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Abstract. Sufficient conditions for the analytic coefficients of the linear dif-

ferential equation

f
(k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0

are found such that all solutions belong to a given H∞
q -space, or to the Dirichlet

type subspace Dp of the classical Hardy space Hp, where 0 < p ≤ 2. For

0 < q < ∞, the space H∞
q consists of those functions f , analytic in the unit

disc D, for which |f(z)|(1 − |z|2)q is uniformly bounded in D, and f ∈ Dp if

the integral
R

D
|f ′(z)|p(1 − |z|2)p−1 dσz converges.

§1. Introduction

The growth of entire solutions of the linear differential equation

(1.1) f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0

with entire coefficients is relatively well known in the complex plane [15],

[20], [23], [32], where efficient tools, such as Wiman-Valiron and Nevanlinna

theories, are available. As for local considerations, Nevanlinna theory has

been applied to fast growing analytic solutions [3], [4], [7], [8], [16], [18],

[21], [22], but the analysis of slowly growing solutions seems to require a

different approach [16], [17], [19], [26], [30].

Chr. Pommerenke [26] studied the second-order equation

(1.2) f ′′ + A(z)f = 0,

where A(z) is an analytic function in the unit disc D = {z : |z| < 1}.
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Theorem A. ([26, Theorem 2]) Let A(z) be an analytic function in

D. There is an absolute constant α > 0 with the following property : If

(1.3) sup
a∈D

∫

D
|A(z)|2(1 − |z|2)3 1 − |a|2

|1 − āz|2 dσz ≤ α,

then all solutions of (1.2) belong to the Hardy space H 2.

The definitions of the Hardy spaces and other relevant concepts are

postponed to Section 2 below.

Theorem B. ([26, Theorem 3]) Let A(z) be an analytic function in D,

and let 0 < δ0 < 1. There is an absolute constant β > 0 with the following

property : If

(1.4) sup
0≤θ≤2π

sup
0<δ≤δ0

1

δ

∫ 1

1−δ

∫ θ+δ

θ−δ
|A(reit)|2(1 − r)3 dt dr ≤ β,

then all solutions of (1.2) belong to the Hardy space H 2.

Pommerenke also pointed out that the constant α in Theorem A sat-

isfies α ≤ 9π. The following corollary offers a simpler but more restrictive

condition on the coefficient A(z) than (1.3) or (1.4).

Corollary C. ([26, Corollary 1]) Let A(z) be an analytic function in

D satisfying |A(z)| ≤ ϕ(r) for |z| ≤ r < 1, where

(1.5)

∫ 1

0
ϕ(r)2(1 − r)3 dr < ∞.

Then all solutions of (1.2) belong to the Hardy space H 2.

Theorem 4 in [26] shows that, if the integral in (1.5) diverges, and if the

function ϕ(r) satisfies certain regularity conditions, then (1.2) possesses a

solution f which is not of bounded characteristic, and hence f 6∈ H 2.

The first author [16] studied the equation

(1.6) f (k) + A(z)f = 0,

where A(z) is analytic in D and k ∈ N.
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Theorem D. ([16, Theorem 4.3(2)]) If the analytic coefficient A(z) of

(1.6) satisfies |A(z)|(1 − |z|)k ≤ α for all z ∈ D, then all solutions of (1.6)

belong to H∞
q , where q = α/(k − 1)!.

Theorem D essentially says that, for a given q > 0, there exists an α,

depending only on q and k, such that whenever |A(z)|(1 − |z|)k ≤ α, then

all solutions of (1.6) belong to H∞
q .

The purpose of this study is to find sufficient conditions for the analytic

coefficients of the linear differential equation (1.1) such that all solutions

belong to a given weighted H∞-space, or to the Dirichlet type subspace

Dp of the Hardy space Hp, where 0 < p ≤ 2. In particular, the results

obtained generalize Theorems A, B and D and Corollary C to equation

(1.1). A number of related results are also presented including, for instance,

boundary versions of the generalizations of Theorems A and D.

The remainder of the paper is organized as follows. The notation is fixed

and the required function spaces are defined in Section 2. The results are

presented and analyzed in Section 3, where some examples are also given.

The necessary auxiliary results, which will be repeatedly used in the proofs

of the results in Section 5, are listed in Section 4.

§2. Notation

Throughout the paper, D(0, R) denotes the Euclidian disc of radius R

centered at the origin, so D(0, 1) = D. For 0 < p ≤ ∞, the Hardy space H p

consists of those functions f , analytic in D, for which

(2.1) ‖f‖Hp = sup
0≤r<1

Mp(r, f) < ∞,

where

Mp(r, f) =

(

1

2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

, 0 < p < ∞,

are the standard Lp-means of the restriction of f to the circle of radius r

centered at the origin, and

M∞(r, f) = M(r, f) = max
0≤θ≤2π

|f(reiθ)|.

Since Mp(r, f) is an increasing function of r, the supremum in (2.1) is in

fact the limit when r tends to 1.
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For 0 < q < ∞, the space H∞
q (respectively H∞

q,0) consists of those

functions f , analytic in D, for which

‖f‖H∞
q

= sup
0≤r<1

M(r, f)(1 − r2)q < ∞

(respectively limr→1−(1 − r2)qM(r, f) = 0).

The spaces H∞
q (resp. H∞

q,0) can be characterized in terms of the α-Bloch

spaces Bα (resp. the little α-Bloch spaces Bα
0 ) consisting of those functions

f , analytic in D, for which

‖f‖Bα = sup
0≤r<1

M(r, f ′)(1 − r2)α < ∞, 0 < α < ∞

(resp. limr→1−(1−r2)αM(r, f ′) = 0, 0 < α < ∞). Indeed, by Proposition E

below, H∞
q = Bq+1 and H∞

q,0 = Bq+1
0 for all 0 < q < ∞. The classical Bloch-

space and the little Bloch-space are B = B1 and B0 = B1
0, respectively. The

spaces Hp, 1 ≤ p < ∞, and Bα, 0 < α < ∞, are Banach spaces with respect

to the norms ‖f‖Hp and ‖f‖Bα + |f(0)|, respectively.

Let the Green’s function of D with logarithmic singularity at a ∈ D be

denoted by g(z, a) = − log |ϕa(z)|, where ϕa(z) = (a−z)/(1− āz) is the au-

tomorphism of D which interchanges 0 and a. Straightforward calculations

show that ϕa is its own inverse and

(2.2) 1 − |ϕa(z)|2 = |ϕ′
a(z)|(1 − |z|2) =

(1 − |a|2)(1 − |z|2)
|1 − āz|2 .

Moreover, let dσz denote the element of the Lebesgue area measure on D.

For 0 < p < ∞, −2 < q < ∞ and 0 ≤ s < ∞, the families F (p, q, s) and

F0(p, q, s) of function spaces consist of those functions f , analytic in D, for

which

‖f‖F (p,q,s) =

(

sup
a∈D

∫

D

∣

∣f ′(z)
∣

∣

p
(1 − |z|2)qgs(z, a) dσz

)1/p

< ∞

and

lim
|a|→1−

∫

D

∣

∣f ′(z)
∣

∣

p
(1 − |z|2)qgs(z, a) dσz = 0, 0 < s < ∞,

respectively. As usual, it is also defined F0(p, q, 0) = F (p, q, 0).

For 1 ≤ p < ∞, F (p, q, s) is a Banach space with respect to the norm

‖f‖F (p,q,s)+ |f(0)|, and so is F0(p, q, s) as a closed subspace of F (p, q, s), see
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[33, Theorem 2.10 and Proposition 2.15]. The spaces F (p, q, s), introduced

by R. Zhao in [33], are known as the general family of function spaces.

The importance of these spaces stems from the fact that, for appropriate

parameter values p, q and s, they coincide with several classical function

spaces. For instance, it is well known that F (2, 1, 0) = H 2 and F (p, p+q, 0)

is the weighted Bergman space Ap
q , where 0 < p < ∞ and −1 < q < ∞,

consisting of those analytic functions f in D such that

‖f‖Ap
q

=

(
∫

D

∣

∣f(z)
∣

∣

p
(1 − |z|2)q dσz

)1/p

< ∞,

see [11, Theorems 6 and 7] and [34, Theorem 4.2.9]. Moreover, F (2, 0, s) =

Qs and F0(2, 0, s) = Qs,0, see [2], and, in particular, F (2, 0, 1) = BMOA

and F0(2, 0, 1) = VMOA, the spaces of analytic functions with bounded and

vanishing mean oscillation, respectively. For other relations, the reader is

invited to see [28] and [33].

For p > 0, the Dirichlet-type space Dp consists of those functions f ,

analytic in D, such that f ′ ∈ Ap
p−1. Thus Dp = F (p, p − 1, 0) and, in

particular, D2 = H2.

A positive measure µ on D is a bounded s-Carleson measure, if

(2.3) sup
I

µ(S(I))

|I|s < ∞, 0 < s < ∞,

where |I| denotes the arc length of a subarc I of the boundary ∂D,

S(I) =
{

z ∈ D : z/|z| ∈ I, 1 − |I| ≤ |z|
}

is the Carleson box based on I, and the supremum is taken over all subarcs

I of ∂D such that |I| ≤ 1. Moreover, if

(2.4) lim
|I|→0

µ(S(I))

|I|s = 0, 0 < s < ∞,

then µ is said to be a compact (vanishing) s-Carleson measure. When s = 1,

(2.3) and (2.4) reduce to the standard definitions of bounded and compact

Carleson measures, respectively.

Two quantities A and B are comparable, if there exist a positive constant

C such that C−1B ≤ A ≤ CB.
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§3. Results

Through the remainder of this paper the coefficients, and hence the

solutions, of (1.1) are assumed to be analytic in D.

The first result generalizes Theorem D to the linear differential equation

(1.1).

Theorem 3.1. For every q > 0 there exists a constant α = α(q, k) > 0

such that if the coefficients Aj(z) of (1.1) satisfy

(3.1) ‖Aj‖H∞
k−j

= sup
z∈D

|Aj(z)|(1 − |z|2)k−j ≤ α, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to H∞
q .

Three different proofs for Theorem 3.1 are given in Section 5.

Corollary 3.2. Let 0 < p < ∞, −2 < q < ∞, and 0 ≤ s ≤ 1 such

that (q + s + 1)/p > 1. There exists a constant α = α(p, q, s, k) > 0 such

that if (3.1) holds, then all solutions of (1.1) belong to F0(p, q, s).

In the statement of Theorem 3.1 it is in fact sufficient to assume that

the supremum in (3.1) is taken over an annulus {z ∈ D : |z| ≥ δ > 0}.

Theorem 3.3. Let 0 < δ < 1. For every q > 0 there exists a constant

α = α(q, k) > 0 such that if the coefficients Aj(z) of (1.1) satisfy

(3.2) sup
|z|≥δ

|Aj(z)|(1 − |z|2)k−j ≤ α, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to H∞
q .

Example 3.4. The functions

(3.3) fn(z) = (1 − z)
1
2
(−a1+1+(−1)n

√
(a1−1)2+4a0 ), n = 1, 2,

are linearly independent solutions of the differential equation

(3.4) f ′′ − a1

1 − z
f ′ − a0

(1 − z)2
f = 0,

where a0, a1 ∈ R such that (a1 − 1)2 + 4a0 > 0. If a1 > q + 1 − a0/q then

f1 6∈ H∞
q , and therefore the constant α in Theorems 3.1 and 3.3 satisfies

α ≤ 2 min
a0∈R

max{|q + 1 − a0/q|, 2|a0|} =
4q(q + 1)

2q + 1



LINEAR ODE’S WITH SOLUTIONS IN DIRICHLET TYPE SPACES 97

in the case k = 2. This clearly implies that α tends to zero as q tends to

zero.

The functions in (3.3) and f3(z) = (1 − z)2 are linearly independent

solutions of

f ′′′ − a1

1 − z
f ′′ − a0 + a1

(1 − z)2
f ′ − 2a0

(1 − z)3
f = 0,

where a0, a1 ∈ R. Therefore the constant α in Theorems 3.1 and 3.3 satisfies

α ≤ 2 min
a0∈R

max{|q + 1 − a0/q|, 2|q + 1 + a0(1 − 1/q)|, 8|a0|}

=















16q(q + 1)

3q + 1
, 0 < q ≤ 1,

16q(q + 1)

5q − 1
, 1 ≤ q < ∞,

in the case k = 3. Once again this implies that α tends to zero as q tends

to zero.

As an immediate consequence of Theorem 3.3 it is deduced that if

|Aj(z)|(1 − |z|2)k−j tends to zero as z approaches the boundary ∂D, then

all solutions of (1.1) belong to H∞
q for all q > 0.

Corollary 3.5. If Aj ∈ H∞
k−j,0 for j = 0, . . . , k−1, then all solutions

of (1.1) belong to
⋂

0<q<∞ H∞
q .

Example 3.6. The functions f1(z) = (1− z)1−
√

2, f2(z) = (1− z)1+
√

2

and f3(z) = 1 − z are linearly independent solutions of

f ′′′ + A1(z)f ′ + A0(z)f = 0,

where Aj(z) = −(1 − z)j−3, j = 0, 1. Clearly, Aj ∈ H∞
3−j \ H∞

3−j,0 for

j = 0, 1, yet f1 6∈ H∞
q , if q <

√
2 − 1. This example shows the sharpness of

Corollary 3.5.

Example 3.7. The functions f1(z) = 1 − z and f2(z) = − log(1 − z)

are linearly independent solutions of

f ′′ + A1(z)f ′ + A0(z)f = 0,
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where

Aj(z) =
1

(log(1 − z) − 1)(1 − z)2−j
, j = 0, 1.

Clearly, Aj ∈ H∞
2−j,0 for j = 0, 1, and f1, f2 ∈ ⋂0<q<∞ H∞

q as Corollary 3.5

claims.

Since the weighted Bergman space A1
k−j−2 is included in H∞

k−j,0, as seen

by Lemma G below, the following consequence of Corollary 3.5 is obtained.

Corollary 3.8. If the analytic coefficient Aj(z) belongs to the weight-

ed Bergman space A1
k−j−2, that is, if

(3.5)

∫

D
|Aj(z)|(1 − |z|2)k−j−2 dσz < ∞, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to
⋂

0<q<∞ H∞
q .

Two observations concerning Corollary 3.8 are made. First, condition

(3.5) implies that the coefficient Ak−1(z) must vanish identically. Second,

if the exponent k− j − 2 in condition (3.5) is increased to k− j − 1, then all

solutions of (1.1) belong to the Nevanlinna class by [19, Theorem 2.2], and

this result is fairly sharp. Since the Nevanlinna class contains functions of

exponential growth, unlike any H∞
q , Corollary 3.8 shows that in this case

the situation changes radically when the exponent k − j − 1 is decreased by

one.

The following result is a generalization of Theorem A.

Theorem 3.9. For every 0 < p ≤ 2 there exists a constant α =

α(p, k) > 0 such that if the coefficients Aj(z) of (1.1) satisfy

(3.6) sup
a∈D

∫

D
|Aj(z)|p(1 − |z|2)p(k−j)−1 1 − |a|2

|1 − āz|2 dσz ≤ α, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to Dp ∩ H∞
p .

Since D2 ⊂ H∞
2 and D2 = H2, Theorem 3.9 reduces to Theorem A

for the second order equation (1.2). More generally, Dp ⊂ H∞
1/p ⊂ H∞

p for

1 ≤ p ≤ 2 by [33, Corollary 2.8] and Proposition E below. If, on the other

hand, 0 < p < 1, then neither of the spaces H∞
p or Dp includes the other

by [33, Propositions 5.8 and 5.9] and Proposition E.
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Note that Theorem 3.9 cannot be obtained by Corollary 3.2 since the

condition (q + s + 1)/p > 1 is not satisfied (q = p − 1 and s = 0), although

the supremum in (3.1) is less than or equal to a constant times the supremum

in (3.6), as one can see by applying Lemma G together with the fact that

the expressions (1 − |a|2)/|1 − āz|2 and 1/(1 − |z|2) are comparable when

z ∈ ∆(a, r). In fact, the space Dp = F (p, p − 1, 0) is the largest among the

spaces F (p, q, s) such that q + s + 1 ≤ p. To see this, observe first that

F (p2, q, s) ⊂ F (p1, q, s) for 0 < p1 < p2 < ∞, and further, for p = q + s + 1,
∫

D

∣

∣f ′(z)
∣

∣

p
(1 − |z|2)p−1 dσz

≤ sup
a∈D

∫

D

∣

∣f ′(z)
∣

∣

p
(1 − |z|2)q(1 − |ϕa(z)|2)s dσz

≤ 2s sup
a∈D

∫

D

∣

∣f ′(z)
∣

∣

p
(1 − |z|2)qgs(z, a) dσz,

so that F (p, q, s) ⊂ Dp with ‖f‖Dp ≤ 2s/p‖f‖F (p,q,s).

The following result says that it is sufficient that the conditions in (3.6)

are satisfied for all a close to the boundary ∂D.

Theorem 3.10. Let 0 < δ < 1. For every 0 < p ≤ 2 there exists a

constant α = α(p, k) > 0 such that if the coefficients Aj(z) of (1.1) satisfy

(3.7) sup
|a|≥δ

∫

D
|Aj(z)|p(1− |z|2)p(k−j)−1 1 − |a|2

|1 − āz|2 dσz ≤ α, j = 0, . . . , k− 1,

then all solutions of (1.1) belong to Dp ∩ H∞
p .

Observing carefully the proofs of Theorems 3.10 and 3.12, it follows

that

(3.8) ‖f‖Dp ≤ C

(

k−1
∑

j=0

C(Aj)

)(

‖f‖Hp +
k−1
∑

j=1

|f (j)(0)|
)

,

where C > 0 depends only on p and k, and

C(Aj) = sup
a∈D

∫

D
|Aj(z)|p(1 − |z|2)p(k−j)−1 1 − |a|2

|1 − āz|2 dσz.

If 2 ≤ p < ∞, inequality (3.8), with C
∑

C(Aj) being replaced by an

absolute constant, holds for all analytic functions f by a classical theorem
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of Littlewood and Paley [24]. However, if 0 < p < 2, inequality (3.8)

together with Lemma J below implies that ‖f‖Hp and ‖f‖Dp must be finite

or infinite at the same time. In other words, if the supremum in (3.6) is

finite for all Aj(z) (that is Aj ∈ F (p, p(k − j + 1) − 2, 1) by Theorem F

below) then none of the solutions of (1.1) belongs to H p \ Dp.

Corollary 3.11. Let 0 < p ≤ 2. If the coefficients Aj(z) of (1.1)

satisfy

(3.9) lim
|a|→1−

∫

D
|Aj(z)|p(1−|z|2)p(k−j)−1 1 − |a|2

|1 − āz|2 dσz = 0, j = 0, . . . , k−1,

then all solutions of (1.1) belong to

Dp ∩
(

⋂

0<q<∞
H∞

q

)

.

Note that condition (3.9) is equivalent to Aj ∈ F0(p, p(k− j +1)−2, 1),

j = 0, . . . , k − 1, by [29, Theorem 3.3] and (2.2).

Theorems 3.12 and 3.13 below generalize Theorem B.

Theorem 3.12. Let 0 < δ < 1. For every 0 < p ≤ 2 there exists a

constant β = β(p, k) > 0 such that if the coefficients Aj(z) of (1.1) satisfy

(3.10) sup
0<|I|≤δ

1

|I|

∫

S(I)
|A(n)

j (z)|p(1 − |z|2)p(k+n−j)−1 dσz ≤ β,

j = 0, . . . , k − 1,

for all n = 0, . . . , k − 1, then all solutions of (1.1) belong to Dp ∩ H∞
p .

In the special case (1.6) it is enough that (3.10) is satisfied only for

n = 0, as is seen by observing carefully the proof of Theorem 3.12.

Theorem 3.13. Let 0 < δ < 1. For every 0 < p ≤ 2 there exists a

constant β = β(p, k) > 0 such that if the coefficient A(z) of (1.6) satisfies

(3.11) sup
0<|I|≤δ

1

|I|

∫

S(I)
|A(z)|p(1 − |z|2)pk−1 dσz ≤ β,

then all solutions of (1.6) belong to Dp ∩ H∞
p .
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The following immediate consequence of [29, Theorem 5.3] and Corol-

lary 3.11 generalizes and improves Corollary C.

Corollary 3.14. Let 0 < p ≤ 2. If the coefficients Aj(z) of (1.1)

satisfy

(3.12)

∫ 1

0
M(r,A

(n)
j )p(1 − r2)p(k−j+n)−1 dr < ∞, j = 0, . . . , k − 1,

for some n = n(j) ∈ N ∪ {0}, then all solutions of (1.1) belong to

Dp ∩
(

⋂

0<q<∞
H∞

q

)

.

Although in general (3.9) is weaker than (3.12), the conditions are equiv-

alent if the Maclaurin series expansion of Aj(z) has Hadamard gaps [29,

Theorem 5.5].

Corollary 3.14 has the following consequence which is obtained by ap-

plying [11, Lemma 3].

Corollary 3.15. If the coefficients Aj(z) of (1.1) satisfy

(3.13)

∫ 1

0
M(r,A

(n)
j )1/(k−j+n) dr < ∞, j = 0, . . . , k − 1,

for some n = n(j) ∈ N ∪ {0}, then all solutions of (1.1) belong to

(

⋂

m≤p≤2

Dp

)

∩
(

⋂

0<q<∞
H∞

q

)

,

where m = maxj=0,...,k−1(k − j + n(j))−1.

The case p = 1 in Corollary 3.14 can be further improved if the condition

(3.12) is satisfied for n = 0.

Corollary 3.16. If the coefficients Aj(z) of (1.1) satisfy

(3.14)

∫ 1

0
M(r,Aj)(1 − r2)k−j−1 dr < ∞, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to D1 ∩ H∞.
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Since clearly D1 contains unbounded functions and H∞ is not included

in D1 by [27], neither of the spaces D1 and H∞ contains the other.

This section is concluded with a corollary which is an immediate conse-

quence of Corollary 3.16 since (3.15) below implies (3.14) by [11, Lemma 3],

see the proof of Corollary 3.15.

Corollary 3.17. If the coefficients Aj(z) of (1.1) satisfy

(3.15)

∫ 1

0
M(r,Aj)

1/(k−j) dr < ∞, j = 0, . . . , k − 1,

then all solutions of (1.1) belong to D1 ∩ H∞.

Corollary 3.17 can be proved in the following alternative way: An ap-

plication of [17, Theorem 5.1] shows that the solutions of (1.1) are bounded.

Moreover, the assumption (3.15) implies that the solutions belong to
⋂

1≤p≤2 Dp ⊂ D1 by Corollary 3.15. However, since the solutions are

bounded, H∞ ⊂ B and Dp1 ∩ B ⊂ Dp2 ∩ B with ‖f‖p2

Dp2 ≤ ‖f‖p2−p1

B ‖f‖p1

Dp1

for 0 < p1 < p2 < ∞, it follows that

(

⋂

1≤p≤2

Dp

)

∩ H∞ = D1 ∩ H∞.

§4. Auxiliary results

First, some n-th derivative characterizations of functions in H∞
q and

F (p, q, s) are recalled.

Proposition E. ([35, Proposition 7]) Let f be an analytic function in

D, 1 < α < ∞ and n ∈ N. Then the following quantities are comparable:

(1) ‖f‖H∞
α−1

,

(2) ‖f‖Bα + |f(0)| ,

(3) sup
z∈D

|f (n)(z)|(1 − |z|2)n−1+α +

n−1
∑

j=0

|f (j)(0)| .

Theorem F. Let f be an analytic function in D, and let 0 < p < ∞,

−2 < q < ∞ and 0 ≤ s ≤ 1. Let n ∈ N and q + s > −1, or n = 0 and

p < q + s + 1. Denote dµ(z) = |f (n)(z)|p(1 − |z|2)np−p+q+s dσz. Then the

following quantities are comparable:
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(1) ‖f‖p
F (p,q,s) + |f(0)|p,

(2) sup
a∈D

∫

D
|f (n)(z)|p(1 − |z|2)np−p+qgs(z, a) dσz +

n−1
∑

j=0

|f (j)(0)|p,

(3) sup
a∈D

∫

D
|f (n)(z)|p(1 − |z|2)np−p+q(1 − |ϕa(z)|2)s dσz +

n−1
∑

j=0

|f (j)(0)|p,

(4) sup
I

µ(S(I))

|I|s +

n−1
∑

j=0

|f (j)(0)|p,

and there are no terms in the sums if n = 0.

For the proof of Theorem F, see [14], [28] and [29].

Theorem F, combined with the definition of s-Carleson measures, im-

plies that f ∈ F (p, q, s) if and only if the positive measure µ such that

dµ(z) = |f (n)(z)|p(1 − |z|2)np−p+q+s dσz is a bounded s-Carleson measure.

The following lemma is obtained by a straightforward calculation, see,

for instance, [33, p. 18].

Lemma G. Let f be an analytic function in D, and let 0 < p < ∞,

0 < q < ∞, 0 < r < 1 and a ∈ D. Then there is a constant C > 0,

depending only on q and r, such that

|f(a)|p(1 − |a|2)q ≤ C

∫

∆(a,r)
|f(z)|p(1 − |z|2)q−2 dσz,

where ∆(a, r) = {z ∈ D : |ϕa(z)| < r}.

The following annulus version of Carleson’s theorem [5], [6], [9], [10],

[12] is needed.

Theorem H. Let µ be a positive measure on D, and let 0 < p < ∞
and 0 ≤ r < 1. Then µ is a bounded Carleson measure if and only if there

is a constant C > 0, depending only on p, such that

(4.1)

∫

D\D(0,r)
|f(z)|p dµ(z) ≤ C‖f‖p

Hp

for all analytic functions f in D, in particular for all f ∈ H p. Moreover,

if µ is a bounded Carleson measure, then C = C1C2, where C1 > 0 is an

absolute constant and

(4.2) C2 = sup
|I|≤1−r

µ(S(I))

|I| .
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If r = 0, then Theorem H reduces to Carleson’s theorem. If 0 < r < 1,

then an application of Carleson’s theorem to the measure µr such that

dµr(z) = χD\D(0,r) dµ(z) shows that C is of the form C = C1C2, where χE

is the characteristic function of the set E, C1 > 0 is an absolute constant,

and

C2 = sup
I

µ(S(I) \ D(0, r))

|I| .

Then the following lemma yields (4.2).

Lemma 4.1. Let µ be a positive measure on D, and let r ∈ (0, 1). Then

(4.3) sup
I

µ(S(I) \ ∆(0, r))

|I| ≤ 2 sup
|I|≤1−r

µ(S(I))

|I| .

Proof. Let I = {eiφ : θ ≤ φ ≤ θ + |I|} be a subarc of ∂D such that

|I| ≤ 1. If |I| ≤ 1 − r, then clearly

(4.4)
µ(S(I) \ ∆(0, r))

|I| =
µ(S(I))

|I| ≤ sup
|I|≤1−r

µ(S(I))

|I| .

If |I| > 1 − r, let n = max{k ∈ N : k(1 − r) < |I|}, and define Ij = {eiφ :

θ + j(1− r) ≤ φ ≤ θ + (j +1)(1− r)} for j = 0, . . . , n. Then |Ij | = 1− r for

j = 0, . . . , n, and therefore

µ(S(I) \ ∆(0, r))

|I| =
1

|I|

∫

S(I)
χD\∆(0,r)(z) dµ(z)(4.5)

≤ 1

|I|

(

n−1
∑

j=0

∫

S(Ij)
dµ(z) +

∫

S(In)
χD\∆(0,r)(z) dµ(z)

)

≤ 1

n

(

n
∑

j=0

1

|Ij |

∫

S(Ij)
dµ(z)

)

≤ n + 1

n
sup

|I|≤1−r

µ(S(I))

|I| ≤ 2 sup
|I|≤1−r

µ(S(I))

|I| .

The assertion follows by (4.4) and (4.5).

The next two lemmas contain some basic properties of Carleson mea-

sures.
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Lemma I. ([1, Lemma 2.1]) Let µ be a positive measure on D, and let

0 < s < ∞. Then µ is a bounded s-Carleson measure if and only if

(4.6) sup
a∈D

∫

D
|ϕ′

a(z)|s dµ(z) < ∞.

Further, the supremum in (4.6) is comparable to the supremum in (2.3).

Furthermore, µ is a compact s-Carleson measure if and only if

lim
|a|→1−

∫

D
|ϕ′

a(z)|s dµ(z) = 0.

Lemma 4.2. Let µ be a positive measure on D, and let t ∈ (0, 1) and

0 < s < ∞. Then

(4.7) sup
|I|≤1−t

µ(S(I))

|I|s ≤ 10s sup
|a|≥t

∫

D
|ϕ′

a(z)|s dµ(z).

Proof. Let z ∈ S(I). Choose a = (1−|I|)eiθ, where eiθ is the midpoint

of I, so that every I on ∂D with |I| ≤ 1 − t corresponds to a unique

a ∈ D with |a| ≥ t, and vice versa. Since |1 − āz| ≤ 1 − |a|2 + |z − a|,
1 − |a|2 = |I|(2 − |I|), and

|z − a|2 ≤
∣

∣

∣
ei
(

θ+
|I|
2

)

− (1 − |I|)eiθ
∣

∣

∣

2

= 1 − 2(1 − |I|)Re
(

e−i
|I|
2

)

+ (1 − |I|)2

≤ 1 − 2(1 − |I|)
(

1 − |I|2
8

)

+ (1 − |I|)2 ≤ 5

4
|I|2,

it follows that |ϕ′
a(z)| ≥ (10|I|)−1 for all z ∈ S(I). This yields inequality

(4.7).

The following lemma gives a relation between Hp- and Dp-norms when

0 < p ≤ 2.

Lemma J. ([31, Lemma 1.4], [11, Theorem 3′]) Let f be an analytic

function in D, and let 0 < p ≤ 2. Then there is a constant C > 0, de-

pending only on p, such that

(4.8) ‖f‖Hp ≤ C
(

‖f‖Dp + |f(0)|
)

.
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If p ≥ 2, then ‖f‖Dp ≤ C‖f‖Hp holds by a classical result of Littlewood

and Paley [24], [25].

The following basic lemma is also needed in Section 5.

Lemma K. ([10, p. 57]) Let an ≥ 0 for n = 1, . . . , N . Then

(

N
∑

n=1

an

)p

≤
(

N
∑

n=1

ap
n

)

, 0 < p ≤ 1,

and
(

N
∑

n=1

an

)p

≤ Np−1

(

N
∑

n=1

ap
n

)

, 1 ≤ p < ∞.

§5. Proofs

Proof of Theorem 3.1. Denote fρ(z) = f(ρz) and Aj,ρ(z) = Aj(ρz),

where 1/2 ≤ ρ < 1. Then Proposition E and the Leibnitz’ formula with

(1.1), see [17, eq. (3.6)], yields

‖fρ‖H∞
q

≤ C1

(

‖f (k)
ρ ‖H∞

q+k
+

k−1
∑

j=0

|f (j)(0)|
)

≤ C2

(

k−1
∑

j=0

j
∑

i=0

‖(A(i)
j,ρfρ)

(j−i)‖H∞
q+k

+

k−1
∑

j=0

|f (j)(0)|
)

.

By Proposition E again,

k−1
∑

j=0

j
∑

i=0

‖(A(i)
j,ρfρ)

(j−i)‖H∞
q+k

≤ C3

k−1
∑

j=0

j
∑

i=0

‖A(i)
j,ρfρ‖H∞

q+k−j+i

≤ C3

k−1
∑

j=0

j
∑

i=0

‖A(i)
j,ρ‖H∞

k−j+i
‖fρ‖H∞

q

≤ C4‖fρ‖H∞
q

k−1
∑

j=0

j‖Aj,ρ‖H∞
k−j

≤ C5α‖fρ‖H∞
q

.

It follows that

(1 − C6α)‖fρ‖H∞
q

≤ C6

k−1
∑

j=0

|f (j)(0)|,
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where the constant C6 depends only on q and k. The assertion is obtained

by choosing α sufficiently small and letting ρ → 1−.

Two alternative ways to prove Theorem 3.1 are given. An application of

the growth estimate [17, Theorem 4.1(a)] and Proposition E together with

the assumption (3.1) yields

(5.1) |f(reiθ)| ≤ C1

(1 − r)αC2
,

where C1 and C2 are positive constants such that C1 depends on the initial

values of f at the origin, and C2 depends on k only. The assertion of

Theorem 3.1 follows by (5.1). Theorem 3.1 can also be proved by applying

[17, Theorem 5.1]. This approach does not require the use of Proposition E,

and it is chosen while proving the boundary version Theorem 3.3 below.

Proof of Corollary 3.2. Let q0 > 0 be small enough so that 1 + q0 <

(q + s + 1)/p. By Theorem 3.1, there exists a constant α > 0 such that if

(3.1) holds, then all solutions of (1.1) belong to H∞
q0

. Now, by Proposition E

and [33, Proposition 5.7], it follows that H∞
q0

= Bq0+1 ⊂ F0(p, q, s), which

yields the assertion.

Proof of Theorem 3.3. Without loss of generality, assume that α ≤ 1

and δ < r < 1. By [17, Theorem 5.1] there is a constant C1 > 0, depending

only on the initial values of f , such that

|f(reiθ)| ≤ C1 exp

(

k

∫ r

0

k−1
∑

j=0

|Aj(se
iθ)|1/(k−j) ds

)

for all θ ∈ [0, 2π], and so the assumption (3.2) yields

|f(reiθ)| ≤ C1 exp

(

k

∫ δ

0

k−1
∑

j=0

|Aj(se
iθ)|1/(k−j) ds(5.2)

+ k

∫ r

δ

k−1
∑

j=0

|Aj(se
iθ)|1/(k−j) ds

)

= C2 exp

(

k

∫ r

δ

k−1
∑

j=0

|Aj(se
iθ)|1/(k−j) ds

)

≤ C2 exp

(

α1/kk2

∫ r

δ

ds

1 − s

)

≤ C2
1

(1 − r)α1/kk2
,
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from which the assertion follows by choosing α = (q/k2)k.

Proof of Theorem 3.9. The assertion follows by Theorem 3.10.

Proof of Theorem 3.10. By Lemma 4.2 and the reasoning in [28, pp. 42–

43] it follows that, for all n = 0, . . . , k − 1 and j = 0, . . . , k − 1,

sup
|I|≤1−δ

1

|I|

∫

S(I)
|A(n)

j (z)|p(1 − |z|2)p(k+n−j)−1 dσz

≤ 10 sup
|a|≥δ

∫

D
|ϕ′

a(z)||A(n)
j (z)|p(1 − |z|2)p(k+n−j)−1 dσz

≤ C sup
|a|≥δ

∫

D
|Aj(z)|p(1 − |z|2)p(k−j)−1 1 − |a|2

|1 − āz|2 dσz,

where the constant C > 0 depends only on p and k. Hence, for α small

enough, all solutions belong to Dp ∩ H∞
p by Theorem 3.12.

Proof of Corollary 3.11. Theorem 3.10 implies that the solutions of

(1.1) belong to Dp. The assumption (3.9) together with [33, Lemma 2.9]

show that Aj ∈ H∞
k−j,0 for j = 0, . . . , k − 1. Therefore, by Corollary 3.5, all

solutions of (1.1) belong to
⋂

0<q<∞ H∞
q also.

Proof of Theorem 3.12. By Lemma G and the fact that 1−|a| and 1−|z|
are comparable for all z ∈ ∆(a, 1/2), it follows that, for all j = 0, . . . , k − 1,

|Aj(a)|p(1 − |a|2)p(k−j)(5.3)

≤ C1

1 − |a|

∫

∆(a,1/2)
|Aj(z)|p(1 − |z|2)p(k−j)−1 dσz,

where C1 depends only on k and p. Let Ia be the arc on the boundary of D

centered at ei arg a with the length 3
2(1− |a|)/(1 − |a|

2 ). Then 1− |a| ≥ 1
3 |Ia|,

and since ∆(a, r), 0 < r < 1, is a Euclidean disc centered at (1 − r2)a/(1 −
|a|2r2) and of radius (1 − |a|2)r/(1 − |a|2r2) [12, p. 3], the disc ∆(a, 1/2) is

a subset of S(Ia). Hence by (5.3),

sup
|a|≥ 3−2δ

3−δ

|Aj(a)|p(1 − |a|2)p(k−j)

≤ sup
|a|≥ 3−2δ

3−δ

C2

|Ia|

∫

S(Ia)
|Aj(z)|p(1 − |z|2)p(k−j)−1 dσz

= sup
|I|≤δ

C2

|I|

∫

S(I)
|Aj(z)|p(1 − |z|2)p(k−j)−1 dσz,
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and it follows that, for α small enough in (3.10), all solutions of (1.1) belong

to H∞
p by Theorem 3.3.

To show that all solutions belong to Dp, let 1/2 ≤ ρ < 1, r = 1− δ, and

let f be a solution of (1.1). Then, by Theorem F and the Leibnitz’ formula,

‖fρ‖p
Dp ≤ C1

(

∫

D
|f (k)(ρz)|p(1 − |z|2)pk−1 dσz +

k−1
∑

j=1

|f (j)(0)|p
)

(5.4)

≤ C2

(

k−1
∑

j=0

j
∑

n=0

∫

D

∣

∣

∣

(

A
(n)
j (ρz)f(ρz)

)(j−n)
∣

∣

∣

p
(1 − |z|2)pk−1 dσz

+
k−1
∑

j=1

|f (j)(0)|p
)

≤ C3

k−1
∑

j=0

j
∑

n=0

∫

D\D(0,r)
|f(ρz)|p|A(n)

j (ρz)|p(1 − |z|2)p(k+n−j)−1 dσz + C4,

where

C4 = C3

(

k−1
∑

j=0

j
∑

n=0

∫

D(0,r)
|f(z)|p|A(n)

j (z)|p(1 − |z|2)p(k+n−j)−1 dσz

+

k−1
∑

j=1

|f (j)(0)|p
)

and the constant C3 depends only on p and k. Since by the assump-

tion and Theorem F the positive measure dµn,j,ρ(z) = |A(n)
j (ρz)|p(1 −

|z|2)p(k+n−j)−1 dσz is a bounded Carleson measure for all 1/2 ≤ ρ ≤ 1,

j = 0, . . . , k − 1 and n = 0, . . . , k − 1, an application of Theorem H and

Lemma J yields
∫

D\D(0,r)
|f(ρz)|pdµn,j,ρ(z) ≤ C5C6(n, j, ρ)‖fρ‖p

Hp(5.5)

≤ C6(n, j, ρ)C7

(

‖fρ‖p
Dp + |f(0)|p

)

,

where C5 and C7 depend only on p, and

C6(n, j, ρ) = sup
|I|≤1−r

1

|I|

∫

S(I)
dµn,j,ρ(z)(5.6)

= sup
|I|≤δ

1

|I|

∫

S(I)
|A(n)

j (ρz)|p(1 − |z|2)p(k+n−j)−1 dσz.
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Therefore, by (5.4), (5.5) and (5.6), and letting ρ → 1−, the assump-

tion (3.10) yields

‖f‖p
Dp(1 − C8β) ≤ C8|f(0)|pβ + C4,

where C8 depends only on p and k. The assertion follows.

Proof of Corollary 3.15. By [11, Lemma 3] there is a constant C > 0,

depending only on p, k, j and n(j), such that

∫ 1

0
M(r,A

(n)
j )p(1 − r2)p(k−j+n)−1 dr

≤ C

(
∫ 1

0
M(r,A

(n)
j )1/(k−j+n) dr

)p(k−j+n)

for all p ≥ 1/(k − j + n(j)), and the assertion follows by Corollary 3.14.

Proof of Corollary 3.16. By Corollary 3.14, all solutions belong to D1.

Further, if g is an analytic function in D, then by the Cauchy integral

formula,

|g′(reiθ)| ≤ 1

2π

∫ 2π

0

|g(ρei(t+θ))|
|ρeit − r|2 dt,

where ρ = (1 + r)/2, and hence

∫ 1

0
M(r, g′)(1 − r)q dr

≤
∫ 1

0

(

sup
0≤θ<2π

1

2π

∫ 2π

0

|g(ρei(t+θ))|
|ρeit − r|2 dt

)

(1 − r)q dr

≤
∫ 1

0
M(ρ, g)

(1 − r)q

ρ2 − r2
dr

≤ 2q+2

∫ 1

0
M(ρ, g)(1 − ρ)q−1 dρ.

Thus, by the assumption (3.14),

∫ 1

0
M(r,A

(n)
j )(1 − r2)k−j+n−1 dr < ∞

for all j = 0, . . . , k − 1 and for all n = 0, . . . , j, and hence the fact that the

solutions are bounded follows by [17, Theorem 4.1].
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