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JOSEPH A. CIMA, IAN GRAHAM∗, KANG TAE KIM† and

STEVEN G. KRANTZ‡

Abstract. This paper treats a holomorphic self-mapping f : Ω → Ω of a

bounded domain Ω in a separable Hilbert space H with a fixed point p. In case

the domain is convex, we prove an infinite-dimensional version of the Cartan-

Carathéodory-Kaup-Wu Theorem. This is basically a rigidity result in the vein

of the uniqueness part of the classical Schwarz lemma. The main technique,

inspired by an old idea of H. Cartan, is iteration of the mapping f and its

derivative. A normality result for holomorphic mappings in the compact-weak-

open topology, due to Kim and Krantz, is used.

§0. Introduction

Perhaps the most important part of the classical Schwarz lemma is the

uniqueness statement: If f : D → D is a holomorphic function from the unit

disc D to itself, f(0) = 0, and |f ′(0)| = 1, then f is a rotation. This rigidity

statement has had considerable effect in the subject of complex differential

geometry. It is the wellspring of many holomorphically invariant metrics,

and has had a notable influence in the subject of mapping theory.

The analogous result in higher (finite) dimensions has been explored by

Carathéodory, Cartan, Kaup, and Wu. See [KRA] and [WU] for a careful

discussion of the matter. The theorem is that, if a holomorphic mapping

f : Ω → Ω of a bounded domain Ω in C
n satisfies f(p) = p for some p ∈ Ω

and |det(Df(p))| = 1, then f is a biholomorphic mapping. We remark here
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that the condition on the Jacobian determinant is, in this case, equivalent

to saying that every eigenvalue of the Jacobian matrix has modulus 1.

In recent years, the study of holomorphic functions and mappings on

a Hilbert or Banach space has received much attention. Work of Lempert

(see for instance [LEM]) has served as a catalyst to this activity. The more

recent work of Kim/Krantz (see [KIK1], [KIK2]) is the more direct genesis

of the present paper. In this rather general setting, many of the familiar

tools of finite-dimensional analysis are no longer available. The geometry is

much more difficult. Yet there is interest in developing these ideas because

of potential applications to mathematical physics and partial differential

equations.

This paper develops a version of the Carathéodory-Cartan-Kaup-Wu

theorem on a separable Hilbert space H. We begin by formulating and

proving a result on a convex domain Ω ⊆ H. This is Theorem 1.1. After-

ward, in Section 3, we present a more refined result (Proposition 3.1) on the

ball in a separable Hilbert space.

The authors thank the Banff International Research Station (BIRS) for

hosting us during the work on this problem, and for providing a stimulat-

ing working environment. We thank John McCarthy, Peter Rosenthal and

Warren Wogen for advice and information about analysis on Hilbert spaces.

§1. Statement of the main results

Let H be a separable, complex Hilbert space, and let B denote its open

unit ball. Let S1 represent the unit circle in the complex plane C. For a

bounded linear operator T on H, denote by σ(T ) its spectrum, i.e.

σ(T ) = {λ ∈ C | T − λI is not invertible} .

A bounded linear operator T : H → H is said to be triangularizable

if there exists a basis {e1, e2, . . .} such that T (Ce1 + . . . + CeN ) ⊂ Ce1 +

. . . + CeN for every positive integer N . In this case, we shall sometimes say

that T is upper-triangular with respect to the basis {e1, e2, . . .}. Note that

the basis that renders an operator upper-triangular can always be taken to

be orthonormal, just because the Gram-Schmidt process preserves the flags

EN = Ce1 + · · · + CeN .

Now we formulate the principal result of this paper:

Theorem 1.1. Let Ω ⊆ H be a bounded convex domain. Fix a point

p ∈ Ω. Let f : Ω → Ω be a holomorphic mapping such that
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(a) f(p) = p ;

(b) the differential dfp is triangularizable ;

(c) σ(dfp) ⊆ S1 .

Then f is a biholomorphic mapping.

To put the theorem in perspective, notice that in dimension n = 1 the

hypothesis specializes to just |f ′(p)| = 1. In several (but finitely many)

variables, the hypothesis is equivalent to (i) non-degeneracy of the Jaco-

bian matrix at p and (ii) all eigenvalues of the Jacobian having modulus

1. In the finite-dimensional case, one can always triangularize. In infinite

dimensions there are geometric conditions (involving the Fredholm index)

for triangularization.

Even if T is a unitary operator on a Hilbert space H (so that certainly

σ(T ) ⊆ S1), it does not necessarily follow that T is triangularizable. For

example, take T to be the forward shift on `2(Z). See [HER] for more on

the triangular operators.

Concerning the assumption (b) in Theorem 1.1, it seems appropriate

to present an example of a bounded convex domain with an automorphism

whose derivative at a fixed point is upper-triangular. Consider the map

A : C
2 → C

2 defined by A(z, w) = (z + bw,−w) for an arbitrary choice for

b ∈ C \ {0}. Then A is an involution (i.e. A ◦ A = I) with eigenvalues ±1;

also A is an upper-triangular linear map. Take any bounded domain D in

C
2 containing the origin. Let

V = D ∪ A(D).

Then let Ω be the convex hull of V in C
2. It is obviously a bounded convex

domain containing the origin. Then A is an automorphism of Ω satisfying

A(0) = 0. Since dA0 = A, the differential dA0 is upper-triangular. Fur-

thermore, if one would sacrifice the convexity of the domain, it is possible

also to obtain a non-linear example. Let G(z, w) = (z, w + z2) for instance,

let f = G ◦ A ◦ G−1, and let W = G(Ω). Then W is a bounded domain

in C
2, and f is an automorphism of W with f(0) = 0. We see that df0 is

clearly upper-triangularizable. It is simple to modify this example to give

an example in an infinite dimensional Hilbert space; one simply needs to

consider a map that is equal to A on a two-dimensional subspace and the

identity on the orthogonal complement of this subspace.
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The referee has raised the question of how large is the class of holo-

morphic mappings f : Ω → Ω satisfying the conditions (a), (b) and (c) of

Theorem 1.1, within the class of such mappings satisfying only (a) and (c).

We believe that rigidity phenomena for automorphisms of domains in infinite

dimensions would imply that the answer depends very much on the domain.

A related question is how large is the class of triangularizable operators on

a separable Hilbert space H within the class of all bounded linear mappings

of H. In this connection we mention the Weyl-von Neumann-Berg theorem

[DAV, p. 59], which asserts that every normal operator is a small compact

perturbation of a diagonalizable (in particular triangularizable) operator.

We thank the referee and the editors for their remarks.

§2. Proof of Theorem 1.1

The proof has several steps, some of which are of independent interest.

2.1. Basic facts on the differential

Let Ω1 and Ω2 be domains in the separable Hilbert space H and let

f : Ω1 → Ω2 be a holomorphic mapping. The differential of f at a point

p ∈ Ω1 is the bounded linear operator on H defined by

dfp(v) = lim
C3h→0

f(p + hv) − f(p)

h
.

Write B(p; r) = {z ∈ H | ‖z − p‖ < r}. Suppose that Ω2 is bounded,

say Ω2 ⊆ B(0;M). In this situation we have

Lemma 2.1. If p ∈ Ω1 and dist(p, ∂Ω1) = d > 0, then

‖dfp‖ ≤
M

d
.

Proof. Choose ρ > 0 so that B(p; ρ) ⊂ Ω1. Let v be a unit vector in

H. The integral representation

(1) dfp(v) =
1

2πi

∫

|ζ|=ρ

f(p + ζv)

ζ2
dζ

leads immediately to the Cauchy estimates

‖dfp(v)‖ ≤
M

ρ
,

and we may let ρ tend to d.
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Lemma 2.2. If ‖dfz‖ ≤ A for every z ∈ B(p; r), then for any pair

z, w ∈ B(p; r) one has

‖f(z) − f(w)‖ < 2rA .

Proof. Write

f(z) − f(w) =

∫ 1

0

d

dt
[f((1 − t)w + tz)]dt

and use the chain rule.

Now, in the situation of Theorem 1.1, f is a holomorphic self-map of a

bounded convex domain in H and p is a fixed point. Let us write T = dfp.

We are assuming that T is triangularizable. Hence it is possible to

choose a basis e1, e2, . . . such that

T (Ce1 + · · · + CeN ) ⊂ Ce1 + · · · + CeN

for every positive integer N . For convenience set

EN = Ce1 + · · · + CeN

for every positive integer N . We shall call such EN a flag. The union of

these flags yields a vector space that is dense in H.

From here on we assume that the operator T is upper-triangular with

respect to a fixed orthonormal basis e1, e2, . . ..

Notice that σ(T ) is contained in the unit circle. Since T is upper-

triangular, the diagonal entries are contained in its spectrum σ(T ), and

hence are of modulus 1.

We also note the following consequence of Lemma 2.1:

Corollary 2.3. There exists a constant C such that

‖T m‖ ≤ C,

for every positive integer m.
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2.2. Iteration of T

In this section T is an upper triangular matrix whose spectrum σ(T ) is

contained in S1 and whose positive powers are uniformly bounded in norm.

Denote by λj the (j, j)-th diagonal entry of T . Then |λj | = 1, j ∈ N.

Lemma 2.4. There exists a sequence of natural numbers {m(k)}k such

that for each fixed j ∈ N, λ
m(k)
j → 1 as k → ∞.

Proof. The sequence of powers {λk
1} is bounded, so there is a convergent

subsequence, say λ
m(1,k)
1 → α1 as k → ∞, where |α1| = 1. Similarly

the sequence of powers {λ
m(1,k)
2 } is bounded, so there is a subsequence

{m(2, k)} of {m(1, k)} such that λ
m(2,k)
2 → α2 as k → ∞, where |α2| = 1.

Continuing in this way and using a diagonal sequence argument, we obtain

a subsequence {m(k, k)} of the natural numbers and complex numbers αj,

j ∈ N, of modulus one such that λ
m(k,k)
j → αj as k → ∞ for each j ∈ N.

Now the sequence

m(k) = m(k + 1, k + 1) − m(k, k), k ∈ N

is easily seen to have the property that

λ
m(k)
j →

αj

αj

= 1

as k → ∞, for each j ∈ N.

If A is an infinite square matrix we denote the (i, j)-th entry by Ai,j,

1 ≤ i, j ≤ ∞. Also, we order the positions above the diagonal in such a

matrix first by column and then by row, i.e. the ordering is (1, 2), (1, 3),

(2, 3), (1, 4) . . .. If N is a positive integer, we denote the N × N truncation

of such a matrix by AN . The N ×N identity matrix will be denoted by IN .

Lemma 2.5. There is a sequence of natural numbers {µ(k)}k such that,

for each N ∈ N,

(TN )µ(k) → IN , k → ∞ .

Proof. Write T = S + V , where S is a diagonal matrix with diagonal

entries of modulus 1 and V has zeros on and below the main diagonal.

Denote the diagonal entries of S by λj, j = 1, 2, . . . .
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By Lemma 2.4, there exists a sequence of natural numbers {m(k)} such

that λ
m(k)
j → 1 as k → ∞, for each fixed j.

The entries {(T m(k))1,2}k are bounded, so there is a subsequence

{µ(k; 1, 2)} of {m(k)} such that {(T µ(k;1,2))1,2}k converges. By similar

reasoning, a further subsequence {µ(k; 1, 3)} has the property that

{(T µ(k;1,3))1,3}k converges, and a further subsequence of that one, denoted

by {µ(k; 2, 3}, has the property that {(T µ(k;2,3))2,3}k converges. Continu-

ing in this way and extracting a diagonal subsequence yields a subsequence

{µ(k)} of {m(k)} such that {(T µ(k)))i,j}k converges for all (i, j), 1 ≤ i <

j < ∞.

Thus there is an infinite square matrix W , whose entries on and below

the main diagonal are zero, such that for each N ∈ N we have (TN )µ(k) →
IN + WN . (For fixed N the convergence may be taken to be in norm, but

the norm convergence is not uniform in N .)

Now choose the smallest value of N ≥ 2 with the property that WN 6= 0.

Then at least one of the entries in the last column of WN is nonzero, and

all entries in the other columns of WN are zero. If ` is a positive integer,

then

((TN )µ(k))` = (TN )µ(k)` → (IN + WN )`, k → ∞,

and the entries in the last column of the matrix on the right are given

by ` times the corresponding entries in (IN + WN ) (except for a 1 in the

(N,N)-position).

But this is a contradiction to the power boundedness of T for sufficiently

large ` (see Corollary 2.3). We conclude that no such N exists, i.e. W = 0.

Therefore the sequence {µ(k)} has the property that (TN )µ(k) → IN as

k → ∞ for each fixed N .

2.3. Iteration of f

Next, consider the iteration given by f 1 = f , fm = f ◦ fm−1 for each

integer m > 1.

We need the following two fundamental results. There is in fact a

Banach space version of the theorem of Kim and Krantz [KIK2]; we indicate

a proof here for the Hilbert space case.

Theorem 2.6. (Kim/Krantz [KIK2]) Let Ω1,Ω2 be domains in a sep-

arable Hilbert space H, and let Ω2 be bounded. Then every sequence {hn :

Ω1 → Ω2 | n = 1, 2, . . .} of holomorphic mappings admits a subsequence

{hn(k)}k that converges to a holomorphic mapping ĥ from Ω1 into the closed
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convex hull of Ω2, in the compact-weak-open topology (i.e., the compact-open

topology in which the strong topology is used on the domain space and the

weak topology is used on the target space).

Proof. Let 〈 · , · 〉 denote the Hilbert space inner product (linear in the

first variable, conjugate-linear in the second). One needs to show that for

every sequence {hn : Ω1 → Ω2 | n = 1, 2, . . .} of holomorphic mappings,

there is a subsequence {hn(k)}k and a holomorphic mapping ĥ : Ω1 → H

such that, for all g in the unit ball of H, 〈hn(k), g〉 → 〈ĥ, g〉, uniformly on

compact subsets, as k → ∞. If g is such that <〈w, g〉 < 1 for all w ∈ Ω2,

then it is clear that <〈ĥ, g〉 ≤ 1, i.e. the image of ĥ must be contained in

the closed convex hull of Ω2.

Let {zn}n∈N be a dense sequence in Ω1. We are going to do the usual

diagonal sequence construction. The sequence {hn} has a subsequence

{hn(1,k)}k such that hn(1,k)(z1) converges weakly to an element ĥ(z1) as

k → ∞. This just uses the boundedness of Ω2.

Now choose a subsequence of {n(1, k)}k , denoted by {n(2, k)}k , so that

hn(2,k)(z2) converges weakly to an element ĥ(z2) as k → ∞. Continue and

then choose the diagonal sequence {hn(k)}k = {hn(k,k)}k generated by this

process.

Since Ω2 is bounded, as we did earlier in the proof of Lemma 2.1, we

let M be a positive constant such that Ω2 ⊂ B(0;M).

Assume that K is a compact subset of Ω1 and let ε > 0. Denote

by D = dist (K, ∂Ω1) and let δ = min{D
3 , Dε

18M
}. Cover K with a finite

number of balls B(x1; δ), . . . , B(xm; δ) such that B(x`; δ) ∩ K 6= ∅ for any

` = 1, 2, . . . ,m, where each x` belongs to the dense sequence {zn}n∈N. Note

that for z ∈ B(x`; δ) one has dist(z, ∂Ω1) > D/3. By Lemma 2.1 we have

‖dhn|z‖ < 3M
D

for such z. This holds for every n. By Lemma 2.2 and the

choice of δ, we have

(2) ‖hn(z) − hn(w)‖ <
6Mδ

D
≤

ε

3

for all z, w ∈ B(x`, δ). For any g in the unit ball of H, choose J = J(g) so

that, for j, k > J , we have

|〈hn(j)(x`) − hn(k)(x`), g〉| <
ε

3

for 1 ≤ ` ≤ m.
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Now for any choice of z ∈ K we have the existence of some ` with

z ∈ B(x`, δ). Then for j, k > J we have

|〈hn(j)(z) − hn(k)(z), g〉| ≤ |〈hn(j)(z) − hn(j)(x`), g〉|

+ |〈hn(j)(x`) − hn(k)(x`), g〉|

+ |〈hn(k)(x`) − hn(k)(z), g〉| .

Each of the terms on the right hand side is less than ε/3. For the first and

third terms this follows from (2), and for the second term it follows from

the choice of J .

This shows that the sequence hn(k)(z) converges weakly to the “as-

signment” ĥ(z) uniformly on compacta. It remains only to show that the

assignment is an analytic mapping on Ω1. But given a fixed z0 ∈ Ω1 and a

unit vector v ∈ H, we can find a > 0 such that the closed disc

S = {z0 + ζv | |ζ| ≤ a}

is contained in Ω1, and hence the analytic functions 〈hn(k)(z0 + ζv), g〉 con-

verge uniformly to 〈ĥ(z0 + ζv), g〉. The mapping ζ 7→ ĥ(z0 + ζv) from the

disc of radius a in C into H is therefore holomorphic. This says precisely

that ĥ is Gateaux holomorphic [HIP], [MUJ]. Since a bounded Gateaux

holomorphic mapping is holomorphic, we are done.

Remark 2.1. By the Cauchy estimates, it follows from Theorem 2.6

that the derivative dhn(k)|z(v) converges to dĥz(v) weakly, uniformly on

compact subsets of Ω1 ×H (i.e., z ∈ Ω1 and v ∈ H).

To see this, let L be a compact subset of Ω1×H. Then for all (z, v) ∈ L,

we have dist(z, ∂Ω1) ≥ a > 0 and ‖v‖ ≤ b, for some positive constants a

and b. It is elementary to see that there exists r > 0 such that

K = {z + ζv | (z, v) ∈ L, |ζ| ≤ r}

is a compact subset of Ω1. Now the relation (1) gives

dhn(k)|z(v) − dhz(v) =
1

2πi

∫

|ζ|=r

hn(k)(z + ζv) − h(z + ζv)

ζ2
dζ ,

for all (z, v) ∈ L. Hence for any linear functional τ on H,

τ ◦ dhn(k)|z(v) − τ ◦ dhz(v)
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=
1

2πi

∫

|ζ|=r

τ ◦ hn(k)(z + ζv) − τ ◦ h(z + ζv)

ζ2
dζ .

The assertion follows easily from this in view of the compactness of K.

Theorem 2.7. (H. Cartan) Let Ω be a bounded domain in H and let

p ∈ Ω. Let f : Ω → Ω be a holomorphic mapping with f(p) = p and dfp = I.

Then f coincides with the identity mapping of Ω.

See [FRV], [KRA] for the proof of Cartan’s theorem.

Now apply Theorem 2.6 to the sequence {f µ(k)}, where f is the mapping

in Theorem 1.1 and {µ(k)} is the sequence constructed in Lemma 2.5. We

obtain a subsequence {f ν(k)} that converges to some f̂ in the compact-weak-

open-topology. The sequence of derivatives at p is {T ν(k)}. The discussion

of the preceding section shows that

lim
k→∞

(TN )ν(k) = IN

for every positive integer N .

Thus

df̂p|EN
= IEN

for every N = 1, 2, . . . .

Note that
⋃

N

EN is dense in H. Since df̂p is bounded and df̂p

∣∣
EN

= IN for

all N , it follows that df̂p = I.

Finally, the fact that f̂(p) = p together with the convexity of Ω implies

that f̂(Ω) ⊆ Ω. Now Cartan’s theorem (Theorem 2.7) implies that f̂ ≡ id.

2.4. Proof of Theorem 1.1

It is time to complete the proof of Theorem 1.1. From the last part of

the preceding subsection, we have

(3) lim
k→∞

f(fν(k)−1(z)) = z = lim
k→∞

fν(k)−1(f(z))

in the compact-weak-open topology on Ω.

By Theorem 2.6, choose a subsequence {f`} of {fν(k)−1} that converges

to a holomorphic mapping ĥ : Ω → Ω in the compact-weak-open topology.

(Recall that Ω is convex and ĥ(p) = p).

The second identity in (3) implies that

(4) ĥ ◦ f = id.
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We see therefore that the holomorphic mapping ĥ is a left inverse of f , and

that f ◦ ĥ is a holomorphic mapping from Ω into itself.

On the other hand, one cannot immediately deduce from the first iden-

tity in (3) that f ◦ ĥ = id, because it is only known at this point that f`

converges to ĥ weakly. (With respect to the weak topology on the source-

domain and the strong topology on the target-domain, holomorphic map-

pings need not be continuous.) So it is necessary to show that f ◦ ĥ = id.

Now (4) implies that

dĥp ◦ dfp = I.

Since dfp is invertible, we see that dĥp is also the right inverse of dfp. This

implies that

d(f ◦ ĥ)p = dfp ◦ dĥp = I.

Applying Cartan’s Theorem (Theorem 2.7) again to f ◦ ĥ : Ω → Ω, we see

that

f ◦ ĥ = id.

Therefore f is a biholomorphic mapping of Ω onto itself. This completes

the proof.

§3. Closing remarks

For holomorphic functions (i.e. C-valued functions) on a domain in a

separable Banach space, there is a normality result for the compact-open

topology, similar to the finite-dimensional case [HUY], [KIK2], [MUJ]. For

holomorphic mappings there is no such result unless one makes further

restrictions [HUY]. However, it is possible to obtain interesting theorems

about holomorphic mappings using normality with respect to the compact-

weak-open topology.

The assumption that the differential be triangularizable at the fixed

point is not necessary for the conclusion of Theorem 1.1 to be valid. In the

case of the unit ball B of the Hilbert space H, a unitary map conjugated

by a Möbius transformation is a holomorphic automorphism, but in general

the differential at the fixed point is not triangularizable. This phenomenon

reflects the difficulty in the case of infinite dimensional holomorphy caused

by the excessive size of the isotropy group in such cases as the ball (in

finite dimensions, large isotropy group characterizes the ball—see [GRK]).

However, the ball case has a reasonable formulation as follows.
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Proposition 3.1. Let f : B → B be a holomorphic mapping, let p ∈
B, and let Mp be a Möbius transformation of the ball sending p to the origin.

If f satisfies:

(1) f(p) = p,

(2) U ◦d[Mp]|p ◦dfp ◦d[M−1
p ]|0 is triangularizable, for some unitary trans-

form U , and

(3) σ(U ◦ d[Mp]|p ◦ dfp ◦ d[M−1
p ]|0) lies in the unit circle in C,

then f is an automorphism of B.

The arguments given in this article surely yield a proof of Proposition

3.1. However, one can simplify the argument, thanks to the fact that the

domain in consideration is the unit ball. Indeed, from Schwarz’s lemma, up-

per triangularity and the spectrum condition, one obtains that the operator

V = U ◦ d[Mp]|p ◦ dfp ◦ d[M−1
p ]|0 has norm 1. It is known [DIN] that such a

linear transformation V is in fact unitary. Thus Cartan’s Theorem applied

to V −1 ◦U ◦Mp ◦ f ◦M−1
p implies that this map is the identity map. Hence

f is a holomorphic automorphism of B. The authors would like to thank

Warren Wogen for pointing out this line of reasoning.

The convexity assumption on Ω was necessary due to the use of weak

convergence in several places. Whether one can remove this additional as-

sumption should be an interesting problem to explore in future work. It

would also be of interest to know whether there is a result of Schwarz-Pick

type in our infinite-dimensional context.

References

[BOM] S. Bochner and W. T. Martin, Functions of Several Complex Variables, Princeton

University Press, Princeton, 1936.

[CON] J. B. Conway, A Course in Operator Theory, American Mathematical Society,

Providence, RI, 2000.

[DAV] K. R. Davidson, C∗-algebras by example, Fields Institute Monographs, American

Mathematical Society, Providence, RI, 1996.

[DIN] S. Dineen, The Schwarz Lemma, The Clarendon Press, Oxford University Press,

Oxford, 1989.

[DUS] N. Dunford and J. T. Schwartz, Linear Operators, Interscience, New York, 1988.

[FRV] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-

Holland, Amsterdam, 1980.



THE CARTAN THEOREM ON A HILBERT SPACE 29

[GRK] R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the

isotropy subgroups of their automorphism groups, Indiana Univ. Math. J., 34

(1985), 865–879.

[HER] D.A. Herrero, Triangular operators, Bull. London Math. Soc., 23 (1991), 513–554.

[HIP] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math.

Soc. Coll. Publ. 31, Providence, R. I., 1957.

[HUY] C.-G. Hu and T.-H. Yue,Normal families of holomorphic mappings, J. Math. Anal.

Appl., 171(1992), 436–447.

[KIK1] K.-T. Kim and S. G. Krantz, Characerization of the Hilbert ball by its automor-

phism group, Trans. Amer. Math. Soc., 354 (2002), 2797–2818.

[KIK2] K.-.T. Kim and S. G. Krantz, Normal families of holomorphic functions and

mappings on a Banach space, Expo. Math., 21 (2003), 193–218.

[KRA] S. G. Krantz, Function Theory of Several Complex Variables, American Mathe-

matical Society-Chelsea, Providence, RI, 2001.

[LEM] L. Lempert, The Dolbeault complex in infinite dimensions, J. Amer. Math. Soc.,

11 (1998), 485–520.

[MUJ] J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam and

New York, 1986.

[NAR] R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago,

1971.

[WU] H. H. Wu, Normal families of holomorphic mappings, Acta Math., 119 (1967),

193–233.

Joseph A. Cima

Department of Mathematics

University of North Carolina

Chapel Hill, North Carolina 27514 USA

cima@math.unc.edu

Ian Graham

Department of Mathematics

University of Toronto

Toronto, CANADA M5S 3G3

graham@math.toronto.edu

Kang Tae Kim

Department of Mathematics

Pohang University of Science and Technology

Pohang 790-784 KOREA

kimkt@postech.ac.kr



30 J. A. CIMA, I. GRAHAM, K. T. KIM AND S .G. KRANTZ

Steven G. Krantz

Department of Mathematics

Campus Box 1146

Washington University in St. Louis

St. Louis, Missouri 63130 USA

sk@math.wustl.edu


