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Introduction

The Hecke algebraH( ) of a group relative to its subgroup is a gener-
alization of the group algebraC of , whose structure and representations are in-
teresting mathematical objects as well as those ofC . As is well known, the Hecke
algebras of 2( ) where is a -adic field relative to its open subgroups take
a significant part in Number Theory or more precisely in the theory of modular forms.

On the other hand, Hecke algebras of finite groups have been studied in connec-
tion with the irreducible decomposition of various inducedrepresentations (cf. [2], [6],
[7], [10]). Recently, it has emerged that they play an important role in Graph Theory.
In fact, certain families of double cosets of a finite group with respect to its sub-
group yield vertex transitive graphs with vertex set/ and the spectra of those
graphs are determined with the help of the irreducible characters of the Hecke algebra
H( ) (see for example [5]). In this setting, A. Terras et al. ([1]) and R. Evans ([3])
have studied the structure and characters ofH( 2( ) ) where is a finite field
and is the anisotropic torus of 2( ). In our previous paper ([9]), we have con-
sidered the structure ofH( 2( ) ) where is the split torus of 2( ) and
described the multiplication table with respect to the standard basis of it. The aim
of the present article is to determine all the irreducible characters ofH( 2( ) )
and describe the character table with respect to the standard basis of it. Throughout
the paper, we assume that is a power of an odd prime.

The paper is organized as follows.§1 contains several results concerning a finite
field , which are useful for computing the character values ofH( ). Here we
put = 2( ) for simplicity. In §2 we give a complete setR of representatives
of the double coset space\ / and the standard basis{ε[ ] ; ∈ R} of H( ).
In §3 we give the irreducible decomposition of the induced character 1 (see Theo-
rem 3.3). As a by-product, we get the setˆ of all irreducible characters ofH( ).
In §4 we describe the character table (χ(ε[ ])) ∈R χ∈ ˆ of H( ) in Main Theorem.
In order to calculate the value ofχ(ε[ ]), it is essential to decide the conjugacy class
of for ∈ and ∈ R, which is performed in Lemma 4.3.

The results of the paper and ([9]) will be applied to the construction of ver-
tex transitive graphs over / and the determination of the spectra of those graphs,
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which will be discussed in a subsequent paper. We also mention that our results
about the Hecke algebraH( ) will be useful for the study of the Hecke algebra
of 2( ) relative to its certain open subgroup where is a -adic field.

1. A finite field with q elements

Let = be a finite field with elements where is a power of an odd
prime . Let × = − {0} be the multiplicative group of . Then × is a cyclic
group of order −1. Fix a generatorρ of ×, so that × = {ρ ; = 0 1 . . . −2}.
Let ×

0 be the subgroup of × consisting of squares of ×, and put ×
1 = ×− ×

0 .
Then ×

0 = {ρ2 ; = 0 1 . . . ( − 3)/2}, ×
1 = {ρ2 +1; = 0 1 . . . ( − 3)/2}, and

hence ×
1 = ρ ×

0 . Since−1 = ρ( −1)/2, it follows that −1 ∈ ×
0 if and only if ≡ 1

(mod 4). In the following if =ρ2 ∈ ×
0 , then we write

√
for ρ . Let ˆ× be the set

of all characters of ×. Define the characterλ of × by λ (ρ ) = 2π /( −1) where
= 0 1 . . . − 2 and =

√
−1. Then ˆ× = {λ ; = 0 1 . . . − 2}. In particular

we write 1 =λ0 (the trivial character of ×) and σ = λ( −1)/2. The characterσ
has the property thatσ ( ) = 1 for ∈ ×

0 andσ ( ) = −1 for ∈ ×
1 . We extendσ

to a multiplicative function on by puttingσ (0) = 0.
Let = (

√
ρ ) = {ζ = +

√
ρ ; ∈ } be the quadratic extension of . Then

is a finite field with 2 elements. It is well known thatζ = − √
ρ for ζ = +

√
ρ.

Let : → be the norm map. Then (ζ) = ζζ = 2 − 2ρ for ζ = +
√
ρ. Let

× be the multiplicative group of . Then × is a cyclic group of order 2 − 1.
Choose a generatorτ of × satisfying τ +1 = ρ and τ ∈ × ( = 1 . . . ). Note
that : × → × is a surjective homomorphism. For∈ × we put × = {ζ ∈

× ; (ζ) = }. Then it is easy to check that×1 = {τ ( −1) ; = 0 1 . . . }, ×
ρ =

{τζ ; ζ ∈ ×
1 }, ×

2 = { ζ ; ζ ∈ ×
1 } and ×

2ρ = { ζ ; ζ ∈ ×
ρ } for ∈ ×. Let

ˆ× be the set of all characters of×. Define the characterθ ( = 0 1 . . . 2 − 2)
for × by θ (τ ) = 2π /( 2−1). Then ˆ× = {θ ; = 0 1 . . . 2 − 2}. Note that
θ = θ if and only if θ = λ ◦ whereλ ∈ ˆ×, and θ | × = 1 if and only if

= ( − 1) where = 0 1. . . . The following lemmas will be used later in the
proof of the main theorem.

Lemma 1.1. Put 1 + ×
0 = {1 + ; ∈ ×

0 } and 1 + ×
1 = {1 + ; ∈ ×

1 }.
(i) If ≡ 1 (mod 4), then

|(1 + ×
1 ) ∩ ×

0 | = |(1 + ×
1 ) ∩ ×

1 | = |(1 + ×
0 ) ∩ ×

1 | =
− 1
4

|(1 + ×
0 ) ∩ ×

0 | =
− 5
4
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(ii) If ≡ 3 (mod 4), then

∣∣(1 + ×
1 ) ∩ ×

0

∣∣ =
∣∣(1 + ×

1 ) ∩ ×
1

∣∣ =
∣∣(1 + ×

0 ) ∩ ×
0

∣∣ =
− 3
4

∣∣(1 + ×
0 ) ∩ ×

1

∣∣ =
+ 1
4

Proof. First we show

(1.1)
∣∣(1 + ×

1 ) ∩ ×
0

∣∣ =
∣∣(1 + ×

1 ) ∩ ×
1

∣∣

Let ∈ (1+ ×
1 )∩ ×

0 . Then −1 ∈ ×
1 and hence (−1)−1 ∈ ×

1 . Since 1+(−1)−1 =
( − 1)−1 and ∈ ×

0 , it follows that 1 + ( − 1)−1 ∈ (1 + ×
1 ) ∩ ×

1 . Conversely
let ∈ (1+ ×

1 )∩ ×
1 . Then −1 ∈ ×

1 and hence (−1)−1 ∈ ×
1 . Since 1+(−1)−1 =

( − 1)−1 and ∈ ×
1 , it follows that 1 + ( − 1)−1 ∈ (1 + ×

1 ) ∩ ×
0 . Consequently

the map : (1+ ×
1 )∩ ×

0 → (1+ ×
1 )∩ ×

1 defined by ( ) = 1+(−1)−1 is a bijection.
Thus (1.1) holds. Since−1 ∈ ×

1 if and only if ≡ 3 (mod 4), namely, 0∈ 1 + ×
1

if and only if ≡ 3 (mod 4), it follows that

∣∣1 + ×
1

∣∣ =
∣∣(1 + ×

1 ) ∩ ×
0

∣∣ +
∣∣(1 + ×

1 ) ∩ ×
1

∣∣ +

{
0 ( ≡ 1 (mod 4))

1 ( ≡ 3 (mod 4))

Since |1 + ×
1 | = | ×

1 | = ( − 1)/2, it follows from (1.1) that

(1.2)
∣∣(1 + ×

1 ) ∩ ×
0

∣∣ =
∣∣(1 + ×

1 ) ∩ ×
1

∣∣ =





− 1
4

( ≡ 1 (mod 4))

− 3
4

( ≡ 3 (mod 4))

Note that

(1 + ×
0 ) ∪ (1 + ×

1 ) = 1 + × = − {1} = ( ×
0 − {1}) ∪ ×

1 ∪ {0}

This yields that

(1.3) ((1 + ×
0 ) ∩ ×

0 ) ∪ ((1 + ×
1 ) ∩ ×

0 ) = ×
0 − {1}

and

(1.4) ((1 + ×
0 ) ∩ ×

1 ) ∪ ((1 + ×
1 ) ∩ ×

1 ) = ×
1

From (1.2) and (1.3), we have

∣∣(1 + ×
0 ) ∩ ×

0

∣∣ =





− 5
4

( ≡ 1 (mod 4))

− 3
4

( ≡ 3 (mod 4))
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and from (1.2) and (1.4), we have

∣∣(1 + ×
0 ) ∩ ×

1

∣∣ =





− 1
4

( ≡ 1 (mod 4))

+ 1
4

( ≡ 3 (mod 4))

Lemma 1.2. Let ∈ ×. Define the subsets0( ) and 1( ) of by

0( ) =
{

∈ ; 2 − ∈ ×
0

}
1( ) =

{
∈ ; 2 − ∈ ×

1

}

Then we have

| 0( )| =





− 3
2

( ∈ ×
0 )

− 1
2

( ∈ ×
1 )

| 1( )| =





− 1
2

( ∈ ×
0 )

+ 1
2

( ∈ ×
1 )

Proof. Since 0( 2 ) = 0( ) and 1( 2 ) = 1( ) for ∈ ×, it follows that
| 0( )| = | 0(1)|, | 1( )| = | 1(1)| if ∈ ×

0 and | 0( )| = | 0(ρ)|, | 1( )| = | 1(ρ)|
if ∈ ×

1 . Therefore it is enough to consider the cases = 1 and =ρ. Note that
if ≡ 1 (mod 4), then−1 ∈ ×

0 and hence 0∈ 0(1), while if ≡ 3 (mod 4),
then −1 ∈ ×

1 and hence 0∈ 1(1). Assume ≡ 1 (mod 4). If ∈ 0(1) − {0},
then 2 ∈ (1 + ×

0 ) ∩ ×
0 . Conversely if 2 ∈ (1 + ×

0 ) ∩ ×
0 , then± ∈ 0(1)− {0}.

Therefore by Lemma 1.1, we have

| 0(1)− {0}| = 2
∣∣(1 + ×

0 ) ∩ ×
0

∣∣ =
− 5
2

and hence| 0(1)| = ( − 3)/2. Assume ≡ 3 (mod 4). If ∈ 0(1), then ∈ ×

and 2 ∈ (1 + ×
0 ) ∩ ×

0 . Conversely if 2 ∈ (1 + ×
0 ) ∩ ×

0 , then± ∈ 0(1). Conse-
quently by Lemma 1.1, we have

| 0(1)| = 2
∣∣(1 + ×

0 ) ∩ ×
0

∣∣ =
− 3
2

Similar argument yields that| 1(1)| = ( − 1)/2. Next we consider 0(ρ) and 1(ρ).
Note that if ≡ 1 (mod 4), then−ρ ∈ ×

1 and hence 0∈ 1(ρ), while if ≡ 3
(mod 4), then−ρ ∈ ×

0 and hence 0∈ 0(ρ). Assume ≡ 1 (mod 4). If ∈ 0(ρ),
then 2 ∈ (ρ + ×

0 ) ∩ ×
0 . Note that (ρ + ×

0 ) ∩ ×
0 = ρ((1 + ×

1 ) ∩ ×
1 ). Conversely

if 2 ∈ (ρ + ×
0 ) ∩ ×

0 , then± ∈ 0(ρ). Therefore by Lemma 1.1, we have

| 0(ρ)| = 2
∣∣(1 + ×

1 ) ∩ ×
1

∣∣ =
− 1
2

Similarly we get | 1(ρ) − {0}| = 2|(ρ + ×
1 ) ∩ ×

0 | = 2|(1 + ×
0 ) ∩ ×

1 |, and hence
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| 1(ρ)| = ( + 1)/2. The case ≡ 3 (mod 4) is treated in the same way. So we omit
it.

Lemma 1.3. Let ∈ ×.
(i) Put ( ) = 2−1( + −1) for ∈ ×. Then if ∈ ×

0 , the map : ×−{±√ } →
0( ) is a two to one surjection, while if ∈ ×

1 , the map : × → 0( ) is a two
to one surjection.
(ii) Put ( ) = 2−1( + ) for ∈ ×. Then if ∈ ×

0 , the map : ×−{±√ } →
1( ) is a two to one surjection, while if ∈ ×

1 , the map : × → 1( ) is a two
to one surjection.

Proof. (i) If ( 1) = ( 2) ( 1 2 ∈ ×), then 2 = 1 or 2 = −1
1 and hence

is a two to one mapping. Moreover ( )2 − = (2−1( − −1))2, so that ( )∈ 0( )
unless 2 = . Thus ( × − {±√ }) ⊂ 0( ) if ∈ ×

0 , and ( ×) ⊂ 0( ) if
∈ ×

1 . Since is two to one,| ( × − {±√ })| = ( − 3)/2 and | ( ×)| =
( −1)/2. Whereas by Lemma 1.2,| 0( )| = ( −3)/2 if ∈ ×

0 and | 0( )| = ( −1)/2
if ∈ ×

1 . Therefore is a surjection in each case.
(ii) If ( 1) = ( 2) for 1 = 1 + 1

√
ρ, 2 = 2 + 2

√
ρ ∈ ×, then 1 = 2. Moreover

since 2
1 − 2

1ρ = 2
2 − 2

2ρ = , we have 2 = ± 1. Hence (1) = ( 2) implies 2 = 1

or 2 = 1. Thus is a two to one mapping. Since ( )2 − = (2−1( − ))2 = 2ρ

for = +
√
ρ ∈ ×, it follows that if ∈ × − × then ( ) ∈ 1( ). Note

that ×− × = ×−{±√ } if ∈ ×
0 , while ×− × = × if ∈ ×

1 . Therefore
we have ( × − {±√ }) ⊂ 1( ) if ∈ ×

0 , while ( ×) ⊂ 1( ) if ∈ ×
1 .

Since is two to one and| ×| = +1, it follows that| ( ×−{±√ })| = ( −1)/2
and | ( ×)| = ( + 1)/2. Whereas by Lemma 1.2,| 1( )| = ( − 1)/2 if ∈ ×

0

and | 1( )| = ( + 1)/2 if ∈ ×
1 . Thus is a surjection in each case.

Lemma 1.4. Let θ ( −1) ( = 0 1 . . . ) be the characters of ×, which have
the propertyθ ( −1)| × = 1 . Then

∑

ζ∈ ×
1 −{−1}

θ ( −1)(1 + ζ) =

{
( = 0)

(−1) +1 ( = 1 . . . )

Proof. Recall that ×
1 = {τ ( −1) ; = 0 1 . . . }. Since ζ ∈ ×

1 − {−1}, we
can writeζ = τ ( −1) where 0≤ ≤ with 6= ( + 1)/2. Therefore we have 1 +ζ =
τ− (τ + τ ). Since ζ 6= −1, it follows that τ + τ ∈ × and henceθ ( −1)(τ +
τ ) = 1. Consequently

∑

ζ∈ ×
1 −{−1}

θ ( −1)(1 + ζ) =
∑

0≤ ≤ 6= ( +1)/2

θ ( −1)(τ− )
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which equals
∑

0≤ ≤

−2π /( +1) − (−1)

Since

∑

0≤ ≤

−2π /( +1) =

{
+ 1 ( = 0)

0 ( = 1 . . . )

we obtain the lemma.

2. The Hecke algebraH(G A)

Let = 2( ) be the general linear group of 2× 2 non-singular matrices
over . The order| | of is known to be equal to ( +1)(−1)2. There are several
important subgroups of appearing in this paper:

=

{
( ) =

(
0

0

)
; ∈ ×

}

=

{
( ) =

(
1
0 1

)
; ∈

}

=

{
κ( ) =

(
ρ
)

; = +
√
ρ ∈ ×

}

( ) =

{
( ) =

(
0

0

)
; ∈ ×

}
(the center of )

Note that is isomorphic to × × × so that | | = ( − 1)2, is isomorphic to
the additive group so that| | = , is isomorphic to × so that| | = 2 − 1. It
is known that

(2.1) = ∪

where

(2.2) =

(
0 −1
1 0

)

In fact if =
( )

with = 0, then ∈ , while =
( )

with ∈ ×, then we
can verify

(2.3) = ( −1) ( (det )−1) ( −1 det )∈

From (2.1) it follows that the coset space/ can be written as

/ = { ( ) ; ∈ } ∪ { ( ) ( ) ; ∈ }
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Now we consider the double coset space\ / .

Theorem 2.1. Let R be the subset of which is defined by

(2.4) R = { (1) (1) (1) ( )} ( ∈ )

where is the identity matrix. ThenR is a complete set of representatives of\ / ,
namely,

(2.5) \ / = { ; ∈ R}

and consequently| \ / | = + 4.

Proof. It is enough to see \ / ⊂ { ; ∈ R}. Assume = ( ) ( )∈
. Then = ( ) . Since

( ) = ( 1) (1) ( −1 1) for ∈ ×

we have ( ) = for = 0 and ( ) = (1) for ∈ ×. Assume =
( ) ( ) ( ) ∈ . Then = ( ) ( ) . In particular if = = 0, then

( ) ( ) = . If = 0 and 6= 0, then ( ) = ( 1) (1) (−1 1) =
( 1) −1 (1) . But since ( 1) −1∈ , so we obtain ( ) = (1) .

Similarly if 6= 0 and = 0, we have ( ) = (1) . Finally if both and
∈ ×, then we will show

(2.6) ( ) ( ) = (1) ( )

Since ∈ ×,

( ) ( ) = ( 1) (1) ( −1 1) ( )

Moreover since −1 ( −1 1) = (1 −1), it follows that

(1) −1 ( −1 1) ( ) = (1) (1 −1) ( )

Using (1 −1) ( ) (1 ) = ( ), we have

(1) (1 −1) ( ) = (1) ( )

Thus we obtain (2.6). Since = ∪ , the assertion \ / ⊂ { ; ∈ R}
is completed.

For ∈ , we put

(2.7) ind( ) =| / | where = ∩ −1
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We notice that ind( ) is equal to the number of left -cosets in the double coset
and hence it depends only on the double coset . A simple computation yields
that = = while = ( ) for ∈ R− { }. Therefore we have

(2.8) ind( ) =

{
1 ( = )

− 1 ( ∈ R− { })

Let C be the group algebra of overC. Define ε ∈ C by

(2.9) ε = | |−1
∑

∈

Then ε is an idempotent ofC , which satisfiesε2 = ε, ε = ε ′ = ε for ′ ∈ .
This means thatεC ε is a subalgebra ofC , which we call the Hecke algebra of
relative to . From now on, we writeH( ) instead ofεC ε. Clearly H( ) is
spanned byε ε ( ∈ ). Put

(2.10) ε[ ] = ind( )ε ε for ∈ R

Note thatε[ ] = ε is the identity element ofH( ) and ε[ ] depends only on the
double coset . It can be easily seen that{ε[ ] ; ∈ R} forms a linear basis
of H( ), which we call the standard basis. We remark ([8]) that

(2.11) ε[ ] = | |−1
∑

∈

The multiplication table ofH( ) is given in ([9]).

3. Irreducible decomposition of the induced character 1GA

In this section, we provide the irreducible decomposition of the induced char-
acter 1 , which is induced from the principal character 1 of to. Let ˆ

be the set of all irreducible characters of , and letˆ be the subset of ˆ

consisting of thoseχ ∈ ˆ which appear in the irreducible decomposition of 1 .
Throughout the paper, we denote by [ ] the conjugacy class of∈ . Let [ ] be
the set of all conjugacy classes of . Then it is known ([4]) that

[ ] = [ ] I ∪ [ ] II ∪ [ ] III ∪ [ ] IV

where

[ ] I = {[ ( )] ; ∈ ×}(3.1)

[ ] II =

{[(
1

0

)]
= [ ( ) ( −1)] ; ∈ ×

}
(3.2)
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Table 1.

[ ˆ ]
(0 ≤ < −1)

(0 ≤ <
− 1)

(0 ≤ <
− 1)

=0�1 ≤ < 2 −
1,

+ 1 - 1A
[ ( )]
( ∈ ×)

λ2( ) λ2( ) ( + 1)λ ( )λ ( ) ( − 1)θ ( )

[ ( ) ( −1)]
( ∈ ×)

λ2( ) 0 λ ( )λ ( ) −θ ( )

[ ( )]
( ∈ ×, 6= )

λ ( ) λ ( ) λ ( )λ ( ) + λ ( )λ ( ) 0

[κ ( )]
( ∈ × − ×)

λ ( ) −λ ( ) 0 −(θ ( ) + θ ( ))

[ ] III = {[ ( )] = [ ( )] ; ∈ × 6= }(3.3)

[ ] IV = {[κ( )] = [κ( )] ; ∈ × − ×}(3.4)

Furthermore the numbers of elements in the conjugacy classes are given by

(3.5)
|[ ( )] | = 1 |[ ( ) ( −1)]| = 2 − 1

|[ ( )] | = ( + 1) |[κ( )]| = ( − 1)

Here we bring out the character table of for convenience sake(Table 1). Now we
decide the character values of 1 .

Lemma 3.1. The induced character1 takes the following values in[ ] .

1 ([ ( )]) = ( + 1) for [ ( )] ∈ [ ] I

1 ([ ( ) ( −1)]) = 0 for [ ( ) ( −1)] ∈ [ ] II

1 ([ ( )]) = 2 for [ ( )] ∈ [ ] III

1 ([κ( )]) = 0 for [κ( )] ∈ [ ] IV

Proof. The value of 1 on the conjugacy class [ ] is given by

1 ([ ]) =
| |
| |

|[ ] ∩ |
|[ ] | = ( + 1)

|[ ] ∩ |
|[ ] |

It is an easy task to check [ ( )]∩ = { ( )}, [ ( ) ( −1)] ∩ = φ,
[ ( )] ∩ = { ( ) ( )} and [κ( )] ∩ = φ. From this and (3.6), the lemma
follows immediately.

REMARK 3.2. Lemma 3.1 yields that

1 ([ ( ) ]) = 1 ([ ]) for any ( ) ∈ ( )
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Theorem 3.3. The irreducible decomposition of the induced character1 is
given by

1 = 0 + 2 0 + ( −1)/2 +
∑

1≤ ≤( −3)/2

−1− +
∑

1≤ ≤( −1)/2

( −1)

and hence

ˆ =

{
0 0 ( −1)/2 −1−

(
1 ≤ ≤ − 3

2

)
( −1)

(
1 ≤ ≤ − 1

2

)}

Proof. To show the theorem, it is enough to compute the inner product

(
χ 1

)
= | |−1

∑

∈
χ( )1 ( )

= | |−1
∑

[ ]∈[ ]

|[ ] |χ([ ])1 ([ ])

for eachχ ∈ ˆ . Applying the above lemma, we obtain

(
χ 1

)
= | |−1



 ( + 1)

∑

[ ]∈[ ] I

|[ ] |χ([ ]) + 2
∑

[ ]∈[ ] III

|[ ] |χ([ ])





Since | | = ( +1)( −1)2, |[ ] | = 1 for [ ] ∈ [ ] I and |[ ] | = ( +1) for [ ] ∈ [ ] III ,
we have

(
χ 1

)
= ( − 1)−2




∑

[ ]∈[ ] I

χ([ ]) + 2
∑

[ ]∈[ ] III

χ([ ])





Using (3.1) and (3.3), we get

(3.6)
(
χ 1

)
= ( − 1)−2




∑

∈ ×

χ([ ( )]) +
∑

∈ × 6=
χ([ ( )])





Before starting the case by case consideration, we remark that for λ λ ∈ ˆ × the fol-
lowing identity holds.

(3.7)
∑

∈ ×

λ ( )λ ( ) =

{
− 1 ( + ≡ 0 (mod − 1))

0 (otherwise)
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CASE 1. χ = (0 ≤ < − 1).
Applying Table 1 to (3.6), we have

(
1
)

= ( − 1)−2




∑

∈ ×

λ2( ) +
∑

∈ × 6=
λ ( )λ ( )





Since

∑

∈ × 6=
λ ( )λ ( ) =

(
∑

∈ ×

λ ( )

)2

−
∑

∈ ×

λ2( )

it follows that

(
1
)

= ( − 1)−2

(∑

∈ ×

λ ( )

)2

Applying (3.7) with = 0, we get

(
1
)

=

{
1 ( = 0)

0 (otherwise)

CASE 2. χ = (0 ≤ < − 1).
Applying Table 1 to (3.6), we have

(
1
)

= ( − 1)−2





∑

∈ ×

λ2( ) +
∑

∈ × 6=
λ ( )λ ( )





As in Case 1, we obtain

(
1
)

= ( − 1)−2



( − 1)

∑

∈ ×

λ2( ) +

(
∑

∈ ×

λ ( )

)2




Using (3.7) with = , we have

∑

∈ ×

λ2( ) =





− 1

(
= 0

− 1
2

)

0 (otherwise)

Therefore we get

( 1 ) =





2 ( = 0)

1

(
=

− 1
2

)

0 (otherwise)
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CASE 3. χ = (0 ≤ < < − 1).
Applying Table 1 to (3.6), we have

(
1
)

= ( −1)−2



( + 1)

∑

∈ ×

λ ( )λ ( ) +
∑

∈ × 6=
(λ ( )λ ( ) + λ ( )λ ( ))





Since

∑

∈ × 6=
(λ ( )λ ( ) +λ ( )λ ( )) = 2





(
∑

∈ ×

λ ( )

)
∑

∈ ×

λ ( )


−

∑

∈ ×

λ ( )λ ( )





it follows that

(
1
)

= ( − 1)−2



( − 1)

∑

∈ ×

λ ( )λ ( ) + 2

(
∑

∈ ×

λ ( )

)
∑

∈ ×

λ ( )







But since 6= 0, we have
∑

∈ × λ ( ) = 0, and hence

(
1
)

= ( − 1)−1
∑

∈ ×

λ ( )λ ( )

Applying (3.7) where 0≤ < < − 1, we obtain

(
1
)

=





1

(
= − 1− 1 ≤ ≤ − 3

2

)

0 (otherwise)

CASE 4. χ = (1 ≤ < 2 − 1, + 1 ∤ , = ).
Applying Table 1 to (3.6), we have

(
1
)

= ( − 1)−1
∑

∈ ×

θ ( )

Note that

∑

∈ ×

θ ( ) =

{
− 1 (θ | × = 1 )

0 (otherwise)

But we know θ | × = 1 if and only if is of the form = ( − 1) where =
1 2 . . . . Since ( − 1) ≡ ( − ( − 1))( − 1) (mod 2 − 1) and hence ( −1) =

( −( −1))( −1), we get

( 1 ) =





1

(
= ( − 1) 1≤ ≤ − 1

2

)

0 (otherwise)
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Before proceeding the next section, we recall some properties of the characters
of H( ) (see [2]). Every irreducible characterχ ∈ ˆ can be regarded as an ir-
reducible character ofC , by extending it linearly. The restriction ofχ to the sub-
algebraH( ) is either 0 or an irreducible character ofH( ). Moreover every
irreducible character ofH( ) is obtained by the nonzero restriction of some irre-
ducible character of . Since

(3.8) χ(ε) = | |−1
∑

∈
χ( ) = (χ 1 ) =

(
χ 1

)

where the last equality comes from the Frobenius reciprocity law, the restriction
of χ ∈ ˆ to H( ) is nonzero if and only ifχ ∈ ˆ .

4. The Character Table of H(G A)

In this section, we write down the character table ofH( ). Here we mean that
the character table ofH( ) is the matrix

(χ(ε[ ])) ∈R χ∈ ˆ

where{ε[ ] ; ∈ R} is the standard basis ofH( ) introduced in (2.10) and̂ ={
χ ∈ ˆ ;

(
χ 1

)
6= 0
}

, which is given explicitly in Theorem 3.3.

Main Theorem. Let = 2( ) where is a finite field with elements. We
assume that is a power of an odd prime, and we put = for simplicity. Let
be the subgroup of consisting of diagonal matrices of. The character table of the
Hecke algebraH( ) is given byTable 2described below.

Before proving Main Theorem, we require some preliminary results. First we
transformχ(ε[ ]) into more convenient form. Sinceε[ ] = ind( )ε ε ( ∈ R), it fol-
lows that

χ(ε[ ]) = ind( )χ(ε ε) = ind( )χ(ε2 ) = ind( )χ(ε )

and hence

(4.1) χ(ε[ ]) = ind( )| |−1
∑

∈
χ( )

Since every element ∈ can be written uniquely as

(4.2) = ( ) ( 1) ( ∈ ×)

and since everyχ ∈ ˆ has the property

(4.3) χ( ( ) ) = χ( ) ( ∈ ×)
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Table 2.

0 0 ( −1)/2

−1−

(1 ≤ ≤
( − 3)/2)

( −1)

(1 ≤ ≤ ( −1)/2)

ε 1 2 1 1 1

ε[ ] 1 0

(
1 ( ≡ 1 mod 4)

−1 ( ≡ 3 mod 4)
(−1) (−1) +1

ε[ (1)] − 1 − 2 −1 −1 −1

ε[ (1)] − 1 −1

(
−1 ( ≡ 1 mod 4)

1 ( ≡ 3 mod 4)
(−1) +1 (−1)

ε[ (1) ] − 1 −1

(
−1 ( ≡ 1 mod 4)

1 ( ≡ 3 mod 4)
(−1) +1 (−1)

ε[ (1) (1)] − 1 − 2 −1 −1 −1

ε[ (1) ( )]
( ∈

× − {1})
− 1 −2

X
∈ ×−{1 }

σ (φ ( ))
X

∈ ×−{1 }

λ (φ ( )) −
X

ζ∈ ×
1−

θ ( −1)(1 + ζ)

Whereφ ( ) = ( − 1)( − )−1 and ×
1− = {ζ ∈ × ; ζζ = 1− }.

(see Remark 3.2), it follows that

(4.4) χ(ε[ ]) = ind( )( − 1)−1
∑

∈ ×

χ( ( 1) )

In order to computeχ(ε[ ]) explicitly, it is necessary to investigate the conjugacy class
of ( 1) . The following lemma is useful for that purpose. Let tr( ) and det( ) be
the trace and the determinant of respectively. Put

(4.5) ( ) = (tr( ))2 − 4 det( )

Lemma 4.1. The conjugacy class[ ] of ∈ is characterize as follows.
(i) [ ] ∈ [ ] I if and only if ∈ ( ).
(ii) [ ] ∈ [ ] II if and only if ∈ − ( ) and ( ) = 0. In this case

(4.6) [ ] =

[(
2−1 tr( ) 1

0 2−1 tr( )

)]

(iii) [ ] ∈ [ ] III if and only if ( ) ∈ ×
0 . In this case

(4.7) [ ] =
[ (

2−1(tr( ) + δ( )) 2−1(tr( ) − δ( ))
)]

whereδ( ) ∈ × such thatδ( )2 = ( ).
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(iv) [ ] ∈ [ ] IV if and only if ( ) ∈ ×
1 . In this case

(4.8) [ ] =
[
κ
(
2−1(tr( ) + δ( )

√
ρ )
)]

whereδ( ) ∈ × such thatδ( )2ρ = ( ).

Proof. The proof of the lemma is a simple exercise of linear algebra. So we omit
it.

The next lemma slightly simplifies the proof of Main Theorem.

Lemma 4.2. The following two identities hold.

(4.9) χ(ε[ (1) (1)]) = χ(ε[ (1)])

and

(4.10) χ(ε[ (1)]) = χ(ε[ (1) ])

Proof. Since det( ( 1) (1) (1)) = det( ( 1) (1)) and tr( ( 1) (1) (1)) =
tr( ( 1) (1)), it follows from Lemma 4.1 that ( 1) (1) (1) and ( 1)(1) be-
long to the same conjugacy class. Noting ind( (1) (1)) = ind( (1)), we conclude
from (4.4) that (4.9) holds. Since the characters are conjugation invariant, we obtain
from (4.1)

χ(ε[ (1)]) = ind( (1))| |−1
∑

∈
χ
( −1( (1))

)

Since −1 ∈ for ∈ , and ind( (1)) = ind( (1) ), we have

χ(ε[ (1)]) = ind( (1) )| |−1
∑

∈
χ( (1) )

which equalsχ(ε[ (1) ]).

From (3.8) and Theorem 3.3, we have already seen that

(4.11) χ(ε[ ]) = χ(ε) =
(
χ 1

)
=

{
2 (χ = 0)

1 (χ ∈ ˆ − { 0})

Set

(4.12) S = R− { (1) (1) (1)} = { (1) (1) ( )} ( ∈ − {1})
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Then from (4.9), (4.10) and (4.11), we have only to computeχ(ε[ ]) for ∈ S. Note
that if ∈ S, then ( 1) does note belong to ( ). Define for∈ S the subsets
of × by

×
II ( ) = { ∈ × ; ( 1) ∈ [ ] II}
×
III ( ) = { ∈ × ; ( 1) ∈ [ ] III }
×
IV ( ) = { ∈ × ; ( 1) ∈ [ ] IV}

Note that × = ×
II ( ) ∪ ×

III ( ) ∪ ×
IV ( ) for ∈ S. Furthermore if we put

(4.13) ( ) = ( ( 1) )

then we can deduce from Lemma 4.1 that

×
II ( ) = { ∈ × ; ( ) = 0}(4.14)
×
III ( ) = { ∈ × ; ( ) ∈ ×

0 }(4.15)
×
IV ( ) = { ∈ × ; ( ) ∈ ×

1 }(4.16)

Moreover we can rewrite (4.4) as
(4.17)

χ(ε[ ]) =
ind( )
− 1





∑

∈ ×
II ( )

χ( ( 1) ) +
∑

∈ ×
III ( )

χ( ( 1) ) +
∑

∈ ×
IV ( )

χ( ( 1) )





Lemma 4.1 enables us to clarify the structure of×II ( ), ×
III ( ) and ×

IV ( ).

Lemma 4.3. Let ∈ S.
(i) If = , then ×

II ( ) = φ, ×
III ( ) = { ∈ × ; − ∈ ×

0 }, and ×
IV ( ) = { ∈

× ; − ∈ ×
1 }. Moreover if ∈ ×

III ( ), then ( 1) ∈ [ (
√− −√− )], while

if ∈ ×
IV ( ), then ( 1) ∈ [κ(η

√
ρ )], whereη ∈ × such thatη2ρ = − .

(ii) If = (1), then ×
II ( (1)) = {1}, ×

III ( (1)) = × − {1}, and ×
IV ( (1)) = φ.

Moreover if ∈ ×
III ( (1)), then ( 1) (1)∈ [ ( 1)].

(iii) If = (1) , then ×
II ( (1) ) = {4}, ×

III ( (1) ) = {2(1 + ξ) ; ξ ∈ 0(1)}, and
×
IV ( (1) ) = {2(1 +ξ) ; ξ ∈ 1(1)}. Moreover if ξ ∈ 0(1), then

(2(1 +ξ) 1) (1) ∈ [ (1 + ξ + η 1 + ξ − η)]

whereη ∈ × such thatη2 = ξ2 − 1. While if ξ ∈ 1(1),

(2(1 +ξ) 1) (1) ∈ [κ(1 + ξ + η
√
ρ )]

whereη ∈ × such thatη2ρ = ξ2 − 1.
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(iv) If = (1) ( ) where 6= 0 1, then

×
II ( (1) ( )) =

{
{
(
1 +

√
1−

)2 (
1−

√
1−

)2} (1− ∈ ×
0 )

φ (1− ∈ ×
1 )

×
III ( (1) ( )) = {2(1 +ξ) − ; ξ ∈ 0(1− ) ξ 6= 2−1( − 2)}
×
IV ( (1) ( )) = {2(1 +ξ) − ; ξ ∈ 1(1− )}

Moreover if ξ ∈ 0(1− ) − {2−1( − 2)}, then

(2(1 +ξ) − 1) (1) ( )∈ [ (1 + ξ + η 1 + ξ − η)]

whereη ∈ × such thatη2 = ξ2 − (1− ). While if ξ ∈ 1(1− ), then

(2(1 +ξ) − 1) (1) ( )∈
[
κ(1 + ξ + η

√
ρ )
]

whereη ∈ × such thatη2ρ = ξ2 − (1− ).
Here we recall that 0( ) = {ξ ∈ ; ξ2 − ∈ ×

0 } and 1( ) = {ξ ∈ ; ξ2 − ∈
×
1 }.

Proof. (i) If = , then tr( ( 1) ) = 0, det( ( 1) ) = and hence ( ) =
−4 . Thus ×

II ( ) = φ, ×
III ( ) = { ∈ × ; − ∈ ×

0 } and ×
IV ( ) = { ∈ × ;

− ∈ ×
1 }. If − ∈ ×

0 (resp. ×
1 ), we may takeδ( ( 1) ) = 2

√− in (4.7)
(resp. δ( ( 1) ) = 2η in (4.8) whereη ∈ × such thatη2ρ = − ), from which
( 1) ∈ [ (

√− −√− )] (resp. ( 1) ∈ [κ(η
√
ρ )]).

(ii) If = (1), then tr( ( 1) (1)) = + 1, det( ( 1) (1)) = and hence (1)( ) =
( − 1)2. Thus ×

II ( (1)) = {1}, ×
III ( (1)) = × − {1} and ×

IV ( (1)) = φ. Moreover
if ∈ ×

III ( (1)), we may chooseδ( ( 1) (1)) = − 1 in (4.7), so that ( 1) (1)∈
[ ( 1)].
(iii) If = (1) , then tr( ( 1) (1) ) = det( ( 1) (1) ) = and hence (1) ( ) =

2 − 4 = ( − 2)2 − 4. Thus ×
II ( (1) ) = {4}. If we put = 2(1 +ξ) with ξ 6=

−1, then (1) ( ) = 4(ξ2 − 1). Therefore (1) ( ) ∈ ×
0 (resp. ×

1 ) if and only
if ξ ∈ 0(1) (resp. 1(1)). Note that−1 does note belong to 0(1) ∪ 1(1). Conse-
quently ×

III ( (1) ) = {2(1 + ξ) ; ξ ∈ 0(1)} and ×
IV ( (1) ) = {2(1 + ξ) ; ξ ∈ 1(1)}.

Moreover if ξ ∈ 0(1) (resp. 1(1)), we may takeδ( (2(1 + ξ) 1) (1) ) = 2η where
η ∈ × such thatη2 = ξ2 − 1 (resp.η2ρ = ξ2 − 1) in (4.7) (resp. (4.8)) and hence
(2(1 +ξ) 1) (1) ∈ [ (1 + ξ + η 1 + ξ − η)] (resp. [κ(1 + ξ + η

√
ρ)]).

(iv) If = (1) ( ) where 6=0 1, then det( ( 1) (1) ( ))= , tr( ( 1) (1) ( ))=
+ and hence (1) ( )( ) = ( + )2−4 = ( + −2)2−4(1− ). Thus (1) ( )( ) = 0

has solutions if and only if 1− ∈ ×
0 . If this is the case, the solutions are =

(1 ±
√

1− )2, and hence ×
II ( (1) ( )) = {(1 +

√
1− )2 (1 −

√
1− )2} in case

1− ∈ ×
0 , otherwise ×

II ( (1) ( )) = φ. Putting = 2(1+ξ)− whereξ 6= 2−1( −2),
we get (1) ( )( ) = 4(ξ2 − (1− )) and hence (1) ( )( ) ∈ ×

0 (resp. ×
1 ) if and
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only if ξ ∈ 0(1− ) (resp. 1(1− )). Note that 2−1( −2) ∈ 0(1− ). Thus we have
×
III ( (1) ( )) = {2(1 +ξ) − ; ξ ∈ 0(1− ) − {2−1( − 2)}} and ×

IV ( (1) ( )) =
{2(1 + ξ) − ; ξ ∈ 1(1 − )}. Furthermore ifξ ∈ 0(1 − ) − {2−1( − 2)} (resp.
ξ ∈ 1(1− )), then we may takeδ( (2(1 +ξ) − 1) (1) ( )) = 2η whereη ∈ ×

such thatη2 = ξ2− (1− ) in (4.7) (resp.η2ρ = ξ2− (1− ) in (4.8)), and consequently
(2(1 +ξ) − 1) (1) ( )∈ [ (1 + ξ + η 1 + ξ − η)] (resp. [κ(1 + ξ + η

√
ρ )]).

Proof of Main Theorem. The proof is proceeding by case by casecomputation
for χ ∈ ˆ .

CASE 1. χ = 0. Since 0 = 1 is the principal character of , we conclude
from (4.1) and (2.8) that

(4.18) 0(ε[ ]) = ind( ) =

{
1 ( = )

− 1 ( ∈ R− { })

CASE 2. χ = 0. Let ∈ S. From Table 1, we have 0 = 0 on [ ]II , 0 = 1 on
[ ] III and 0 = −1 on [ ]IV . Hence by (4.17)

0(ε[ ]) = ind( )( − 1)−1
{∣∣ ×

III ( )| − | ×
IV ( )

∣∣}

If = , then ind( ) = 1,| ×
III ( )| = | ×

0 | = ( −1)/2 and | ×
IV ( )| = | ×

1 | = ( −1)/2
from Lemma 4.3. Thus 0(ε[ ]) = 0.

If = (1), then ind( (1)) = − 1, | ×
III ( (1))| = | × − {1}| = − 2 and

| ×
IV ( (1))| = 0 from Lemma 4.3. Hence0(ε[ (1)]) = − 2.

If = (1) , then ind( (1) ) = − 1, | ×
III ( (1) )| = | 0(1)| = ( − 3)/2 and

| ×
IV ( (1) )| = | 1(1)| = ( − 1)/2 from Lemma 4.3 and Lemma 1.2. Thus we have

0(ε[ (1) ]) = −1.
If = (1) ( ) with 6= 0 1, then ind( (1) ( )) = − 1, | ×

III ( (1) ( ))| =
| 0(1 − )| − 1 and | ×

IV ( (1) ( ))| = | 1(1 − )| from Lemma 4.3. Again by
Lemma 1.2, we know| 0(1− )| = ( −3)/2 and | 1(1− )| = ( −1)/2 for 1− ∈ ×

0 ,
whereas| 0(1− )| = ( − 1)/2 and | 1(1− )| = ( + 1)/2 for 1− ∈ ×

1 . Therefore
in any case we have0(ε[ (1) ( )]) = −2.

CASE 3. χ = ( −1)/2. Let ∈ S. Since λ( −1)/2 = σ , it follows from Ta-
ble 1, that ( −1)/2 = 0 on [ ]II , ( −1)/2([ ( )]) = σ ( ) = σ (det( ( ))) and

( −1)/2([κ( )]) = −σ ( ) = −σ (det(κ( ))). Therefore by (4.17) we have

( −1)/2(ε[ ]) = ind( )( −1)−1





∑

∈ ×
III ( )

σ (det( ( 1) ))−
∑

∈ ×
IV ( )

σ (det( ( 1) ))




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But since det( ( 1) ) = for ∈ S, it follows that

( −1)/2(ε[ ]) = ind( )( − 1)−1





∑

∈ ×
III ( )

σ ( ) −
∑

∈ ×
IV ( )

σ ( )





If = , then by Lemma 4.3 we have

( −1)/2(ε[ ]) = ( − 1)−1




∑

∈ ×
0

σ (− ) −
∑

∈ ×
1

σ (− )





= ( − 1)−1σ (−1)




∑

∈ ×
0

σ ( ) −
∑

∈ ×
1

σ ( )





which equals

σ (−1) =

{
1 ( ≡ 1 (mod 4))

−1 ( ≡ 3 (mod 4))

If = (1), then by Lemma 4.3 we have

( −1)/2(ε[ (1)]) =
∑

∈ ×−{1}
σ ( ) = −σ (1) = −1

If = (1) , then by Lemma 4.3 we have

( −1)/2(ε[ (1) ]) =
∑

ξ∈ 0(1)

σ (2(1 +ξ)) −
∑

ξ∈ 1(1)

σ (2(1 +ξ))

Since 0(1)∪ 1(1) = − {±1}, it follows that

∑

ξ∈ 0(1)

σ (2(1 +ξ)) +
∑

ξ∈ 1(1)

σ (2(1 +ξ)) =
∑

ξ∈ −{±1}
σ (2(1 +ξ))

The right-side is equal to

∑

∈ ×−{4}
σ ( ) = −σ (4) = −1

Consequently we obtain

( −1)/2(ε[ (1) ]) = 2
∑

ξ∈ 0(1)

σ (2(1 +ξ)) + 1
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On the other hand, by Lemma 1.3 we have

2
∑

ξ∈ 0(1)

σ (2(1 +ξ)) =
∑

∈ ×−{±1}
σ
(
2
(
1 + 2−1 ( + −1)))

Since 2(1 + 2−1( + −1)) = ( + 1)2 −1, it follows that

2
∑

ξ∈ 0(1)

σ (2(1 +ξ)) =
∑

∈ ×−{±1}
σ
( −1

)

which equals−(σ (1) +σ (−1)) = −(1 +σ (−1)). Thus we have ( −1)/2(ε[ (1) ]) =
−σ (−1).

Assume = (1) ( ) with 6= 0 1. Using Lemma 4.3, we have

( −1)/2(ε[ (1) ( )]) = −

where we put for simplicity

=
∑

ξ∈ 0(1− )−{2−1( −2)}
σ (2(1 +ξ) − ) =

∑

ξ∈ 1(1− )

σ (2(1 +ξ) − )

Since

0(1− ) ∪ 1(1− ) =

{
−
{
±
√

1−
}

(1− ∈ ×
0 )

(1− ∈ ×
1 )

we have, by putting = 2(1 +ξ) −

+ =





∑

ξ∈ −{±
√

1− 2−1( −2)}

σ (2(1 +ξ) − ) =
∑

∈ ×−{(1±
√

1− )2}

σ ( ) (1− ∈ ×
0 )

∑

ξ∈ −{2−1( −2)}
σ (2(1 +ξ) − ) =

∑

∈ ×

σ ( ) (1− ∈ ×
1 )

Thus we have

+ =

{
−2 (1− ∈ ×

0 )

0 (1− ∈ ×
1 )

and consequently

( −1)/2(ε[ (1) ( )]) =

{
2 + 2 (1− ∈ ×

0 )

2 (1− ∈ ×
1 )
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Applying Lemma 1.3, we obtain

2 =





∑

∈ ×−{±
√

1− −1 −1}

σ
(
2 + + (1− ) −1 −

)
(1− ∈ ×

0 )

∑

∈ ×−{−1 −1}
σ
(
2 + + (1− ) −1 −

)
(1− ∈ ×

1 )

because −1
1− (2−1( − 2)) = {−1 − 1}. Note that

2 + + (1− ) −1 − = ( + 1)( + 1− ) −1

and it takes the values (1±
√

1− )2 ∈ ×
0 at =±

√
1− . Then we have

2 =





∑

∈ ×−{−1 −1}
σ
(
( + 1)( + 1− ) −1

)
− 2 (1− ∈ ×

0 )

∑

∈ ×−{−1 −1}
σ
(
( + 1)( + 1− ) −1

)
(1− ∈ ×

1 )

Consequently we conclude that

( −1)/2(ε[ (1) ( )]) =
∑

∈ ×−{−1 −1}
σ
(
( + 1)( + 1− ) −1

)

Replacing + 1 by , we get

( −1)/2(ε[ (1) ( )]) =
∑

∈ ×−{1 }
σ
(

( − )( − 1)−1
)

Furthermore sinceσ ( ) = σ ( −1) for ∈ ×, it follows that

( −1)/2(ε[ (1) ( )]) =
∑

∈ ×−{1 }
σ
(

( − 1)( − )−1)

CASE 4. χ = −1− . Let ∈ S. Sinceλ −1− ( ) = λ− ( ) = λ ( −1) ( ∈
×), we conclude from Table 1 that −1− = 1 on [ ]II , −1− ([ ( )]) =

λ ( −1) + λ ( −1 ) on [ ]III and −1− = 0 on [ ]IV . Hence by (4.17)

−1− (ε[ ]) = ind( )( − 1)−1
{∣∣ ×

II ( )
∣∣ + ( )

}

where we put for simplicity

( ) =
∑

∈ ×
III ( )

−1− ( ( 1) )
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If = , then we have| ×
II ( )| = 0 and ( 1) ∈ [ (

√− −√− )] for ∈
×
III ( ), namely, for ∈ − ×

0 . Therefore

−1− ( ( 1) ) = λ (
√− )λ− (−√− ) + λ (−√− )λ− (

√− )

which is equal to 2λ (−1) = 2(−1) . Thus ( ) = 2(−1) | ×
0 | = (−1) ( − 1), and

hence −1− (ε[ ]) = (−1) .
If = (1), then we have| ×

II ( (1))| = 1 and ( 1) (1)∈ [ ( 1)] for ∈
×
III ( (1)) = × − {1}. Therefore −1− ( ( 1) (1)) =λ ( ) + λ ( −1) and hence

( (1)) =
∑

∈ ×−{1}

(
λ ( ) + λ

( −1)) = −2λ (1) = −2

Consequently we have −1− (ε[ (1)]) = −1.
If = (1) , then | ×

II ( (1) )| = 1 and ×
III ( (1) ) = {2(1 +ξ) ; ξ ∈ 0(1)} from

Lemma 4.3. Moreover we have

−1− ( (2(1 +ξ) 1) (1) )

= λ
(
(1 + ξ + η)(1 + ξ − η)−1

)
+ λ

(
(1 + ξ + η)−1(1 + ξ − η)

)

But by Lemma 1.3, we can writeξ = 1( ) = 2−1( + −1) and η = 2−1( − −1) where
∈ ×−{±1}, and hence (1+ξ+η)(1+ξ−η)−1 = . Since the map 1 : ×−{±1} →
0(1) is a 2 to 1 surjection, it follows that

( (1) ) =
1
2

∑

∈ ×−{±1}

(
λ ( ) + λ

( −1
))

=
∑

∈ ×−{±1}
λ ( )

which is equal to−(λ (1)+λ (−1)) = −1+(−1) +1. Thus we have −1− (ε[ (1) ]) =
(−1) +1.

Assume = (1) ( ) with 6= 0 1. First we consider the case 1− ∈ ×
0 . From

Lemma 4.3, we know that| ×
II ( (1) ( ))| = 2 and ×

III ( (1) ( )) = {2(1+ξ)− ; ξ ∈
0(1− ) − {2−1( − 2)}}. Moreover

−1− ( (2(1 +ξ) − 1) (1) ( ))

= λ
(
(1 + ξ + η)(1 + ξ − η)−1

)
+ λ

(
(1 + ξ + η)−1(1 + ξ − η)

)

By Lemma 1.3, we can writeξ ∈ 0(1− ) as ξ = 1− ( ) = 2−1( + (1− ) −1) and
η = 2−1( − (1− ) −1) where ∈ ×−{±

√
1− } and hence (1+ξ+η)(1+ξ−η)−1 =

( + 1)( + 1− )−1. Since 1− : × − {±
√

1− } → 0(1− ) is a 2 to 1 surjection
and moreover −1

1− (2−1( − 2)) = {−1 − 1}, it follows that

( (1) ( ))

=
1
2

∑

∈ ×−{±
√

1− −1 −1}

{
λ
(

( + 1)( + 1− )−1
)

+ λ
( −1( + 1)−1( + 1− )

)}



THE CHARACTER TABLE OF H( 2( ) ) 815

If we replace by (1− ) −1, we have −1( + 1)−1( + 1− ) = ( + 1)( + 1− )−1.
This implies that

( (1) ( )) =
∑

∈ ×−{±
√

1− −1 −1}

λ
(

( + 1)( + 1− )−1)

If we notice that ( + 1)( + 1− )−1 = 1 for =±
√

1− , we can deduce that

−1− (ε[ (1) ( )]) = 2 + ( (1) ( ))

=
∑

∈ ×−{−1 −1}
λ
(

( + 1)( + 1− )−1
)

which implies

−1− (ε[ (1) ( )]) =
∑

∈ ×−{1 }
λ
(

( − 1)( − )−1
)

The case 1− ∈ ×
1 is quite similar and the result is the same as in the case 1− ∈

×
0 .

CASE 5. χ = ( −1). Let ∈ S. Since θ ( −1)( ) = 1 ( ∈ ×), it follows
from Table 1 that ( −1) = −1 on [ ]II and ( −1) = 0 on [ ]III . Consequently
from (4.17), we have

( −1)(ε[ ]) = ind( )( − 1)−1
{
−
∣∣ ×

II ( )
∣∣ + ( )

}

where we put for simplicity

( ) =
∑

∈ ×
IV ( )

( −1)( ( 1) )

If = , then | ×
II ( )| = 0 and ( 1) ∈ [κ(η

√
ρ )] for ∈ ×

IV ( ) from
Lemma 4.3 and hence

( −1)( ( 1) ) = −(θ ( −1)(η
√
ρ ) + θ ( −1)(−η

√
ρ ))

Sinceθ ( −1)| × = 1 andθ ( −1)(
√
ρ ) = (−1) , we have

( ) = −2
∑

∈ × − ∈ ×
1

(−1) = −2(−1)
∣∣ ×

1

∣∣ = ( − 1)(−1) +1

and consequently we have ( −1)(ε[ ]) = (−1) +1.
If = (1), then | ×

II ( (1))| = 1 and ×
IV ( (1)) = φ from Lemma 4.3. Therefore

we have ( −1)(ε[ (1)]) = −1.
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Assume = (1) ( ) with 6= 1. Then from Lemma 4.3 ×
IV ( (1) ( )) =

{2(1 +ξ) − ; ξ ∈ 1(1− )} and (2(1 +ξ) − ) (1) ( ) ∈ [κ(1 + ξ + η
√
ρ )] where

η ∈ × such thatη2ρ = ξ2 − (1 − ). Here we use the results of Lemma 1.3. Put
ξ = 1− (ζ) = 2−1(ζ +ζ ) whereζ ∈ ×

1− . Then 1− : ×
1− −{±

√
1− } → 1(1− )

is a 2 to 1 surjection if 1− ∈ ×
0 , while 1− : ×

1− → 1(1− ) is a 2 to 1 sur-
jection if 1− ∈ ×

1 . Moreover we can takeη
√
ρ = 2−1(ζ − ζ ). Therefore we have

1 + ξ + η
√
ρ = 1 +ζ and consequently

( −1)([κ(1 + ξ + η
√
ρ )]) = −(θ ( −1)(1 + ζ) + θ ( −1)(1 + ζ ))

Thus we obtain

( (1) ( )) =





−1
2

∑

ζ∈ ×
1− −{±

√
1− }

{θ ( −1)(1 + ζ) + θ ( −1)(1 + ζ )} (1− ∈ ×
0 )

−1
2

∑

ζ∈ ×
1−

{θ ( −1)(1 + ζ) + θ ( −1)(1 + ζ )} (1− ∈ ×
1 )

If we substitute ζ for ζ in the second term, which does not change×1− −
{±

√
1− } and ×

1− respectively, we have

( (1) ( )) =





−
∑

ζ∈ ×
1− −{±

√
1− }

θ ( −1)(1 + ζ) (1− ∈ ×
0 )

−
∑

ζ∈ ×
1−

θ ( −1)(1 + ζ) (1− ∈ ×
1 )

If = 0, then | ×
II ( (1) )| = 1 and hence

( −1)(ε[ (1) ]) = −1−
∑

ζ∈ ×
1 −{±1}

θ ( −1)(1 + ζ) = −
∑

ζ∈ ×
1 −{−1}

θ ( −1)(1 + ζ)

Using Lemma 1.4, we obtain ( −1)(ε[ (1) ]) = (−1) .
If 6= 0 and 1− ∈ ×

0 , then | ×
II ( (1) ( ))| = 2 and hence

( −1)(ε[ (1) ( )]) = −2−
∑

ζ∈ ×
1− −{±

√
1− }

θ ( −1)(1 + ζ)

Sinceθ ( −1)(±
√

1− ) = 1, we have

( −1)(ε[ (1) ( )]) = −
∑

ζ∈ ×
1−

θ ( −1)(1 + ζ)



THE CHARACTER TABLE OF H( 2( ) ) 817

If 1 − ∈ ×
1 , then | ×

II ( (1) ( ))| = 0 and hence

( −1)(ε[ (1) ( )]) = −
∑

ζ∈ ×
1−

θ ( −1)(1 + ζ)

Thus we have completed the proof of Main Theorem.

EXAMPLE 4.4. The character table ofH( 2( 5) )

0 0 2 1 3 4 8

ε 1 2 1 1 1 1
ε[ ] 1 0 1 −1 1 −1
ε[ (1)] 4 3 −1 −1 −1 −1
ε[ (1)] 4 −1 −1 1 −1 1
ε[ (1) ] 4 −1 −1 1 −1 1

ε[ (1) (1)] 4 3 −1 −1 −1 −1
ε[ (1) (2)] 4 −2 2 2 −1 −3
ε[ (1) (3)] 4 −2 −2 0 4 0
ε[ (1) (4)] 4 −2 2 −2 −1 3

EXAMPLE 4.5. The character table ofH( 2( 7) )

0 0 3 1 5 2 4 6 12 18

ε 1 2 1 1 1 1 1 1
ε[ ] 1 0 −1 −1 1 1 −1 1
ε[ (1)] 6 5 −1 −1 −1 −1 −1 −1
ε[ (1)] 6 −1 1 1 −1 −1 1 −1
ε[ (1) ] 6 −1 1 1 −1 −1 1 −1

ε[ (1) (1)] 6 5 −1 −1 −1 −1 −1 −1
ε[ (1) (2)] 6 −2 0 −3 1 −2

√
2 4 2

√
2

ε[ (1) (3)] 6 −2 −4 2 −2 2 +
√

2 2 2−
√

2
ε[ (1) (4)] 6 −2 0 0 4 −2 + 2

√
2 0 −2− 2

√
2

ε[ (1) (5)] 6 −2 4 −2 −2 2 +
√

2 −2 2−
√

2
ε[ (1) (6)] 6 −2 0 3 1 −2

√
2 −4 2

√
2
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plane, J. Algebra,248 (2002), 724–746.

Michihiko Hashizume
Department of Applied Mathematics
Okayama University of Science
1-1 Ridai-cho, Okayama, 700-0005, Japan
e-mail: hasizume@xmath.ous.ac.jp

Yoshiyuki Mori
Department of Applied Mathematics
Okayama University of Science
1-1 Ridai-cho, Okayama, 700-0005, Japan
e-mail: mori@xmath.ous.ac.jp


