M. Cabanes
Nagoya Math. J.
Vol. 195 (2009), 1-19

ON OKUYAMA’S THEOREMS ABOUT ALVIS-CURTIS
DUALITY

MARC CABANES

Abstract. We report on theorems by T. Okuyama about complexes general-
izing the Coxeter complex and the action of parabolic subgroups on them, both
for finite BN-pairs and finite dimensional Hecke algebras. Several simplifica-
tions, using mainly the surjections of [CaRi], allow a more compact treatment
than the one in [O].

The purpose of this paper is to report on the unpublished manuscript [O]
by T. Okuyama where are proved some conjectures generalizing to homotopy
categories the theorems of [CaRi] and [LS] holding in derived categories. We
refer to the latter references and [CaEn, §4] for a broader introduction to
the subject.

The main theme is the one of complexes related with the Coxeter com-
plex and the action of parabolic subgroups on them, either for finite groups
with BN-pairs or for finite dimensional Hecke algebras. Okuyama’s contrac-
tions prove a quite efficient tool in a number of situations (see the proof of
Solomon-Tits theorem in Section 6).

We often stray away from Okuyama’s proofs when it allows simplifi-
cations. We also emphasize some statements that may be of independent
interest (see Section 1 below), and actually re-prove [Ril, §8], [LS], and
[CaRi].

Most proofs are selfcontained apart from basic facts about split BN-
pairs and Hecke algebras.

NoTATIONS. Let A be a ring, one denotes by mod(A) the associated
category of finitely generated left A-modules. If B is another ring, A, B-
bimodules are just objects of mod(A ® B°) where B° denotes the opposite
algebra and ® denotes (commutative) tensor product over Z. Whenever
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M is an A, B-bimodule and N is a B-module, one denotes by M ®pg N
the usual tensor product over B, considered as an A-module. When B is
a group algebra RG with R a commutative ring and G a finite group, one
may use the abbreviation M ®g N for M Qgrg N.

We denote by CP(A), KP(A), and DP(A) the categories of bounded
(cochain) complexes of A-modules, its homotopy and derived categories,

respectively. We allow to view a given complex of A-modules (- -- C? LN
C**1...) as a Z-graded A-module C := D, C" endowed with a homogeneous
endomorphism d¢ = (0%); of degree 1 satisfying dc o ¢ = 0.

Let S be a finite set, we denote by 25 the set of subsets of S. A coefficient
system on 2° is a family of A-modules (M) rcs and A-homomorphisms
oM MT — MY defined when I C J (“restriction maps”) and satisfying
gpAK/IJogp% :go%[ whenever I CJ C K C S.

Choose a total ordering < on S. When I C S and s € S, denote
by n(l,s) the number of elements of I that are < s. A coeflicient sys-
tem ((M7T)g, (¢3)1.5) gives rise to an object (--- — M? — M! — ...) of
CP(A), where M* = D1 M and 9: M* — M™*! is defined on M by
8i|M1 = Zses\l(—l)”(l’s)w%{sw. For a more canonical definition, show-
ing independence with regard to the choice of an ordering, see for instance
[CaEn, Exercise 4.1].

8§1. Reduced elements in Coxeter groups and Okuyama’s contrac-
tions

Assume (W, S) is a finite Coxeter group. One denotes by [ the length
map with respect to S. If I,J C S, denote by W; the subgroup of W
generated by I and by Dy the set of w € W such that l(uwv) = I(u) +
l(w) 4+ l(v) for any v € Wy, v € Wj.

If V, V' are subsets of W, one denotes VV' = {vv' | v e V. v € V'}
and V1= {v7l|veV}

Let A= UjcgWi\W = {Wjw | I C S, w € W} be the set of right
cosets mod. parabolic subgroups.

If a € A, denote S(a) := SNaa! (that is S(a) = I if a = Wyw for
some w € W) and l(a) = min{l(z) | z € a}, which is the length of the only
element of a N Dgy) ¢-

If J CSandace€A denote aUJ := Wyyga. If s €S, we write
aUs=aU/{s}.
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The Coxeter complex A(W,S) is the complex associated to the coeffi-
cient system on 2° defined by

I—zZW\W)= & Za
acA, S(a)=I

with restriction maps ¢;; defined by ¢sr(a) = aU J for I C J. Then
A(W,S) = ZA graded by a — |S(a)| and the differential is defined by
d(a) = Zses\s(a)(—l)”(s(“)’s)a Us for a € A (recall that S is ordered and
n(I,s) denotes the number of elements of I that are < s).

Fix Iy C S, Iy # S (the case Iy = S is trivial for what follows but could
create ambiguities).

NoTaTION 1. Let A(ly) := {a € A | an Dy, # 0}. Note that the
condition defining A(Ij) is equivalent to the element of minimal length in a
being in Dy 7., hence in Dgy) 1,-

Let A(Ip)* := {a € A(ly) | a € Wi,}, that is the classes Wiw for
ICS,we Dy, and w # 1 if moreover I C Ij.

If a € A(lp), denote Iy(a) = In Na‘a.

Note the following property

(P2) If a € A(lp), then Iy(a) = IpNIY for I = S(a) and the unique
w € aN Dy, (see for instance [CaEn, 2.6]).

PROPOSITION 3. ZA(Iy)7T is a subcomplex of A(W,S) in CP(Z). There
ezists a linear map o: ZA(Ip)™ — ZA(Iy)* homogeneous of degree —1 such
that

(i) 00+ 0o = Id.

(i) for any a € A(ly)*, o(a) € @ Zb where the sum is over b € A(Ip)™*
such that Iy(b) 2 Iy(a).

The Proposition will be used in Sections 2—4 through the following.

THEOREM 4. Keep (W,S) a finite Cozeter group, and Iy C S. Let A
be a ring and (M1) 1, (p35)1.7) be a coefficient system of A-modules on 27.

Assume that for allb € A(Iy)T, we are given a submodule Z, C M1 ®)
such that, for all b,/ € A(lp)t with b C V' (and therefore Io(b) C Ip(b')),
one has gpﬁ\o/[(b,)Jo(b)(Zb) C Zy.



4 M. CABANES

Let a coefficient system Z on 2° be defined by I — Z' := HbeA(IO)+;S(b)=I
Zy, and goIZ,J(m) = cp%[(bul,)’lo(b)(x) € Zyp CZU ifICI' CS andx € Z
with S(b) = 1.

Then the complex associated to Z is contractible in CP(A).

Proof. Let o: ZA(Iy)™ — ZA(Ip)" be a map as in Proposition 3. This
implies the existence of integers my,y for b,b" € A(Ip)* with I(b) C Io(V)
and |S(b")| =|S(b)| — 1 such that o(b) = >, mppb’. Set my = 0 for pairs
(b,b") not satisfying the conditions above.

Since the differential on ZA(Ip)" is defined by 9(b) = DseS\S(b)

(—1)™5®):5) (hUs), the relation in Proposition 3.(i) reads, for any b € A(Io)",

(E5) b= Y ()"0 b+ Y ()M, (1 Us)

S€S\S(b) beA(lp)t
beA(Ip)* sES\S(b')
in ZA(10)+ .

When b € A(lp)T and z € Z,, we write 2, to mean the element
of Z°®) in the factor Z,. Define & on Z, C HbeA(Io)+ Zy by o(z) =
Y oye A(Io)*+ mb,b/goﬁ\g(b,) Io(b)(z)b/. This is well defined since mp # 0 implies
Iy(b) C (V).

The differential on Z is defined by

07 (z) = Z (_1)n(s(b)’s)SO%I(bUS),]O(b)(Z)bUs
sES\S(b)

for z € Zj, (remember that Z, is at degree |S(b)|). Then, keeping z € Zj,

(607 + %) (2) =o( 3 <—1)““(””8’@%@8),10@)<z>bu8>
s€S\S(b)

+‘92< > mb,W%[(bv,zo(b)(z)b')
beA(lp)+

which equals

> DMy oy 1o ()

s€S\S(b)
beA(lo)t
+ Z (—1)“(3(1)’),S)mb’b/go?g(b,us)’h)(b) (Z)blus
b'eA(lp)t

s€S\S(b')
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thanks to the composition of restriction maps. By (E5;) above, this equals
90%(1;) Io(b)(z)b = (2)p. Then 60+ 0o = Id, that is the contractibility of Z in
CP(A). {

Proof of Proposition 3. That ZA(Iy) and ZA(Iy)* are sub-coefficient
systems of ZA is clear by the definition of restriction maps and the fact
that both A(Iy) and A(Iy)™ are closed for supsets.

In order to check the particular contractibility that is announced about
ZA(Ip)*t, it seems handy to apply the following symmetry of Dy, and
A(1p).

Let 6: W — W defined by 6(w) = wswwy,, where w; € W denotes
the element of maximal length for I C S. This 8 clearly preserves A with
S(0(a)) = S(a)¥s and @060 =00 @ us us for any a € Aand I C J C S.
Moreover 6 preserves Dy j, (exchanging 1 and wswy,) and therefore A(Ip),
with 0(Dr,1,) = Dyws 1,- One has also Ip(0(a)) = Ip(a)“o for all a € A(lp).

Denote B = 0(A(Ip)") = {Wiw | I C S, w € Dy ., w # wswy, }

Note that if w € Dy j, \ {wswy,}, there is some s,, € S\ (S Nwlyw™!)
such that [(s,w) > [(w) (take the wg-conjugate of the first term in any
reduced decomposition of §(w) # 1).

Ifbe B, b= Wrw with I C S and w € Dyy,, one denotes s := s,, and
b \ Sp = W[\{sb}w.

LEMMA 6. Let 7: ZB — 7ZB be the linear map homogeneous of degree
—1 defined as follows on b € B

7(b) = (=1)"EO) b\ &) if s € S(b),  7(b) = 0 otherwise.
One has 72 =0 and
(i) If 7(b) # 0 then 7(b) = £b" where V/ € B, (V') = 1(b) and Iy (V') = Iy(D).
(ii) (10407)(b) € b+, Zb" the sum being over b/ € B such that I(b") < I(b)
and Io(b") 2 Ip(b).

Let us show how this implies Proposition 3.
By (i) of Lemma 6, 7(B) C ZB. By (ii), 70 + 07 = Id + p where p is
nilpotent and of degree 0. Now define

=1 —T1p+Tp? —Tp - =7(70 +0r) 7!

and let us check that it satisfies the conditions (i) and (ii) of Proposition 3.
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First 70 + 07’ = Id since 0 clearly commutes with 70 + 97, hence with
its inverse.

As for (ii), that is 7/(b) € @, Zb' where the sum is over b’ € B such
that Io(b') D Io(b), this is a consequence of 7/ =7 — 7p + 7p? — --- with 7
and p having the corresponding property by the Lemma.

This implies now Proposition 3 by defining ¢ = 6 o 7/ o § thanks to
the elementary properties of 6 with regard to the restriction maps and a —
Ip(a). Note however that 6 o 0 o 0 is not exactly 0 but the same twisted
by wg-conjugacy due to the property of 6 with regard to restriction maps
wjr- A correction consists in adapting the ordering on S: choose first the
wg-conjugate of the ordering implicit in Proposition 3. b

Proof of Lemma 6. (i) Write b = Wrw with w € Dy, w # wswy,.
One must assume s, € I. Then 7(b) = £Wp (w0 with w € Dp 6,115
w # wgwy, and Inp(b\ sp) = (I \ {sw})* N1y = I" N1y = Iy(b) by (P) and
the definition of s,,. It is also clear that sy, = sy = sp, SO 72(b) = 0.

(ii) Note that if b,0’ € A and b C V' (inclusion of cosets), then Iy(b) C
Iy(b') and 1(b) < 1(b).

From (i) and the definition of 0 it is then clear that we don’t have to
worry about sets Io(b')’s. So we concentrate on lengths [(b'). Thanks to the
above and (i) just proved, on evaluating (07 + 79)(b) we must check that
only one term, the one producing b, has length remaining equal to [(b) upon
applying 7 and 0.

First case: s, € S(b). Then 7(b) = (—1)"®5)(b\ ;) with S(b\ s3) =
S(b) \ {sp} and ((b\ sp) U sp) =b. Then

(Or +70)(b) =b+ D (~1) IO (b 5y) Us)
sES\S(b)

+ Z D)2 (b U s).

seS\S(b)

In the above sums, one must spot the terms with length {(b) (= I(w)). In the
first 3, b\ sp = Wy (5,30 and one may have [(Wp (4, 3uis3w) = I(w) only if
I(sw) > l(w), thus producing ((b\ sp)Us) = W (5, 3ufs3w in the above sum.
For the second ), by (i), length [(b) is kept only if [(bUs) = [(b). This means
again [(sw) > l(w), thus giving a term 7(bUs) = (—1)”(bU5’3b)W1\{Sb}U{s}w.

In all, the two > contribute terms of length [(b) by the sum over s € S'\
S(b) with I(sw) > I(w) of the terms ((—1):50)F7(B\s6:5) (1 )n(b:5)+7(b0Us.50) )
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(b\ spUs). This is 0 as can be seen by calculating the component on bU s
of Do (b sp), one finds (—1)™b:se)+7(b:5) 4 (_1)n(b\sp,s)+nbUss) — (),
Second case: b= Wiw with w € Dyy, and s, & S(b) = I. Then 7(b) =0
and b = £7(bU sp) where bU s, = Wyys,yw € B with w € Dyyys,3,1, and
[(bUsp) = 1(b) = l(w). To get our claim, it suffices to show that 97+ 70 —1d
sends 7(b U sp) into @y, m)<i(n) ZV. We have (01 + 70 — Id)7(b U sp) =
(70T — 1) (bU 8p) = 7(07 + 70 — Id) (b U s) and our claim follows from the
first case and Lemma 6.(i). [

Remark 7. When a € A(lp), denote by vg(a) the (unique) element of
a N Dg(a),1,, 50 that a = Wg(,yvo(a) with l(a) = I(vo(a)).

Denote by <, the right divisibility in W, that is w’ <, w if and only if
w = w”w’ with lengths adding. Any inclusion b C b’ in A(Ij) clearly implies
’U()(b/) Sr ’U()(b).

A quick inspection shows that in the above proof some relation [(b") <
I(b) may occur only when in addition vg(b') <p vg(b). So the map 7: ZB —
ZB of Lemma 6 satisfies (70 + 07)(b) € b+ @, Zb' where the sum is over
b' € B such that vy(b') <y vo(b) (instead of just [(b') < I(b)).

So Proposition 3 holds with a map o satisfying o(a) € @, Zb where the
sum is over b € A(Ip)" such that wgve(b)wy, <y wsve(a)wy, and Io(b) 2
I()(a).

§2. A theorem of Curtis type in the homotopy category

Let G be a finite group endowed with a split BN-pair of characteristic
the prime p (see [CaEn, 2.20]). We have subgroups N, B, T C BN N. The
quotient W := N/T is a Coxeter group for the subset S C W. When I C S,
the associated parabolic subgroup P; = BW;B is a semi-direct product
Ur.L; for Uy the largest normal p-subgroup of P; and L; a group with a
split BN-pair associated to the subgroups NNL;, BNLy, T and the Coxeter
group Wry.

Let R = Z[p~!] or any commutative ring where p is invertible.

NOTATION 8. If I C S, denote e; = |Uy| ! ZueUI u, an idempotent in
the group algebra RG. Define the coefficient system X (G) of RG-bimodules
on 2% by

X(G) = RGer ®p, erRG
and restriction maps ¢ r: X(G)! — X(G)” defined by z ®p, y — = ®p, y

whenever x € RGey and y € efRG. We keep the same notation for the
associated complex of RG-bimodules.
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THEOREM 9. (Okuyama, [O, 3.1]) Let Iy € S. Then X(G)es, =
RGG[()@LIOX(L[O) m Kb(RG(X)(RL]O)O) and er, X (G) = X(LIO)®LIO er, RG
in KP(RLj, ® RG®).

The proof consists in giving a description of the kernel of the surjection
X(G)er, — RGey, ®Ly, X(Lyj,) introduced in [CaRi, 3.5], allowing to apply
Theorem 4. One will use repeatedly the following (see [HL, 3.1], [CaEn,
Ex. 5, p. 53]).

PRroPOSITION 10.

e creg=ejer=ey when I C J CS.
o IfI.J C S, we Dryandn € N with nlT = w, then erney =
€inwjneéy = enejwng = einw jneéjwnj.

DerFINITION. If I C S, w € Dy, let
Xrw = RGer ®p, et RPiwRPp ey,
and
Y1 = RGerunry ©ppu,,;, ereni,RPr, = RGer, @, X (L) Mo
both RG ® RPj -modules.

In the following propositions, keep I C S and w € Dyy,.

PROPOSITION 11. X7, = Y74 as RG®RP} -module by a map sending
TR p, Wy to rernwwerenr, O Prwng, e1°NIY for any x € RGey, y € RPyej,,
w € N such that wT = w.

PROPOSITION 12. If J C S, w' € Dy, and I NIy C J* NI, there
is a RG® RPp -morphism Y — Y. sending x OPruny, Y 10T ®pr/mO Y
for x € RGerwny,, y € er’mORPIo-

If1CJCSandw' € Dy,nWyw (which ensures I NIy C J“”ﬁfo) the
above morphism corresponds to the restriction map X(G) er, — X(G) ey,
of X(G)ey, through the isomorphism of Proposition 11 and the decomposi-

tion X (G)le;, = RGe;y ®p, erRGey, = @PszIO RGer ®p, et RPrwRP ey, .
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The above will allow to describe the kernel of the surjection X (G)es, —
RGej, ®r,, X(Lp,) defined in [CaRi, §6] (see also [CaEn, 4.10]).

The following will be useful to deduce an isomorphism in the homotopy
category.

PROPOSITION 13. Let A be an abelian category. Let 0 — Z — Y —
Y’ — 0 be an evact sequence in CP(A) which is split in each degree and
such that Z is contractible. Then'Y =Y in KP(A).

Proof of Proposition 13. More generally, it is well known that in a short
exact sequence which is split in each degree, the third term is always homo-
topy equivalent to the mapping cone of the monomorphism. 0

Proof of Theorem 9. Let us consider Y the complex associated to the
coefficient system on 2° defined by I — D.c Dirg Y7 and restriction maps
Y7w — Y4 as in Proposition 12 when I C J and Wyw = Wyw', 0 other-
wise.

Then X (G)ey, is isomorphic to Y thanks to the isomorphisms of Propo-
sition 11.

In order to apply Proposition 13, we show that there is surjection of
complexes Y — RGej, ®r, X(Lj,) in CP(RG ® (RLy,)°), split in each
degree, and with contractible kernel.

Note that Y7 ,, only depends on the class Wrw € A(1p) (see Notation 1).
We then use the notation Y, = RGey, ®L,, X (L1,)"0® for b € A(Iy) (see
(P2)). Note that Y is a coefficient system on 2° defined by I — @,V
where the sum is over b € A(Ip) such that S(b) = I, and the restriction
map is defined by sending Y}, to Yy only when &’ O b and is then RGey, ®, Io
1o, Io(b) Where ¢ is the restriction map of X (L, ).

Let us define Y/ = @, Y, where the sum is over b € A(ly) such that
b C Wp, and same restriction maps as in Y. Then Y’ = RGey, ®r,, X(Lr,)
since each b C Wy, is equal to W) with Io(b) = S(b) C Io.

We have a surjective map of coefficient systems of RG' ® RL7 -modules
on 2°: Y — Y’ = RGey, ®r,, X(Lr,) sending Y}, to 0 whenever b € A(ly)
and b  Wy,. The kernel is @, Y}, where the sum is over b € A(ly)™".

One may now apply Theorem 4 with A = RG® RLj , M = RGej, ®L, Io
X(Ly,) and Zy =Y}, for b € A(Ip)". This tells us that @yeaz,)+ Yo is a
contractible complex.

We then have the first isomorphism of the theorem. In order to deduce
the second one, one uses the (covariant) functor M — M* from mod(RG)
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to mod(RG°) which consists in keeping the same R-module structure and
composing action of group elements g € G with inversion (see [CaEn, 4.16]
and proof). It is exact, commutes with tensor products, extends to com-
plexes, and induces involutory equivalences of KP categories. It is easy to
see that X(G)" = X(G), (RGey,)" = e, RG and X (Lp,)" = X(Lg,) by
compatible isomorphisms. Then we get the second isomorphism from the
first. []

Proof of Propositions 11 and 12. Using the isomorphism RHK = RH
®unrx RK as RH ® RK°-modules (by the evident maps) whenever H, K
are subgroups of a finite group G, one has efRPrwRP,ej, = RLywRLy, =
RL;w ®L1wﬁlo RL[O = RPjejweIme ®P1wm10 €[wm[0€[0P[0.

Applying Proposition 10, we get ey RPriwRPj,er, = RPrejqw,werwng,
® Prunr, erwnr, RPr, by the map of RPr ® RPE)—modules sending erxwyey,
to xejnw,werwng, ® erenry for x € RPr, y € RP, and w € N such that
w1 = w. Note that our map does not depend on the choice of w inside the
class w € N/T.

On applying the functor RGe;® p, —, we get RGer®@p,ef RPrwRPr e, =
RGernwr,werwng, ®P1wmo erwni, R Pr, by the map xe;®erywzey, — xyernwi,
werwng, ®Pruwng, €I*NIo? forz € RG,y € RPr, z € RPj,. On the other hand,
RGernwywervng, = RGerwny, by Dipper-Du-Howlett-Lehrer’s theorem of
independence (see [HL, 2.4], [CaEn, 3.10]). So the map of Proposition 11 is
indeed defined and an isomorphism as announced.

Assume now the hypotheses of Proposition 12. Using the restriction
map of X (Lyp,), it is clear that the map announced in the first statement of
Proposition 12 is the map RGey, ® Ly, Py’ Ao, 1wnT, O1 RGey, ®Ly, X(Ly,),
where ¢ denotes the restriction maps of X(Lj,) as a coefficient system on
2lo,

To verify the second statement, we assume W w' = W w with v’ €
Dy, (unique). It suffices to check that the following square is commutative:

Xl,w I }/},w

l !

XJ,w’ ? YJ,w’

where horizontal arrows are the isomorphism of Proposition 11, the first
vertical arrow is the restriction map (X(G)er,)! — (X(G)ey,)? (which ac-
tually sends the term X7, in the term X ,,) and the second vertical arrow
is the one we have seen above, that is RGer, ® P yu Ao T ATy
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We check the images on a RG @ RPy -generator of Xj,,, namely e; ®
erwer,. Going right then down, one gets e; ®p, ejwer, — ernwr,Werwni,
®Pruny, €Il F ernwryWerenr, @p g erwnr,- Going down then right
yields e; ® p, ejey, — ey @p, efwer, = er p, ervi’er, = efv Qp, w'ey, —
erve jou 1, u')’ejw/m ®P,, _erent where w = vw’ with v € W such that
w' is J-reduced and one deﬁnes v =w()"teLy.

But e -, ' er n, = esi'er, = eji'e iy (Proposition 10 above),
so that ewemw Iow € ju’ A1, €]U€J'UJ S ejejwejw Alo eju'}ejw/mo
so the last term on the second composition (down then right) is e;u ® Pty
erwng,. This is what we expect, again by Proposition 10. U

§3. Alvis-Curtis duality in the homotopy category

The main result of this section shows that the derived equivalence of
[CaRi] actually holds in the homotopy category ([O, Th. 1]).

Let us recall two general results that will be useful. Let A be a ring and
X,Y € CP(A), X € CP(A°). We refer to [CaEn, §A1] for the usual nota-
tions X[i] € CP(A) (i € Z), Homgr,(X,Y), Xg®4 X € CP(Z). If Ais an
R-algebra for R a commutative ring, one denotes X" := Homgr (X, R[0])
as an object of CP(A°) in the usual way.

The same proof as [Ril, 1.1.(a)] gives the following

LEMMA 14. Let C be in CP(A) such that its homology is concentrated
in degree 0 (i.e. H(C) =2 H°(C)[0] in CP(A)) and, for any term C' of C,
both Homgr 4 (C’, C') and Homgr 4(C, C") have their homology concentrated
in degree 0.

Then C = H°(C)[0] in KP(A).

For the strong adjunction below, see [Ro, §2.2.6], [Ri2, 9.2.5]. Note that
the isomorphisms can be made explicit (see [Ro, §2.2], [O, §5.1]).

PRrROPOSITION 15. Assume A, B and A are R-free R-algebras of finite
rank. Assume A and B are symmetric (see [CaEn, 1.19], [Ri2, 9.2.1], [Ro,
2.2.3]). All modules are assumed to be R-free of finite rank.

Let M be a bounded complex of A® B°-modules projective on each side.
Let N1, Ny be objects of CP(B @ A°), CP(A® A°) respectively. Then

Homgr ygr0 (M ®p N1, N2) = Homgr gg o (N1, MY ©4 Na).
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THEOREM 16. (Okuyama, [O, Th. 1)) Let G be a finite group endowed
with a split BN-pair of characteristic p, let R = Z[p~1]. Recall X(G) in
CP(RG ® RG®) (see Notation 8). Then

X(G) ®pe X(G)Y 2 X(G)Y ®pre X(G) =2 RG  in KP(RG @ RG®)

and therefore X(G) @prg — induces a splendid equivalence KP(RG) —
KP(RG) in the sense of [Ril].

Proof. We have the claimed isomorphisms in DP(RG ® RG®) (see
[CaRi, 5.1] or [CaEn, 4.18]). Note that in both references, the main ar-
gument is the following fact:

(F) f I C S and N is a cuspidal RLr-module, then M := RGer ®r, N €
mod(RG) satisfies X(G) ®g M = M[—|I|] in DP(RG) (and even in
KP(R@)).

Here, cuspidal means that, considering N as a Uj-trivial RP;-module, one
has eyN = 0 for any J C I, J # I. The rest of the proof of [CaRi, 5.1],
essentially consists in reducing to R being a field, then use the fact that
simple RG-modules are quotients of those M’s.

A homotopy equivalence is preserved by any additive functor, so we may
apply — ®r, N: mod(RG ® RL}) — mod(RG) to the first isomorphism of
Theorem 9, and get X (G) ®g M = RGer®y, X(L;)®1, N in KP(RG). By
cuspidality of N, one has clearly X(L;) ®1, N = N[—|I|]. Whence (F).

Let us now prove the isomorphisms of Theorem 16 in KP(RG ® RG®).
We use induction on |S|, the case G =T being trivial.

For the first isomorphism X (G) ®¢ X (G)Y = RG, in view of Lemma 14,
we have to check that, for any direct summand C of a term of X(G) ®¢
X(G)Y, the Homgrpgerae’s between C' and X (G) ®¢ X(G)Y have their
homology in degree 0 only.

The terms of X(G) ®¢ X(G)Y are of the type RGer ®@p, e;RG ®¢
RGej ®p, eyRG for I,J C S. This rearranges as RGer ®p, erRGey ®@p,
eJRG = @weD” RGer ®@p, etRPiwRPjrey ®p, ejRG. Applying Propo-
sition 11, one finds a sum of modules Y7, ®p, eJRG = RGejvng @pu,,
erwnysRG, each isomorphic to some X(G)° = Ej, QL EIV0 where Ey, =
RGey, for Iy C S.

So we have to check that, for all I C S, both Homgrg,qo(Er ®r,
EY, X(@)®cX(G)Y) and Homgrg, o (X (G)®c X (G)Y, Er®r, EY) have ho-
mology in degree 0 only. By Proposition 15, it suffices to check Endgr;, o
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(EY ®¢ X(G)). The bi-additivity of the functor Homgr 4(—, —) along with
Theorem 9 give Endgry, o (EY ®a X(G)) ~ Endgr;, qo(X(L1) ®r, EY)
where ~ denotes homotopy equivalence in CP(Z).

Case I # S. Our induction hypothesis tells us that X (L)Y ®p, X (Ly) is
homotopically equivalent to RL;[0] in CP(RL;® RLS). Then Proposition 15
gives Endgr; . qo(X(L1) ®r, EY) = Homgry, ,qo(X(L1)" @1, X(L1) ®L,
EY,EY}) ~ Homgry .co(EY, EY) which is in degree zero.

Case I = S. One has to check the homology of Endgrqs, o (X(G)).
There is a spectral sequence IEf ? for the double complex Homgygo
(X(G), X(G)), such that E}? = Homgxge(X(G) P, X(G)?) and EY? =
Hi(Homgrgyqo (X (G)™P, X(G))) (see for instance [B, §3.4] on spectral se-
quences of double complexes).

Let J C S. Theorem 9 again gives Homgre,qo(X(G)?, X(G)) =
Homngfo} (EJ, X(G) KRa EJ) ~ Homngfo} (EJ, E; QL X(LJ)). This
has ¢-th homology = 0 for ¢ > |J| since X(Lj)? = 0 for those q. Then
EP" =0 for p+ ¢ > 0. Whence H (Endgrg o (X(G))) = 0 for i > 0.
Negative ¢’s are taken care by the spectral sequence IEf’ ? (satisfying FP? =
HP (Homgr g, - (X (G), X (G)1))).

This completes the proof of X(G) ®¢ X (G)Y = RG in KP(RG ® RG®).
As for the isomorphism X (G)Y @ X(G) = RG, it suffices to do the same
with X(G)Y instead of X(G). Note that X(G)Y has the same terms as
X(G). The only non trivial fact that we need is a version of the second
isomorphism of Theorem 9 for X (G)Y. This in turn is a consequence of the
first on applying the functor M — MV. 0

84. Hecke algebras

Let (W, .S) be a finite Coxeter group. Let R be a commutative ring. Let
(¢s)ses € (R*)® be a family of invertible elements of R such that g, = ¢
whenever s,t € S are W-conjugate.

Recall the definition of the Hecke algebra H = @@, oy Rhw (see for
instance [GP, 4.4.6]) with multiplication obeying the rules

hawhy = hyw when w,w' € W and lengths add (therefore hy = 14),

(hs)? = (gs — 1)hs + qs when s € S.

Note that H is symmetric for the linear form giving the coordinate on
hi in the above basis (see [GP, 8.1.1]). When I C S, H; = @D, ey, Rhw is
a subalgebra of H and is also the Hecke algebra associated to (Wp,I) and
same coefficients ¢;.
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Following [LS], one defines the complex X (H) of H-bimodules, from the
following coefficient system on 2°. For I C J C S, let X(H)! = H @y, H
with restriction maps ¢ 7: X(H)! — X(H)” defined by @ 1(h @, h') =
h QH n.

THEOREM 17. (Okuyama, [O, 4.1]) Let Iy C S. The restriction of
X(H) to Hor(Hr,)° is isomorphic in KP(H® (Hp,)°) with H@1,, X(Hi)-

Proof. The proof is very similar to the one of Theorem 9. Let us
abbreviate ®3, as ®; in what follows. Since h,,’s multiply as elements of
W when lengths add, one has H = @WEDIIO HrhwHi, as Hr, Hy,-bimodule.
Then the restriction to H ® (Hy,)° of X(H)! is H ®; ®WEDIIO HrhwHi, =
@WEDIIO H.(l ®r hw).HIO.

Corresponding to Propositions 11 and 12, one has the following.

Let I C S, w € Dyy,. Denote X(H)rpw = H ®1 HrhowHi,-

Then X (H) 1w = H®rwni, Hi, by a map sending 1®7 hy, t0 hy @ pwap, 1.
To see that, note first that if v € Wrwny,, then Yv € Wy and therefore
hywhy = hyy = hwyhy. The claimed isomorphism then corresponds to the
composition of the following (explicit) isomorphisms H®; HrhwHi, = H®;
Hi @1owi, HinwiohwHi, = H @1 Hihy ®@reng, Hi, = Hhw Qruar, Hi, =
H &renr, Hig-

Ifr*nNniy C Jw' NIy with J C S and w’ € Dy, we have the restriction
map H ®renr, Hi, — H ® ju’ A1, Hip,-

If moreover W w = W w', the above corresponds to the restriction map
of X(H), wjr: X(H)rw — X(H)ju through the above isomorphism. To
check this, one evaluates at 1 ® h,. Denote v € W such that w = vw’
with lengths adding. One composition (isomorphism, then restriction map)
gives 1 @1 hy +— hy Qrung 1= hy @ Juwn Io 1, the other composition gives
1®rhy =187 hy =1&7 hyhy = hy @7 by = hyhyy ®J“”ﬂ[o 1.

One may now replace 1 X (H)x Io by the complex associated to the coef-
ficient system on 2° associating to I the bi-module D, H®rwnr, Hi,, a sum
over Dry,, with restriction maps defined by all the maps H ®rwnr, Hr, —
H ® yurng, Hio for I C J, w' € Dy, and Wyw = Wjyw' (which implies
" NIy CJY NI).

Then HX(H)HIO — H®r1, X(Hz,) by a map sending H & wnr, Hr, to 0
if Wrw € Wy, and H®; Hi, — H ®1, Hi, ®1 H, the evident (onto) map
when I C I. The image is the complex associated to the coefficient system
H®1y X(Hp,) on 200,
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Using now the notation of Section 1, the kernel corresponds to the com-
plex associated with the coefficient system on 2%, I — Z! = @beA(Io)Jr,S(b):I
H ®1,5) Hi, With restriction maps sending H ®j,) Hi, into H @,y Hi,
by H ®1, ©15),10(6) Only when S(0') 2 S(b) and b = bU S(b’). The con-
tractibility of Z is immediate by Theorem 4. Then Proposition 13 implies
our claim. []

Remark 18. The above theorem allows to give a proof of the main
result in [LS] and [PS, §3.1] in the following way.

Taking Iy = () in Theorem 17, one gets that X (H) has its homology
concentrated in degree 0. So this homology is the kernel of 3°: H ®zr H —
PB,cs H®n, H, that is the intersection of the kernels of the restriction maps
©0s9: H®rH — H ®y, H defined by h @ ' — h @4, I\

An element x € H ®p H writes in a unique way z = > i hw ® Ty
with z,,’s in ‘H. For s € S, using the partition W = Dy , U Dy ;s and the
law of H, it is clear that ¢, g(z) = 0 if and only if x5 = —(hs)~tzy, for any
w € Dy, Using a reduced decomposition of each w € W, one then gets
that = € ker(d°) if and only if z,, = (—1)"®) (hy,) "'z for any w € W.

Define ¢ := Y, ey (-1)"®hy, ® (hy)™! € H®r H. We now have
ker(9°) = €. H = H as right H-module.

Using the partition W = D,y U sD, 3 and the formula for (hg)?, it is
clear that hyéhs = —q,&, for any s € S. So we get

HY(X(H)) = ker(3°) = H.E = EH = H

where « is the automorphism of H sending hs to —qs(hs) 1.

The R-dual X (H)" has similar properties, so H(X (H))®@nH (X (H)Y) =
+H[0]. On the other hand, the bi-projectivity of the terms of X (H) implies
that the natural map H(X(H) @y X(H)Y) — H(X(H)) @x H(X(H)Y) =
+H[0] is an isomorphism (see [B, 3.4.4)).

THEOREM 19. (Okuyama, [O, Th. 2]) X(H) ®y — induces an auto-
equivalence of the homotopy category KP(H).

Proof. The proof is similar to the one of Theorem 16 with H replac-
ing RG, HHHzo replacing RGej,, Theorem 17 replacing Theorem 9, and
Remark 18 giving the equivalence in the derived category. Also H is sym-
metric, which allows to use Proposition 15.
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Note that we need to have identical statements for X (H) and X (H)".
As in the end of proof of Theorem 16, this is done by applying the contravari-
ant functor M — M" and using the isomorphism X (H) = X (Hy,) @3, H
in KP(H, ® H°). This in turn is deduced from Theorem 17 by noting that
there is a (covariant) functor M +— M"* from mod(H) to mod(H°) corre-
sponding to the isomorphism H = H° (as R-algebras) which is defined by
hs +— hg (and therefore hy, — h,-1). []

85. Generalized Steinberg module and the Solomon-Tits theorem

The context (and notations) are now again the ones of Sections 2 and
3, where G is a finite group with a split BN-pair. Define St(G) as the
object of CP(ZG) associated to the coefficient system on 2° defined by
St(G)! = ZG /Py and @ 7(gP;) = gPy for I CJ C S and g € G.

Compare the following with an old lemma on the Steinberg character
([DM, 9.2]).

THEOREM 20. (Okuyama, [O, 3.7]) Let I C S. Then
Resgl St(G) = Indg St(Ly)
in KP(ZPy).

Remark. Note that, for I = () (and therefore P; = B, Ly = T), the
theorem implies that St(G) has homology only in degree 0 (a theorem of
Solomon-Tits, see [CuRe, 66.33]). Note also that the proof below simplifies
a lot when I = ().

Proof of Theorem 20. We prove the statement with I instead of I. We
actually check a right module version of (i) with St(G)! = Z(P;\G), noting
that the left module version follows by the same type of considerations as
in the end of proofs of Theorem 9 and Theorem 16.

Note also that the definition of St(G) can be made using any system
of parabolic subgroups containing a given Borel subgroup BY. Denote
B~ =B"YS, Py = B-WiB~ =U; .Ly where Uy = UYs NUYS"1,

One may assume that St(G) (resp. St(Ly,)) is associated to the co-
efficient system on 29 (resp. 2[0) defined by I — [P;|ZG, (resp. I
[L1, N P, |ZL1,) where [F| denotes the sum of elements of F' in ZG for
any subset F' C G.
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Let us define a surjective map Resglo St(G) — St(Lg,) ®L,, ZPy, in
CP(ZP;,°), split in each degree and with contractible kernel. Then our
claim will follow by Proposition 13.

Noting that P, \G/Pr, = Wi\W/Wi, is in bijection with Dyj,, one has
Resglo (St(&)!) = @weDuO [P, |wZPp, with connecting map ReSgIO (St(G)!
— St(G)7) sending [P} Jwg to [P} ]wg for any g € P, and I C J C S.

Let us define a map 7: Resg]0 St(G) — St(Ly,) ®r,, ZP, by sending
[P, JwZPp, to 0 except when I C Iy and w = 1 in which case we use
the isomorphism nr: [P, |ZPr, = [P} N Ly,JZPy, = [P; N Ly,]|ZLy, ®Ly,
ZPy, due to the fact that P, N P, = P; N Ly, (apply for instance [CaEn,
Exercise 2.4], or see proof of the Lemma below). This is clearly a surjective
ZPy -homomorphism on coefficients, split at each I. In order to show that
it commutes with connecting maps, we have to check for any I C J C S,
the equality myp 1 = @ rmr where the first ¢ is the connecting map in
St(G) and the second is the one in St(Ly,) ®p, ZPy, (seen as a coefficient
system on 2% by extending trivially on 2° \ 2/0). If J ¢ Iy, both sides are
0. If I € J C I, one gets [P, |g — [P;]g — [P, N Lglg and [P} ]g —
[P NLplg — [PJ_QLIO]gifgGPIO?[P]_]g'_> [Pj]g'_)oand[P[_]g*_’O'_)O
ifgeG \ Py,.

The kernel Z of our map is a graded sum of ZPp -modules Z, =
[Py JwZPy, for b = Wiw € A(lp)", Z, being at degree |I|. To show
that Z is contractible, one imitates the proof of Theorem 4. Recall o €
Endyz(ZA(Iy)") from Proposition 3, which is expressed by o (b) = D beAIo)+
mpy b with myy € Z for b, b e A(Io)+.

Fix b = Wiw and ¥ = Wpw' in A(ly)t with 1,1’ C S and w € Dyy,,
w' € Dy, such that myy # 0. Proposition 3 and Remark 7 tell us that
IynI¥ C Ipn (I and wswwy, <r wsw'wy,. We use that through the
following consequence

LEMMA. (P7)Y N P, C (Pp)"Y' N Py.

This allows to define gyy: Zy = [P JwZP, — Zy = [P, Jw'ZPy, as
the only (ZPp,)°-homomorphism sending [P, Jw to [P}, Jw’. This behaves
like restriction maps: @y © Yy = Py, Whenever bV, V" € A(ly)t with
mpy # 0 and mppr # 0. Defining now d: Z — Z as Zb’eA(Io)+ Mpp Oy
on Zp, the same proof as for Theorem 4 shows that the equations (E5p)
satisfied by the myy’s imply 0 + 0 = Id on Z. 0
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Proof of the Lemma. Replacing I and I’ by their wg-conjugate and w,
w' by wswwy,, wsw'wy, respectively, we have to check that (Pr)* N Py, C

(P )

N Py, as soon as w € Dyp,, w' € Dpy, satisfy 1Y NIy C (I')' N Iy

and w' <, w.

Applying twice [CaEn, 2.27.(i)], one gets Lwny, € P’ Pr, C Prwng, =
Liwnr,.U and “U N Py C U. Therefore P’ N Py, = Liwng,. (U NU). Now
I NIy C (I NIy, while w' <, w implies U*NU C UY' NU (apply [CaEn,
2.3.(iii), 2.23.(i)]). 0
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