Lefgjrand detg ) be
the trace and the determinant of respectively. Put

(4.5) Ag) = (trg )Y — 4detf )
Lemma 4.1. The conjugacy clasfg] of ¢ € G is characterize as follows

() [g €[G], if and only if g € Z(G).
(i) [g €[G]y if and only if g € G — Z(G) and A(g) = 0. In this case

-1
@9 =[5 o)

(i) [4 € [G]lw if and only if A(g) € F; . In this case

(4.7) g1 = [a (27*(tr(g) + 6(8)), 27 X(tr(g) — 0(g)))]

where é(g) € F* such thaté(g)? = A(g).
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(iv) [g] € [Glw if and only if A(g) € F;*. In this case
(4.8) [e] =[x (27 (tr(2) + 6(2)v/p))]
where é(g) € F* such thaté(g)?p = A(g).

Proof. The proof of the lemma is a simple exercise of linegelta. So we omit
it. O

The next lemma slightly simplifies the proof of Main Theorem.

Lemma 4.2. The following two identities hold

(4.9) x(e[u(Q)wu(1)]) = x(e[u(2)])
and
(4.10) x(ewu(1)]) = x(e[u(L)w]).

Proof. Since det( y, ) (Wu (1)) = det(y( 1) (1)) andatr(, ( «1) L) ))(¥
tr(a(y, Lu (1)), it follows from Lemma 4.1 thatr y( &) (bu (1) andy,( «X}) be-
long to the same conjugacy class. Noting ind(u(@) (1)) = indl)),(we conclude
from (4.4) that (4.9) holds. Since the characters are catioy invariant, we obtain
from (4.1)

x(e[wu(1)]) = ind(wu(1))|A| 1 ZX (wil(awu(l))w) .

acA

Sincewlaw € A for a € A, and indfu (1)) = ind¢ (1p ), we have

X(elwu(L)]) = ind@(Lw) | x(au(Lw),

acA

which equalsy(e[u(1)w]). ]
From (3.8) and Theorem 3.3, we have already seen that

2 (x=VW)

(4.11) x(elel) = x(e) = (x. 17) ; = {1 (x € GA — [Vo))

Set

4.12) S=R—{e,wud),u Qwu 1)} ={w, u(),uQwu)} e F—{1}).
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Then from (4.9), (4.10) and (4.11), we have only to compute[g]) for ¢ € S. Note
that if g € S, thena (p, 1}y does note belong 6 G( ). Define fore S the subsets
of F* by

F (@) ={ye F*;a(y,1)g € [Gl},
Fi(g)={ye F*;a(y,Dg €[Glu},
Flé(g) = {y € F* ; a(y, 1)g S [G]IV}-

Note thatF>* = F,(g) U F; (g) U Fy (g) for g € S. Furthermore if we put
(4.13) Ay () =A@(, 1x)

then we can deduce from Lemma 4.1 that

(4.14) F'(g) ={y € F*; Ay(y) = 0},
(4.15) Fi(g)={y € F*; As(») € Fy'},
(4.16) Fy(g)={y € F*; Ay(y) € Fi°}.

Moreover we can rewrite (4.4) as
(4.17)

\eleD = i”d(g){ S @ D9+ Y @l Do+ Y xaly, 1)g)}.

qg—1
yEF () yEF;(8) yEF (2)

Lemma 4.1 enables us to clarify the structurerqf(g), F;; (g) and F (g).

Lemma 4.3. Letge S.
(i) If g=w, thenF(w)=¢, Fi(w)={y € F*; —ye Fy}, and Fy(w) = {y €
F*;, —y € F}. Moreover ify € F;(w), thena(y, 1)w € [a(/—y, —/—»)], while
if y € Fy(w), thena(y, Dw € t[x(n\/p)], wheren € F* such thatn®p = —y.
(i) If g = u(1), then F*(u(1)) = {1}, F (1)) = F* — {1}, and F3(u(1)) = ¢.
Moreover ify € F;f (u(1)), thena(y, 1)u(1) € [a(y, 1)].
(iiiy If g = u(L)w, then FXw(Lw) = {4}, Fu(@w) = {2(1 +£); & € Fo(1)}, and
Fyw@w) ={2(1 +¢€); € € F1(1)}. Moreover if§ € Fo(1), then

a(2(1+&), DuQw € [a(l+E+n, 1+ —n)],
wheren € F* such thatn? = ¢2 — 1. While if ¢ € F1(1),
a(2(1+&), Du(Lw € [c(L+E+ny/p)],

wheren € F* such thatn?p = £2 — 1.
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(iv) If g =u(Qwu() wherer #0, 1, then

2 2 y
F (u(Qwu(r)) = {{(1+\/1—r) L(1-V1-r)} (A-re FOX),
¢ (1—-reF)).

F wQuu(r)) ={2(1+8) —r; £ € Fo(1—r), £ # 27 (r — 2)},
Fy@uwu @) ={2(1+) —r; £ € A1)}

Moreover if¢ € Fo(1—r) — {271(r — 2)}, then
a1+8) —r, DuLwu ) € [a(l + & +n, 1+ —n)]
wheren € F* such thatn? = ¢2 — (1 —r). While if ¢ € F1(1—r), then

a((L+€) —r, Du@wu () € [K(L+E+ny/p)]

wheren € F* such thatn?p =¢2 — (1—r).
Here we recall thatFo(c) = {£ € F; 2 —ce Ff} and Fi(c)={( € F; &% —c €
FXY.

Proof. (i) If g=w, thentrg ¢, 1 )=0,det( , 2 )3 and henee, y ()=
—4y. Thus F'(w) = ¢, Fj(w) = {y € F*; —y € Fy'} and Fj(w) = {y € F*;
—y € F}LIf —y € Fy (resp. F[*), we may taked(a(y, 1)w) = 2/=y in (4.7)
(resp.d(a(y, )w) = 2 in (4.8) wheren € F* such thatn<p = —y), from which
a(y, Dw € [a(y/=y, —/=)] (resp.a §. 1w € [s(1,/p))).

(i) If g= 1), then tr@(y, (1)) =y +1, def ¥, B (1)) 3 and henck,q)(y) =
(v — 1)2. Thus F,;(u(1)) = {1}, F, (1)) = F* — {1} and F (u(1)) = ¢. Moreover
if y e F(u(1)), we may choosé(a(y, 1)u(1)) =y — 1 in (4.7), so thaz ¥, 1) (1f
[a(y, D]

(iii) If g= u1) w, then tr(a(y, Lu(lw) =detg ¢, 1y (Ip ) =y and hencA,q)(y) =
y2—4y = (y — 2> — 4. Thus F“ (u(L)w) = {4}. If we puty = 2(1 +¢) with ¢ #
—1, then A,y (y) = 4% — 1). ThereforeA,qy,(y) € Fy* (resp. F{*) if and only
if & € Fo(1) (resp. Fi(1)). Note that—1 does note belong t@p(1) U Fi(1). Conse-
quently F (u(Dw) = {2(1+€); € € Fo(1)} and Fys (u(Dw) = {2(1+6); € € F(1)}.
Moreover if ¢ € Fp(1) (resp. Fi(1)), we may taked(a(2(1 +&), Lu(Lw) = 27 where
n € F* such thatp? = €2 — 1 (resp.n’p = €2 — 1) in (4.7) (resp. (4.8)) and hence
a1 +&), DuQw € [a(1+&+n, 1+5 —n)] (resp. k(1 +£ +ny/p)]).

(iv) If g=u(1)wu(r) wherer#0,1, then det{ ¥, 1) (pu ( ))¥ , () L) (Wu r())=
y+r and henceA . )(y) = (v +r)?—4y = (y+r—2>—4(1—r). Thus Ayywu)(y) =0
has solutions if and only if - r € Fg°. If this is the case, the solutions ase =
(14 +v1—7r)? and henceF, (u(Lwu@)) = {(1+v1-r)% (1 - v1-r)?} in case
1-r € Fy, otherwiseF, (u(L)wu(r)) = ¢. Puttingy =2(1€)—r wheref # 271(r-2),
we get Au@uug)(y) = €2 — (1 —r)) and henceA,qyuwu()(y) € Fy* (resp. Fy*) if and
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only if £ € Fo(1—r) (resp. F1(1—r)). Note that 21(r —2) € Fo(1—r). Thus we have
Fi@uwur)) ={21+&) —r; € € Fo(L—r) — {27 — 2)}} and Fy (u(Qwu()) =
{20 +¢&) — r; € € F1i(1 — r)}. Furthermore if¢ € Fo(1 —r) — {271(r — 2)} (resp.
& € Fi(1—r)), then we may také(a(2(1 +&) — r, Du(Lwu () = 27 wheren € F*
such thatp? = ¢2—(1—r) in (4.7) (resp.np = €2 —(1—r) in (4.8)), and consequently
a1 +&) —r, Du(Qwu () € [a(1+E+n, 1+& —n)] (resp. k(1 +&+n,/p))).

O

Proof of Main Theorem. The proof is proceeding by case by caseputation
for y € G4,

Case 1. x = Up. SinceUy = 15 is the principal character off , we conclude
from (4.1) and (2.8) that

. 1 (g =e w),
(4.18) Uo(¢lg]) = ind(g) = {q -1 (geR—{e w}).

CASE 2. x = Vp. Let g € S. From Table 1, we havé&y =0 on [G];, Vo =1 on
[G]lm and Vo= —1 on [G]v. Hence by (4.17)

Vo(elgl) =ind(g)(g — D~ {|Fif (&)l — | F (2)]} -

If ¢= w, then ind(w) = 1| i (w)| = | F| = (¢ —1)/2 and | Fys (w)| = |F| = (¢ —1)/2
from Lemma 4.3. Thud/s(s[w]) = 0.

If ¢ = u(1), then ind¢ (1)) =g — 1, [Fy (1)) = |[F* — {1}| = ¢ — 2 and
|Fy(u(1))] =0 from Lemma 4.3. Henc&y(c[u(1)]) = g — 2.

If ¢ = u(L)w, then ind¢ (1 ) =¢ — 1, [Fy (wDw)| = [Fo(1)] = (¢ — 3)/2 and
|Fy(u@w)| = |F1(1)] = (¢ — 1)/2 from Lemma 4.3 and Lemma 1.2. Thus we have
Vo(e[u(D)w]) = —1.

If ¢ = w(l)wu(r) with r # 0, 1, then indg¢ (Wpu £ )) =g — 1, |F; @(Qwu(r)) =
|Fo(1 — r)] — 1 and |Fy(u@)wu ()| = |Fi(l — r)| from Lemma 4.3. Again by
Lemma 1.2, we knowFo(1—r)| = (¢ —3)/2 and|Fi(1—r)| = (¢ —1)/2 for 1—r € Fy",
whereas| Fo(1 — r)| = (¢ — 1)/2 and | F1(1 — r)| = (¢ + 1)/2 for 1—r € F}*. Therefore
in any case we hav&y(e[u()wu(r)]) = —2.

CASE 3. x = V_1)2- Let g € S. Since \,_1)2 = op, it follows from Ta-
ble 1, thatV(,_1y2 = 0 on [Gli, Vi—sy2(la(x, y)) = or(xy) = or(deta x, y))) and
Vig—1/2([£(2)]) = —or(z2?) = —or(det((z))). Therefore by (4.17) we have

V(q_l)/z(ﬁlg]):ind(g)(q—l)_l{ > or(deta (v, 1g))— Y or(deta(y, 1)”))}-

yEF;(8) yEF (2)
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But since detf ¥, 19 ) forg € S, it follows that

V(q_l)/z(E[g])=ind(g)(q—1)1{ P OEESY af(y)}-

YEF (8) yEFy (8)

If ¢= w, then by Lemma 4.3 we have

Vig-1y2(elw]) = (¢ — 1)_1{ Z or(—x) — Z UF(—X)}

JCGFO>< xele
= (- 1)10F(—1){ > o) = > UF(X)},
,\'EFO>< xEle

which equals

~ {1 @=1 (mod 4))
or(~1) =
-1 (=3 (mod 4))

If ¢= u(1), then by Lemma 4.3 we have

Vg-neEu@D = > or(y) = —or(1)=-1

yEF* —{1}

If ¢=u(l)w, then by Lemma 4.3 we have

Vig—neEu@ul) = Y orL+)— D or(2(1 +9)).

£€Fo(1) §er(1)

Since Fo(1) U Fi(1) = F — {£1}, it follows that

S oA+ D orA+) = D or(2(1+9)).

E€Fo(1) EcFi(1) §eF—{+1}

The right-side is equal to

> or(x)=—or(4)= -1

xeFx—{4}

Consequently we obtain

Vig—n2(elu@u]) =2 Y or(21+8))+1.

E€Fo(1)
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On the other hand, by Lemma 1.3 we have

2 > opI+)= D> or (2127 (r+17Y)).

§EFo(1) 1EFX —{%1}

Since 2(1+ 2t ++t7Y) = (t + 12+, it follows that

2 Y or2A+e)= D or(t7Y),

£eFo(1) teEF* —{£1}

which equals—(or(1) +or(—1)) = —(1 +0r(-1)). Thus we haveV(,_1) > (c[u(l)w]) =
—O’F(—l).
Assumeg =u (Lyu £ ) withr # 0, 1. Using Lemma 4.3, we have

Vig-1y2u@)wu(r)])) =M — N
where we put for simplicity

M= > or(L+) —r), N= > oL+ —r).

EeF(1—r)—{2-1(-—2)} E€F(1-r)
Since

Fo(l—-r)UFi(1-r)= {i_ {i\/ﬁ} Q-re FOX)v

L—reF)),
we have, by puttinge =2(14) —r
> or(2A+8) —r) = > or(x) (1—r e FY),
MAN = EEF—{£VI1-r,271(r-2)} YEFX —{(1£v/1I-r)2}
Yoo orRA+)-1)= Y orlx) (1—r e F).

EeF—{271(r—2)} xeFx

Thus we have

-2 (1-reF),
M+N =
0 (-reFy)

and consequently

oM +2 (1-r € F)),

Vig—1y/2(elu()wu(r)]) = {ZM 1—re F))
—r e FY).
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Applying Lemma 1.3, we obtain

> or 2+t +@A—r)t—r) (1-reFy),
tEFX —{+VI—r,—1r—1}

> or (2+t+@A—r)t—r) (1-re€F)),
teFX —{-1r-1}

2M =

becausef, 1 (271(r — 2)) = {-1,r — 1}. Note that
2+t + (=)t —r=(+1)¢ +1—r)t?

and it takes the values @1 —r)? € F;* atr =+/1—r. Then we have
> or (E+1e+1-rt"Y -2 (1-r € Fy),
tEFX —{—1r—1}

> or (t+1)¢ +1—r) ) (1—re F).

1EFX —{—1r—1}

2M =

Consequently we conclude that

Vig—1y2(elu(@)wu(r)]) = > or ((t+21) +1-r)y ).

teFX—{—1,-1}

Replacings +1 bys , we get

Vi—n2Elu@uu@)) = Y or (sts —r)s —1)7h).

seF*—{1r}

Furthermore since r(x) = ox(x~1) for x € F*, it follows that

Vi-p2Elu@uu@)) = Y or(sts =D —r)7h).

seF*—{1r}

CASE 4. x = Wig1-4 Let g € S. Since \j_14(x) = Ak(x) = M(x™1) (x €
F*), we conclude from Table 1 tha¥;,—1-« = 1 on [Gli, Wig—1—«([a(x,y)]) =
)\k(xy_l) +/\k(x_ly) on [G]y and Wi,g—1—x =0 on [Glv. Hence by (4.17)

Wi g—1-x(elgl) = ind(g)(g — 1) {|F* ()] + Wa(e) }
where we put for simplicity

Wi(g) = Z Wi g-1-(a(y, 1)g).
YEF (8)
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If ¢ = w, then we have|F;(w)| = 0 anda §, 1 € [a(y/—y, —/—)] for y €
F(w), namely, fory € —Fy*. Therefore

Wig—1-k(@(y, Dw) = (V=) A1(=v=) + M(=vV=2) Ak (vV/=y),

which is equal to 2,(—1) = 2(-1)*. Thus W, v ) = 2€1)|Fy| = (-1)'(¢ — 1), and
hence Wy g—1—«([w]) = (—1).

If ¢ = u(1), then we havelF,(u(1))) = 1 anda §, 1x (L)€ [a(y,1)] for y €
Fiy (u(1)) = F* — {1}. ThereforeW, ,_1-«(a(y, Du(1)) = \(y) + \(y 1) and hence

We@@) = Y (MM (7)) = —2n(@) = -2
yEF* —{1}
Consequently we hav@ ,_1—«(e[u(1)]) = —1.
If ¢= u(l)w, then |F (u(L)w)| =1 and F; (u(L)w) = {2(1 +&); £ € Fo(1)} from
Lemma 4.3. Moreover we have

Wi g—1—k(a(2(1 +€), Du(L)w)
=M (A+HEHA+E—n) ) + 0 (A+E+n)HA+E— 7).

But by Lemma 1.3, we can writ€ = fi(f) =27 1(¢ + 1) andn = 27%(r — 1) where
t € F* —{£1}, and hence (14+n)(1+{—n)~t=t. Since the mapf;: F* —{+1} —
Fp(1) is a 2 to 1 surjection, it follows that

W@ =3 Y M) = Y .

1EFX —{£1} teFX — {41}

which is equal to—(\¢(1)+\e(—1)) = —1+(—1)*1. Thus we haveW; ,_1_i(c[u(1)w]) =
(_1)k+1.

Assumeg =u (Lpu £ ) withr # 0, 1. First we consider the case-1 € F;*. From
Lemma 4.3, we know thatF, (u(Lwu(r))| = 2 and F;{ (u(Q)wu(r)) = {2(1+)—r; € €
Fo(1—r) — {27Y(r — 2)}}. Moreover

Wi g—1-1(@(2(1+&) — r, Du(Lwu ()
=N (@+E+A+E—n) H + N (A +E+n) A +E— ).

By Lemma 1.3, we can writ¢ € Fo(1—r) asé = f1,(t) =27+ (1 - r)t~1) and
n=2"Yt—(1—-r)t"1) wheret € F* —{+1—r} and hence (1§+n)(1+&—n)~t=
t+1)(¢+1—r)"L Sincefy ,: FX —{+V1—-r} — Fo(1—r) is a 2 to 1 surjection
and moreoverf, "t (271(r — 2)) = {—1,r — 1}, it follows that

Wi(u(Lwu(r))
_1 —1 -1 —1
=3 3 N+ +1—r) )+ N (e + 1) e +1-1)) )

teFX —{xV1-r,—1r—-1}
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If we replacer by (- r)s~%, we haver 1t +1) 1t +1—r)=s(s+ 1) +1—r)"L
This implies that

Wi (u(L)wu(r)) = > M (1t + 1) +1—1r)7Y).
tEFX —{&\/1-r,—1r—1}

If we notice thatr { + 1) + 1 r)~1=1 for t =+/1—r, we can deduce that

Wi g1k (E[u(Dwu(r)]) = 2 + Wi (u(Lwu ()
= > M (1@ + 1) +1—1)7Y),

1EFX —{—1r—1}

which implies

Weg-1-kEu@uu) = > N (it =) -1,

teF*—{1r}
The case 1-r € F;* is quite similar and the result is the same as in the case &
Fy.
CASE 5. x = Xy4-1). Let g € S. Sincey_n(x) = 1 (x € F*), it follows

from Table 1 thatX;,—1y = —1 on [G]y and X;,—1) = 0 on [G];. Consequently
from (4.17), we have

Xig-n(elgl) = ind(g)(g — 1)~ {~ | F (&)] + Xi(g)}

where we put for simplicity

Xi(®)= > Xig-nlaly, 1)g).

yEF (2)

If ¢ = w, then |[F{(w)] = 0 anda §, 1 € [k(n,/p)] for y € Fy(w) from
Lemma 4.3 and hence

Xig-1(a(y, Dw) = =(Oig-1(ny/p) + Oig—1)(=1/p))-

Sincedyy—1|rx = 1r andbyy—1)(y/p) = (—1), we have

Xiw)=-2 Y (D =21 |F]=(q - -1

" . X
yEFX ,—yEF]

and consequently we hav&, _1)(c[w]) = (—1)*%
If ¢ = u(1), then |F(u(1)) = 1 and Fy(u(1)) = ¢ from Lemma 4.3. Therefore
we haveX;,_n(e[u(1)]) = —1.
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Assumeg =u (Ipu £ ) withr # 1. Then from Lemma 4.3 (u(L)wu(r)) =
{20+&) —r; ¢ € Fi(1—r)} anda (2(1 +) — r)u(Qwu(r) € [x(1 +& +n,/p)] where
n € F* such thatn?p = ¢ — (1 — r). Here we use the results of Lemma 1.3. Put
€=81-+(¢) = 271(C+¢) where¢ € Ef' . Thengy_,: Ef, —{+vVI—r} — Fi(1-7)
is a 2 to 1 surjection if - r € F;*, while g1_,: E  — Fi(1—r)is a2 to 1 sur-
jection if 1—r € F;*. Moreover we can takg,/p = 27Y(¢ — ¢9). Therefore we have
1+¢{+n,/p=1+( and consequently

Xig—([@A +E+ny/p)]) = —(O1g—1)(1 +C) + Oy, —1y(1 + (7).

Thus we obtain

1
~3 > {01g-(1 +Q) +0yg-(1 +¢1)} (L—r € Fy),
CEE] ,—{£V1-=r}

3 3 {1+ + i (1 +CN) (1-re ).

CEES,

Xi((Dwu(r)) =

If we substitute ¢ for ¢¢ in the second term, which does not changg , —
{£v1-r} and E , respectively, we have

- Y b1+ A-reFy),
CEES . —{+VvI-r}
Xi(u(Qwu(r)) =
- Z Og—1)(1 +C) (1—reFy).

CEES,

If r=0, then|F;(u(1)w)| =1 and hence

Xl(fl—l)(g[”(l)w]) =-1- Z el(q—l)(l +()=— Z 91((1_1)(1 +Q).

CEE[ —{=£1} CEE[—{-1}

Using Lemma 1.4, we obtaii;, —1)(s[u(1)w]) = (—1).
If » #0 and 1-r € Fy*, then|F; (u(L)wu(r))| = 2 and hence

Xig-n(elu@wu(r)]) = -2 - Z Oig—1(1 + Q).
CEE] ,—{£V1=r}

Since §;y—1(£v1—r) =1, we have

Xig-Eu@uu() = = Y Oig-n(L +Q).

CEE],
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If 1 —r e F, then|F (u(1)wu(r)) = 0 and hence

Xig-p(Elu@uu@E)) = = Y - +0).

CEES,
Thus we have completed the proof of Main Theorem. O

ExampLE 4.4. The character table 6f(GL2(Fs), A)

Up Wo Vo Wiz X4 Xg

€ 1 2 1 1 1 1

e[w] 1 0 1 -1 1 -1
e[u(1)] 4 3 -1 -1 -1 -1
e[wu(1)] 4 -1 -1 1 -1 1
elu()w] 4 -1 -1 1 -1 1
elu(Dwu1)] | 4 3 -1 -1 -1 -1
efu(wu@)] | 4 -2 2 2 -1 -3
efu(Vwu@)] | 4 -2 -2 0 4 0
efu(wu@d)] | 4 -2 2 -2 -1 3

ExampLE 4.5. The character table 6f(GL2(Fy), A)

Upo Vo Va Wis Wiogs X6 X 1 X 18
e 1 2 1 1 1 1 1 1
e[w] 1 0 -1 -1 1 1 -1 1
e[u(1)] 6 5 -1 -1 -1 -1 -1 -1
e[wu(1)] 6 -1 1 1 -1 -1 1 -1
e[u(l)w] 6 -1 1 1 -1 -1 1 -1
elu()wu(1)] | 6 5 -1 -1 -1 -1 -1 -1
elu@wu]| 6 -2 0 -3 1 —2/2 4 2V/2
u@uwu@B)] | 6 -2 -4 2 -2  2+2 2 22
elu@uwu@] | 6 -2 0 0 4 2+2/2 0 -—2-2V2
eu@uwuB)] | 6 -2 4 -2 -2 2+J2 -2 2-42
eluwu@®)] | 6 -2 0 3 1 —2V2 -4 22
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