INTERPOLATION ON COUNTABLY MANY ALGEBRAIC SUBSETS FOR WEIGHTED ENTIRE FUNCTIONS

Shigeki OH’UCHI

(Received February 04, 2000)

1. Introduction

Let $X_{\nu}\left(\nu \in \mathbb{N}\right.$, the set of positive integers) be k_{ν}-codimensional complex affine subspaces of $\mathbb{C}^{n}\left(1 \leq k_{\nu} \leq n\right)$. Assume that $X_{\nu} \cap X_{\nu^{\prime}}=\emptyset$ for $\nu \neq \nu^{\prime}$. Let N_{ν} be the orthogonal complement of X_{ν}, where we use the canonical inner product $\langle z, w\rangle=$ $\sum_{l=1}^{n} z_{l} \bar{w}_{l}$ on \mathbb{C}^{n}. Set $S_{\nu}=N_{\nu} \cap S^{2 n-1}$, where $S^{2 n-1}=\left\{u \in \mathbb{C}^{n}:|u|=1\right\}$. Then Oh'uchi [10] proved the following result:

Theorem A. Let $X=\bigcup_{\nu \in \mathbb{N}} X_{\nu}$ be an analytic subset of \mathbb{C}^{n} consisting of disjoint complex affine subspaces X_{ν}. Let p be a weight function on \mathbb{C}^{n}. Then X is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$ if and only if there exist $f_{1}, \ldots, f_{m} \in A_{p}\left(\mathbb{C}^{n}\right)\left(m \geq \sup _{\nu \in \mathbb{N}} k_{\nu}\right)$ and constants $\varepsilon, C>0$ such that

$$
\begin{equation*}
X \subset Z\left(f_{1}, \ldots, f_{m}\right)=\left\{z \in \mathbb{C}^{n}: f_{1}(z)=\cdots=f_{m}(z)=0\right\} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m}\left|D_{u} f_{j}(\zeta)\right| \geq \varepsilon \exp (-C p(\zeta)) \tag{1.2}
\end{equation*}
$$

for all $u \in S_{\nu}, \zeta \in X_{\nu}$ and $\nu \in \mathbb{N}$.
Here the directional derivative $D_{u} f$ with a vector $u=\left(u_{1}, \ldots u_{n}\right) \in S^{2 n-1}$ is defined by

$$
D_{u} f=\sum_{l=1}^{n} \frac{\partial f}{\partial z_{l}} \cdot u_{l} .
$$

Note that by the proof of Theorem A in [10] the above m may be set equal to $\sup _{\nu \in \mathbb{N}} k_{\nu}$ when X is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$. For the terminologies, see $\S 2$. It ex-

[^0]tends the result of Berenstein and Li [2, Theorem 2.5], which deals with the case of $k_{\nu}=n$ for all $\nu \in \mathbb{N}$.

In the present paper, we would like to discuss the case where X_{ν} are algebraic subsets, not necessarily affine linear. Because of the difficulties to deal with in general, we formulate this problem as follows. It is first noted that Theorem A implies the following corollary:

Corollary 1.1. Let $p_{m}\left(z_{1}, \ldots, z_{m}\right)=q(|z|)$ be a radial weight function on \mathbb{C}^{m} and set $p_{n}\left(z_{1}, \ldots, z_{n}\right)=q(|z|)$, which is a radial weight function on $\mathbb{C}^{n}(m<n)$. Let $X=\left\{\zeta_{\nu}\right\}_{\nu \in \mathbb{N}}$ be a discrete variety in \mathbb{C}^{m}. Then $X \times \mathbb{C}^{n-m}$ is interpolating for $A_{p_{n}}\left(\mathbb{C}^{n}\right)$ if and only if X is interpolating for $A_{p_{m}}\left(\mathbb{C}^{m}\right)$.

Corollary 1.1 can be restated as follows: Define a mapping $F=\left(F_{1}, \ldots, F_{m}\right)$: $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ by $F_{j}(z)=z_{j}(j=1, \ldots, m)$. Then $F^{-1}(X)$ is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$ if and only if X is interpolating for $A_{p}\left(\mathbb{C}^{m}\right)$. Conversely, when F is a linear mapping from \mathbb{C}^{n} onto \mathbb{C}^{m} with rank $F=m$, we can reduce the interpolation problem for $F^{-1}(X)$ to that for $X^{\prime} \times \mathbb{C}^{n-m}$, where X^{\prime} is the image of X by some linear mapping determined by F and X. By [2, Theorem 2.5], X^{\prime} is interpolating for $A_{p}\left(\mathbb{C}^{m}\right)$ if and only if X is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$. The main result of this paper is as follows:

Main Theorem. Suppose that $m \leq n$. Let $X=\left\{\zeta_{\nu}\right\}_{\nu \in \mathbb{N}}$ be a discrete variety in \mathbb{C}^{m} and let $F=\left(F_{1}, \ldots, F_{m}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{m}$. Put $d=\max _{j=1, \ldots, m} \operatorname{deg} F_{j}$. For $a>0$, we assume that
(1) X is interpolating for $A_{|\cdot| a}\left(\mathbb{C}^{m}\right)$;
(2) there exist constants $\varepsilon, C>0$ and a finite subset E of \mathbb{N} such that

$$
\sum_{\kappa=1}^{\substack{n \\ m}}\left|\triangle_{\kappa}^{F}(z)\right| \geq \varepsilon \exp \left(-C|z|^{a d}\right)
$$

for all $z \in F^{-1}\left(\zeta_{\nu}\right), \nu \in \mathbb{N} \backslash E$.
Here the sum is taken over all $m \times m$ minors \triangle_{κ}^{F} of Jacobian matrix $J F$. Then $F^{-1}(X)$ is interpolating for $A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$ for every $b \geq a d$.

REMARK. If $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is the standard projection with rank $F=m$ and $p(z)=|z|^{a}$, then the sufficiency part of Corollary 1.1 is deduced from the main theorem, where $d=1$ and $b=a d=a$.

2. Preliminaries

We fix the notation. A plurisubharmonic function $p: \mathbb{C}^{n} \rightarrow[0, \infty)$ is called a weight function if it satisfies

$$
\begin{equation*}
\log \left(1+|z|^{2}\right)=O(p(z)) \tag{2.1}
\end{equation*}
$$

and there exist constants $C_{1}, C_{2}>0$ such that for all z, z^{\prime} with $\left|z-z^{\prime}\right| \leq 1$

$$
\begin{equation*}
p\left(z^{\prime}\right) \leq C_{1} p(z)+C_{2} \tag{2.2}
\end{equation*}
$$

A weight function p is said to be radial if

$$
\begin{equation*}
p(z)=p(|z|) . \tag{2.3}
\end{equation*}
$$

Definition 2.1. Let $\mathcal{O}\left(\mathbb{C}^{n}\right)$ be the ring of all entire functions on \mathbb{C}^{n} and let p be a weight function on \mathbb{C}^{n}. Set

$$
\begin{aligned}
& A_{p}\left(\mathbb{C}^{n}\right)=\left\{f \in \mathcal{O}\left(\mathbb{C}^{n}\right): \text { There exist constants } A, B>0\right. \text { such that } \\
& \left.\qquad|f(z)| \leq A \exp (B p(z)) \text { for all } z \in \mathbb{C}^{n} .\right\} .
\end{aligned}
$$

Then $A_{p}\left(\mathbb{C}^{n}\right)$ is a subring of $\mathcal{O}\left(\mathbb{C}^{n}\right)$. The following lemma is easily deduced from (2.1) and (2.2):

Lemma 2.2. Let p be a weight function on \mathbb{C}^{n}. Then the following hold:
(1) $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] \subset A_{p}\left(\mathbb{C}^{n}\right)$.
(2) If $f \in A_{p}\left(\mathbb{C}^{n}\right)$, then $\partial f / \partial z_{j} \in A_{p}\left(\mathbb{C}^{n}\right)$ for $j=1, \ldots, n$.
(3) $f \in \mathcal{O}\left(\mathbb{C}^{n}\right)$ belongs to $A_{p}\left(\mathbb{C}^{n}\right)$ if and only if there exists a constant $K>0$ such that

$$
\int_{\mathbb{C}^{n}}|f|^{2} \exp (-K p) d \lambda<\infty,
$$

where $d \lambda$ denotes the Lebesgue measure on \mathbb{C}^{n}.
For the proof, see e.g. [8].
Example 2.3. (1) If $p(z)=\log \left(1+|z|^{2}\right)$, then $A_{p}\left(\mathbb{C}^{n}\right)=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
(2) If $p(z)=|z|^{a}(a>0)$, then $A_{p}\left(\mathbb{C}^{n}\right)$ is the space of entire functions which are of order $=a$ and of finite type, or which are of order $<a$.
(3) If $p(z)=|\operatorname{Im} z|+\log \left(1+|z|^{2}\right)$, then $A_{p}\left(\mathbb{C}^{n}\right)=\hat{\mathcal{E}}^{\prime}\left(\mathbb{R}^{n}\right)$, that is, the space of Fourier transforms of distributions with compact support on \mathbb{R}^{n} (see e.g. [7]).
(4) When $p(z)=\exp |z|^{a}(a>0), p$ is a weight function if and only if $a \leq 1$.

In the rest of this paper, p will always represent a weight function.

Definition 2.4. Let X be an analytic subset of \mathbb{C}^{n}, and let $\mathcal{O}(X)$ be the space of analytic functions on X. Then we define

$$
\begin{aligned}
& A_{p}(X)=\{f \in \mathcal{O}(X): \text { There exist constants } A, B>0 \text { such that } \\
& \qquad|f(z)| \leq A \exp (B p(z)) \text { for all } z \in X .\} .
\end{aligned}
$$

Definition 2.5. An analytic subset X of \mathbb{C}^{n} is said to be interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$ if the restriction map $R_{X}: A_{p}\left(\mathbb{C}^{n}\right) \rightarrow A_{p}(X)$ defined by $R_{X}(f)=\left.f\right|_{X}$ is surjective.

The semilocal interpolation theorem by [4] is useful to show an analytic subset to be interpolating. Let X be given by

$$
X=Z\left(f_{1}, \ldots, f_{N}\right)=\left\{z \in \mathbb{C}^{n}: f_{1}(z)=\cdots=f_{N}(z)=0\right\}
$$

with $f_{1}, \ldots, f_{N} \in A_{p}\left(\mathbb{C}^{n}\right)$. Then for $\varepsilon, C>0$, we define

$$
S_{p}(f ; \varepsilon, C)=\left\{z \in \mathbb{C}^{n}:|f(z)|=\left(\sum_{j=1}^{N}\left|f_{j}(z)\right|^{2}\right)^{1 / 2}<\varepsilon \exp (-C p(z))\right\}
$$

which is an open neighborhood of X. We recall the semilocal interpolation theorem of [4].

Semilocal Interpolation Theorem. Let h be a holomorphic function in $S_{p}(f ; \varepsilon, C)$ such that

$$
|h(z)| \leq A_{1} \exp \left(B_{1} p(z)\right)
$$

for all $z \in S_{p}(f ; \varepsilon, C)$, where $\varepsilon, C>0$. Then there exist an entire function $H \in A_{p}\left(\mathbb{C}^{n}\right)$, constants $\varepsilon_{1}, C_{1}, A, B>0$ and holomorphic functions g_{1}, \ldots, g_{N} in $S_{p}\left(f ; \varepsilon_{1}, C_{1}\right)$ such that

$$
H(z)-h(z)=\sum_{j=1}^{N} g_{j}(z) f_{j}(z)
$$

and

$$
\left|g_{j}(z)\right| \leq A \exp (B p(z))
$$

for all $z \in S_{p}\left(f ; \varepsilon_{1}, C_{1}\right)$ and $j=1, \ldots, N$. In particular, $H=h$ on the variety $X=$ $Z\left(f_{1}, \ldots, f_{N}\right)$.

3. $\boldsymbol{A}_{\boldsymbol{p}}$-interpolation on algebraic subsets

To prove the main theorem, we first show the following result:
Theorem 3.1. Every algebraic subset $V \subset \mathbb{C}^{n}$ is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$.
We assume that V is irreducible until we begin the proof of Theorem 3.1 after Lemma 3.17. Then we have the prime ideal $I_{V} \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ such that $V=I_{V}^{-1}(0)=$ $\left\{z \in \mathbb{C}^{n}: P(z)=0\right.$ for all $\left.P \in I_{V}\right\}$. Defining the terminology, we state the normalization theorem.

Normalization Theorem. After a suitable linear change of coordinates, the following conditions hold:
(1) There exists $k \in\{0,1, \ldots, n-1\}$ such that $I_{V} \cap \mathbb{C}\left[z_{1}, \ldots, z_{k}\right]=\{0\}$ and the factor ring $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] / I_{V}$ is a finitely generated $\mathbb{C}\left[z_{1}, \ldots, z_{k}\right]$-module.
Here we set $z^{\prime}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$ and $z^{\prime \prime}=\left(z_{k+1}, \ldots, z_{n}\right) \in \mathbb{C}^{n-k}$.
(2) There exists $C_{0}>0$ such that $\left|z_{k+j}\right| \leq C_{0}\left(1+\left|z^{\prime}\right|\right)$ for all $z \in V$ and $j=1, \ldots, n-$ k.
(3) I_{V} contains irreducible polynomials

$$
Q_{j}\left(z^{\prime}, z_{k+j}\right)=z_{k+j}^{\mu}+q_{j, 1}\left(z^{\prime}\right) z_{k+j}^{\mu-1}+\cdots+q_{j, \mu}\left(z^{\prime}\right)
$$

of degree μ, where $q_{j, \nu} \in \mathbb{C}\left[z_{1}, \ldots, z_{k}\right]$.
Let $\alpha_{1}\left(z^{\prime}\right), \ldots, \alpha_{\mu}\left(z^{\prime}\right)$ be the roots of $Q_{1}\left(z^{\prime}, z_{k+1}\right)$ as a polynomial in z_{k+1}. Then we denote by $\Delta\left(z^{\prime}\right)$ the discriminant of Q_{1} as a polynomial in z_{k+1}, that is,

$$
\Delta\left(z^{\prime}\right)=\prod_{\nu \neq \nu^{\prime}}\left(\alpha_{\nu}\left(z^{\prime}\right)-\alpha_{\nu^{\prime}}\left(z^{\prime}\right)\right) .
$$

(4) We have polynomials $T_{j} \in \mathbb{C}\left[z_{1}, \ldots, z_{k}, z_{k+j}\right](j=2, \ldots, n-k)$ with $\Delta\left(z^{\prime}\right) z_{k+j}-$ $T_{j}\left(z^{\prime}, z_{k+j}\right) \in I_{V}$.
Put $V_{0}=V \backslash \Delta^{-1}(0)$.
(5) V_{0} is an open dense subset of V and a μ-dimensional complex submanifold of $\mathbb{C}^{n} \backslash \Delta^{-1}(0)$.
Let $\pi_{V}: \mathbb{C}^{n} \ni z=\left(z^{\prime}, z^{\prime \prime}\right) \mapsto z^{\prime} \in \mathbb{C}^{k}$ be the projection.
(6) π_{V} is a finite μ-fold covering map from V_{0} onto $\mathbb{C}^{k} \backslash \Delta^{-1}(0)$.

For the proof, see e.g. [6, Theorem A.1.1 in Chapter 3], [9, Proposition 7.7.3].
For $\varepsilon>0, N>0$ and $\xi \in \mathbb{C}^{n}$, we define the polydisc

$$
D_{\varepsilon, N}(\xi)=\left\{z \in \mathbb{C}^{n}:\left|z_{j}-\xi_{j}\right|<\varepsilon(1+|\xi|)^{-N}(\forall j=1, \ldots, n)\right\} .
$$

For the given $f \in A_{p}(V)$, we take $A, B>0$ such that

$$
|f(z)| \leq A \exp (B p(z)), \quad \forall z \in V
$$

Lemma 3.2. We have $\varepsilon, N, A_{1}, B_{1}>0$ satisfying: for all $\xi \in V$ there exists $F \in \mathcal{O}\left(D_{\varepsilon, N}(\xi)\right)$ such that $\Delta f-F=0$ on $V \cap D_{\varepsilon, N}$ and

$$
|F(z)| \leq A_{1} \exp \left(B_{1} p(z)\right), \quad z \in D_{\varepsilon, N}(\xi)
$$

Proof. If $\operatorname{dim} V=k=0, V$ consists of only one point, so the lemma is trivial. Then we assume that $1 \leq k \leq n-1$. To apply the normalization theorem, we give a suitable linear change of coordinates. Set

$$
D_{\varepsilon, N}^{\prime}(\xi)=\left\{z^{\prime} \in \mathbb{C}^{k}:\left|z_{j}-\xi_{j}\right|<\varepsilon(1+|\xi|)^{-N}(\forall j=1, \ldots, k)\right\} .
$$

Here we need the following lemma:
Lemma 3.3. There exists $\varepsilon>0$ such that for all $\xi \in V$ we have $v_{j}(\xi) \in$ $\{1, \ldots, 2 \mu-1\}(j=1, \ldots, n-k)$ satisfying that if

$$
\begin{equation*}
z=\left(z^{\prime}, z^{\prime \prime}\right) \in D_{\varepsilon, 2 \mu-2}^{\prime}(\xi) \times \mathbb{C}^{n-k} \text { and }\left|z_{k+j}-\xi_{k+j}\right|=v_{j}(\xi) \tag{3.1}
\end{equation*}
$$

for some $j=1, \ldots, n-k$, then $z \notin V$.
Proof. It is sufficient to prove that $\left|Q_{1}(z)\right| \geq 1 / 2$ for z satisfying (3.1). Factorizing Q_{1}, we have

$$
Q_{1}\left(\xi_{1}, \ldots, \xi_{k}, z_{k+1}\right)=\left(z_{k+1}-\alpha_{1}\left(\xi^{\prime}\right)\right) \cdots\left(z_{k+1}-\alpha_{\mu}\left(\xi^{\prime}\right)\right) .
$$

Then there exists $v_{1}(\xi) \in\{1, \ldots, 2 \mu-1\}$ such that for $\left|z_{k+1}-\xi_{k+1}\right|=v_{1}(\xi)$ we have $\left|z_{k+1}-\alpha_{1}\left(\xi^{\prime}\right)\right|, \ldots,\left|z_{k+1}-\alpha_{\mu}\left(\xi^{\prime}\right)\right| \geq 1$, and hence $\left|Q_{1}\left(\xi_{1}, \ldots, \xi_{k}, z_{k+1}\right)\right| \geq 1$. In fact, we set $\left\{\left|\alpha_{1}\left(\xi^{\prime}\right)-\xi_{k+1}\right|, \ldots,\left|\alpha_{\mu}\left(\xi^{\prime}\right)-\xi_{k+1}\right|\right\}=\left\{\gamma_{1}, \ldots, \gamma_{\hat{\mu}}\right\}(\hat{\mu} \leq \mu)$ as sets, and we assume that $\gamma_{1}<\gamma_{2}<\cdots<\gamma_{\hat{\mu}}$. Since $Q_{1}(\xi)=0$, we have $\gamma_{1}=0$. Here we would like to find the minimal positive integer $v_{1}(\xi)$ satisfying $\gamma_{\nu} \leq v_{1}(\xi)-1$ and $\gamma_{\nu+1} \geq$ $v_{1}(\xi)+1$ for some ν. For example, if $\gamma_{2} \geq 2$, then we can take $v_{1}(\xi)=1$. In the case where we have such $\nu, v_{1}(\xi)$ is maximal if and only if $\gamma_{2} \in(1,2), \gamma_{3} \in(3,4), \ldots$, $\gamma_{\hat{\mu}-1} \in(2 \hat{\mu}-5,2 \hat{\mu}-4)$ and $\gamma_{\hat{\mu}} \geq 2 \hat{\mu}-2$. In this case, we can take $v_{1}(\xi)=2 \hat{\mu}-3$. If there exists no such ν, that is, $\gamma_{2} \in(1,2), \gamma_{3} \in(3,4), \ldots, \gamma_{\hat{\mu}-1} \in(2 \hat{\mu}-5,2 \hat{\mu}-4)$ and $\gamma_{\hat{\mu}} \in(2 \hat{\mu}-3,2 \hat{\mu}-2)$, then we take $v_{1}(\xi)=2 \hat{\mu}-1$. Hence we can take $v_{1}(\xi) \in$ $\{1, \ldots, 2 \mu-1\}$ satisfying the above condition.

Here we would like to take $\varepsilon \in(0,1)$ so that if $\left|z_{1}-\xi_{1}\right|, \ldots,\left|z_{k}-\xi_{k}\right|<\varepsilon(1+$ $|\xi|)^{-2 \mu+2}$ and $\left|z_{k+1}-\xi_{k+1}\right|=v_{1}(\xi)$, then $\left|Q_{1}\left(z_{1}, \ldots, z_{k}, z_{k+1}\right)-Q_{1}\left(\xi_{1}, \ldots, \xi_{k}, z_{k+1}\right)\right| \leq$ $1 / 2$. Let M be the maximum of moduli of all coefficients in $q_{1,1}, \ldots, q_{1, \mu}$. We can
write

$$
\begin{align*}
\mid Q_{1}\left(z_{1}, \ldots, z_{k}, z_{k+1}\right)- & Q_{1}\left(\xi_{1}, \ldots, \xi_{k}, z_{k+1}\right) \mid \tag{3.2}\\
\leq & M \sum_{|\beta| \leq 1}\left|z_{1}^{\beta_{1}} \cdots z_{k}^{\beta_{k}}-\xi_{1}^{\beta_{1}} \cdots \xi_{k}^{\beta_{k}}\right|\left|z_{k+1}\right|^{\mu-1} \\
& +\cdots+M \sum_{|\beta| \leq \mu}\left|z_{1}^{\beta_{1}} \cdots z_{k}^{\beta_{k}}-\xi_{1}^{\beta_{1}} \cdots \xi_{k}^{\beta_{k}}\right|
\end{align*}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ is a multi-index and $|\beta|=\beta_{1}+\cdots+\beta_{k}$. Here we have the following estimates:
(1) Since $\left|z_{k+1}-\xi_{k+1}\right|=v_{1}(\xi)$,

$$
\left|z_{k+1}\right| \leq\left|\xi_{k+1}\right|+v_{1}(\xi) \leq|\xi|+2 \mu-1 \leq(2 \mu-1)(1+|\xi|)
$$

(2) Since $\left|z_{j}\right|,|\xi|<|\xi|+\varepsilon(1+|\xi|)^{-2 \mu+2} \leq 1+|\xi|$, we obtain

$$
\begin{align*}
& \left|z_{1}^{\beta_{1}} \cdots z_{k}^{\beta_{k}}-\xi_{1}^{\beta_{1}} \cdots \xi_{k}^{\beta_{k}}\right| \tag{3.3}\\
& \quad \leq\left|z_{1}^{\beta_{1}} \cdots z_{k}^{\beta_{k}}-z_{1}^{\beta_{1}} \cdots z_{k-1}^{\beta_{k-1}} z_{k}^{\beta_{k}-1} \xi_{k}\right| \\
& \quad+\cdots+\left|z_{1} \xi_{1}^{\beta_{1}-1} \xi_{2}^{\beta_{2}} \cdots \xi_{k}^{\beta_{k}}-\xi_{1}^{\beta_{1}} \cdots \xi_{k}^{\beta_{k}}\right| \\
& \quad=\left|z_{k}-\xi_{k}\right|\left|z_{1}^{\beta_{1}} \cdots z_{k-1}^{\beta_{k-1}} z_{k}^{\beta_{k}-1}\right|+\cdots+\left|z_{1}-\xi_{1}\right|\left|\xi_{1}^{\beta_{1}-1} \xi_{2}^{\beta_{2}} \cdots \xi_{k}^{\beta_{k}}\right| \\
& \quad \leq|\beta| \varepsilon(1+|\xi|)^{-2 \mu+2}(1+|\xi|)^{|\beta|-1} \\
& \quad \leq \mu \varepsilon(1+|\xi|)^{-\mu+1},
\end{align*}
$$

where the number of terms in (3.3) is $|\beta|$.
(3) The number of terms in $\sum_{|\beta| \leq \nu}\left|z_{1}^{\beta_{1}} \cdots z_{k}^{\beta_{k}}-\xi_{1}^{\beta_{1}} \cdots \xi_{k}^{\beta_{k}}\right|\left|z_{k+1}\right|^{\mu-\nu}$ is bounded from above by

$$
1+k+\cdots+k^{j} \leq 1+k+\cdots+k^{\mu} \leq(\mu+1) k^{\mu}
$$

It follows from (3.2) and these estimates that

$$
\left|Q_{1}\left(z_{1}, \ldots, z_{k}, z_{k+1}\right)-Q_{1}\left(\xi_{1}, \ldots, \xi_{k}, z_{k+1}\right)\right| \leq M \mu^{2}(\mu+1)^{\mu-1} k^{\mu} \varepsilon .
$$

Hence, we set

$$
\varepsilon=\frac{1}{2 M \mu^{2}(\mu+1)^{\mu-1} k^{\mu}}
$$

and then the lemma holds for all $\xi \in V$.

For simplification, we fix $\xi \in V$ and put $D^{\prime}=D_{\varepsilon, 2 \mu-2}^{\prime}(\xi), D^{\prime \prime}=\left\{z^{\prime \prime} \in \mathbb{C}^{n-k}\right.$: $\left|z_{k+j}-\xi_{k+j}\right|<v_{j}(\xi)$ for all $\left.j=1, \ldots, n-k\right\}$ and $D=D^{\prime} \times D^{\prime \prime}$. By Lemma 3.2, $\left.\pi\right|_{D \cap V}$:
$D \cap V \rightarrow D^{\prime}$ is proper. It follows from the normalization theorem that $D^{\prime} \backslash \Delta^{-1}(0)$ is connected and

$$
\left.\pi\right|_{(V \cap D) \backslash \Delta^{-1}(0)}:(V \cap D) \backslash \Delta^{-1}(0) \rightarrow D^{\prime} \backslash \Delta^{-1}(0)
$$

is a $\tilde{\mu}$-fold covering mapping with $1 \leq \tilde{\mu} \leq \mu$. For $z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0)$, by renumbering $\alpha_{1}\left(z^{\prime}\right), \ldots, \alpha_{\mu}\left(z^{\prime}\right)$ we have $\alpha_{1}\left(z^{\prime}\right), \ldots, \alpha_{\tilde{\mu}}\left(z^{\prime}\right) \in\left\{z_{k+1} \in \mathbb{C}:\left|z_{k+1}-\xi_{k+1}\right|<v_{1}(\xi)\right\}$. Since symmetric polynomials of $\alpha_{1}, \ldots, \alpha_{\tilde{\mu}}$ are bounded holomorphic functions in $D^{\prime} \backslash \Delta^{-1}(0)$, it follows from Riemann's Extension Theorem that they extend to holomorphic functions in D^{\prime}. Hence

$$
\Delta^{\prime}\left(z^{\prime}\right)=\prod_{1 \leq j<j^{\prime} \leq \tilde{\mu}}\left(\alpha_{j}\left(z^{\prime}\right)-\alpha_{j^{\prime}}\left(z^{\prime}\right)\right)^{2}
$$

is holomorphic in D^{\prime}.
Let $\pi^{-1}\left(z^{\prime}\right) \cap V \cap D=\left\{\tau_{1}\left(z^{\prime}\right), \ldots, \tau_{\tilde{\mu}}\left(z^{\prime}\right)\right\}$ as sets such that

$$
\left\{\left(\tau_{1}\left(z^{\prime}\right)\right)_{k+1}, \ldots,\left(\tau_{\tilde{\mu}}\left(z^{\prime}\right)\right)_{k+1}\right\}=\left\{\alpha_{1}\left(z^{\prime}\right), \ldots, \alpha_{\tilde{\mu}}\left(z^{\prime}\right)\right\}
$$

for $z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0)$, where $\left(\tau_{j}\left(z^{\prime}\right)\right)_{k+1}(1 \leq j \leq \tilde{\mu})$ denote the $(k+1)$-th coordinate of $\tau_{j}\left(z^{\prime}\right)$. Then there exist $\varphi_{0}\left(z^{\prime}\right), \ldots, \varphi_{\tilde{\mu}-1}\left(z^{\prime}\right) \in \mathbb{C}$ uniquely such that

$$
\begin{equation*}
f\left(\tau_{j}\left(z^{\prime}\right)\right)=\varphi_{0}\left(z^{\prime}\right)+\varphi_{1}\left(z^{\prime}\right) \alpha_{j}\left(z^{\prime}\right)+\cdots+\varphi_{\tilde{\mu}-1}\left(z^{\prime}\right) \alpha_{j}\left(z^{\prime}\right)^{\tilde{\mu}-1} \tag{3.4}
\end{equation*}
$$

for all $j=1, \ldots, \tilde{\mu}$ and $z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0)$. In fact, if we think (3.4) to be a system of linear equations in $\varphi_{0}\left(z^{\prime}\right), \ldots, \varphi_{\tilde{\mu}-1}\left(z^{\prime}\right)$, the determinant $W\left(z^{\prime}\right)$ of its coefficient matrix \mathcal{A} is given by

$$
\begin{aligned}
W\left(z^{\prime}\right) & =\operatorname{det}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\alpha_{1}\left(z^{\prime}\right) & \cdots & \alpha_{\tilde{\mu}}\left(z^{\prime}\right) \\
\vdots & & \vdots \\
\alpha_{1}\left(z^{\prime}\right)^{\tilde{\mu}-1} & \cdots & \alpha_{\tilde{\mu}}\left(z^{\prime}\right)^{\tilde{\mu}-1}
\end{array}\right) \\
& =\prod_{1 \leq j<j^{\prime} \leq \tilde{\mu}}\left(\alpha_{j}\left(z^{\prime}\right)-\alpha_{j^{\prime}}\left(z^{\prime}\right)\right) \neq 0, \quad \forall z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0) .
\end{aligned}
$$

Then $W\left(z^{\prime}\right)^{2}=\Delta^{\prime}\left(z^{\prime}\right)$ and Cramer's rule gives

$$
W\left(z^{\prime}\right) \varphi_{j}\left(z^{\prime}\right)=\sum_{l=1}^{\tilde{\mu}} T_{l, j}\left(z^{\prime}\right) f\left(\tau_{l}\left(z^{\prime}\right)\right)
$$

for all $j=0, \ldots, \tilde{\mu}-1$, where $\left(T_{l, j}\right)_{l=1, \ldots, \tilde{\mu} ; j=0, \ldots, \tilde{\mu}-1}$ is the cofactor matrix of \mathcal{A}. It follows from the normalization theorem (2) that

$$
\begin{equation*}
\left|\alpha_{l}\left(z^{\prime}\right)\right| \leq C_{0}\left(1+\left|z^{\prime}\right|\right) \tag{3.5}
\end{equation*}
$$

for all $z^{\prime} \in D^{\prime}$ and $l=1, \ldots, \tilde{\mu}$. Thus, we have

Lemma 3.4. There exist $C_{3}>0$ and $\omega \in \mathbb{N}$ depending only on Q_{1} such that

$$
\left|\Delta^{\prime}\left(z^{\prime}\right) \varphi_{j}\left(z^{\prime}\right)\right| \leq C_{3} M_{D}(f)\left(1+\left|z^{\prime}\right|\right)^{\omega}
$$

for all $z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0)$ and $j=0, \ldots, \tilde{\mu}-1$, where $M_{D}(f)=\sup \{|f(z)|: z \in V \cap D\}$.
For the other roots $\alpha_{\tilde{\mu}+1}\left(z^{\prime}\right), \ldots, \alpha_{\mu}\left(z^{\prime}\right)$ of Q_{1}, setting

$$
\Delta^{\prime \prime}\left(z^{\prime}\right)=\prod_{\substack{1 \leq j \leq \mu \\ \mu+1 \leq j^{\prime} \leq \mu}}\left(\alpha_{j}\left(z^{\prime}\right)-\alpha_{j^{\prime}}\left(z^{\prime}\right)\right)^{2}
$$

we have $\Delta=\Delta^{\prime} \Delta^{\prime \prime}$. Since (3.5) hold for $l=\tilde{\mu}+1, \ldots, \mu$, we obtain $C_{4}>0$ satisfying

$$
\begin{aligned}
\left|\Delta^{\prime \prime}\left(z^{\prime}\right)\right| & \leq C_{4}\left(1+\left|z^{\prime}\right|\right)^{\mu(\mu-1)-\tilde{\mu}(\tilde{\mu}-1)} \\
& \leq C_{4}\left(1+\left|z^{\prime}\right|\right)^{\mu(\mu-1)} .
\end{aligned}
$$

Hence there exist $C_{5}>0$ and $\omega^{\prime} \in \mathbb{N}$ independent of $\tilde{\mu}$ such that

$$
\left|\Delta\left(z^{\prime}\right) \varphi_{j}\left(z^{\prime}\right)\right| \leq C_{5} M_{D}(f)\left(1+\left|z^{\prime}\right|\right)^{\omega^{\prime}}
$$

for all $z^{\prime} \in D^{\prime} \backslash \Delta^{-1}(0)$. In particular, all $\Delta \varphi_{j}$ are bounded holomorphic functions. By Riemann's extension theorem, they extend to holomorphic functions in D^{\prime}.

Since p is a weight function, we have $A^{\prime}, B^{\prime}>0$ indepedent of ξ satisfying

$$
M_{D}(f) \leq A^{\prime} \exp \left(B^{\prime} p(\xi)\right)
$$

Set

$$
F(z)=\Delta\left(z^{\prime}\right) \varphi_{0}\left(z^{\prime}\right)+\Delta\left(z^{\prime}\right) \varphi_{1}\left(z^{\prime}\right) z_{k+1}+\cdots+\Delta\left(z^{\prime}\right) \varphi_{\tilde{\mu}-1}\left(z^{\prime}\right) z_{k+1}^{\tilde{\mu}-1}
$$

By the definition of weight functions, there exist $A_{1}, B_{1}>0$ independent of ξ such that

$$
\begin{aligned}
|F(z)| & \leq\left|\Delta\left(z^{\prime}\right) \varphi_{0}\left(z^{\prime}\right)\right|+\left.\left|\Delta\left(z^{\prime}\right) \varphi_{1}\left(z^{\prime}\right)\right| z_{k+1}\left|+\cdots+\left|\Delta\left(z^{\prime}\right) \varphi_{\tilde{\mu}-1}\left(z^{\prime}\right)\right|\right| z_{k+1}\right|^{\tilde{\mu}-1} \\
& \leq \tilde{\mu} C_{5} A^{\prime} \exp \left(B^{\prime} p(\xi)\right)(1+|z|)^{\omega^{\prime}+\tilde{\mu}-1} \\
& \leq A_{1} \exp \left(B_{1} p(z)\right)
\end{aligned}
$$

for all $z \in D_{\varepsilon, 2 \mu-2}(\xi)$. Finally, it follows from (3.4) that

$$
\begin{equation*}
F=\Delta f \tag{3.6}
\end{equation*}
$$

in $\left(V \backslash \Delta^{-1}(0)\right) \cap D_{\varepsilon, 2 \mu-2}(\xi)$. Since $V \backslash \Delta^{-1}(0)$ is dense in V, (3.6) holds on $V \cap$ $D_{\varepsilon, 2 \mu-2}(\xi)$. The proof of Lemma 3.2 is completed.

We next solve the Cousin first problem with estimates. We shall use some results from [9].

Lemma 3.5 ([9, Lemma 7.6.1]). Let $d: \mathbb{R}^{2 n} \rightarrow(0,1]$ be a function such that

$$
\begin{equation*}
d(x+y) \leq 2 d(x), \quad \text { if }|y|_{\infty}=\max _{j=1, \ldots, 2 n}\left|y_{j}\right| \leq 1 . \tag{3.7}
\end{equation*}
$$

Then there exist an open covering $\mathcal{U}^{d}=\left\{U_{j}^{d}\right\}_{j \in I(d)}$ of $\mathbb{R}^{2 n}$ with open cubes U_{j}^{d}, a partition of unity $\chi_{j}^{d} \in C_{0}^{\infty}\left(U_{j}^{d}\right)$ and $C_{6}>0$ such that
(1) $|x-y|_{\infty} \leq d(x)$ for all $x, y \in U_{j}^{d}$ and $j \in I(d)$;
(2) $\sharp\left\{j^{\prime} \in I(d): U_{j^{\prime}}^{d} \cap U_{j}^{d} \neq \emptyset\right\} \leq 2^{8 n}$ for all $j \in I(d)$.
(3) $\left|\left(\partial \chi_{j} / \partial x_{\nu}\right)(x)\right| \leq C_{6} /(d(x))$ for all $j \in I(d), \nu=1, \ldots, 2 n$ and $x \in \mathbb{R}^{2 n}$.
(4) Let d^{\prime} be another function satisfying (3.7) and $0<d^{\prime} \leq d$. There exists a refinement $\mathcal{U}^{d^{\prime}}$ of \mathcal{U}^{d} defined by a mapping $\rho_{d, d^{\prime}}: I\left(d^{\prime}\right) \rightarrow I(d)$ with $\rho_{d, d^{\prime \prime}}=\rho_{d, d^{\prime}} \circ \rho_{d^{\prime}, d^{\prime \prime}}$ satisfying (1), (2) and (3). Moreover, if $d^{\prime} \leq \tilde{\varepsilon} d, \tilde{\varepsilon}<1 / 64, j^{\prime} \in I\left(d^{\prime}\right), j=\rho_{d, d^{\prime}}\left(j^{\prime}\right)$ and $x \in U_{j^{\prime}}^{d^{\prime}}$, then

$$
U_{j^{\prime}}^{d^{\prime}} \subset\left\{y \in \mathbb{R}^{2 n}:|y-x|_{\infty}<\tilde{\varepsilon} d(x)\right\}
$$

and

$$
U_{j}^{d} \supset\left\{y \in \mathbb{R}^{2 n}:|y-x|_{\infty}<\left(\frac{1}{64}-\tilde{\varepsilon}\right) d(x)\right\}
$$

For $J=\left(j_{0}, \ldots, j_{\sigma}\right) \in I(d)^{\sigma+1}$ we denote $U_{J}^{d}=U_{j_{0}}^{d} \cap \cdots \cap U_{j_{\sigma}}^{d}$. Let c be a cochain in $C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{O}\right)$ and let φ be a plurisubharmonic function in \mathbb{C}^{n}. Then we write

$$
\|c\|_{\varphi}^{2}=\sum_{J \in I(d)^{\sigma+1}} \int_{U_{J}^{d}}\left|c_{J}\right|^{2} \exp (-\varphi) d \lambda
$$

We also define a coboundary operator $\delta: C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{O}\right) \rightarrow C^{\sigma+1}\left(\mathcal{U}^{d}, \mathcal{O}\right)$ by

$$
(\delta c)_{J \in I(d)^{\sigma+2}}=\sum_{\nu=0}^{\sigma+1}(-1)^{\nu} c_{\left(j_{0}, \ldots, \check{j}_{\nu}, \ldots, j_{\sigma+1}\right)} .
$$

Lemma 3.6 ([9, Proposition 7.6.2]). Let $-\log d$ be a plurisubharmonic function on \mathbb{C}^{n}. For every $c \in C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{O}\right)(\sigma>0)$ with $\delta c=0$ and $\|c\|_{\varphi}<\infty$, we can find a cochain $c^{\prime} \in C^{\sigma-1}\left(\mathcal{U}^{d}, \mathcal{O}\right)$ such that $\delta c^{\prime}=c$ and $\left\|c^{\prime}\right\|_{\psi} \leq K_{1}\|c\|_{\varphi}$, where ψ is a plurisubharmonic function in \mathbb{C}^{n} defined by

$$
\psi(z)=\varphi(z)-\sigma \log d(z)+2 \log \left(1+|z|^{2}\right),
$$

and K_{1} is a constant independent of φ, d and c.
Let

$$
P=\left(\begin{array}{ccc}
P_{1,1} & \cdots & P_{1, T} \\
\vdots & & \vdots \\
P_{\Lambda, 1} & \cdots & P_{\Lambda, T}
\end{array}\right)
$$

be a matrix with polynomial elements. Then P defines the sheaf homomorphism

$$
\begin{equation*}
P: \mathcal{O}^{T} \ni g \mapsto P g \in \mathcal{O}^{\Lambda} \tag{3.8}
\end{equation*}
$$

Lemma 3.7 ([9, Lemma 7.6.3]). The kernel $\operatorname{ker} P$ of the sheaf homomorphism (3.8) is generated by the germs of a finite number of $Q_{s}=\left(Q_{1, s}, \ldots, Q_{T, s}\right) \in$ $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{T}(s=1, \ldots, S)$ satisfying

$$
\sum_{t=1}^{T} P_{\lambda, t} Q_{t, s}=0
$$

for all $\lambda=1, \ldots, \Lambda$ and $s=1, \ldots, S$.
Lemma 3.8 ([9, Lemma 7.6.4]). Let Ω be a pseudoconvex domain and let P and Q be matrixes in Lemma 3.7. Then if $g=\left(g_{1}, \ldots, g_{T}\right) \in \mathcal{O}(\Omega)^{T}$ satisfies

$$
\sum_{t=1}^{T} P_{\lambda, t} g_{t}=0
$$

for all $\lambda=1, \ldots, \Lambda$, there exists $h=\left(h_{1}, \ldots, h_{S}\right) \in \mathcal{O}(\Omega)^{S}$ such that

$$
g_{t}=\sum_{s=1}^{S} Q_{t, s} h_{s}
$$

for all $t=1, \ldots, T$. In particular, $\operatorname{ker} P=\operatorname{Im} Q$ holds.
By putting $\Lambda=1$, Lemmas 3.7 and 3.8 imply that $\mathcal{O}(\Omega)$ is a flat $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ module. This fact will play an important role later.

The following lemma gives estimates of solutions of the equation $P v=u$ for $u \in$ $\operatorname{Im} P$:

Lemma 3.9 ([9, Lemma 7.6.5]). Let Ω be a neighborhood of $0 \in \mathbb{C}^{n}$. Then we have a neighborhood Ω^{\prime} of $0 \in \mathbb{C}^{n}$ and constants C_{7}, N_{1} satisfying that for all $\eta \in$ $(0,1), z \in \mathbb{C}^{n}$ and $u \in \mathcal{O}(\eta \Omega+\{z\})^{T}$, there exists $v \in \mathcal{O}\left(\eta \Omega^{\prime}+\{z\}\right)^{T}$ such that $P v=P u$
and

$$
\sup _{\eta \Omega^{\prime}+\{z\}}|v| \leq C_{7}(1+|z|)^{N_{1}} \eta^{-N_{1}} \sup _{\eta \Omega+\{z\}}|P u| .
$$

Here $\eta \Omega+\{z\}=\{\eta w+z: w \in \Omega\}$.

We now prove a lemma important to solve the Cousin first problem with estimates. Let $P: \mathcal{O}^{T} \rightarrow \mathcal{O}^{\Lambda}$ be the sheaf homomorphism as above. Then $\mathcal{M}_{P}=\operatorname{Im} P$ is a subsheaf of \mathcal{O}^{Λ} generated by $\left(P_{1, t}, \ldots, P_{\Lambda, t}\right)$ for $t=1, \ldots, T$. We denote by $C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{M}_{P}, p\right)$ the set of cochains $c=\left\{c_{J}\right\}_{J \in I(d)^{\sigma+1}} \in C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{M}_{P}\right)$ satisfying

$$
\|c\|_{p}^{2}=\sum_{J \in I(d)^{\sigma+1}} \int_{U_{J}^{d}}\left|c_{J}\right|^{2} \exp (-p) d \lambda<\infty
$$

Lemma 3.10 (cf. [9, Lemma 7.6.10]). We assume that $-\log d$ is a plurisubharmonic function. Then we have $N_{2}, K_{2}>0$ and $\varepsilon_{0}<1 / 192$ satisfying that for all $c \in C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{M}_{P}, p\right)(\sigma>0)$ with $\delta c=0$, there exists $c^{\prime} \in C^{\sigma-1}\left(\mathcal{U}^{\varepsilon_{0} d}, \mathcal{M}_{P}, p_{N_{2}}\right)$ such that $\delta c^{\prime}=\rho_{d, \varepsilon_{0} d}{ }^{*} c$ and

$$
\left\|c^{\prime}\right\|_{p_{N_{2}}} \leq K_{2}\|c\|_{p}
$$

where $p_{N_{2}}(z)=N_{2}\left(p(z)-\log d(z)+\log \left(1+|z|^{2}\right)\right)$.

Proof. Applying Lemma 3.9 for $\Omega:=\left\{z \in \mathbb{C}^{n}:|z|_{\infty}<1\right\}$, we have $r \in(0,1)$ and constants C_{7}, N_{1} satisfying for all $\eta \in(0,1), \xi \in \mathbb{C} n$ and $u \in \mathcal{O}(\eta \Omega+\{\xi\})^{T}$, there exists $v \in \mathcal{O}\left(\eta \Omega^{\prime}+\{\xi\}\right)^{T}$ such that $P v=P u$ and

$$
\begin{equation*}
\sup _{\eta \Omega^{\prime}+\{\xi\}}|v| \leq C_{7}(1+|\xi|)^{N_{1}} \eta^{-N_{1}} \sup _{\eta \Omega+\{\xi\}}|P u| \tag{3.9}
\end{equation*}
$$

where $\Omega^{\prime}=\left\{z \in \mathbb{C}^{n}:|z|_{\infty}<r\right\}$. For $\tilde{\varepsilon}<1 / 128$, it follows from Lemma 3.5 (4) that if $j^{\prime} \in I(\tilde{\varepsilon} d), j=\rho_{d, \tilde{\varepsilon} d}\left(j^{\prime}\right)$ and $\xi \in U_{j^{\prime}}^{\tilde{\varepsilon} d}$, then

$$
\begin{equation*}
U_{j^{\prime}}^{\tilde{\varepsilon} d} \subset \tilde{\varepsilon} d(\xi) \Omega+\{\xi\} \subset\left(\frac{1}{64}-\tilde{\varepsilon}\right) \Omega+\{\xi\} \subset U_{j}^{d} \tag{3.10}
\end{equation*}
$$

Here defining $\tilde{\varepsilon}:=r /(128(2+r))(\leq 1 / 384)$ and $\eta:=(1 / 128-\tilde{\varepsilon} / 2) d(\xi)$, we have $\tilde{\varepsilon} d(\xi)<r \eta$, hence (3.10) implies that

$$
\begin{equation*}
U_{j^{\prime}}^{\tilde{\varepsilon} d} \subset r \eta \Omega+\{\xi\}=\eta \Omega^{\prime}+\{\xi\} \tag{3.11}
\end{equation*}
$$

On the other hand, we have $\eta<(1 / 96) d(\xi)<((1 / 64)-\tilde{\varepsilon}) d(\xi)$, that is,

$$
\begin{equation*}
\eta \Omega+\{\xi\} \subset \subset \frac{1}{96} d(\xi) \Omega \subset\left(\frac{1}{64}-\tilde{\varepsilon}\right) d(\xi) \Omega \subset U_{j}^{d} \tag{3.12}
\end{equation*}
$$

Then for $J^{\prime}=\left(j_{0}^{\prime}, \ldots, j_{\sigma}^{\prime}\right) \in I(\tilde{\varepsilon} d)^{\sigma+1} J=\rho_{d, \tilde{\varepsilon} d}\left(J^{\prime}\right):=\left(\rho_{d, \tilde{\varepsilon} d}\left(j_{0}^{\prime}\right), \ldots, \rho_{d, \tilde{\varepsilon} d}\left(j_{\sigma}^{\prime}\right)\right)$ and $\xi \in U_{J^{\prime}}^{\tilde{\varepsilon} d}$, we obtain from (3.11) and (3.12)

$$
\begin{equation*}
U_{J^{\prime}}^{\tilde{\varepsilon} d} \subset \eta \Omega^{\prime}+\{\xi\} \subset \eta \Omega+\{\xi\} \subset \subset \frac{1}{96} d(\xi) \Omega+\{\xi\} \subset U_{J}^{d} . \tag{3.13}
\end{equation*}
$$

Hence it follows from (3.9) that for all $u \in \mathcal{O}\left(U_{J}^{d}\right)^{T}\left(\subset \mathcal{O}(\eta \Omega+\{\xi\})^{T}\right)$ there exists $v \in \mathcal{O}\left(\eta \Omega^{\prime}+\{\xi\}\right)^{T}$ such that $P v=P u$ and

$$
\begin{equation*}
\sup _{U_{J^{\prime}}^{\tilde{\varepsilon} d}}|v| \leq C_{7}(1+|\xi|)^{N_{1}} \eta^{-N_{1}} \sup _{\eta \Omega+\{\xi\}}|P u| \tag{3.14}
\end{equation*}
$$

By [9, Theorem 2.2.3], (3.12) implies that there exists $C_{8}>0$ independent of ξ such that

$$
\sup _{\eta \Omega+\{\xi\}}|g| \leq C_{8}\|g\|_{L^{1}((1 / 96) d(\xi) \Omega+\{\xi\})}
$$

for all $g \in \mathcal{O}\left(U_{J}^{d}\right)$. It follows from Schwarz's inequality that

$$
\begin{aligned}
\sup _{\eta \Omega+\{\xi\}}|P u| & \leq C_{8}\left(\left\|(P u)_{1}\right\|_{L^{1}((1 / 96) d(\xi) \Omega+\{\xi\})}+\cdots+\left\|(P u)_{\Lambda}\right\|_{L^{1}((1 / 96) d(\xi) \Omega+\{\xi\})}\right) \\
& \leq \Lambda C_{8}\left(\int_{(1 / 96) d(\xi) \Omega+\{\xi\}}|P u|^{2} d \lambda\right)^{1 / 2} \leq \Lambda C_{8}\left(\int_{U_{J}^{d}}|P u|^{2} d \lambda\right)^{1 / 2}
\end{aligned}
$$

Since p is a weight, by Lemma 3.5 (1) there exist $C_{1}^{\prime}, C_{2}^{\prime}>0$ independent of d and J such that $p\left(z^{\prime}\right) \leq C_{1}^{\prime} p(z)+C_{2}^{\prime}$ for $z, z^{\prime} \in U_{J}^{d}$. Then we obtain

$$
\exp \left(-C_{1}^{\prime} p(\xi)\right) \int_{U_{J}^{d}}|P u(z)|^{2} d \lambda(z) \leq e^{C_{2}^{\prime}} \int_{U_{J}^{d}}|P u(z)|^{2} \exp (-p(z)) d \lambda(z)
$$

Hence it follows from (3.7) that

$$
|v(\xi)|^{2}\left(1+|\xi|^{2}\right)^{-2 N_{1}} d(\xi)^{2 N_{1}} \exp \left(-C_{1}^{\prime} p(\xi)\right) \leq C_{9} \int_{U_{J}^{d}}|P u(z)|^{2} \exp (-p(z)) d \lambda(z)
$$

where $C_{9}=\Lambda C_{7} C_{8} 2^{2 N_{1}}(1 / 128-\tilde{\varepsilon} / 2)^{-2 N_{1}} e^{C_{2}^{\prime}}$. Therefore putting $N_{2}^{\prime}=\max \left\{N_{1}, C_{1}^{\prime}\right\}$, we obtain

$$
\begin{equation*}
\int_{U_{J^{\prime}}^{\tilde{\varepsilon}}}|v(\xi)|^{2} \exp \left(-p_{N_{2}^{\prime}}(\xi)\right) d \lambda(\xi) \leq C_{9} \int_{U_{J}^{d}}|P u(z)|^{2} \exp (-p(z)) d \lambda(z) \tag{3.15}
\end{equation*}
$$

We prove this lemma by induction for decreasing σ. Note that it is valid when $\sigma=2^{8 n}+1$, since $C^{\sigma}(\mathcal{U}, \cdot)=\{0\}$ by Lemma 3.5 (2). We assume that it have been proved for all P when σ is replaced by $\sigma+1$. By [9, Lemma 7.2.9], there exists $\gamma \in$
$C^{\sigma}\left(\mathcal{U}^{d}, \mathcal{O}^{T}\right)$ such that $c_{J}=P \gamma_{J}$ for all $J \in I(d)^{\sigma+1}$. To obtain contorol of γ_{J} we pass to the refinement $\mathcal{U}^{\tilde{E} d}$ for which (3.15) is applicable. Then we can choose $\gamma_{J^{\prime}}^{\prime} \in$ $\mathcal{O}\left(U_{J^{\prime}}^{\tilde{\epsilon} d}\right)^{T}\left(J^{\prime} \in I(\tilde{\varepsilon} d)^{\sigma+1}\right)$ so that with $J=\rho_{d, \tilde{\varepsilon} d} J^{\prime}$ we have

$$
\begin{equation*}
P \gamma_{J^{\prime}}^{\prime}=P \gamma_{J}=c_{J} \tag{3.16}
\end{equation*}
$$

in $U_{J^{\prime}}^{\tilde{E} d}$ and

$$
\int_{U_{J^{\prime}}^{E d}}\left|\gamma_{J^{\prime}}^{\prime}\right|^{2} \exp \left(-p_{N_{2}^{\prime}}\right) d \lambda \leq C_{9} \int_{U_{J}^{d}}\left|c_{J}\right|^{2} \exp (-p) d \lambda
$$

Here we need to culculate $\sharp \rho_{d, \tilde{e} d}^{-1}(J)$ to give the estimate of $\left\|\gamma^{\prime}\right\|_{p_{N_{2}^{\prime}}}$. For the refinement $\mathcal{U}^{\tilde{\varepsilon}^{2} d}$ of $\mathcal{U}^{\tilde{\varepsilon} d}$, it follows from Lemma 3.5 (4) that

$$
U_{J^{\prime}}^{\tilde{\varepsilon} d} \supset\left\{z \in \mathbb{C}^{n}:|z-\xi|_{\infty}<\tilde{\varepsilon}\left(\frac{1}{64}-\tilde{\varepsilon}\right) d(\xi)\right\}
$$

for $\xi \in U_{J^{\prime \prime}}^{\tilde{\varepsilon}^{2} d}$ and $J^{\prime}=\rho_{\tilde{\varepsilon} d, \tilde{\varepsilon}^{2} d}\left(J^{\prime \prime}\right)$. On the other hand, we know

$$
U_{J}^{d} \subset\left\{z \in \mathbb{C}^{n}:|z-\xi|_{\infty}<d(\xi)\right\}
$$

Hence it follows from Lemma 3.5 (2) that

$$
\sharp \rho_{d, \tilde{\varepsilon} d}^{-1}(J) \leq 2^{8 n}\left(\frac{\tilde{\varepsilon}}{32}-2 \tilde{\varepsilon}^{2}\right)^{-2 n}=: C_{10} .
$$

Thus we obtain

$$
\begin{align*}
\left\|\gamma^{\prime}\right\|_{p_{N_{2}^{\prime}}}^{2} & =\sum_{J^{\prime} \in I(\tilde{\varepsilon} d)^{\sigma+1}} \int_{U_{J^{\prime}}^{\xi}}\left|\gamma_{J^{\prime}}^{\prime}\right|^{2} \exp \left(-p_{N_{2}^{\prime}}\right) d \lambda \tag{3.17}\\
& \leq C_{10} \sum_{J \in I(d)^{\sigma+1}} C_{9} \int_{U_{J}^{d}}\left|c_{J}\right|^{2} \exp (-p) d \lambda \\
& =C_{10} C_{9}\|c\|_{p}^{2}
\end{align*}
$$

It also follows from (3.16) that $P \gamma^{\prime}=\rho_{d, \tilde{\varepsilon} d}{ }^{*} c$. Since $\delta c=0$ and P is defined globally, we have $P \delta \gamma^{\prime}=\delta P \gamma^{\prime}=0$. Thus $\delta \gamma^{\prime}=\gamma^{\prime \prime}$ belongs to $C^{\sigma+1}\left(\mathcal{U}^{\tilde{\varepsilon} d}, \operatorname{ker} P, p_{N_{2}^{\prime}}\right)$, and $\delta \gamma^{\prime \prime}=0$. If we choose a $T \times S$ matrix Q as in Lemma 3.8, it follows that $\operatorname{ker} P=\operatorname{Im} Q=\mathcal{M}_{Q}$, so the inductive hypothesis can be applied. It shows that we can find $\hat{\epsilon}<\tilde{\epsilon}, N_{2}^{\prime \prime}>N_{2}^{\prime}$ and $K_{2}^{\prime}>0$ such that for some $\gamma^{\prime \prime \prime} \in C^{\sigma}\left(\mathcal{U}^{\hat{d} d}, \operatorname{ker} P, p_{N_{2}^{\prime \prime}}\right)$ we have $\left\|\gamma^{\prime \prime \prime}\right\|_{p_{N_{2}^{\prime \prime}}} \leq K_{2}^{\prime}\left\|\gamma^{\prime \prime}\right\|_{p_{N_{2}^{\prime}}}$ and $\delta \gamma^{\prime \prime \prime}=\rho_{\tilde{\varepsilon} d, \hat{\varepsilon} d}{ }^{*} \gamma^{\prime \prime}$.
 and for some C_{11} independent of c we have $\|\tilde{\gamma}\|_{p_{N_{2}^{\prime \prime}}} \leq C_{11}\|c\|_{p}$ by the same method
that we have proved (3.17). Hence Lemma 3.6 shows that for some $N_{2}^{\prime \prime \prime}>0$ we can find $\hat{\gamma} \in C^{\sigma-1}\left(\mathcal{U}^{\hat{\varepsilon} d}, \mathcal{O}^{T}\right)$ so that $\tilde{\gamma}=\delta \hat{\gamma}$ and $\|\hat{\gamma}\|_{p_{N_{2}^{\prime \prime}}} \leq K_{1}\|\tilde{\gamma}\|_{p_{N_{2}^{\prime \prime}}} \leq K_{1} C_{11}\|c\|_{p}$. If we set $c^{\prime}=P \hat{\gamma}$, it follows that

$$
\delta c^{\prime}=P \delta \hat{\gamma}=P \tilde{\gamma}=P \rho_{\tilde{\varepsilon} d, \hat{\varepsilon} d}{ }^{*} \gamma^{\prime}-P \gamma^{\prime \prime \prime}=\rho_{\tilde{\varepsilon} d, \hat{\varepsilon} d}{ }^{*} P \gamma^{\prime}=\rho_{\tilde{\varepsilon} d, \hat{\varepsilon} d}{ }^{*} \rho_{d, \tilde{\varepsilon} d}{ }^{*} c=\rho_{d, \hat{\varepsilon} d}{ }^{*} c .
$$

Finally, it is clear that there exists $N_{2}, K_{2}>0$ such that $\left\|c^{\prime}\right\|_{p_{N_{2}}} \leq K_{2}\|c\|_{p}$, because it is sufficient to consider the estimate about P. The proof of the lemma is finished.

We shall apply Lemma 3.10 to the following settings. Put

$$
d_{V}(z)=\frac{\varepsilon}{2 \sqrt{2}}(2 \sqrt{2 n}(2 \mu-2)+|z|)^{2-2 \mu}
$$

where ε and μ are decided before.
Lemma 3.11. d_{V} has the following properties:
(1) If $w \in \mathbb{C}^{n}$ and $|w|_{\infty} \leq 1$, then we have $d_{V}(z+w) \leq 2 d_{V}(z)$ for all $z \in \mathbb{C}^{n}$. Hence there exists an open covering $\mathcal{U}^{d_{V}}=\left\{U_{j}^{d_{V}}\right\}_{j \in I\left(d_{V}\right)}$ satisfying Lemma 3.5.
(2) $-\log d_{V}(z)$ is a plurisubharmonic function.
(3) If $U_{j}^{d_{V}} \in \mathcal{U}^{d_{V}}$ and $U_{j}^{d_{V}} \cap V \neq \emptyset$, then $U_{j}^{d_{V}} \subset D_{\varepsilon, 2 \mu-2}(\xi)$ holds for every $\xi \in$ $U_{j}^{d_{V}} \cap V$.

Proof. The lemma is clear when $\mu=1$, so we assume that $\mu \geq 2$.
(1) If $w \in \mathbb{C}^{n}$ and $|w|_{\infty} \leq 1$, then $|z| \leq|z+w|+|w| \leq|z+w|+\sqrt{2 n}$. Hence we have

$$
\begin{aligned}
d_{V}(z) & =\frac{\varepsilon}{2 \sqrt{2}}(2 \sqrt{2 n}(2 \mu-2))^{2-2 \mu}\left(1+\frac{|z|}{2 \sqrt{2 n}(2 \mu-2)}\right)^{2-2 \mu} \\
& \geq \frac{\varepsilon}{2 \sqrt{2}}(2 \sqrt{2 n}(2 \mu-2))^{2-2 \mu}\left(1+\frac{|z+w|}{2 \sqrt{2 n}(2 \mu-2)}+\frac{1}{2(2 \mu-2)}\right)^{2-2 \mu} \\
& \geq \frac{\varepsilon}{2 \sqrt{2}}(2 \sqrt{2 n}(2 \mu-2))^{2-2 \mu}\left(1+\frac{|z+w|}{2 \sqrt{2 n}(2 \mu-2)}\right)^{2-2 \mu}\left(1+\frac{1}{2(2 \mu-2)}\right)^{2-2 \mu} \\
& \geq \frac{1}{2} \cdot \frac{\varepsilon}{2 \sqrt{2}}(2 \sqrt{2 n}(2 \mu-2))^{2-2 \mu}\left(1+\frac{|z+w|}{2 \sqrt{2 n}(2 \mu-2)}\right)^{2-2 \mu} \\
& \geq \frac{1}{2} d_{V}(z+w)
\end{aligned}
$$

since $(1+1 / 2 \nu)^{-\nu} \searrow \exp (-1 / 2)>1 / 2$ as $\nu \rightarrow \infty$.
(2) is clear.
(3) Fix $\xi \in U_{j}^{d_{V}} \cap V$. It follows from Lemma 3.5 (1) that $|z-\xi|_{\infty} \leq d_{V}(\xi)$ for all
$z \in U_{j}^{d_{V}}$. Hence we obtain

$$
\left|z_{j}-\xi_{j}\right| \leq \frac{\varepsilon(2 \sqrt{2 n}(2 \mu-2)+|\xi|)^{2-2 \mu}}{2}<\varepsilon(1+|\xi|)^{2-2 \mu}
$$

for all $j=1, \ldots, n$, so $z \in D_{\varepsilon, 2 \mu-2}(\xi)$.
Since the polynomial ring $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is Noetherian, the prime ideal I_{V} is finitely generated by $P_{1}, \ldots, P_{T} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. Let $P=\left(P_{1}, \ldots, P_{T}\right)$ be a $1 \times T$ matrix.

Lemma 3.12. There exists $\tilde{F} \in A_{p}\left(\mathbb{C}^{n}\right)$ such that $\left.\tilde{F}\right|_{V} \equiv \Delta f$.
Proof. It follows from Lemma 3.2 and Lemma 3.11 (3) that if $U_{j}^{d_{V}} \in \mathcal{U}^{d_{V}}$ and $U_{j}^{d_{V}} \cap V \neq \emptyset$, then there exist $\xi \in V$ and $F^{j} \in \mathcal{O}\left(D_{\varepsilon, 2 \mu-2}(\xi)\right)$ such that $\Delta f-F^{j}=0$ on $V \cap D_{\varepsilon, 2 \mu-2}(\xi)$ and

$$
\begin{equation*}
\left|F^{j}(z)\right| \leq A_{1} \exp \left(B_{1} p(z)\right) \tag{3.18}
\end{equation*}
$$

for every $z \in D_{\varepsilon, 2 \mu-2}(\xi)$. We also put $F^{j}=0$, when $U_{j}^{d_{V}} \cap V=\emptyset$. We would like to apply Lemma 3.10 for $\sigma=1$. Defining $c \in C^{1}\left(\mathcal{U}^{d_{V}}, \mathcal{O}\right)$ by $c_{\left(j_{0}, j_{1}\right)}=F^{j_{0}}-F^{j_{1}}$, we have $F^{j_{0}}-F^{j_{1}}=\Delta f-\Delta f=0$ on $V \cap U_{j_{0}}^{d_{V}} \cap U_{j_{1}}^{d_{V}}$. It follows from (3.18) and Lemma 3.5 (2) that there exists $C_{12}>0$ such that $\|c\|_{C_{12} p}<\infty$. On the other hand, it is clear that $\delta c=0$, that is, $c \in C^{1}\left(\mathcal{U}^{d_{v}}, \mathcal{M}_{P}, C_{12} p\right)$. Hence Lemma 3.10 gives $\varepsilon_{0}<1 / 384$, $N_{2}, K_{2}>0$ and $c^{\prime} \in C^{0}\left(\mathcal{U}^{\varepsilon_{0} d_{v}}, \mathcal{M}_{P}, p_{N_{2}}\right)$ so that $\delta c^{\prime}=\rho_{d_{v}, \varepsilon_{0} d_{v}}{ }^{*} c$ and $\left\|c^{\prime}\right\|_{p_{N_{2}}} \leq$ $K_{2}\|c\|_{C_{12} p}$. It follows from the definition of weight functions that there exists $N_{3}>$ 0 such that $\left\|c^{\prime}\right\|_{N_{3} p} \leq K_{2}\|c\|_{C_{12} p}$. Here we put $\tilde{F}=F^{j}+c_{j^{\prime}}^{\prime}$ in $U_{j^{\prime}}^{\varepsilon_{0} d_{V}}$, where $j=$ $\rho_{d_{V}, \varepsilon_{0} d_{V}}\left(j^{\prime}\right)$. Then \tilde{F} belongs to $\mathcal{O}\left(\mathbb{C}^{n}\right)$ and Lemma 2.2 (3) gives $\tilde{F} \in A_{p}\left(\mathbb{C}^{n}\right)$.

Here we make $\hat{F} \in A_{p}\left(\mathbb{C}^{n}\right)$ with the required properties from $\tilde{F} \in A_{p}\left(\mathbb{C}^{n}\right)$ made in Lemma 3.12. We shall use some result in the ring thoery. For an ideal $I \subset$ $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, we set $\tilde{I}=\mathcal{O}\left(\mathbb{C}^{n}\right) \otimes_{\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]} I=\mathcal{O}\left(\mathbb{C}^{n}\right) I$.

Lemma 3.13 (cf. [6, Lemma 3.5 in Chapter 8]). For two ideals I_{1} and I_{2} in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right],\left(\widetilde{I_{1} \cap I_{2}}\right)=\tilde{I}_{1} \cap \tilde{I}_{2}$.

For $R \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, set $(I: R)=\left\{g \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]: R g \in I\right\}$ and $(\tilde{I}: R)=$ $\left\{\tilde{g} \in \mathcal{O}\left(\mathbb{C}^{n}\right): R \tilde{g} \in \tilde{I}\right\}$.

Lemma 3.14 (cf. [6, Lemma 3.6 in Chapter 9]). For an ideal $I \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, $(\tilde{I}: R)=\widetilde{(I: R)}$.

Note that Lemmas 3.13 and 3.14 follow from the flatness of $\mathcal{O}\left(\mathbb{C}^{n}\right)$.
Lemma 3.15 (cf. [6, Lemma 3.13 in Chapter 8]). Let $I \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be a primary ideal. Set $V_{I}=\left\{z \in \mathbb{C}^{n}: P(z)=0\right.$ for all $\left.P \in I\right\}$. Then we have $(I: R)=I$, if $\left.R\right|_{V_{I}} \not \equiv 0$.

Proof. Since it is obvious that $I \subset(I: R)$, we have only to prove that $I \supset(I$: $R)$. For $P \in(I: R)$, it follows $R P \in I$. Assuming that $P \notin I$, we have $R^{\nu} \in I$ for some $\nu \in \mathbb{N}$, since I is a primary ideal. Hence it follows that $\left.R\right|_{V_{I}} \equiv 0$, which is a contradiction.

Here we can prove the following lemma by an argument similar to the proof of Lemma 3.12:

Lemma 3.16 (cf. [9, Theorem 7.6.11]). Let $I \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be an ideal generated by Q_{1}, \ldots, Q_{T}. If $g \in \tilde{I} \cap A_{p}\left(\mathbb{C}^{n}\right)$, then there exist $a_{1}, \ldots, a_{T} \in A_{p}\left(\mathbb{C}^{n}\right)$ such that

$$
g=a_{1} Q_{1}+\cdots+a_{T} Q_{T}
$$

[9, Theorem 7.4.8] also implies that there exists $\tilde{f} \in \mathcal{O}\left(\mathbb{C}^{n}\right)$ with no growth conditions such that $\left.\tilde{f}\right|_{V} \equiv f$.

Lemma 3.17. We have $\hat{F} \in A_{p}\left(\mathbb{C}^{n}\right)$ satisfying that $\hat{F}-\tilde{f} \in \tilde{I}_{V}$, that is, $\left.\hat{F}\right|_{V} \equiv f$.
Proof. Let $J \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be the ideal generated by P_{1}, \ldots, P_{T} and Δ. By Lemma 3.12, it follows that $\tilde{F}-\Delta \tilde{f} \in \tilde{I}_{V}$, that is, $\tilde{F} \in \tilde{J}$. Applying Lemma 3.16 to J, we have $a_{1}, \ldots, a_{T}, b \in A_{p}\left(\mathbb{C}^{n}\right)$ satisfying that

$$
\tilde{F}=a_{1} P_{1}+\cdots+a_{T} P_{T}+b \Delta .
$$

Here if we set $\hat{F}=b$, then $\Delta \hat{F}-\Delta \tilde{f}=\Delta(\hat{F}-\tilde{f}) \in \tilde{I}_{V}$. Hence it follows from Lemmas 3.14 and 3.15 that

$$
\hat{F}-\tilde{f} \in\left(\tilde{I}_{V}: \Delta\right)=\left(\widetilde{I_{V}: \Delta}\right)=\tilde{I}_{V}
$$

so that $\left.\hat{F}\right|_{V} \equiv f$.
Proof of Theorem 3.1. Let $V \subset \mathbb{C}^{n}$ be an algebraic subset. Then there exist a finite number of irreducible algebraic varieties V_{1}, \ldots, V_{S} such that $V=V_{1} \cup \cdots \cup$ V_{S}. We shall prove Theorem 3.1 by induction on S. When $S=1$, we have already proved in Lemma 3.17. Here we can assume that $S=2$, since the proofs for $S \geq$ 3 are the same as for $S=2$. Then we have $V=V_{1} \cup V_{2}$ and $I_{V}=I_{V_{1}} \cap I_{V_{2}}$. For
$f \in A_{p}(V)$, it follows from [9, Theorem 7.4.8] that there exists $\tilde{f} \in \mathcal{O}\left(\mathbb{C}^{n}\right)$ with no growth conditions such that $\left.\tilde{f}\right|_{V} \equiv f$. Since the theorem is valid for V_{1} (resp. V_{2}), we have $\hat{F}_{1} \in A_{p}\left(\mathbb{C}^{n}\right)$ (resp. $\hat{F}_{2} \in A_{p}\left(\mathbb{C}^{n}\right)$) such that $\left.\hat{F}_{1}\right|_{V_{1}} \equiv f$ (resp. $\left.\hat{F}_{2}\right|_{V_{2}} \equiv f$). Let $P_{1}, \ldots, P_{T_{1}}$ (resp. $Q_{1}, \ldots, Q_{T_{2}}$) generate $I_{V_{1}}$ (resp. $I_{V_{2}}$). If $J \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is the ideal generated by $P_{1}, \ldots, P_{T_{1}}, Q_{1}, \ldots, Q_{T_{2}}$, we have $I_{V_{1}} \cap I_{V_{2}} \subset J$. Since $\hat{F}_{1}-\tilde{f} \in \tilde{I}_{V_{1}}$ and $\hat{F}_{2}-\tilde{f} \in \tilde{I}_{V_{2}}$, it follows that

$$
\hat{F}_{1}-\hat{F}_{2}=\left(\hat{F}_{1}-\tilde{f}\right)-\left(\hat{F}_{2}-\tilde{f}\right) \in \tilde{I}_{V_{1}}-\tilde{I}_{V_{2}} \subset \tilde{J} .
$$

Applying Lemma 3.16 to J, we have $a_{1}, \ldots, a_{T_{1}}, b_{1}, \ldots, b_{T_{2}} \in A_{p}\left(\mathbb{C}^{n}\right)$ satisfying

$$
\hat{F}_{1}-\hat{F}_{2}=a_{1} P_{1}+\cdots+a_{T_{1}} P_{T_{1}}+b_{1} Q_{1}+\cdots+b_{T_{2}} Q_{T_{2}}
$$

Here we set

$$
\hat{F}=\hat{F}_{1}-\left(a_{1} P_{1}+\cdots+a_{T_{1}} P_{T_{1}}\right)=\hat{F}_{2}+\left(b_{1} Q_{1}+\cdots+b_{T_{2}} Q_{T_{2}}\right)
$$

Then since $\hat{F}_{1}-\tilde{f} \in \tilde{I}_{V_{1}}$ and $\hat{F}_{2}-\tilde{f} \in \tilde{I}_{V_{2}}$, it follows from Lemma 3.13 that

$$
\hat{F}-\tilde{f} \in \tilde{I}_{V_{1}} \cap \tilde{I}_{V_{2}}=\left(\widetilde{I_{V_{1}} \cap I_{V_{2}}}\right)=\tilde{I}_{V},
$$

so that $\left.\hat{F}\right|_{V} \equiv f$. Thus the proof of Theorem 3.1 is finished.

4. Proof of the main theorem

Applying Theorem A for $X=\left\{\zeta_{\nu}\right\}$, we have $f_{1}, \ldots, f_{m} \in \mathcal{O}\left(\mathbb{C}^{m}\right)$ and constants $\varepsilon_{1}, C_{3}, A, B>0$ with

$$
\begin{equation*}
\left|f_{j}(\zeta)\right| \leq A \exp \left(B|\zeta|^{a}\right) \tag{4.1}
\end{equation*}
$$

for all $\zeta \in \mathbb{C}^{m}$ and $j=1, \ldots, m$,

$$
\begin{equation*}
Z\left(f_{1}, \ldots, f_{m}\right) \supset X \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m}\left|D_{u} f_{j}\left(\zeta_{\nu}\right)\right| \geq \varepsilon_{1} \exp \left(-C_{3}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.3}
\end{equation*}
$$

for all $\nu \in \mathbb{N}$ and $u \in S^{2 m-1}$. Fix $\nu \in \mathbb{N}$ and $u \in S^{2 m-1}$. Set $\tilde{f}_{j, \nu, u}(w)=f_{j}\left(\zeta_{\nu}+w u\right)$, which is an entire function on \mathbb{C}. It follows from the chain rule that

$$
\tilde{f}_{j, \nu, u}^{\prime}(0)=\sum_{l=1}^{m} \frac{\partial f_{j}}{\partial \xi_{l}}\left(\zeta_{\nu}\right) \cdot u_{l}=D_{u} f_{j}\left(\zeta_{\nu}\right) .
$$

Hence from (4.3), there exists $j(\nu, u) \in\{1, \ldots, m\}$ such that

$$
\begin{equation*}
\left|\tilde{f}_{j(\nu, u), \nu, u}^{\prime}(0)\right| \geq \frac{\varepsilon_{1}}{m} \exp \left(-C_{3}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.4}
\end{equation*}
$$

In the rest of the proof, we denote $\tilde{f}_{j(\nu, u), \nu, u}$ by $\tilde{f}_{j(\nu, u)}$. Put $Z_{\nu, u}=\{w \in \mathbb{C}$: $\left.\tilde{f}_{j(\nu, u)}(w)=0\right\}$, which contains 0 by (4.2), and $d_{\nu, u}=\min \left\{1, \operatorname{dist}\left(0, Z_{\nu, u} \backslash\{0\}\right)\right\}$. From (4.1), we have $\left|f_{j(\nu, u), \nu, u}\left(\zeta_{\nu}+w u\right)\right| \leq A \exp \left(B\left|\zeta_{\nu}+w u\right|^{a}\right)$ for $|w| \leq 1$. Since $\left|\left(\zeta_{\nu}+w u\right)-\zeta_{\nu}\right|=|w u|=|w| \leq 1$ and $|\cdot|{ }^{a}$ is a weight function, there exists A_{1}, $B_{1}>0$ independent of ν and u such that

$$
\begin{equation*}
\left|\tilde{f}_{j(\nu, u)}(w)\right| \leq A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.5}
\end{equation*}
$$

Set $g_{\nu, u}(w)=\tilde{f}_{j(\nu, u)}(w) / w$. Since $\tilde{f}_{j(\nu, u)}$ has zero of order only one at $w=0$ by (4.2) and (4.4), we obtain $g_{\nu, u} \in A(\mathbb{C})$ and

$$
\begin{equation*}
g_{\nu, u}(0)=\tilde{f}_{j(\nu, u)}^{\prime}(0) \neq 0 \tag{4.6}
\end{equation*}
$$

It is satisfied for $|w|=1$ that

$$
\left|g_{\nu, u}(w)\right|=\frac{\left|\tilde{f}_{j(\nu, u)}(w)\right|}{|w|}=\left|\tilde{f}_{j(\nu, u)}(w)\right| \leq A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right)
$$

Hence it follows from the Maximal Modulus Theorem that

$$
\begin{equation*}
\left|g_{\nu, u}(w)\right| \leq A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.7}
\end{equation*}
$$

for $|w| \leq 1$. We denote $G_{\nu, u} \in A(\mathbb{C})$ by

$$
G_{\nu, u}(w)=\frac{g_{\nu, u}(w)-g_{\nu, u}(0)}{3 A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right)} .
$$

Then we have $G_{\nu, u}(0)=0$ and (4.7) gives that $\left|G_{\nu, u}(w)\right|<1$ for $|w| \leq 1$. Hence the Schwarz lemma implies that $\left|G_{\nu, u}(w)\right| \leq|w|$ for $|w| \leq 1$. In particular, for $\tilde{w} \in$ $\left(Z_{\nu, u} \backslash\{0\}\right) \cap\{w \in \mathbb{C}:|w|<1\}$, which is a zero of $g_{\nu, u}$ in $\{w \in \mathbb{C}:|w|<1\}$, we have from (4.4) and (4.6)

$$
|\tilde{w}| \geq\left|G_{\nu, u}(\tilde{w})\right|=\frac{\left|g_{\nu, u}(0)\right|}{3 A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right)}=\frac{\left|\tilde{f}_{j(\nu, u)}^{\prime}(0)\right|}{3 A_{1} \exp \left(B_{1}\left|\zeta_{\nu}\right|^{a}\right)} \geq \varepsilon_{2} \exp \left(-C_{4}\left|\zeta_{\nu}\right|^{a}\right)
$$

where ε_{2} and C_{4} are independent of ν and u. Thus the definition of $d_{\nu, u}$ gives that

$$
\begin{equation*}
d_{\nu, u} \geq \varepsilon_{2} \exp \left(-C_{4}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.8}
\end{equation*}
$$

Now, we need the Borel-Carathèodory inequality. (For the proof, see e.g. [1, Corollary 4.5.10].)

Borel-Carathèodory inequality. Let h be a function which is holomorphic in a neighborhood of $|w| \leq R$ and has no zero in $|w|<R$. If $h(0)=1$ and $0 \leq|z| \leq r<$ R, then the following estimate holds:

$$
\log |h(z)| \geq-\frac{2 r}{R-r} \log \max _{|\omega|=R}|h(\omega)| .
$$

Since $g_{\nu, u}(0) \neq 0$ from (4.6), we apply this inequality to $h(w)=g_{\nu, u}(w) / g_{\nu, u}(0)$, $R=d_{\nu, u}$ and $r=d_{\nu, u} / 2$ to obtain

$$
\begin{aligned}
\log \left|\frac{g_{\nu, u}(w)}{g_{\nu, u}(0)}\right| & \geq-\frac{2 \cdot d_{\nu, u} / 2}{d_{\nu, u}-d_{\nu, u} / 2} \log \max _{|\omega|=d_{\nu, u}}\left|\frac{g_{\nu, u}(\omega)}{g_{\nu, u}(0)}\right| \\
& =-2 \log \max _{|\omega|=d_{\nu, u}}\left|\frac{g_{\nu, u}(\omega)}{g_{\nu, u}(0)}\right|
\end{aligned}
$$

for $|w| \leq d_{\nu, u} / 2$. Then it follows from (4.4), (4.6) and (4.7) that

$$
\begin{align*}
\left|g_{\nu, u}(w)\right| & \geq\left|g_{\nu, u}(0)\right|\left(\max _{|\omega|=d_{\nu, u}}\left|\frac{g_{\nu, u}(\omega)}{g_{\nu, u}(0)}\right|\right)^{-2} \tag{4.9}\\
& =\left|g_{\nu, u}(0)\right|^{3}\left(\max _{|\omega|=d_{\nu, u}}\left|g_{\nu, u}(\omega)\right|\right)^{-2} \\
& \geq \varepsilon_{3} \exp \left(-C_{5}\left|\zeta_{\nu}\right|^{a}\right),
\end{align*}
$$

where ε_{3} and C_{5} is independent of ν and u. Put $\hat{d}_{\nu}=\varepsilon_{2} \exp \left(-C_{4}\left|\zeta_{\nu}\right|^{a}\right)$, where ε_{2} and C_{4} are given in (4.8). Since $\hat{d}_{\nu} \leq d_{\nu, u}$ by (4.8), it follows from (4.9) that for $|w|=$ $\hat{d}_{\nu} / 2\left|\tilde{f}_{j(\nu, u)}(w)\right|=\left|w \cdot g_{\nu, u}(w)\right| \geq \varepsilon_{4} \exp \left(-C_{6}\left|\zeta_{\nu}\right|^{a}\right)$, where ε_{4} and C_{6} is independent of ν and u. Thus we have proved that for every $u \in S^{2 m-1}$, there exists $j(\nu, u) \in$ $\{1, \ldots, m\}$ such that $\left|f_{j(\nu, u)}\left(\zeta_{\nu}+w u\right)\right| \geq \varepsilon_{4} \exp \left(-C_{6}\left|\zeta_{\nu}\right|^{a}\right)$ for $|w|=\hat{d}_{\nu} / 2$. Hence we have

$$
\begin{align*}
\left|f\left(\zeta_{\nu}+w u\right)\right| & =\left(\sum_{j=1}^{m}\left|f_{j}\left(\zeta_{\nu}+w u\right)\right|^{2}\right)^{1 / 2} \geq\left|f_{j(\nu, u)}\left(\zeta_{\nu}+w u\right)\right| \tag{4.10}\\
& \geq \varepsilon_{4} \exp \left(-C_{6}\left|\zeta_{\nu}\right|^{a}\right)
\end{align*}
$$

for $|w|=\hat{d}_{\nu} / 2$.
We now consider $f \circ F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$. Since $\max _{j=1, \ldots, m} \operatorname{deg} F_{j}=d$ and $b \geq a d$, there exist $\alpha, \beta>0$ such that

$$
\begin{equation*}
|F(z)|^{a} \leq \alpha|z|^{b}+\beta \tag{4.11}
\end{equation*}
$$

for all $z \in \mathbb{C}^{n}$. Then we have from (4.1) and (4.11)

$$
\left|f_{j} \circ F(z)\right| \leq A \exp \left(B|F(z)|^{a}\right) \leq A e^{\beta B} \exp \left(\alpha B|z|^{b}\right)
$$

for all $z \in \mathbb{C}^{n}$ and $j=1, \ldots, m$, that is, $f \circ F \in A_{|\cdot| b}\left(\mathbb{C}^{n}\right)^{m}$.
Set $U_{\nu}=\left\{\xi \in \mathbb{C}^{m}:\left|\xi-\zeta_{\nu}\right| \leq \hat{d}_{\nu} / 2\right\}$. Denote by V_{ν} the connected component of $S_{|\cdot| a}\left(f ; \varepsilon_{4}, C_{6}\right)$ including ζ_{ν}. Then (4.10) implies that $V_{\nu} \subset U_{\nu}$. We also have $U_{\nu} \cap$ $\left(Z\left(f_{1}, \ldots, f_{m}\right) \backslash\left\{\zeta_{\nu}\right\}\right)=\emptyset$. Namely, for $\xi \in Z\left(f_{1}, \ldots, f_{m}\right) \backslash\left\{\zeta_{\nu}\right\}$ there exists $u \in$ $S^{2 m-1}$ such that $\xi=\zeta_{\nu}+\left|\xi-\zeta_{\nu}\right| u$. It follows from the definition of $d_{\nu, u}$ and (4.8) that $\left|\xi-\zeta_{\nu}\right| \geq d_{\nu, u} \geq \varepsilon_{2} \exp \left(-C_{4}\left|\zeta_{\nu}\right|^{a}\right)=\hat{d}_{\nu}$, so that $\xi \notin U_{\nu}$. Now setting $\varepsilon_{5}=$ $\varepsilon_{4} \exp \left(-\beta C_{6}\right)$ and $C_{7}=\alpha C_{6}$, we claim that the union \hat{V}_{ν} of the connected components of $S_{|\cdot| b}\left(f \circ F ; \varepsilon_{5}, C_{7}\right)$ including $F^{-1}\left(\zeta_{\nu}\right)$ is contained in $F^{-1}\left(V_{\nu}\right)$. In fact, it follows from (4.11) that for $z \in \hat{V}_{\nu}$

$$
\begin{aligned}
|f \circ F(z)| & <\varepsilon_{4} \exp \left(-\beta C_{6}\right) \exp \left(-\alpha C_{6}|z|^{b}\right) \\
& \leq \varepsilon_{4} \exp \left(-\beta C_{6}-\alpha C_{6} \cdot \frac{|F(z)|^{a}-\beta}{\alpha}\right) \\
& =\varepsilon_{4} \exp \left(-C_{6}|F(z)|^{a}\right),
\end{aligned}
$$

which implies that $F(z) \in S_{|\cdot| a}\left(f ; \varepsilon_{4}, C_{6}\right)$. For $z^{\prime} \in F^{-1}\left(\zeta_{\nu}\right)$, the above inequality holds on every curve through z and z^{\prime} in \hat{V}_{ν}. The connectedness of V_{ν} proves that $z \in F^{-1}\left(V_{\nu}\right)$. It is clear that $\hat{V}_{\nu} \cap F^{-1}\left(Z\left(f_{1}, \ldots, f_{m}\right) \backslash\left\{\zeta_{\nu}\right\}\right)=\emptyset$ for all $\nu \in \mathbb{N}$ by the above argument.

Here we need the following lemma:
Lemma 4.1 (cf. [2, Lemma 3.2]). Let $f_{1}, \ldots, f_{m} \in A_{p}\left(\mathbb{C}^{m}\right)$. Then there exist constants $\varepsilon, C>0$ such that

$$
\sum_{j=1}^{m}\left|D_{u} f_{j}\left(\zeta_{\nu}\right)\right| \geq \varepsilon \exp \left(-C p\left(\zeta_{\nu}\right)\right)
$$

for all $\nu \in \mathbb{N} \backslash E$ and $u \in S^{2 m-1}$ if and only if we have constants $\varepsilon^{\prime}, C^{\prime}>0$ satisfying

$$
\left|\operatorname{det} J f\left(\zeta_{\nu}\right)\right| \geq \varepsilon^{\prime} \exp \left(-C^{\prime} p\left(\zeta_{\nu}\right)\right)
$$

for all $\nu \in \mathbb{N}$, where $J f$ is the Jacobian matrix of $f=\left(f_{1}, \ldots, f_{m}\right)$.
We apply this lemma to obtain $\varepsilon_{6}, C_{8}>0$ such that

$$
\begin{equation*}
\left|\operatorname{det} J f\left(\zeta_{\nu}\right)\right| \geq \varepsilon_{6} \exp \left(-C_{8}\left|\zeta_{\nu}\right|^{a}\right) \tag{4.12}
\end{equation*}
$$

for all $\nu \in \mathbb{N}$. Calculating a sum of the moduli of all $m \times m$ minors of $J(f \circ F)$, we have from (2) of Main Theorem, (4.11) and (4.12)

$$
\sum_{\kappa=1}^{\substack{n \\ m}}\left|\triangle_{\kappa}^{f \circ F}(z)\right|=|\operatorname{det} J f(F(z))| \cdot \sum_{\kappa=1}^{\binom{n}{m}}\left|\triangle_{\kappa}^{F}(z)\right|
$$

$$
\begin{aligned}
& \geq \varepsilon_{6} \exp \left(-C_{8}|F(z)|^{a}\right) \cdot \varepsilon \exp \left(-C|z|^{b}\right) \\
& \geq\left(\varepsilon \varepsilon_{6} e^{-\beta C_{8}}\right) \exp \left(-\left(\alpha C_{8}+C\right)|z|^{b}\right)
\end{aligned}
$$

for all $z \in \bigcup_{\nu \in \mathbb{N} \backslash E} F^{-1}\left(\zeta_{\nu}\right)$.
Here the proof of [5, Theorem 1] implies the following:
Lemma 4.2. For $f_{1}, \ldots, f_{N} \in A_{p}\left(\mathbb{C}^{n}\right)$, let Z^{\prime} be a union of connected components of $Z\left(f_{1}, \ldots, f_{N}\right)$ which are k-codimensional manifolds, so that

$$
\sum_{\vartheta=1}^{\binom{N}{k}} \sum_{\kappa=1}^{\binom{n}{k}}\left|\triangle_{\vartheta, \kappa}^{f}(z)\right| \geq \varepsilon \exp (-C p(z))
$$

for all $z \in Z^{\prime}$, where the sum is taken over all $k \times k$ minors of the Jacobian matrix $J f$. If we can choose constants $\varepsilon^{\prime \prime}, C^{\prime \prime}>0$ such that every connected component of $S_{p}\left(f ; \varepsilon^{\prime \prime}, C^{\prime \prime}\right)$ including a connected component of Z^{\prime} does not intersect the other connected components of $Z\left(f_{1}, \ldots, f_{N}\right)$, then we have constants $\varepsilon^{\prime \prime \prime}<\varepsilon^{\prime \prime}, C^{\prime \prime \prime}>C^{\prime \prime}$ satisfying: Let Y be a connected component of Z^{\prime} and let V_{Y} be the connected component of $S_{p}\left(f ; \varepsilon^{\prime \prime \prime}, C^{\prime \prime \prime}\right)$ including Y. Then there exists a holomorphic retract Φ_{Y} from V_{Y} onto Y such that $\left|z-\Phi_{Y}(z)\right| \leq 1$ for all $z \in V_{Y}$.

By setting $\varepsilon^{\prime \prime}=\varepsilon_{5}, C^{\prime \prime}=C_{7}$ and $Z^{\prime}=\bigcup_{\nu \in \mathbb{N} \backslash E} F^{-1}\left(\zeta_{\nu}\right)$, we can apply this lemma to obtain $\varepsilon_{7}, C_{9}>0$ and a holomorphic retract Φ_{ν} from \tilde{V}_{ν} onto $F^{-1}\left(\zeta_{\nu}\right)$ such that

$$
\begin{equation*}
\left|z-\Phi_{\nu}(z)\right| \leq 1 \tag{4.13}
\end{equation*}
$$

for all $\nu \in \mathbb{N} \backslash E$, where $\tilde{V}_{\nu}(\nu \in \mathbb{N})$ is the union of the connected components of $S_{\mid \cdot b}\left(f \circ F ; \varepsilon_{7}, C_{9}\right)$ including $F^{-1}\left(\zeta_{\nu}\right)$. It is clear that $\tilde{V}_{\nu} \cap \tilde{V}_{\nu^{\prime}}=\emptyset$ for $\nu \neq \nu^{\prime}$.

For $h \in A_{|\cdot| b}\left(F^{-1}(X)\right)$, it follows from Theorem 3.1 that there exists $\tilde{H} \in$ $A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$ such that $\left.\left.\tilde{H}\right|_{\cup_{\nu \in E} F^{-1}\left(\zeta_{\nu}\right)} \equiv h\right|_{\cup_{\nu \in E} F^{-1}\left(\zeta_{\nu}\right)}$. Then we define

$$
\tilde{h}(z)= \begin{cases}\Phi_{\nu}^{*} h(z), & \text { if } z \in \tilde{V}_{\nu} \text { and } \nu \in \mathbb{N} \backslash E, \\ \tilde{H}(z), & \text { if } z \in \tilde{V}_{\nu} \text { and } \nu \in E, \\ 0, & \text { if } z \in S_{|\cdot| b}\left(f \circ F ; \varepsilon_{7}, C_{9}\right) \backslash \bigcup_{\nu \in \mathbb{N}} \tilde{V}_{\nu} .\end{cases}
$$

Since $|\cdot|^{b}$ is a weight function, (4.13) implies that there exist $A_{2}, B_{2}>0$ such that $\tilde{h}(z) \leq A_{2} \exp \left(B_{2}|z|^{b}\right)$ for all $z \in S_{|\cdot| b}\left(f \circ F ; \varepsilon_{7}, C_{9}\right)$. Hence it follows from the semilocal interpolation theorem that we obtain $H \in A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$ with $\left.H\right|_{F^{-1}(X)} \equiv h$. Thus $F^{-1}(X)$ is interpolating for $A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$.

5. Examples and remarks

The following is an easy example for the main theorem:

Example 5.1. Set $X=\{\nu\}_{\nu \in \mathbb{Z}} \subset \mathbb{C}$. By applying Theorem A (or [3, Corollary 3.5]) to $f(z)=\sin 2 \pi z \in A_{|\cdot|}(\mathbb{C})$, we know that V is interpolating for $A_{|\cdot|}(\mathbb{C})$. Put $F\left(z_{1}, \ldots, z_{n}\right)=z_{1}^{2}+\cdots+z_{n}^{2}$, which satisfies

$$
\sum_{j=1}^{n}\left|\frac{\partial F(z)}{\partial z_{j}}\right| \geq|\operatorname{grad} F(z)|=2|z|
$$

If $z \in F^{-1}(\nu)$, we have $|z|^{2} \geq|\nu|$. In particular, for $\nu \in \mathbb{Z} \backslash\{0\}$, it follows that

$$
\sum_{j=1}^{n}\left|\frac{\partial F(z)}{\partial z_{j}}\right| \geq 2 \sqrt{|\nu|} \geq 2
$$

Hence the main theorem implies that $F^{-1}(X)$ is interpolating for $A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$ for all $b \geq$ 2. (In this case, $E=\{0\}$.)

In the case where $n=m=1$, we can improve the main theorem as follows:

Corollary 5.2. Let $X=\left\{\zeta_{\nu}\right\}_{\nu \in \mathbb{N}}$ be a discrete variety in \mathbb{C} and let $F \in \mathbb{C}[z]$. Put $d=\operatorname{deg} F$. For $a>0$, we assume that X is interpolating for $A_{|\cdot| a}(\mathbb{C})$. Then $F^{-1}(X)$ is interpolating for $A_{|\cdot|}(\mathbb{C})$ for every $b \geq a d$.

Finally, we remark that the term ' $b \geq a d$ ' in the main theorem is sharp in the sense of the following open problem:

Open Problem ([5, Problem 1]). Let q be another weight function on \mathbb{C}^{n} satisfying $q \geq p$ everywhere. Assume that an analytic subset X of \mathbb{C}^{n} is interpolating for $A_{p}\left(\mathbb{C}^{n}\right)$. Then is V interpolating for $A_{q}\left(\mathbb{C}^{n}\right)$?

We prove this remark by giving an example for which $F^{-1}(X)$ is not interpolating for $A_{|\cdot| b}\left(\mathbb{C}^{n}\right)$ for $b<a d$. Let $X=\left\{\zeta_{\nu}\right\}_{\nu \in \mathbb{N}}$ be a discrete variety in \mathbb{C}. Then Nevanlinna's counting function is defined as follows: $n(r, \zeta, X)=\sharp\left\{\nu \in \mathbb{N}:\left|\zeta_{\nu}-\zeta\right| \leq r\right\}$ and

$$
N(r, \zeta, X)=\int_{0}^{r} \frac{n(t, \zeta, X)-n(0, \zeta, X)}{t} d t+n(0, \zeta, X) \log r .
$$

Example 5.3. Assume that $n=m=1$. Put $X=\{\nu\}_{\nu \in \mathbb{N}} \subset \mathbb{C}$. As in Example 5.1, it follows that X is interpolating for $A_{|\cdot|}(\mathbb{C})$. Set $F(z)=z^{4}$, so $\operatorname{deg} F=4$. Then we have

$$
F^{-1}(X)=\left\{\sqrt[4]{\nu} \cdot \exp \left(\frac{l \pi i}{2}\right)\right\}_{\nu \in \mathbb{N}: l=0,1,2,3}
$$

Corollary 5.2 implies that $F^{-1}(X)$ is interpolating for $A_{|\cdot| b}(\mathbb{C})$ for every $b \geq 4$.
Here we claim that $F^{-1}(X)$ is not interpolating for $A_{|\cdot| b}(\mathbb{C})$ for any $b<4$. In fact, we have $n\left(r, 0, F^{-1}(X)\right)=4 \nu$ when $\sqrt[4]{\nu} \leq r<\sqrt[4]{\nu+1}$, so $n\left(r, 0, F^{-1}(X)\right)=4\left[r^{4}\right]$, where $[x]=\max \{y \in \mathbb{Z}: y \leq x\}$. Since $n\left(s, 0, F^{-1}(X)\right)=0$ for all $s \in[0,1)$ and $\left[t^{4}\right] \geq t^{4}-1$ for all $t \in \mathbb{R}$, we obtain

$$
\begin{aligned}
N\left(r, 0, F^{-1}(X)\right) & =\int_{0}^{r} \frac{4\left[t^{4}\right]}{t} d t \\
& \geq \int_{1}^{r} \frac{4\left(t^{4}-1\right)}{t} d t \\
& =r^{4}-4 \log r-1
\end{aligned}
$$

Hence for every $b<4$ there do not exist two constants $A, B>0$ such that

$$
N\left(r, 0, F^{-1}(X)\right) \leq A r^{b}+B
$$

for all $r \geq 0$. Then it follows from [3, Corollary 4.8] that $F^{-1}(X)$ is not interpolating for $A_{|\cdot| b}(\mathbb{C})$ for any $b<4$.

References

[1] C.A. Berenstein and R. Gay: Complex Variables: An Introduction, Graduate Text in Math. 125, Springer, New York-Berlin-Heidelberg, 1991.
[2] C.A. Berenstein and B.Q. Li: Interpolating varieties for weighted spaces of entire functions in \mathbb{C}^{n}, Publications Matemàtiques, 38 (1994), 157-173.
[3] C.A. Berenstein and B.Q. Li: Interpolating varieties for spaces of meromorphic functions, J. Geom. Anal. 5 (1995), 1-48.
[4] C.A. Berenstein and B.A. Taylor: Interpolation problem in \mathbb{C}^{n} with applications to harmonic analysis, J. Analyse Math. 38 (1981), 188-254.
[5] C.A. Berenstein and B.A. Taylor: On the geometry of interpolating varieties, Seminaire LelongSkoda (1980/1981), Lecture Notes in Math. 919 (P. Lelong and H. Skoda, eds.), Springer, New York-Berlin-Heidelberg, 1983, 1-25.
[6] J-E. Björk: Rings of Differential Operators, North-Holland Mathematical Library, 21, NorthHolland, Amsterdam-Oxford-New York, 1979.
[7] L. Ehrenpreis: Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics, A Series of Texts and Monographs, $\mathbf{1 7}$ Wiley-Interscience, New York-London-Sydney-Toronto, 1970.
[8] L. Hörmander: Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
[9] L. Hörmander: An Introduction to Complex Analysis in Several Variables, 3rd edition, NorthHolland Mathematical Library, 7 North-Holland, Amsterdam-Oxford-New York, 1989.
[10] S. Oh'uchi: Disjoint unions of complex affine subspaces interpolating for A_{p}, Forum Math. 11 (1999), 369-384.

Graduate School of Mathematical Science
University of Tokyo
3-8-1 Komaba, Meguro
Tokyo 153-8914, Japan
e-mail: oh-uchi@ms.u-tokyo.ac.jp

[^0]: Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

