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On the occasion of Professor George Lusztig’s 60" birthday

Abstract. Nazarov [Naz96] introduced an infinite dimensional algebra, which
he called the affine Wenzl algebra, in his study of the Brauer algebras. In this
paper we study certain “cyclotomic quotients” of these algebras. We construct
the irreducible representations of these algebras in the generic case and use this
to show that these algebras are free of rank r™(2n—1)!! (when Q is u-admissible).
We next show that these algebras are cellular and give a labelling for the simple
modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In
particular, this gives a construction of all of the finite dimensional irreducible
modules of the affine Wenzl algebra.

§1. Introduction

The Brauer algebras were introduced by Richard Brauer [Bra37] in
his study of representations of the symplectic and orthogonal groups. In
introducing these algebras Brauer was motivated by Schur’s theory (see
[Gre80]), which links the representation theory of the symmetric group &,
and the general linear group GL(V') via their commuting actions on “tensor
space” V" where &,, acts by place permutations. Analogously, the Brauer
algebras are the centralizers of the image of a symplectic or orthogonal group
in End(V®"), where V is the defining representation of the group.

The Brauer algebras have now been studied by many authors and they
have applications ranging from Lie theory, to combinatorics and knot the-
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ory; see, for example, [BW89], [Bro56], [DWH99], [Eny04], [FG95], [HR95],
[HW89a], [HW89b], [Jon94], [LRI7], [Mar96], [Naz96], [Ram95], [Rui05],
[Ter01], [Wen88], [Wey97], [Xi00]. In this paper we are interested not so
much in the Brauer algebra itself but in affine and cyclotomic analogues of
it. Our starting point is a (special case of) Nazarov’s [Naz96] affine Wenzl
algebra #,2(Q), an algebra which could legitimately be called the degen-
erate affine BMW algebra. Nazarov introduced the affine Wenzl algebra
when studying the action of “Jucys-Murphy operators” on the irreducible
representations of the Brauer algebras. Nazarov’s idea was that the affine
Wenzl algebra should play a similar role in the representation theory of the
Brauer algebras to that played by the affine degenerate Hecke algebra of
type A in the representation theory of the symmetric group.

Let R be a commutative ring. The representation theory of the affine
Wenzl algebras #,2(Q), where Q = {w, € R | a > 0}, has not yet been
studied. Motivated by the theory of the affine Hecke algebras and the
cyclotomic Hecke algebras of type G(r,1,n) [Ari96], [DJM99], [Kle05] we
introduce a “cyclotomic” quotient %, (u) = #,21(Q)/([T—, (X1 — w;)) of
#2(Q), which depends on an r-tuple of parameters u = (uy,...,u,) € R".
We call #;,,(u) a cyclotomic Nazarov-Wenzl algebra. This paper develops
the representation theory of the algebras 7., (u).

The first question that we are faced with is whether the cyclotomic
Nazarov-Wenzl algebra 7, ,,(u) is always free as an R-module. The Brauer
algebra %, is free of rank (2n — 1)l = 2n —1)-(2n —3) ----3-1. We
expect that the cyclotomic Nazarov-Wenzl algebra #/.,(u) should be free
of rank 7"(2n — 1)!. In Section 3, a detailed study of the representation
theory of #,2(u) shows that, in the semisimple case, #;2(u) has rank
r™(2n — 1)!!,=2 if and only if Q is u-admissible (Definition 3.6). This
constraint on €2 involves Schur’s ¢g-functions. Our first main result is the
following.

THEOREM A. Let R be a commutative ring in which 2 is invertible.
Suppose that u € R" and that § is u-admissible. Then the cyclotomic
Nazarov-Wenzl algebra #;. () is free as an R-module of rank r™(2n — 1)

The proof of this result occupies a large part of this paper. The idea be-
hind the proof comes from [AK94]: for “generic” R we explicitly construct
a class of irreducible representations of #;. ,(u) and use them to show that
the dimension of #;.,(u)/ Rad #; ,(u) is at least r"(2n — 1)!l. It is reason-
ably easy to produce a set of r™(2n — 1)!! elements which span %#.,,(u), so
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this is enough to prove Theorem A. We construct these irreducible repre-
sentations by giving “seminormal forms” for them (Theorem 4.13); that is,
we give explicit matrix representations for the actions of the generators of
Wy n(u). The main difficulty in this argument is in showing that these ma-
trices respect the relations of #;.,,(u), we do this using generating functions
introduced by Nazarov [Naz96]. There is an additional subtlety in that we
have to work over the real numbers in order to make a consistent choice of
square roots in the representing matrices.

The next main result of the paper shows that #; ,(u) is a cellular
algebra in the sense of Graham and Lehrer [GL96]. This gives a lot of
information about the representations of the cyclotomic Nazarov-Wenzl al-
gebras. For example, cellularity implies that the decomposition matrix of
#;.n(u) is unitriangular.

THEOREM B. Suppose that 2 is invertible in R and that  is u-ad-
missible. Then the cyclotomic Nazarov-Wenzl algebra ;. ,(u) is a cellular
algebra.

We prove Theorem B by constructing a cellular basis for #;.,,(u). We
recall the definition of a cellular basis in Section 6; however, for the impa-
tient experts we mention that the cell modules of #;.,(u) are indexed by
ordered pairs (f,\), where 0 < f < [ %] and X is a multipartition of n —2f,
where 0 < f < | ], and the bases of the cell modules are indexed by certain
ordered triples which are in bijection with the n-updown A-tableaux.

Finally we consider the irreducible #;. ,(u)-modules over a field R. The
cell modules of #;.,,(u) have certain quotients DUY | where 0 < f < 5]
and A is a multipartition of n — 2f, which the theory of cellular algebras
says are either zero or absolutely irreducible. Now, the cyclotomic Nazarov-
Wenzl algebra #;.,(u) is filtered by two sided ideals with the degenerate
Hecke algebras 4. ,,_o¢(u) of type G(r,1,n — 2f) appearing as the succes-
sive quotients for 0 < f < |§]. In Section 6 we show that the algebras
J.m(u) are also cellular (in fact, this is the key to proving Theorem B); as
a consequence, the irreducible 7. ;,(u)-modules are the non-zero modules
D?*, where X is a multipartition of m.

Using the results of the last paragraph we can construct all of the irre-
ducible representations of the cyclotomic Nazarov-Wenzl algebras when €2
is admissible. This enables us to construct all finite dimensional represen-
tations of the affine Wenzl algebras over an algebraically closed field when
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2 is admissible (Theorem 7.19). In the special case when wy # 0 we also
have the following classification of the irreducible #;. ,(u)-modules.

THEOREM C. Suppose that R is a field in which 2 is invertible, that
Q is u-admissible and that wg # 0. Then {DUN | 0 < f < 151, A F
n—2f and D # 0} is a complete set of pairwise non-isomorphic irreducible
W, n(1)-modules.

As an application of Theorem C we give necessary and sufficient con-
ditions for #;.,,(u) to be quasi-hereditary when R is a field and wg # 0.

We note that Orellana and Ram [OR], building on [LR97], gave ex-
plicit formulae for the seminormal representations of the affine and cyclo-
tomic BMW algebras [OR, Theorem 6.20]. As the (degenerate) affine Wenzl
algebra is the degeneration of the affine BMW algebra, it is natural to ex-
pect that we should be able to derive the seminormal representations of
#M(Q) from the results of [OR]. Unfortunately, this is not possible be-
cause Orellana and Ram construct the seminormal representations only for
a very restrictive class of cyclotomic BMW algebras corresponding to cer-
tain specializations of the parameters (see [OR, Theorem 6.17(c-d)]). These
parameter choices are sufficient for the purposes of [OR], however, it is not
clear that “enough” of these parameter choices are u-admissible so we are
unable to exploit [OR]. We also remark we had to work quite hard to ensure
that we had made a consistent choice of square roots in our seminormal rep-
resentations (cf. Assumption 4.12), and that it is not clear to us that [OR]
have made a coherent choice of roots in their seminormal representations.

Another possible approach to the construction of the seminormal rep-
resentations in this paper is via Jones’ “basic construction” [Wen88]. Wenzl
constructed the semisimple irreducible representations of the Brauer alge-
bras this way. The final step of his argument used the non-degeneracy of
the Markov trace to show that all partitions of n are “permissible” (see
[Wen88, Theorem 3.4]). We were unable to extend Wenzl’s arguments to
the cyclotomic Nazarov-Wenzl algebras because we were unable to prove
that we have an analogous non-degenerate trace form. Note also that, a
priori, it is not clear that #.,,—1(u) is a subalgebra of #;. ,,(u).

Finally, we remark that other variants of signed and cyclotomic Brauer
algebras, G-Brauer algebras and cyclotomic BMW have been studied pre-
viously in the papers [CGWO05], [GH], [HOO01], [PK98], [PK02], [PS02],
[RY04].
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Affine and cyclotomic Nazarov-Wenzl algebras

In [Naz96], Nazarov introduced an affine analogue of the Brauer algebra
which he called the (degenerate) affine Wenzl algebra. The main objects
of interest in this paper are certain “cyclotomic” quotients of Nazarov’s

algebra. In this section we define these algebras and prove some elementary

results about them.

Fix a positive integer n and a commutative ring R with multiplicative

identity 1r. Throughout this paper we will assume that 2 is invertible in R.

DEFINITION 2.1. (Nazarov [Naz96, §4]) Fix Q@ = {w, | a > 0} C R.
The (degenerate) affine Wenzl algebra #;*% = #,21(Q) is the unital asso-
ciative R-algebra with generators {S;, F;, X; |1 <i <mnand1 < j < n}
and relations

a) (Involutions) S? =1, for 1 <i < n.
b) (Affine braid relations)

(iii) S;X; = X;S; if j #i,i + 1.

(i) SZSJ = SJSZ if |Z —j| > 1,

(ii) SZSZ+1SZ = Si+1SiSi+1, for1<i<n-—1,

¢) (Idempotent relations) E? = woE;, for 1 <i < n.
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d) (Commutation relations)
(Z) SZ'EJ' = E]’SZ', if |Z - ]‘ > 1,
(Z’L) EZE] = EJEZ, if |l —]‘ > 1,
(i) E;X; = X,E;, if j #£d,i+1,
iU) XZX] = Xin, for 1 < i,j <n.

e) (Skein relations) S; X; — X;+15; = E; — 1 and X;S; — S; X;41 = E; — 1,
for 1 <i<n.

f) (Unwrapping relations) F1 X{E; = w,F1, for a > 0.

g) (Tangle relations)

(i) BE;S; = E; = S;E;, for 1 <i<n-—1,

(i) SiFip1E; = Sit1Fy, for 1 <i<n-—2

(’L’L’L) Ei—i—lEiSi—i-l = Ei-i-lSia for 1 S 1 S n— 2.

h) (UntWiStiIlg relations) EZ'JrlEiEiJrl = EriJrl and EZEZJrlEZ = EZ', for
1<i<n—-2.

i) (Anti-symmetry relations) F;(X; + X;+1) = 0 and (X; + X;+1)E; =0,
for 1 <i<n.

Our definition of #,2T differs from Nazarov’s in two respects. First,
Nazarov considers only the special case when R = C; however, as we will in-
dicate, most of the arguments that we need from [Naz96] go through without
change when R is an arbitrary ring. More significantly, Nazarov considers
a more general algebra which is generated by the elements {S;, E;, X;, 0, |
1<i<n,1<j<nanda > 0} such that the w, are central and the
remaining generators satisfy the relations above. For our purposes it is
more natural to define the elements w, to be elements of R because with-
out this assumption the cyclotomic quotients of Wnaﬁ would not be finite
dimensional.

Note that EiEi—I—lSi = EiEi+1EiSi+1 = EiSi—I—l and Si-i—lEiEi-i-l =
SiEiv1FEiEi1 = S;FE;11. Thus a quick inspection of the defining relations
shows that 7,2 has the following useful involution.

2.2. There is a unique R-linear anti-isomorphism % : "//naﬁ — %aﬁ
such that
Sr=S8;, E'=F; and X;‘:X-

% J

forall1 <i<nand all 1 <j <n. Moreover, x is an involution.
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Using the defining relations it is not hard to see that #/* is generated
by the elements S4,...,S,-1, F1, X1. There is no real advantage, however,
to using this smaller set of generators as the corresponding relations are
more complicated.

LEMMA 2.3. (cf. [Naz96, (2.6)]) Suppose that1 <1i <mn and thata > 1.
Then

SiX{ =X\ Si +ZX§’+11 i — DX,

Proof. We argue by induction on a. When a = 1 this is relation 2.1(e).
If @ > 1 then, by induction, we have

5= S0 = (XS SN 0
X{18:X; +ZXf+11 - DX

b=1

Now, by the skein relation 2.1(e), S; X; = X;+15; + E; — 1, so

SiXatt = X4 (X418 + E; — 1) ZX};% — )Xottt
a+1
= XS Y X e,
as required. 0

COROLLARY 2.4. Suppose that a > 0. Then

2a+1
wog+1 b1 = { woq + E belw2a+lfb}E1-

Proof. Take i = 1 and multiply the equation in Lemma 2.3 on the left
and right by E;. Since S1F; = E; = F1.51, this gives

a
E\X{Ey = EyX§E + Y E1 Xy (B - DX{ By
b=1
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Since ElecEl = w.F1, El(Xl —|—X2) = 0 and X; X5 = X9X7 we can rewrite
this equation as

a
wo b = (—1)'w. E1 + Z(—l)bflEle_l(El - 1DX{ B
= (—1)"w,Ey + Z )N (B X B X B - By X E)
= (—1)w.Er + Z(_l)b_l(walwafb —wq—1)En

a a
= (—1)%w.Er + Z(—l)bilwb_lwa_bEl + Z(—l)bwa,lEl.
= b=1

Setting a = 2a’ + 1 proves the Corollary. 0

If we assume that Ey # 0 in %" and that #,*% is torsion free then this
result says that the w,, for a odd, are determined by the wy, for b even.

Remark 2.5. If a > 0 then the proof of the Corollary also gives the

identity
2a

0= {Z(—l)b’lwb,lwm,b}El.

b=1

However, this relation holds automatically because

2a a 2a
Z(_l)bilwb—lc‘&a—b = Z(—l)bflwb—lwm—b + Z (—1)" wp-1wab
b=1 b=1 b*a—i—l
a
= ()" wp_qwae— b+z Y waa—pwy 1
b=1 =1
= 0.

Before we define the cyclotomic quotients of #,*, which are the main
objects of study in this paper, we recall some standard definitions and
notation from the theory of Brauer algebras and some of Nazarov’s results.

A Brauer diagram on the 2n vertices {1,...,n,1,..., 7} is a graph with
n edges such that each vertex lies on a (unique) edge. Equivalently, a Brauer
diagram is a partitioning of {1,...,n,1,..., 7} into n two element subsets.
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Let B(n) be the set of all Brauer diagrams on {1,...,n,1,...,7}. Then
#B(n) = (2n — 1)IL.

Let v € B(n) be a Brauer diagram. A vertical edge in ~ is any edge
of the form {m,m}, where 1 < m < n. Horizontal edges are edges of the
form {m,p}, or {m,p}, where 1 <m < p <n.

For i =1,...,n — 1 let 7(i,i + 1) be the Brauer diagram with edges
{i,i +1}, {i + 1,4} and all other edges being vertical. Similarly, let v; be
the Brauer diagram with edges {4,i+ 1}, {i,7 + 1}, and with all other edges
being vertical. We set s; = by(;;41) and e; = by,. We also let 7. be the
graph with edges {{i,i} | 1 <i < n}.

Brauer diagrams can be represented diagrammatically as in the follow-
ing examples. The vertices in the first rows are labelled from left to right
as 1 to 4, and the vertices in the second row are labelled 1 to 4.

= 11T wen = K100 = 1T

Given two Brauer diagrams 7,7’ € B(n) we define their product to be
the diagram e+’ which is obtained by identifying vertex 7 in v with vertex
iin~/, for 1 <i < n. Let £(7,v) be the number of loops in the graph v e+’
and let v o+’ be the Brauer diagram obtained by deleting these loops. The
following pictures give two examples of the multiplication yo~y’ of diagrams.

Wl el e
SR (o B

In the first example v = v(1,2), v/ = 72 and ¢(v,7') = 0. In the second
example v =/ = 49 and £(v,7') = 1.
Recall that R is a commutative ring.

DEFINITION 2.6. (Brauer [Bra37]) Suppose that w € R. The Brauer
algebra A, (w), with parameter w, is the R-algebra which is free as an R-
module with basis {b, | v € B(n)} and with multiplication determined
by

byby = w0,

for v,~" € B(n).



56 S. ARIKI, A. MATHAS AND H. RUI

It is easy to see that %, (w) is an associative algebra with identity b, .
We abuse notation and sometimes write 1 = b, .

The second example above indicates that ef = we;, for 1 <17 < n.
Similarly, 522 =1,forl <i<n.

Let &,, be the symmetric group on n letters. To each permutation
w € &,, we associate the Brauer diagram ~(w) which has edges {{i, w(i)} |
for 1 <1i <n}. Notice that if w = (4,7 + 1) then this is consistent with the
notation introduced above for the elements s; = b.(; j4.1) € %n(w).

The diagrams {y(w) | w € &,,} are precisely the Brauer diagrams which
do not have any horizontal edges. It is easy to see that the map w — b,y
induces an algebra embedding of the group ring RS, of &,, into %, (w). In
this way, RS, can be considered as a subalgebra of %, (w).

There is a well-known presentation of %, (w), which we now describe.
See [MWO00] for example.

PROPOSITION 2.7. Suppose that R is a commutative ring. The Brauer
algebra B, (w) is generated by the elements s1,...,Sn—1,€1,...,en_1 subject
to the relations

s? =1, e? = we;, S;€; = €;8; = €,
SZ'SJ' = SjSZ', siej = CjSi, eiej = ejei,
SkSk+1Sk = Sk+1SkSk+1, €kCEk+1€k = €k, Ck+1€kCL+1 = Ck+15
Sk€k+1€k = Sk+1€k, €k+1€kSk+1 = €k+1S5k;

where 1 < 4,5 <n, with |t —j| > 1, and 1 <k <n— 1.
Let s;; = bv(ivj% and let e;; = b%.j where ;; is the Brauer diagram with
edges {i,j}, {i,7} and {k,k}, for k #1,].

COROLLARY 2.8. (Nazarov [Naz% (2.2)]) Suppose that w € R and let

= {wa | a > 0}, where w, = w(252)", for a > 0. Then there is a sur-

]ectwe algebra homomorphism m : Wy, ﬁ(Q) — By (w) which is determined
by

1
w—1 iz
m(Si) = si, w(E) =¢€;, and 7(X;)=—F—+ Z Skj — €kj),
k=1
for1<i<nand1l <j<n. Moreover, kerm = <X1 — (WT—1)>7 so that

Q) /(X1 — (451)) = Bu(w).
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Notice, in particular, that 7(X;) = WT_I To prove this result it is
enough to show that the elements 7(X;), for 1 < j < n, satisfy the rela-
tions in #,*1(Q). For these calculations see [Naz96, Lemma 2.1 and Propo-
sition 2.3].

Fix a Brauer diagram v € B(n). By Proposition 2.7 we can write
by as a word in the generators si,...,s,_1,€1,...,€,—1. Fix such a word
for b, and let B, € #,21(Q) be the corresponding word in the generators
Sl, e ,Sn_l, El, e 7En—1- Then ’R’(BW) = b,y.

Given o, 8 € Ny and v € B(n) write

XOB,XP = X0 ... X0 B, X0 ... XPn,

We want to use these monomials to give a basis of #,*(Q). The anti-
symmetry relations E;(X; + X;11) =0, for 1 < i < n, show that the set of
all monomials is not linearly independent. In Theorem 2.12 below we will
show that the following monomials are linearly independent.

DEFINITION 2.9. Suppose that a, 5 € N§j and v € B(n). A monomial
X*B,XP in #,25(Q) is regular if

a) a, =0 whenever r is the left endpoint of a horizontal edge in the top
row of ~.

b) if B; # 0 then [ is the left endpoint of a horizontal edge in the bottom
row of 7.

We can view a regular monomial X*B,X # as a Brauer diagram if we
colour the horizontal and vertical edges with the non-negative integers using
«a and [.

Following Corollary 2.4 we also make the following definition. (Recall
that we are assuming that 2 is invertible in R.)

DEFINITION 2.10. Let Q = {w, € R|a > 0}. Then Q is admissible if

1 2a+1
Woa4+1 = 5{—602@ + Z (—1)b_1wb—1w2a+1—b}a
b=1

for all a > 0.

By Corollary 2.4 E; is a torsion element if ) is not admissible.
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Remark 2.11. Let y be an indeterminate and consider the generating
series Wi(y) = > .50 way ™% Then the condition for 2 to be admissible can
be written as

(#5050~ 1) = (-0 +):

Similar generating functions play an important role in Section 4.

THEOREM 2.12. (Nazarov [Naz96, Theorem 4.6]) Suppose R is a com-
mutative ring in which 2 is a unit and that Q@ = {w, € R | a > 0} is
admissible. Then “//naﬁ(ﬂ) is free as an R-module with basis {X“B, X" |
o, €N, v € B(n), and X*B, X" is regular}.

Sketch of proof. We have defined the elements of €2 to be scalars, but
Nazarov [Naz96] works with a larger algebra "//aﬁ(Q) generated by elements
Si, By, Xj,for 1 <i<nand1l < j <n, and Q = {©, | a > 0} where
these generators satisfy the same relations as the corresponding generators
of #(Q) except that the elements of (2 €2 are central elements of Waﬂ(Q),
rather than scalars. Hence, #,(Q) = ”//aff( )/I, where I is the two sided
ideal of %ﬁ( 1) generated by the elements {@qg —wq | a >0}

Nazarov puts a grading on Waff( ) by setting degS; = degE; =
deg, = 0and deg X; = 1. To prove the result it is enough to work with the
associated graded algebra gr(”//aﬂ(Q)), where the grading is that induced
by the degree function. The arguments of Lemma 4.4 and Lemma 4.5 from
[Naz96] go through without change for an arbitrary ring, so VZEH(SA)) is
spanned by

{XQB'YX/&C/JQQ(DZAL . a,3 €Ny, v € B(n)7 ho; > 0, for i > 1, }’

with only finitely many ho; # 0

where the monomials X*B,X"? are all regular (see [Naz96, Theorem 4.6]).
This implies that the regular monomials span #,2%(Q) for any ring R.

To complete the proof we first consider the case where the elements of Q’
are indeterminates over Z and we consider the affine Wenzl algebras defined
over the field C(2') and over the ring Z[Q)']. We write Wﬁfl(ﬂ’) = 28(Q))
to emphasize that #,2(Q) is defined over the ring R.

Using Nazarov’s algebra V/aff( ') and arguing as above, it follows from
[Naz96, Lemma 4.8] that the set of regular monomials are linearly indepen-
dent when R = C(€'). By the last paragraph, the regular monomials span
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WZB‘[%,M(Q’). Using the natural map Wz[g/] () — ngl,)m(ﬂ’) it follows
that V/ﬁg/]7n(9’ ) is free as a Z[Q)']-module and has basis the set of regular
monomials. Hence, by a specialization argument, if R is arbitrary ring R
and 2 C R then

WELQ) = 50 () @z R,

where we consider R as a Z[Q']-module by letting w/, € Q' act on R as
multiplication by w, € Q, for a > 0. Hence, #21 (Q) is free as an R-module
with basis the set of regular monomials as claimed. b

We are now ready to define the cyclotomic Nazarov-Wenzl algebras.
We assume henceforth that €2 is admissible.

DEFINITION 2.13. Fix an integer » > 1 and u = (u1,...,u,) € R'".
The cyclotomic Nazarov-Wenzl algebra #;, = #;,(u) is the R-algebra
HA Q) /(X1 —wr) -+ (X1 —uy)).

We should write #.,,(u, ), however, in Section 3 we will restrict to
the case where Q is u-admissible (Definition 3.6), which implies that w, is
determined by u, for a > 0. For this reason we omit 2 from the notation

for #;. »(u).
By Corollary 2.8 the Brauer algebras %,,(w) are a special case of the cy-
clotomic Nazarov-Wenzl algebras corresponding to » = 1 and ) =

{w(*7%)" [ a >0}

By definition there is a surjection 7, : Waﬁ( ) Wrn
notation, we write S; = m,,(S5;), Ei = 70 (E;), X o
Trn(By) for 1 <i<n,1<j<nand~yeB(n).

Notice that because (X1—u1) - - - (X1—u,) = 0in %}, (u) the cyclotomic
Nazarov-Wenzl algebras have only r unwrapping relations; that is, we only

n(u). Abusing
j), and B, =

need to impose the relations E1 X{E; = weEq, for 0 <a <r—1.

Every #;.,(u)-module can be considered as a #,21(Q)-module by in-
flation along the surjection 7., : #21(Q) — #;.,(u). In particular, every
irreducible %, (u)-module is also an irreducible #,2%(Q2)-module. Con-
versely, it is not hard to see that every irreducible #,*(Q)-module M over
an algebraically closed field can be considered as an irreducible module for
some cyclotomic Nazarov-Wenzl algebra %#. ,,(u), where u depends on 2 and
M. At first sight this is not very useful because almost all of the results in
this paper require that € be u-admissible (Definition 3.6) and, in general, it

seems unlikely that €2 will be u-admissible for all of the parameters u that
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arise in this way. Nevertheless, this observation and the theory of cellular
algebras allows us to construct all of the finite dimensional #,2%(Q) modules
over an algebraically closed field when 2 is admissible; see Theorem 7.19.

For our first result about the cyclotomic Nazarov-Wenzl algebras we
prove the easy half of Theorem A. That is, we show that ., (u) is spanned
by r™(2n — 1)!! elements.

DEFINITION 2.14. Suppose that «, 3 € N§j and v € B(n).

a) The monomial X*B, X" in #; ,(u) is reqular if X*B,X? is a regular
monomial in #2(Q).

b) The monomial X*B,X? in #;.,(u) is r-regular if it is regular and
0<aq;f <r,forall<i<n.

PROPOSITION 2.15.  The cyclotomic Nazarov-Wenzl algebra #;. () is
spanned by the set of r-regular monomials {XO‘BVXﬁ}. In particular, if R
s a field then

dimg #;.,,(u) < r"(2n — 1)!.

Proof. By Theorem 2.12, and the definitions, #; ,(u) is spanned by
the regular monomials in % ,,(u). As in the proof of Theorem 2.12, we put
a grading on #;,(u). Then in the associated graded algebra, gr #; ,(u),
we have the relation (X; —up)--- (X; —u,) = 0. We claim that the regular
monomial X O‘BWXﬁ can be written as a linear combination of r-regular
monomials. If X*B,X B is an r-regular monomial then there is nothing to
prove so we may assume that X*B, X # is not r-regular and, in particular,
that |a| 4 || > 0. Then, using the relation (X; —uy)--- (X; —u,) =0 we
can subtract a linear combination of r-regular monomials from X°B,X B
to obtain a linear combination of regular elements of smaller degree. The
claim now follows by induction.

Finally, a counting argument shows that the number of r-regular mono-
mials is equal to 7™ (2n — 1)!I. Therefore, if R is a field then dimpg #;. ,(u) <
r™(2n — D). H

The degenerate (cyclotomic) Hecke algebra 2, ,(u) of type G(r,1,n)
is the unital associative R-algebra with generators 714,...,7Tn-1,Y1,...,Yn
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and relations

(Y1 —wup) -+ (Y1 —u,) =0, T? =1,
T;T; = T;T;, YiYi =YY,
LY = Yin Ty = —1, YiT, - T;Yi1 = —1,
TiTjTj = Tj 1T+, Y, = Y,T;

forl<i<mn,1<j<n—1with|i—j|>1,and 1<k <mn, l#ii+]1
Therefore there is a surjective algebra homomorphism #/.,(u) — 74 ,(u)
determined by

Si+—1T;, E;+—0, and X;+——1Yj,

for 1 <i<nand1l < j <n. (In fact, a special case of Proposition 7.2
below shows that %”Tn( ) = #,.n(u)/(E1).) Consequently, every irreducible
4. n(u)-module can be con51dered as an irreducible #.,(u)-module via
inflation. These irreducible modules are precisely the irreducibles upon
which F; acts as zero. We record this fact for future use.

COROLLARY 2.16. Suppose that R is a field and that M is an irre-
ducible W, ,(u)-module which is annihilated by some E;. Then M is an
irreducible 7. ,(u)-module.

P’FOOf. As E/L'Jrl = SiSZ'JrlEZ'SZ'JrlSZ' and Sj is invertible for all j, the
two-sided ideal of %, (u) generated by E; is the same as the two-sided
ideal generated by FE;, for 1 < i < n. The result now follows from the
remarks above. []

Recall that the degenerate affine Hecke algebra is a finitely generated
module over its center (see, for example, [Kle05]), which is the ring of the
symmetric polynomials in Y7,...,Y,. This fact, together with Dixmier’s
version of Schur’s lemma, implies that all of the irreducible modules of the
degenerate affine Hecke algebra are finite dimensional.

By the last paragraph the power sum symmetric functions are central
elements of the degenerate affine Hecke algebra. In contrast, only the power
sums of odd degree are central in #,*%(Q). Another difference is that the
affine Wenzl algebra is not finitely generated over its center. To see this,
we give an example of an infinite dimensional irreducible #5*(Q)-module.
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EXAMPLE 2.17. Suppose that  is admissible and that Wi(y) =
Y a0 Way~® is not a rational function in y. Consider V' = &,,~, Rv,. De-
fine an action of %aﬁ(Q) on V by Ev, = wpvg, X1Un = a1, XoUp = —Unt1
and

n—1
Svp, = (—=1)"v, — evp_1 + Z(—l)kwn_k_lvk,
k=0

where ¢ = 1, if n = 1 (mod 2), and ¢ = 0, otherwise. All of the defining
relations except for the relation S? = 1 are easy to check. As S? commutes
with X7, S?vg = vg and X1v,, = vn41, we have that S? acts as the identity
on V.

Now we show that V is irreducible. Let W be a #,*(Q)-submodule
of V. Suppose that EW = 0. If > ¢ v, € W then ) chwpir = 0, for
all £ > 0. As the vectors {(wk,wg+1,...) € R | k> 0} span an infinite
dimensional subspace of R*°, we have ¢, = 0, for all n > 0. Hence W = 0.
Thus, W # 0 implies EW # 0. Then vg € W and W = V. Therefore, V is
an irreducible #,(Q)-module as claimed.

In light of this example, we restrict our attention to finite dimensional
#,4(Q)-modules in what follows.

§3. Restrictions on (2 and the irreducible representations of % »

In this section we explicitly compute the (possible) irreducible repre-
sentations of the cyclotomic Nazarov-Wenzl algebras #;.2(u). As a conse-
quence we find a set of conditions on the parameter set {2 which ensure that
#;2(u) has dimension 3r% = 7*(2n — 1)!!|,,—o when R is a field. In the next
section we will see that these conditions on 2 are exactly what we need for
general n.

The cyclotomic Nazarov-Wenzl algebra #;.2(u) is generated by S1, Ei,
X1 and Xs. Throughout this section we suppose that R is an algebraically
closed field and, for convenience, we set S = S7 and F = Ej.

PROPOSITION 3.1. Suppose that M is an irreducible #; 2(u)-module
such that EM = 0. Then either:

a) M = Rm is one dimensional and the action of #;2(u) is determined
by

Sm=em, Em=0, Xim=um, and Xom = (u;+e)m,
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where e = £1 and 1 < i < r. In particular, up to isomorphism, there
are at most 2r such representations.

b) M is two dimensional and the action of #y2(u) is given by

1 -1b 00 u; 0 u; 0
S uiszj( c 1)’ E— (00)’ XlH(O Uj)’ and XQ’_)(Ojul)’
for some non-zero b, c € R such that bc = (ui—uj)Q—l, where u; # u;.
Up to isomorphism there are at most (g) such representations.

c) M is two dimensional and the action of #y2(u) is given by
Se(30), E=(88), X (G ), ad Xow ().
Up to isomorphism there are at most r such representations.

Proof. As noted in Corollary 2.16 M is an irreducible .7} 2(u)-module.
The result now follows from the representation theory of 4. 2(u): choose
a simultaneous eigenvector m of R[Y7,Y2]. Then, because 4 2(u) =
R[Y1,Ys] + T1 R[Y1, Y2], if M is not one dimensional then it must be two
dimensional. If this is the case, {m,Sm} is a basis of M. Further, if the
eigenvalues for the action Y7 on M are distinct, then we can simultaneously
diagonalize Y7 and Ys. All of our claims now follow. []

Note that since [[;_; (X1 — u;) acts as zero on M, case (c) can only
arise if the u; are not pairwise distinct. The irreducible representations of
#;2(u) upon which E acts non-trivially take more effort to understand.

PROPOSITION 3.2. Let F be a field in which 2 is invertible and that
Ui, ..., up are algebraically independent over F. Let R = F(uy,...,u,)
and let #;2(u) be the cyclotomic Nazarov-Wenzl algebra defined over R,
where wy # 0. Then W, 2(u) has a unique irreducible module M such that
EM # 0. Moreover, if d = dimg M then d < r and there exists a basis
{mi,...,mq} of M and scalars {v1,...,vq4} C {u1,...,u,}, with v; # v,
when i # j, such that for 1 < i < d the following hold:

a) Xym; = vim; and Xom; = —v;my,
b) Em; =~i(mi+---+mg) and

S el YU Vi
C) Sml — 2u; my + Z]#Z ’l}i-i-’l}]'m]’
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where v; = (2v; — (—1)%) [li<j<a zztzg Moreover, w, = Z?:l v3vj, for all

J#i
a > 0; and, in particular,
2(v1 + -+ -+ vq), if d is even,
wn =
0 21 +---+vg)+ 1, ifd is odd.

Conversely, if w, = Z?Zl v$7j, for all a > 0, then (a)—(c) define a #y2(u)-
module M with EM # 0.

Proof. Suppose that M is an irreducible %} >-module such that FM #
0. Note that M is finite dimensional. Let d = dimgp M. We first show

that (a)—(c) hold. Since uy,...,u, are pairwise distinct, we can fix a basis
{m1,...,mgq} of M consisting of eigenvectors for X;. Write X;m; = v;m;,
for some v; € {uy,...,u,}.

Set f := w—loE. This is a non-zero idempotent and fM # 0 since
EM #0.

Fix an element 0 # m € fM. Then Em = wym and Sm = m (since
SE = E) AsO = (X1+X2)Em = (Xl —|—X2)w0m, we have (X1 —|—X2)m =0.
However, X + X5 is central in %, 2, so X1 + X» acts as a scalar on M by
Schur’s lemma. Hence, Xom; = —X1m; = —v;m;, for i = 1,...,d, proving
(a).

We claim that {m, Xim, ... ,Xf_lm} is a basis of M. To see this, for
any a > 0 let M, be the R-submodule of M spanned by {m, X1m, ..., X{m}.
Notice that M, is closed under left multiplication by F since if k > 0 then

1
EXtm = EX fm= —EX*Em = “2Em = wym.
wo wo

Also, by Lemma 2.3,

a
SX0m = (ng +5 xyNE - 1)Xf’b)m
b=1

a
1
= Xgm+ Y (Xg—lEXf—bEw—om - X{7 X4 m)
b=1

a
= Xgm+Y (w:;ngflEm - Xf’bX§’1m>
b=1

a
= (~)"X{m + Y (-1 wap X7 m — (1) X m).
b=1
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So, M, is closed under multiplication by S. Choose a > 0 to be mini-
mal such that {m,Xim,... ,Xf“m} is not linearly independent. Since
Xi”‘lm € M,, M, is closed under multiplication by X;. Hence, M, = M
since M is irreducible. By counting dimensions, M = My 1, proving the
claim.

Next we show that EM = Rm. Suppose that m’' = Z?;ol ;i Xim €
EM. Then

) 1 d—1 d—1 1 d—1
' =y = S e m = 53 (o = (3 e
i=0 o =0

since Fa = wga whenever a € EM. Hence, EM = Rm, as claimed.
Recall that we have fixed a basis {mi,...,mg} of M. Write m =
Zfil r;m;, for some r; € R. Suppose that r; = 0 for some i. Then

H (Xl—vj)-m:().

1<j<d
J#i
This contradicts the linear independence of {m, X1m,..., X {l_lm}; hence,
r; # 0 for i = 1,...,d. By rescaling the m;, if necessary, we can and do

assume that m = mq + - -- + my in the following.

By the argument of the last paragraph, all of the eigenvalues {v1, ..., v4}
of m must be distinct. This also shows that d = dimM < r and that
{v1,...,v4} are algebraically independent (since we are assuming that
u1,...,u, are algebraically independent). In particular, v; and v; + vj,
for i # j, are invertible. So the formula in part (c) makes sense.

As EM = Rm, we can define elements v; € R by

Em; =~vm=~i(mi+---+my), fori=1,....d.

Write Sm; = Z;j 1 gz)mj. Then X;5m; — SXom; = (E — 1)m,; reads

d d
ZCEZUJmJ‘H%(ZCZ )—% (my+--+mg) —

J=1 J=1

Thus, (v; + vj)cg.i) = ; — 0;; and we have

m; + .
V; i z;vz—kv] J

Sm; =
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This proves (c).
Next we prove the formula for 7; given in (b). Since £ = SE we find
that

d d
v —1 k
'Yizmj:Emi:SEmi:%Z{ ]2,0} + v-j—v }mj,
=1 =1 I kg IR

for ¢+ = 1,...,r. Note that some +; is non-zero, since EM # 0. Thus,
comparing the coefficient of m; on both sides shows that

d
1
k14

vj + Vg 2v;

)

k=1

forj=1,....,d.
We claim that

e ([ TG
= ’U - - .
vi+vj/1gij<d 1L ! v; + vj

i>j

det (

To see this, observe that

d
1
9 ) . )2 ( )
(L[l v; H(UZ—I—UJ) det o0y 1< <

i>j

is a symmetric polynomial in vy, ..., vq which is divisible by v; —v; for ¢ # j.
This shows that this determinant is a constant multiple of [, ;(v; — v;)2.

1

To determine the constant, we multiply det (m) 1<ij<d

by vy, set v, = 00
and use induction.

By the last paragraph, the matrix ( is invertible, so

1
vﬁvj)lﬁi,jéd
Y1,---,7%4 are uniquely determined. Hence, to prove the formula for ~;

it suffices to show that
d
2uy, — (—1)4 ; 1
Z Vi ( ) H Vi + V; -1 + —
P + vk Vg — U5 2v;

for 1 <j <d. Let f(z) = % H?Zl 21U and view f(z) as an element
j i
of the function field of the projective line defined over F(v1,...,vq). Then,

the left hand side can be interpreted as the sum Zizl Res,—,, f(2)dz,
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where Res,—, f(z)dz is the residue of f(z) at v, if v # oo, and it is the
residue of —Z% f (i) at 0, if v = co. Thus, the residue theorem for complete
non-singular curves implies that

d

I = (s s 0] <1 g

— Utk ik 2v;”

as required. Hence, we have shown that, for 1 < j <d,

d Vj + Vg
7= v = (OO [ =
kA E

so (b) is proved. (For a combinatorial proof see Proposition 4.21(a) below.)
Now, since Em = wom and m = Z?Zl m;, we have that wy = Zfil ;.
Similarly, we have that w, = Z;”Zl vj7y; because

1
Wam = “2Em = —EX®Em = EX%m
wo wo

d d d
=Y BXimi= Y oiBmi = (3 viv)m
=1 =1 =1

We now show that

d . .
3 2(v1 + + fd
wo = ; (Ul Ud), 1 ?S even,
— 2(v1 4+ - +vg) + 1, if dis odd.

(—1)d .
To evaluate Zle ~i, we consider g(z) = % Hle e

the sum as Z?:1 Res;—y, g(2) dz. Then the residue theorem gives the desired
formula for wg.

We next show that M is uniquely determined, up to isomorphism. Sup-
pose that #; ,(u) has another irreducible module of dimension d’ upon
which e acts non-trivially. Then, by the argument above,

and interpret

2w + -+ ), if ' is even,
wo = . .
20w + - +vl) + 1, ifd is odd,
for some v}, ...,v), C {u1,...,u,}. As we are assuming that uy,...,u, are

algebraically independent, this forces d’ = d and v} = V(i)s, for some o € &4
and 1 <i < d. Hence, by (a)—(c), M = M’ as required.
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Finally, it remains to verify that (a)-(c) define a representation of
¥, 2(u) whenever w, = Zf 1 V8, for a > 0 and +; as above. It is easy to
check that the action respects the relations E(X; + X3) =0 = (X1 + X9)FE,
EX{E = w,F/ and X35 — SXy = E -1 = 5X; — X»S. That SE = FE
and ES = FE on M, follows from the identity Zzzl %1—’“% =1+ ﬁ proved
above. We now prove that S? = 1. Observe that S? commutes with X
when acting on M. As the v; are pairwise distinct, we have S sz = czmz, for
some ¢; € R. Explicit computation shows that ¢; = 1= 2% +7; 34

J=1 vz+vj
d
Computing the residues of h(z) dz, when h(z) = % i:l szZ, proves
that ¢; =1, for 1 <1 < d. [

Remark 3.3. The action of X; on an irreducible % 2(u)-module is not
semisimple in general. For example, let {2 be given by wg =1, w; = 0 and

1 1

§Wa+1 - 1_6

Wa+2 = Wa,,

for a > 0. For r = 2 we set (u1,uz) = (}l, 4) and for r = 3 set (uy,ug,u3) =
(%, %, —%) Then #;2(u) has a two dimensional irreducible module upon
which the generators act as follows:

0

= O
|

NI
\—/

B (1), S (50). X

N,

) and Xgr—>(

PN

Further, X; — i # 0 and (X1 — %)2 =0.

THEOREM 3.4. Let F be a field in which 2 is invertible and that
U, ..., Uy are algebraically independent over F'. Let R = F(uq,...,u,) and
suppose that #y.2(u) is a split semisimple R-algebra and that wy # 0. Then
#y2(1) has dimension 3r? = r"(2n — 1)!|,—o if and only if #;2(u) has an
irreducible representation of dimension r upon which E acts non-trivially.

Proof. 'We have constructed all the irreducible % o-modules in Propo-
sitions 3.1 and 3.2 above. Under our assumptions, Proposition 3.1 implies
that 7. 2(u) has (a) 2r pairwise non-isomorphic one dimensional representa-
tions and (b) (;) pairwise non-isomorphic two dimensional representations.
Note that case (c) from Proposition 3.1 does not occur since uq,...,u,
are pairwise distinct. Further, Proposition 3.2 implies that #/.2(u) has a
unique irreducible representation M such that EM # 0 and, moreover, if
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d = dim M then 1 < d < r. Hence, by the Wedderburn-Artin theorem we
have
dim #; 0(u) = 2r + 4(}) + d* = 2r* + &,

so that dim %, 2(u) = 372 if and only if r = d. The result follows. 0
Note that by Proposition 3.2, under the conditions of the theorem,

#;2(u) has a (unique) representation of dimension r upon which E acts
non-trivially if and only if w, = > %

(—1) )HKN e

Recall that Schur’s g-functions ¢, = ¢q(x) in the indeterminates x =

joa g, for a > 0, where v; = (2u; —

(x1,...,z,) [Mac9b, p. 250] are defined by the equation
"1 + x;y _ Zq ()"
I. I 1=y ¢
=1 a>0

Note that g,(x) is a polynomial in x, for all a > 0.

LEMMA 3.5. Assume that R is an integral domain and that 2 is in-
vertible in R. Suppose that u € R", with u; —u; # 0 whenever i # j. Let
F be the quotient field of R and for a > 0 define

r

wa = (20 — (—1) e JT B +Zi €F,

U —
i=1 1<j<r * J

as in Theorem 3.4. Then wq = qai1(u) —3(—1)"qa(u) +2840. In particular,
wq € R.

Proof. If a = 0 then the result follows from Proposition 3.2, so we
can assume that a > 0. Let f(2) = 32471(2z — (—=1)") [I}_; if—Z; Then
wq can be interpreted as Y ;_; Resz_uZ f(2)dz = —Res,=c0 f(2)dz. Cal-
culating the residue of f(z)dz at z = oo now shows that w, = ga+1(u) —
$(=1)"gq(u) + 30a0. (See [Mac95, (2.9), p. 209] for a more direct proof.)

Hence, w, € R since gp(x) € R[x], for b > 0. 0

We want the cyclotomic Nazarov-Wenzl algebras to be “cyclotomic”
generalizations of the Brauer algebras. In particular, we want them to be
free R-modules of rank 7" (2n —1)!!l. Theorem 3.4 gives sufficient conditions



70 S. ARIKI, A. MATHAS AND H. RUI

on Q = {w, | a > 0} for #;.2(u) to have dimension 7™(2n — 1)!! when R
is an algebraically closed field and n = 2. Consequently, in our study of
¥, n(u) we will require that © have the following property.

DEFINITION 3.6. Let Q = {w, | @ > 0} C R and suppose that u € R".
Then € is u-admissible if w, = go11(u) — 3(—1)"ga (1) + 340, for a > 0.

Remark 3.7. Let R = Z[u] where uy,...,u, are indeterminates. As-
sume that each w,, for a > 0, is a polynomial in u and that wy # 0. Then,
by Theorem 3.4 and Theorems 5.3 and 7.17 below, (2 is u-admissible if and
only if

a) Wrn(§2) @z Q(u) is semisimple, and,
b) #;,(2) is a free R-module of rank r"(2n — 1)!!,

for all n > 0.

Recall from Remark 2.11 that Wl(y) = > .>oWay ¢ where y is an
indeterminate.

LEMMA 3.8. Suppose that u € R". Then ) is u-admissible if and only
if

Wl(y)ﬂ/—%: (y—%(—l)’”)leJ_r:'

1=

Proof. By definition, u-admissibility is equivalent to the identity

Wil) = 5+ 3 (da1(w) = 517 aaw)y

a>0

Now expand this equation using the definition of the Schur ¢-functions. []

COROLLARY 3.9. Suppose that € is u-admissible. Then § is admissi-
ble.

Proof. First suppose that x = (z1,...,x,) are algebraically indepen-
dent and let Q = {w, | a > 0}, where wq = ¢a+1(x) — 5(—1)"qa(X) + 3040, for
a > 0. Then € is x-admissible by definition and hence admissible by Corol-
lary 2.4 and Proposition 3.2. Therefore, by the definition of admissibility
we have the following polynomial identity in x1,...,x,

1 _
Wog+1 = 5{—602@ + Z (-1)° lwalw2a+lfb}-
b=1
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The general case now follows by specializing z; = u;, for 1 <1¢ < r.
For a second proof, note that if €2 is u-admissible then

(W) +v—5) (Tat-m) —v—5) = (5 -4) (5 +):
by Lemma 3.8. Hence, () is admissible by Remark 2.11. b

DEFINITION 3.10. The parameter set {2 is rational if there exists a
k>0 and a1,...,ar € R such that ) satisfies the linear recursion

Witk + Q1Witg—1+ - + apw; = 0,
for all ¢ > 0.

Equivalently, € is rational if € is admissible and Wi (y) is a rational
function. See Lemma 7.18 for another characterization of rationality.
Rationality allows us to give a partial converse to Corollary 3.9.

ProprosITION 3.11. Suppose that R is an algebraically closed field and
that Q) is rational. Then every finite dimensional irreducible Wnaﬁ(ﬂ)—module
can be considered as an irreducible module for some cyclotomic Nazarov-
Wenzl algebra #; n(u) with Q@ being u-admissible.

In particular, if Q) is rational then € is u-admissible for some u.

Proof. As (2 is rational, W, (y) is a rational function and we may write

Wiy +y—35 _ ILy—a)™
y+ 3 [L(y—B5)m’
for some non-negative integers m; and m; and with the «;,3; € R being
pairwise distinct. Using Remark 2.11 it follows easily that

—~ 1 IN Yy + ¢
Wl(@/)+y—§: (y+§)Hﬁa
i=1 !

for some ¢; € R and some s > 0.

Now suppose that M is a finite dimensional irreducible #,2f(Q)-module
and let (X1—A1) -+ (X1—\g) be the characteristic polynomial for the action
of X7 on M. Set

(Cl,. .. ,Cs,)\l, .. ->>\d7_)\17- Cey —Ad), if s is Odd,
(Cl,. .. ,CS,)\l, .. .,/\d,—)\l,. cey —Ad,O), if s is even.

Put r =s+2dif sis odd and r = s+ 2d + 1 if s is even. Then M is an
irreducible % ,(u)-module and 2 is u-admissible. U
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We will improve on this result by showing that we can construct all
of the irreducible modules for the affine Wenzl algebras in Theorem 7.19
below.

§4. The seminormal representations of 7, ,(u)

In this section, we will give an explicit description of the irreducible
representations of #,.,(u) in the special case when R is an field of char-
acteristic greater than 2n and when the parameters u satisfy some rather
technical assumptions; see Theorem 4.13.

The semisimple irreducible representations of the Brauer algebra %, (w)
are labelled by partitions of n — 2m, where 0 < m < [%], and a basis of
the representation indexed by the partition A is indexed by the set of up-
down A-tableaux. Analogously, we might expect that the semisimple irre-
ducible representations of %, ,,(u) should be indexed by the multipartitions
of n — 2m, with the bases of these modules being indexed by the updown
A-tableaux, where A is a multipartition. We will see that this is the case.
We begin by defining these combinatorial objects.

Recall that a partition of m is a sequence of weakly decreasing non-
negative integers 7 = (71,72,...) such that |7| := 71 + 2 + -+ = m.
Similarly, an r-multipartition of m, or more simply a multipartition, is
an ordered r-tuple A = (A1), ..., A(") of partitions A®), with |A| := AV |+
<o+ (AT = m. If X is a multipartition of m then we write A - m.

If A and p are two multipartitions we say that p is obtained from A by
adding a box if there exists a pair (4, s) such that ugs) = )\ES) +1 and Mét) =
A;U for (7,t) # (i,s). In this situation we will also say that A is obtained
from p by removing a box and we write A C g and p\ A = (i,)\l(-s),s).
We will also say that the triple (i,)\gs),s) is an addable node of A and a
removable node of . Note that |u] = [\ + 1.

Fix an integer m with 0 < m < [5] and let A be a multipartition of
n — 2m. An n-updown A-tableau, or more simply an updown A-tableau,
is a sequence u = (uy,us,...,u,) of multipartitions where u, = A and
the multipartition u; is obtained from u;_; by either adding or removing
a box, for i = 1,...,n, where we set uy equal to the empty multipartition
0. Let .Z"(\) be the set of updown A-tableaux of n. Note that A is
a multipartition of n — 2m and each element of .7"¥(\) is an n-tuple of
multipartitions, so the n is necessary in this notation.
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In the special case when A is a multipartition of n (so m = 0), there
is a natural bijection between the set of n-updown A-tableaux and the set
of standard A-tableaux in the sense of [DJM99]. This is the origin of the
terminology of updown A-tableaux. If A\ is a multipartition of n we set
Tst(\) = Z(\) and refer to the elements of 7%'¢()\) as standard M-

tableaux.

DEFINITION 4.1. Suppose 1 < k < n. Define an equivalence relation
L on ZU4(\) by declaring that u Loyt u; = t; whenever 1 < j < n and
j #k, for t,tu € ZU(N).

The following result is an immediate consequence of Definition 4.1.

LEMMA 4.2. Suppose t € T (\) with t,_y = tyr1. Then there is a
bijection between the set of all addable and removable nodes of tx_1 and the

set of u € ZUY(N\) with u Lt

Let A be a multipartition and suppose that u is an n-updown A-tableaux.
For k =2,...,n the multipartitions u, and u;_; differ by exactly one box;
so either uy C ui_1 or up_1 C ui. We define the content of k in u to be the
scalar cy(k) € R given by

c (k): j_i+u87 lf uk\uk‘—lz(iﬂj?S)’
! i—j—us, if w1 \up = (i, 4, ).

More generally, if « = (i,7,s) is an addable node of A\ we define c(a) =
us + j — ¢ and if v is a removable node of A we set c(a) = —(us +j — 7).

The key property of contents that we need to construct the seminormal
representations is the following. Note that we are not (yet) assuming that
R is a field.

DEFINITION 4.3. The parameters u = (uq,...,u,) are generic for
W,.n(u) if whenever there exists d € Z such that either u; = u; = d - 1g
and ¢ # j, or 2u; = d - 1 then |d| > 2n.

For example, u is generic for %} ,(u) if ui,...,u, are algebraically
independent over a subfield of R.

LEMMA 4.4. Suppose that the parameters u are generic for W, ,(u)
and that char R > 2n. Let A be a multipartition of n —2m, where 0 < m <
12|, and suppose that t,u € F"4(N). Then
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a) t=u if and only if ci(k) = cy(k), fork=1,...,n
b) if 1 <k <n then c(k) — ce(k + 1) # 0; and,
)
)

) if tk—1 = tgy1 then c(k) £ cu(k) # 0, whenever u Xt and u #t.
d) 2ci(k)£1#0, for 1 <k <n.

Proof. Part (a) follows by induction on n. The key point is that our
assumptions imply that the contents of the addable and removable nodes
in A are distinct so a A-tableau t is uniquely determined by the sequence of
contents c¢(k), for k = 1,...,n. The same argument proves parts (b), (c)
and (d). [

Until further notice we fix an integer m with 0 < m < | 5] and we fix
a multipartition A of n — 2m.

Motivated by [Naz96], we introduce the following rational functions in
an indeterminate y. These functions will play a key role in the construction
of seminormal representations of #.,(u).

DEFINITION 4.5. Suppose that t € Z%()\). For 1 < k < n, define
rational functions Wy (y, t) by

Wil ) =5 —u+ (v (-1 )Hyjzz

where « runs over the addable and removable nodes of the multipartition
th_1.

The rational functions Wy (y,t) are related to the combinatorics above
by the following result. If f(y) is a rational function and o € R then we
write Resy—q f(y) for the residue of f(y) at y = a.

LEMMA 4.6. Suppose that u is generic and char R > 2n. Let t €
TUA(\) and 1 < k <n. Then

Wk(yvt) _ es Wk(yvt) . 1
y _Z<y5c(a) y ) y —c(a)’

where o runs over the addable and removable nodes of tx_1.
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Proof.  As the c¢(«) are pairwise distinct, we can certainly write

Wi (y, t b Wi (y, t 1
k(Y )—a—i———l—Z(yReS k(Y ))'y—c(a)’

for some a,b € R, where a runs over the addable and removable nodes of
ty_1. Now, a = M]y:w = 0. Let ¢ be the number of addable and
removable nodes of t;_;. Since a partition always has an odd number of
addable and removable nodes, we have that (—1)¢ = (—1)". Therefore,

b — Res Wk(yv t) _
y=0

y (1= (=D(=1)") =0,

DN =

as we needed to show. []

We are now ready to define the matrices which make up the seminormal
form.

DEFINITION 4.7. Let A be a multipartition and £ an integer with 1 <
k < n. Suppose that t and u are updown M-tableaux in Z,“¢()\) such that
ti—1 = ti11. Then we define the scalars ey (k) € R by

Res Wiy, 9 , ift=u,
y=ce(k) Y
ew(k) = Vewk)vew(k), ift#uandu X t,
0, otherwise.

(In (4.12) below we will fix the choice of square roots /ey (k), for t € F44(\)
and 1 <k <n.)

Note that when c((k) # 0 then ey(k) = Resy—, k) W
We remark that if tx_1 # t;1 then the definition of ey (k) still makes
sense, however, we do not define ey(k) in this case as we will not need it
(see Theorem 4.13 below).
It follows from Definition 4.5 that
ce(k) + c(@)

(4.8) eulk) = 2 = ) T 5 =)
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where « runs over all addable and removable nodes of t;_1 with c(a) # ¢((k).
Note that Lemma 4.4 now implies that:

If u Xt then eq(k)#£0, for 1<k < n.

This will be used many times below without mention. Also observe that
Lemma 4.6 can be restated as

Wiy, t ek
(1 R

k
u~t

Given two partitions t and u write tou = « if either u C tand t\u = a,
ortCuandu\t=a.

DEFINITION 4.10. Let t € .Z%4()\) and suppose that t;_; # tyi1, for
some k with 1 < k < n.

a) We define

1
k)= d byk) = /1 — ayk)2.
A N g 1 ai(k)
(We fix the choice of square root for b¢(k) in (4.12) below. Note that
ci(k +1) — ¢(k) # 0 by Lemma 4.4(b).)
b) If t, © tx_1 and t;11 ©t; are in different rows and in different columns
then we define St to be the updown A-tableau

Spt = (tl,...,fkfl,uk,karla s 7tn)

where uy is the multipartition which is uniquely determined by the
conditions ug St = {1 S and {1 Sug = t St,1q. If the nodes
t © t;—1 and t 1 St are both in the same row, or both in the same
column, then Syt is not defined.

We remark that if t;_1 = t;4; then the definitions of a¢(k) and b(k)
both make sense, however, we do not define them in this case as we will never
need them (see Theorem 4.13 below). Moreover, the condition t;_1 # tj1 is
crucial in proving Lemma 4.11(b) below. (In fact, if we drop this condition
then Lemma 4.11(b) is not correct.)

We leave the following Lemma as an exercise to help the reader famil-
iarize themselves with the definitions.
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LEMMA 4.11. Suppose that t € Z"4(\) and 1 < k < n. Then:

a) If Skt is defined then c((k) = cgi(k + 1) and c((k + 1) = cg,i(k);
consequently, ag, (k) = —ay(k

)-
b) If Skt is not defined then ay(k) = £1 and b(k) = 0.

Finally, if tx_1 = tx41 and u X t, where 1 < k < n, we set

etu(k) — Oy

)= S ety

Note that c¢(k) + cy(k) # 0 by Lemma 4.4.
We will assume that we have chosen the square roots in the definitions
of by(k) and ey, (k) so that the following equalities hold.

ASsuMPTION 4.12. (Root conditions) We assume that the ring R is
large enough so that \/ew(k) € R and by(k) = /1 —a(k)? € R, for all
tuc 7\ and 1 <k < n, and that the following equalities hold:

a) If ty—1 # t11 and Skt is defined then bg, (k) = be(k).

b) If ty_1 # tysy and t ~u, where [k — 1| > 1, then by(k) = bu(k).

¢) If ty—1 # tpr1, t # tgro and Skt and Sky1t are both defined then
bSk+1t(k) = bSkt(k + 1).

d) If ty—1 = tpy1 and b, = tiqo then \/ew(k)y/eu(k +1) = 1.

e) If tym1 = tig1, Up—1 = upy1 and ew(k) = ew(k) then y/eu(k) =

euu(k).

F) Iftecy = tp1, th = teo and u Tt w Lt with Spu and Syt
both defined and Sgu = Spiito then by(k)\/ew(k+1) = bn(k +
1)/ €nom (k).

In Lemma 5.4 below we show that if R = R then it is possible to choose
u so that the Root Condition is satisfied.

Assuming (4.12) we can now give the formulas for the seminormal rep-
resentations of %, (u).

THEOREM 4.13. Suppose that R is a field such that char R > 2n and
that the root conditions (4.12) hold in R. Assume that u is generic for
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Wyn(u). Let A(X) be the R-vector space with basis {v¢ | t € Z4(\)}. Then
A(X) becomes a #; n(u)-module via

Z Stu(k)vup if o1 = tet1,
o Spug = whe
af(k)ve+ bi(k)vs, e if teo1 # by,
Z etu(k)vua if th1 = ]
o Epvg= o
0, if teo1 # tegt,

[ ] vat = Ct(j)’l)t,
for1 <k <nandl < j <n and where we set vg, ¢ = 0 if Sit is not defined.

DEFINITION 4.14. We call A(M\) a seminormal representation of
Wrn(@).

We note that the action of the operators Ej and Sp on A()), with
respect to the basis {v( | t € Z"4(\)}, are given by symmetric matrices, for
0<k<n.

For the remainder of this section we assume that R is an algebraically
closed field with char R > 2n and that the parameters u are generic for
¥, n(u) and satisfy (4.12). The proof of Theorem 4.13 will occupy the rest
of this section. Our strategy is to use the rational functions Wy(t, k) to
verify that the action that we have just defined of #/.,,(u) on A(\) respects
all of the relations in #; ,(u).

Throughout this section it will be convenient to work with formal (infi-
nite) linear combinations of elements of A(\) and #.,,(u); alternatively, the
reader may prefer to think that we have extended our coefficient ring from
Rto R((y~1)), where y is an indeterminate over R. In fact, at times we will
need to work with formal series involving more than one indeterminate.

If A is an algebra we let Z(A) be its center.

LEMMA 4.15. Suppose k > 0 and that a > 0. Then there exist elements
w,(ga) n Z(%,k—l(u)) NR[Xy,...,Xk_1] such that

EuX{ By, = w\ Ey,
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and the degree of w,ia), as a polynomial in Xi,...,Xp_1, is less than or
equal to a. Moreover, the generating series Wk(y) =2 >0 w,(f)y’a satisfies
= (y +X3)* =1 (y — Xp)* (= 1
W — gt (W ty- —)-
k1Y) =~y + 5 = X0 —1 (T X Ky) +y =5

Proof. Observe that > o Ex X Ewy~* = so to prove the

Lemma it is enough to argue by induction on k to show that EkmEk =
%Wk(g/)Ek, where Wk(y) and its coefficients are as above.

If £ = 1 then there is nothing to prove. Assume that k& > 1. Starting
with the identity

1 1 1 1 1

S = S + Ey - .
y—Xi y—Xin y+ X Ty—Xe (y— X))y — Xit1)

Py Xk 1Ek+1 —Wk+1(y)Ek+1,
where Wk+1(y) satisfies the recurrence relation above. Nazarov assumes
that he is working over the complex field (so, R = C), however, his argu-
ments are valid over an arbitrary ring. Nazarov also proves that if R = C
then the coefficients of Wi, (y) are central in # ,_; (u). We modify Nazarov’s
arguments to establish centrality for fields of positive characteristic.

Nazarov [Naz96, Prop. 4.2] proves that Fj,

By induction we may assume that the coefficients of Wk(y) commute
with Fy,..., Ex_o and Si,...,Sk_2, so it is enough to show that the co-
efficients of Wiy1(y) commute with E;_; and Si_;. Since k > 2 we can
write

Win) +y -5 X _ (y+X0)?—1(y— X))
kal(y) +y— % Y (y - Xk:)2 -1 (y + Xk:)
(y+ Xp_1)? —1(y — Xp_1)?

)
(Y — Xp-1)?2 = 1 (y + Xp—1)?

As Ej_; and Sp_; commute with %, ;_o(u) it is enough to show that

E,H§ = %E,H and Sk,1§ = %S,H. Now, Ek,1§ = %E,H if and

only if YE,_1X = XE_1), and this follows easily using relation 2.1(i).
To prove that S;_; commutes with % let

Z (14 Xp—12)(1 + Xi2)
am 2" )
(1= Xp—12)(1 — Xg2)

m>0
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where 2 = —y~tor z = (y £ 1)7Y Then ap = 1, a1 = 2(Xp_1 + Xp),
as = 2(Xp_1 + X3)? and

Ay, = (Xk,1 + Xk)am_l — Xp_1Xpay_o, form > 3.

Consequently, if m > 1 then a,, = (Xp—1 + Xi)fm(Xg—1, Xx), for some
fm € R[Xk_1, Xk]. Now, relation 2.1(e) implies that Si_; and Xj_1 + X
commute. Therefore, by induction,

Sk—10m = (Xg—1 + Xi)Sp—1am—1
— (X1 X Sp—1 + Ep1 Xy — XpEp—1)am—2
= (Xg—1 + Xi)am—1Sk—1 — Xp—1 Xkam—25k—1

= U Sk—1

as required.
Finally, it follows from the recurrence relation that w,(f) € R[Xy,...,

Xj—1] and that w,ia) has total degree at most a as a polynomial in X7,...,
Xp_q. [

Remark 4.16. To prove that the w,ia) € Z(#,x-1(u)) Nazarov uses the
identity

—2a—1
Z Y (y + Xp—1)(y + Xi)
eXp 2 X2g+1 + X2a+1 > — .
(a>0 (X5 g )2a+1 (y = Xp—1)(y — Xi)

However, this formula is only valid in characteristic zero.

By Lemma 4.15, we have

—~ 1 —~ 1 . Xi2_ _XzQ
Wato) v 5 = (T +o- ) T 55T (v

As the right hand side acts on each v¢ as multiplication by a scalar we can
define Wy(y,t) € R((y~")) by Wi(y)ve = Wi (y, t)v.

The next Proposition gives a representation theoretic interpretation of
the rational functions Wiy, t) which were introduced in Definition 4.5.

PROPOSITION 4.17.  Suppose that t € F4(\) and that 1 < k < n.
Then .
Wk(y7t) = Wk(yv t)
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Proof. As ) is u-admissible, by Lemma 3.8 we have

T

/Wl(y,t) +y— % = <y + %(_1)7«“) H
t=1

Y+ uy
y—Ut'

Consequently, we can rewrite the definition of Wj(y, t) as
1 T

B 5= (o 50) TG
t=1

k—1

(y+e@? -1 (y—a)?
Ao wreor

If ¢(i) = —ci(j), for some 1 < i,7 <k —1 with i # j, then

ted)?—1 (y—c(i)® G+a())?-1 y-—al)?® _

—c@)? -1 (y+a()? (y-—a()?-1 (y+c()?

Hence, in computing Wk(y,t) we can assume that t = (ti,...

81

ey

th—1,...,t,) where m = [tg_1|, t,, = tp—1 and (i) + (i + 1) = 0 for

m <i<k—1with i —m odd (so t;41 is obtained by adding a box to t;,
for 1 <i < m,and t; = ty_1 for m < i < k —1 with ¢ — m even). Let
tp_1 = (u(l),u@),...,u(’”)). Fix t with 1 < ¢ < r and, abusing notation,
write 3 € ,u,(f) to indicate that § = (k,j,t) is a node in row k of p® . Let
b1 = (kth)a b2 = (]‘%Mg)at), b3 = (kﬁlg) + 17t) and b4 = (k' + 1717t)

Then

11 y = () y—d@B) y+ (B +Dy+ (B -1

y— (@B +Dy—(B)-1) y+d@) y+e

€y,
_y—dp)y—dp2)y+(ps)y+(pa)
y—=c(p3)y—c(pa) y+(pr) y + ¢ (p2)
_y—=cd@)y—dp2) y+ps) y+(pa)
y+cp)y+cdp2)y—dps)y—(pa)’

(

all k& shows that
(y + ur) (y+e3)? =1 y—cB)®  jrytele
(y—m)ll(y—d@V—l @+cw»2_[1y—da

Beu®

)
)7
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where, in the first product, every node is considered to be an addable node
and, in the second product, « runs over the addable and removable nodes
of u®. Hence,

— 1 1 Y+ c(a)
Wl 0 +y— L= (5 Loay) [,
where a runs over the addable and removable nodes of ty_1 = (u(l), cees
7). {
COROLLARY 4.18.  Suppose that t € Z 4()\) and that 1 < k < n and
a>0. Then B X2 Brve = w\® Eoe.

Proof. 1If ty_1 # tp41 then EkX,iEkvt =0 = w,(j)Ekvt, SO we may
assume that t,_1 = t11. Now, by definition, e (k) = v/eu(k)/ew(k). So

Y Y
E Eyve=FE ———ew(k
ky—Xk kUt kzky_cu(k)etu( JVu
u~t
=YY i R)ewk)vn
Y cu(k)

ro~u u~t

= (Z Lew(ko et (k) Vo

AW

to~t u~t

= Wi(y, ) Exyve = Wi(y, £) Egog,

by Proposition 4.17. By Lemma 4.15, w\® € R[X1,..., X_1], so w\@ v, =

k
w,ga)vu whenever t ~ u. Therefore,

Eky _ka Eyvy = Z etu(k)wk(y, t)v, = Z etu(k)Wk(% W) vy

urlit urlit
=Wi(y) Y ew(k)vy = Wi(y)Epor.
urlit
Comparing the coefficient of y~%, for a > 0, on both sides of the last
equation proves the Corollary. U

LEMMA 4.19. Suppose that t € T 4 (\) with ty_1 = ty1 and ty = tyo.
Then ett(k)ett(k + 1) =1.
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Proof. The recursion formula of Lemma 4.15 and Proposition 4.17
show that

(y — ci(k)? (y + ci(k))? — 1
(y+ c(k))? (y — e(k))? = 17

1 1
Wi (y,t) +y — 5= (Wk(y,f) +y— 5)

and, by definition,

Wiy, t) +y — 1 (y - %(—1)7‘> ku(k;

2 Yy — cu(k
u~t
Thus,
Win.0+y—35 (1 \y—alk) y+eak) -1
y B <1 2y( D >y + ce(k) (y — ce(k))? — 1
% Y+ Cu(k)
klt—I#t y — cu(k) .

Taking residues at y = —c¢(k) = ¢((k + 1) on both sides of this equation,
we have

_ 2¢(k) 4+ (—1)" ci(k) — cu(k)
eulk 1) = = B —1 kH co(k) + cu(k)
u~t, u£t
B 1 ce(k) —cu(k) 1
- 20{(]6) — (_1)7’ kH Ct(]f) + Cu(k') N ett(k) '
u~ot, uF£t
where the last equality uses (4.8). [

We remark that the condition t; = t;42 is needed in Lemma 4.19 only
because eg(k + 1) is not defined without this assumption.

LEMMA 4.20. Fiz an integer k with 1 < k < n — 1 and suppose that

tu,ro € ZUU(N) are updown A-tableauzs such that ty_y = tpy1, te = tiyo,

u it t, 1o £ ¢ and that Siu and Skt are both defined with Syu = Sy 1to.

Then by(k)?ewu(k + 1) = bp(k + 1)%eron (k).

Proof. Let 0 = t, © {1 and 7 = ug4q S t. Spu = Skt implies
T = 1wy O ty—1. Then, by (4.8),

ern(k) = (2e(7) — (1)) [] 5=
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where « runs over the addable and removable nodes of t;_; = to;_; with
c(a) # ¢(1) and, similarly,

ewlk+1) = 2c(r) — (1)) [[ 55—

where o runs over all addable and removable nodes of t; = u; with c¢(a) #

c(t). We have epw(k) = Resy:c(T)w and ey (k + 1) =

Resy—c(r) w Further, by Lemma 4.15 and Proposition 4.17,

we have

1
Wi (y,t) +y — 5= (sz(y,f) +y— —)

It follows that

ew(k+1)  (c(o)+c(1)? =1 (c(r) —c(0))? b (k + 1)?

ewm(k)  (c(o) +e(r)? (c(7)

where the last equality follows from the definitions because (cy(k),cy(k
D, cu(k +2)) = (c(0),c(7), =¢(7)) and (cw (k) cr(k + 1), cw(k + 2))
(e(7), =e(7), c(0)).

cla)2 -1 by(k)?2 ~’

= Il +

The following combinatorial identities will be used in the proof of The-
orem 4.13.

PROPOSITION 4.21.  Suppose that t,u' € T 4UN) with ty_1 = ty1, t #
tpio, U Lt and v’ #t, where 1 <k <n—1. Let t € Z*(\) be the updown

tableau which is uniquely determined by the conditions t ~ t and 4, = ty 0.
Then the following identities hold:

—~

P

euu(k) B 1
2 Z OET O]

u~t

ewk) g1 1 1
D)2 Gl r e (1 4ct(k)2)eu(/~c) T k)

. ewu(k) B 1
)2 (ci(k) + cu(k)) (cu(k) + ey (k) 2ci(k)ew (k)
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Proof. It follows from (4.9) and Definition 4.7 that

Wi (y, t) _ Z euu(k)
Yy A cu(k)
u~t
Evaluating both sides at y = —c¢(k) and using (4.5) gives (a).
By Proposition 4.17 and Corollary 4.18 we have

1 1 Wi(y,t Wi(v,t
B, By, — ( Ky, t)  Wi(v,t)

= Xo)0—Xp) = oy Ty ; )Ekvt.

Comparing the coefficients of v¢ on both sides of this equation we obtain

euu(k) 1 44 (yat) 44 (vvt)
2= SR S 1

k) —cu(k) v-yl y v

k
u~t

Setting y = —c¢(k) we obtain

euu(k)
zk: (ce(k) + cu(k)) (v — cu(k))

u~t

- v+it(k){<Wk(v7t) - %) * (2ct1(k) * %)}

v

_ 20— (— Hv—i—cuk 1

20w+ ek Lo —cy(k) 2ct(k)v'
uwt

Setting v = —cy (k) gives (c). Now we set v = —c¢(k). Then it gives

Z : (keuu(k) _ 2¢(k) + (—1)7 H c(k) — cu(k) N 1

)+ cu(k)? dey(k)? - ci(k) + ceu(k)  2c(k)?
u~t u~t
u#t
On the other hand, multiplying the reciprocal of (4.8) by (1 — W) gives
(1 1 ) 1 2¢i(k) + (—1)" H ci(k) — cu(k)
40{(]6)2 ett(k) 40{(]6)2 Ct(k’) + Cu(]{) '

urlit, u#£t

Combining these two equations gives (b). 0
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We are now ready to start checking that the action of #;.,,(u) on A(\)
respects the relations of #;. ,(u). We break the proof into several lemmas
and propositions.

LEMMA 4.22. Suppose t € Z,"4(\). Then

a) E?v¢=woEvy, for 1 <i<n.

b) EZ\X{Ejve = weEjvy, for a > 0.

c) (X1 —up)(X1 —ua) - (X1 —up)ve =0.

d) XiXjve= X;Xv¢ for 1 <i,j <n.

e) Bi(X;+ Xit1)ve= (Xs + Xip1)Eivg=0,1<i<n-1.

) (SiXi—Xit1S)ve = (B — Doy = (X35 — SiXit1)vg, for1 <i<mn-—1.
9) ExEpwe= EEgveif |k -1 > 1.
h) EpXpo = X Epvg if | # kb + 1.
i) SpXjve = X;Spv if L # k,k+ 1.

Proof. As wy = w%o) and w, = w%a) by Lemma 4.15, parts (a) and (b)
have already been proved in Corollary 4.18. Parts (c)—(f) follow directly
from the definitions of the actions. If |k — 1| > 1 then (4.12)(e) shows that
(g) holds. Assume now that [ # k,k+1. If t;_; # t;4; then cg, () = c¢(1).
If u £ t then cu(l) = ¢¢(1). Combining the last two statements forces (h)
and (i) to be true. U

LEMMA 4.23. Suppose t € T"4(N). Then EyEji1Eyv = Epvy.

Proof. We only prove that EyFEy1Frve = Epvy, since the argument
for the case EpFE._1ELv = Epv¢ is almost identical.

We may assume {;_; = {511 since, otherwise, EpEy 1 Epve = 0 = Bt
Let t be the unique n-updown tableau such that t £ ¢ and t = tpyo. We
have

EpEp 1 Brve= eg(k)eg(k +1) ) eg(k)ou = eg(k)eg(k +1) ) ewl(k)vn.
urlii urlit

Hence, EyEx41Eyve = Egvy by Lemma 4.19. 0

It remains to check relations (a), (b)(i), (b)(ii), (d)(i) and (g) from
Definition 2.1.
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LEMMA 4.24. Suppose that t € F,24(X). Then Sivy = vy.

Proof. Case 1. t;_1 # tx1: If Sitis not defined then a((k) € {—1,1}
and by(k) = 0, which implies SZv¢ = vy. If Sit € Z4(\) then by the choice
of the square roots in (4.12)(a) we have

Sive = (ag(k)? + be(k)bs, (k) ve + (ai(k) + as, (k) be(k)vs, ¢ = ve.

Case 2. t;,_1 = tx11: We have S,?vt = Zw’it(znr’itstn(k)snu(k))vu' So,
the coefficient of v¢ in S,%US is

. ett(k)euu(k) ett(k) 1 _
Zstu(k)sut(k) = Z (ce(k) + cu(k))? o 2¢(k)? + 4eq(k)2 =1,

k k
u~t u~t

where the last equality follows by rearranging Proposition 4.21(b). If u L
and u # t then the coefficient of v, in Slzvt is

) ) _ €tn(k)€nu( )
2 swlB)soulk) = D S e T o)

ot t;ﬁjr;;u
(eu(k) — Dew(k) (ewu(k) — 1)ew(k)
2c(k)(cu(k) + cu(k)) — 2cu(k)(c(k) 4 cu(k))
. evo (k) B 1
= ‘“(k)<§ Tt e T o) )
—0
by Proposition 4.21(c). Therefore, Sv¢ = vy. [

The next two Propositions prove that the action of % ,(u) on A(\)
respects the tangle relations 2.1(g).

PROPOSITION 4.25. For any t € Z"(\), ESyvy = Epve = Sy Epvy.

Proof. Suppose that ty_1 # tx+1. Then either Sit is not defined, or
(Skt)k—1 # (Skt)k+1. In either case, we have EySiv¢ = Exvy = SpEpv = 0.
Suppose ty_1 = tx4+1. Then

SpEpve = Z etu Skzvu = Z Z Suu’ etu Uu"

uNt u/wu u~t
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By Proposition 4.21(a), we have

Zetu(k)suu/(k) = Z M—I—emf{k)w

- . cu(k) + e (k) 2¢y (k)
u~t urot, uFu
euu(k) 1
— eorlk ( uu . )
Eqy ( ) ; Cu(]f) + Cu’(k) 2611/(]{)
u~t
= Ctu/(k).
Hence, Sy Frvy = Epve. One can prove that EiSive = Erv similarly. 0

PROPOSITION 4.26. Suppose that t € F,24(\). Then

a) SpEri1Epve = Spp1Epve.
b) Er1EkSki1ve = Erp1Spv

Proof. (a) We may assume that t;_; = t;41 since otherwise S Ej41

Epvg = Spp1Fpv = 0. Let t € Z"4(\) be the unique updown tableau such
that {jj} tand t, = ti+2. We have

Sy B Eyve = eq(k)eg(k+ 1) (sgtk)og+ Y sy (k)va)

ufft, u#t
+ E : etl(k)eiu(k+1)(au(k)vu+bu(k)vsku)'
k+1y -
u o~ uFEt

Observe that if Sgu is defined, for u in the second sum, then (Spu')p # tiyo

and 1w = Sii11Sku is also defined. Further, we have 1o £ {and o # t.
Similarly,

SkerFeve = eq®) (salk + Dogt 30 sk + Do)
ukrtli,uyéi
+ Y ewlk) (aulk + Doy + bu(k + 1)vs, ).

urlii, u#t

We now compare the coefficients of v, in SpFEii1Frve and in Sgyq Fyoy.
First, observe that eg(k)ey(k + 1) = 1 by Lemma 4.19.
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Case 1. u=t: Since ¢j(k) = —ci(k + 1), the definitions and the remarks
above show that the coefficient of v, in Sy Ej+1Ev: is equal to

calBeall+ 1sgl) = eqli) 58— cq@sale 1)

which is the coefficient of v, in Si11 Exvy.

Case 2. u X T and u #t Now, ci(k) = cu(k +2) and cy(k + 1) = —cy(k),
so the coefficient of v, in Sy Fx11ERve is

etu(k:)

ealh)ea(k + Dsulk) = 5577 05

= ew(k)ay(k + 1),

which is the coefficient of v, in Si41 Egvt.
Case 3. u'<' T and u #t Since cy(k) = —c;(k + 1), the coefficient of vy,

in SkEk-i—lEkUt is

oulbery b+ Deg(h) = —EL DAL ey k4 1),

which is the coefficient of v, in Sii1 Egvy.
Now suppose that Siu is defined and let to = S;41S5,u be as above.
Then the coefficient of vg,, in SiEjy1Epvy is

eq(k)e(k + Dbu(k) = vVew(k) v/ ew(k + 1)bu(k)

= vewk)V e (k)b (k + 1)

= e (k)bw(k + 1),

where the second equality comes from (4.12)(f). As Sipu = Skiito this is
the coefficient of vg, y in Sk11Eve. This completes the proof of (a).

(b) We let the reader work out the expansions of Ey1ExSk1v¢ and
Ej.41Skve. To show that these two expressions are equal there are four cases
to consider.

Case 1. t; = {42 and t;_1 = t;: We have

1 —eu(k
Ek+1EkSk+1Ut = Ek+1€tt(k3)3tt(k + 1)Ut = A

= sy(k) Ey1ve = By Skve.



90 S. ARIKI, A. MATHAS AND H. RUI

Case 2. t}, # tj40 and t,_; = t;,1: Define t € Z"Y()\) to be the unique
updown tableau such that t £ ¢ and t = tyo. Then t # t and

Er1 EpSki1ve = at(k + l)eti(k')EkJrlvl = S{t(k’)Ek+1U1 = FEyy1Skvs,
where the second equality uses the facts that c((k+1) = —ci(k), ci(k+2) =
ci(k) and (Spy1)r—1 7 (Sk41t)r+1-

Case 3. {}, = tj49 and t,_; # t;41: Define £ € Z"Y()\) to be the unique
updown tableau such that t "' ¢ and Ek_l’_l =1{;_1. Then
Ep1 EpSpave = sg(k + Deg(k) Ep1vg

eq(k+ Dey(k)
B ct(/@t:— 1)+ c;(tk +1) Z

eiu(k + 1)1}u

enyt
= ay(k) Z ew(k + 1)vy = Egy1Skuy,
[

where we have used the facts that c;(k+1) = —ci(k) and (Skt)r # (Skt)kr2-

Case 4. t; # t40 and t;_1 # t41: First observe that because of our as-
sumptions we have 1 EySy11v¢ = b(k+1)Epq1 Egvs, , ¢ and By Spve =
bt(k)Ek-i-lUSkt' If (Sk+1t)k_1 #* (Sk+1t)k+1 then we also have (Skt)k +
(Skt)k+2 s0 that Egy1SpSky1ve = 0 = Ejy1Spve

Suppose now that (Spi1t)p—1 = (Spp1t)rs1 and let t € FZ¥4(N) be
the unique updown tableau such that t X Sk+1t and G = tpro. Set u =
Skt and v = Skt and observe that the assumptions of (4.12)(f) hold,
so that by(k)v/ew(k+1) = bp(k + 1)v/ewn(k). As by(k) = by(k) and
be(k + 1) = by(k + 1), the reader should now have no dn‘ﬁculty in using
(4.12)(d), together with the fact that u’ "L T if and only if u’ "L St to
show that

By 11 EgSk1ve = b(k + 1) Z €5 (R (kb + Doy

k1~
wrEh

= by(k) Z syt (b + Doy = Eyy1Spvy

k+1
u/rtSkt

0

The next Proposition shows that the action of 7, ,,(u) on A(\) respects
the two relations 2.1(b)(i) and 2.1(d)(i).
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PROPOSITION 4.27. Suppose that t € T*4(\) and that |k — 1| > 1.
Then:

CL) Sk;Sﬂ)t = SlSkvt.
b) Sk;El’Ut = ElSkUt.

Proof. We prove only (a) as the proof of part (b) is similar to, but
easier than (a).
First suppose that ty_; = tx41 and ;1 = {;11. Then

SESive = Z Stu(l) Suro (k) Vro.

l k
u~t, to~u

Now for each pair of updown tableaux (w,u) with ro bt there is a

unique updown tableau u’ such that v Lk t; more precisely, 1) = tog
and u), = t, for a # [. Notice that dypn = dyy and dy = . Therefore,

_V ew(l) v euu(l) — S \/euu(k) \/emm(k) — Oy

Sll)sun (k) i) + cull) ca(F) + clk)
_ \/eu’u’(l) \/emm(l) — O v/ eu(k) v/ eww (k) — Oy
cw (1) + en(l) ci(k) + cw (k)

= Su’m(l)stu’(k)a
where the second equality uses (4.8) and (4.12)(e). Hence,
SeSwe= Y suDsum(B)vw = D sw(k)sww(l)ve = S Skt
urlvt, mr}iu u/rlfzt7 mrLu

as required.
Assume now that t;_; # ty+1 and ;1 = ;1. Then

SeSioe="Y _ sw(l) (au(k)vy + bu(k)vs, )
= a(k) Y sw(@vu+bk) Y se(l)vs,u
uAlJt urlvt
=a((k)>  sul)ou+b(k) > sswlvw = SiSkve.

uAlJt u’AlJSkt
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Interchanging k and [ covers the case when tx_1 = t;41 and ;1 # ;41
Finally, consider the case when t;_1 # t;11 and ;1 # ;1. Then

SpSive = ag(k)a(l)ve + as,(k)bi(lvs, e + b(k)ai(l)vs, ¢ + bs,i(k)bi(l)vs, st
= a¢(l)ay(k)ve + ag(k)be(D)vs, ¢ + as, t(1)be(k)vs, ¢ + bs, t(1)be(k)vs, s, ¢,

since ag,¢(k) = a¢(k) and a(l) = ag,(l), by definition, and bg,¢(k) = b¢(k)
and bg, ¢(I) = be(l) by (4.12)(b). Hence, SpSjv¢ = S;Spve if t_1 # ty41 and
t;—1 # t;+1. This completes the proof of (a). U

Finally, we prove that the action of #.,(u) on A(\) respects the braid
relations of length three.

LEMMA 4.28. Suppose that t € T 4(\) with ty_y # ty1 and t # teyo,
where 1 <k <n —1. Then S§Sk+1Skvt = Sk115kSk+10t

Proof. We consider two cases.

Case 1. Syt is not defined, or Syt is defined and (Sit)r # (Skt)r2:
First suppose that St is defined. If Syt is defined then (Sgiit)p—1 #
(Sk+1t)k+1, and if SkJrlSkt is defined then (SkJrlSkt)k,l 7& (SkJrlSkt)kJrl
because ti # t;12. Thus we have

SkSk+15kve = (ad(k)?a(k + 1) + by(k)as, ((k + 1)bs,(k)) v
+ (a(k)au(k 4+ 1)bi(k) + bi(k)as, (k + Das,(k))vs, ¢
+ ad(k)be(k + 1)as,  (k)vs, ¢+ adk)be(k + 1)bs,  ((k)vs, s, ¢
+ bt(k)bskf(k + 1)a5k+15kf(k)7)5k+15ki
+ bt(k)bskt(k + 1)b5k+15kt(k)vsk5k+15kt'

Now, tx_1 # txr1, or if SpSky1tis defined, then (SkSk+1t)k # (SkSkr1t)k+2-
Therefore, we have

Sk19kSk+1ve = (a(k + 1)%ay(k) + be(k + Das, ,,«(k)bs, ,((k + 1)) v
+ (at(k: + Dag(k)be(k 4 1) + b(k + 1)as, , «(k)as,, «(k + 1))7)Sk+1t
+ a(k + 1)bi(k)as, «(k + 1)vs, ¢ + ai(k + 1)b(k)bs, «(k + 1)vs, 5.t
+ be(k + 1)b5k+1t(k)a5k5k+1t(k + 1)USkSk+1t
+ b(k + 1)bs, «(k)bs, 5,1tk + 1)vs, . 15,501t
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Now, bg, (k) = b(k) and bg, , ,«(k+1) = b(k +1) by (4.12)(a). So, in order
to check that the coefficients of v¢ are equal in the last two equations we
have to show that

ai(k)?ai(k + 1) 4+ ag (k + 1)(1 — ay(k)?)
= at(k:)at(k: + 1)2 + a’SkJrlt(k + 1)(1 — at(k: + 1)2),

however, this is just a special case of the easy identity

(b—a)i(c—b) +cia<1_ﬁ>

- (b—a)tc—b)2 +cia<1_ﬁ>’

To see that the coefficients of vg,¢ and vg, 41t are equal amounts to the
following easily checked identities

aSkf(k)askf(k + 1) + at(k)ai(k + 1) = at(k + l)askf(k + 1)7
asy1t(k)as,, ((k +1) + ak)adk + 1) = alk)as, (k).

For the coefficients of vg, s, ¢ and vs, s, ¢, note that ag, , ,s,1(k) = ai(k+1)
and as, s, ,«(k +1) = ay(k). Finally, three applications of (4.12)(c) shows
that the coefficients in vg, 5, | 5,t = Vs, 5,5, t are equal in both equations.

If Skt is not defined then a¢(k) = +1 and b¢(k) = 0 by Lemma 4.11(b).
Hence, the argument above is still valid if we set b¢(k) = 0.

Case 2. Sit is defined and (Sit)y = (Spt)p+2: If Skt is defined

then (Sgy1t)x—1 = (Skr1t)z+1. Let t be the unique updown tableau such

that { " St and {41 = tp_;. Observe that if u MU T and u # { then
Ug—1 7# Ugt1. Therefore,

SkSkJrlSk’Ut = at(/ﬂ)Qat(k + 1)’[){ + at(k)at(k + 1)bt(]€)v5’kt
+adk)b(k +1) Y 55 tul(k)ow+ bik) Y sg ik + 1 sy(k)vw

ubi ubi
+ ) buk)ss (k4 1) (au(k)oy + bu(k)vs,u).-

k+1
urtSkt

us#t
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Similarly,

Sk—l—lSkSk—i-lUt = (Lt(/{} + ].)QCLt(k)Ut + at(k: + l)at(k:)bt(k: + 1)USk+lt
+ak+ Dbe(k) Y sgulk + Doy

1,..
ukrt t

ok +1) Y s, ilk)sg(k+ Doy

k41~
urtt

+ ) bk + Dssy,eu(®) (au(k + Doy + by(k + Dog,, ).
u’IE‘SkJrlt
u#t

We now compare each of the coefficients in the last two displayed equations.

First we consider the coefficient of v(. To show that the coefficients of
v¢ are equal in the two expressions above, we have to prove that

a(k)%a(k + 1) + bi(k)ss, s,k + Dbs,e(k)
= at(k + 1)2at(k) + bt(k + 1)55k+1t75k+1t(k)b5k+1t(k + 1)'

Now, by(k) = bs, (k) and b(k +1) = bs,, ,«(k+1) by (4.12)(a). So, the last
identity is equivalent to

es, stk +1)—1 9
k)ag(k + 1) + 252k bs, (k
ay(k) a( ) Dkt 1) s t(k)
65k+1t75k+1t(k) -

1
= at(]{ + I)Qat(/@) + b5k+1f(k + 1)2.

205k+1i(k)

This equation is easily verified using the definitions and Lemma 4.20. Hence,
the coefficients of v¢ in SiSk+15kve and Sk41S5kSk+1 are equal.

Now consider the coefficient of vg, ¢ in both equations. Since ag, (k) —
af(k +1) = 2cs,(k +1)/(ci(k) + cs, 1 1(K))(ci(k) + cs,¢(k)), we see that

sspspt(k + 1) (ag (k) — ai(k + 1))bi(k) + ai(k)a(k + 1)be(k)
= es,t,5,t(k + 1)ay(k)a(k + 1)b(k)
_ bg,t(k)es, stk +1)
(ci(k) + s, (k) (ci(k + 1) + cs(k + 1))
o b5k+1t(k + 1)\/65k+1t75k+1t(k) \/esktvskt(k + 1)
(cg(k) + ey t(k)) (cg(k + 1) + ese(k + 1))
=be(k + 1)sg, ,1(k)syg,(k+1).
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where the second last equality uses (4.12)(f). Consequently,

at(k:)at(k: + ].)bt(k?) + bt(k)SSkLSkt(k + 1)a5kt(k})
= ai(k + 1)be(k)sses,e(k + 1) + bk + 1)sg, , (i(F)sy gk +1).

Hence, the coefficients of vg, ¢ in SSk415kv¢ and Sk41S;Sk+1v¢ are equal.
A similar argument shows that

at(k)bt(k + 1)85k+1t,5k+1f(k) + bt(k)sskt:t(k + 1)8175k+1t(]€)
= at(k: + 1)at(k:)bt(/<: + ].) + bt(k? + 1)85k+1t,gkﬂt(k)agkﬂt(k + 1)

This proves that the coefficient of vg, ¢ in SpSk41Skve and Sk41SkSk+1v¢
are equal.

Now consider the coefficient of v, where u % f and u ¢ {t, Sr1t}. This
time
cSk+1t(k) + Cu(k)
(esk + 1) + ek + 1) (ci(k) + cu(k))

ay(k+1) —ayk) =

An argument similar to that for vg, ¢ now shows that

bu(k)s gk + Dsgy(k) = bk + D)ss, k) (aulk + 1) — a(k).

Therefore, the coefficients of vy, for such u in S;Sk4+15kvt and Sk415kSk+1vt
are equal.

Another variation of this argument shows that if u mtl Skt and u ¢
{t, Spt} then the coefficients of v, in SgSki1Skve and Siy1SkSkr1v¢ are
both equal.

Next, we suppose that Siu is defined and we compare the coefficients of

VS, u I Sk Sk+1Skve and Sk41SkSk+1v¢, when u et Sptand u ¢ {t, Sit}. As

Skt is defined, w0 = S41Sku is defined and to 3 Sp1t with w ¢ {t, Sp1t}.
Conversely, if Skt is defined for such v then u = S; Skt is defined.
Applying (4.12)(f) twice, we have

be(k)by(k)+/es, 5.tk + 1)/ ek + 1)

= be(k + 1)by(k + 1)\/m\/emm(k)-

Consequently, because cg,¢(k 4 1) + cu(k + 1) = cn(k) + cs, 1 ¢(k), we have

bi(k)ss, qu(k + 1)by(k) = bi(k + 1)ss,, (k)b (k + 1).
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That is, the coefficients of vg,, in Si4+1SkSk+1v¢ and SgSk4+1Skv¢ are equal.
It remains to compare the coefficients of v; in the two equations. To
show that these two coefficients are equal we have to prove that

ag(k)be(k +1)sg, , (i(k) + bi(k)sg, 1(k + 1)sg(k)
= a(k + 1)be(k)sg ik + 1) + be(k + 1)sg,  i(k)sg(k +1).
First note that, by the definitions and (4.12)(a),

bt(k + 1) €Sk+1f75k+1f(k) el,l(k)
cSk+1t(k) =+ C{(k)
be(k) eSk+1t75k+1t(k) ei,i(k +1)

N Csk-s-lf(k) + Ci(k)

B i csplk+1) + (kb +1)
- bt(k)SSkt,t(k + 1) ;Sk+1t(k) + Z{(k) ett(k)'

bi(k +1)sg, ,i(k) =

So, it is enough to show that
(CSkt(k + 1) + C{(/ﬂ + 1))611(/{) (at(k) — Sﬁ(/ﬂ + 1))
= (espat(k) + (k) (au(k + 1) = sg(k));
however, this follows from Lemma 4.19. Hence, the coefficients of v; in

Sk+15kSk+1v¢ and SgSk+1S5k vt are equal.
This completes the proof of Lemma 4.28. 0

LEMMA 4.29. Suppose that t € Z%4()\) and that either t,_1 = tpy1
and t, # tiio, or ti—1 #F tey1 and ty = tgyo, for 1 < k < n—1. Then
SkSk4+15kvt = Sp115kSk+10¢

Proof. There are again two cases to consider.

Case 1. Syt is defined: Suppose first that t,_1 = tx11 and ¢ #
tyro. Then u = Syt € T44()\) is well-defined. Furthermore, uj, # o
and Up_1 75 Ug41, SO SkSk-i—lSk:Uu = Sk:—f—lSkSk-i-lUu by Lemma 4.28. NOW,
Sk+10u = ay(k + 1)vy + by(k + 1)ve and by(k + 1) # 0. Therefore

1
Sk:Sk‘-i-lSkUt = m8k5k+15k (Sk+1vu - CLu(k? + ].)’Uu)
u
1
= m (Sk(5k+15k5k+1)vu - Gu(k + 1)(Sk5k+15k)vu)
1

T by(k+1) (Sk(SkSk+15k)vu — aw(k + 1) (Skt1SkSk41)vu)
u



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 97

by Lemma 4.28. Hence, using Lemma 4.24 twice,

1
bu(k + 1) (
1

=TT (Sk15k(Sk+1Sk41)vu — an(k + 1) (Sk11.SkSk+1)vu)
u

1
= W(Sk—i—lsksk—f—l)(sk—f—lvu —ay(k + 1)Uu)

= (Sk+1SkSk+1)v¢

Sk Sk+1Skve = Sk+15k0y — au(k + 1)(Sk415kSk41)vu)

as required.
The case when t;_1 # t;11 and t; = tx1o can be proved similarly.

Case 2. Si41t is not defined: This is equivalent to saying that the two
nodes ty12 Oty and tgq © i are in the same row or in the same column.
Therefore, either ¢ C tx11 C tp4o or t D 11 D ty1o. Note that in either
case tp_1 = ty+1, so we have

Ekvt = Z etu(k:)vu + ett(k)vt-

i
u~t

u#t

By Proposition 4.26 and Proposition 4.25, S Sk+15kExve = Sk Sk+1Ekve =
Ey11Epve and Sy 1Sk Sk1+1Epve = Spy1 B 1 Epve = By Egoy

Suppose that u E ¢ and u # t. Then Siiju is well-defined and
ui_1 = Ux1—indeed, the two boxes ty 12 St and t;1 Suy belong to dif-
ferent rows and columns. Hence, by Case 1, Si41SkSk+10u = SkSk+1SkVy.
Consequently, Sk11SpSk+1eu(k)ve = SkSk+1Skew(k)ve. Cancelling the non-
zero factor ey (k) shows that SiSk11Skvi = Ska1SkSkt10t- 0

PROPOSITION 4.30. Suppose that 1 <k <n—1 andte Z"(N\). Then
SkSk+15kv¢ = Sk415kSk410¢.

Proof. By Lemma 4.28 and Lemma 4.29 it only remains to consider
the case when t;_1; = tx41 and t; = t; 2. By Lemma 4.24, Proposition 4.25
and Proposition 4.26(a), we have

Sk+15kk+1Ekve = Sp415k - SkEBrr1 Epve = Spr1Ep 1 Eyvg = B Egvy,
on the one hand. Similarly, we also have

SkSky1SKkErvy = Sk Sky1Ekve = Sy - Sk Ep1Ekve = Ep 1 Egoy.
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Therefore, recalling the definition of Ejvy, we have

(Sk+15%Sk+1 — SkSk+15%) (ett(k)vt + Z 6tu(k)0u) =0.

ur]it, u#£t

Now, if u £ t and u # t then SySj+1Skvu = Sk1SkSks10u by Lemma 4.29.
Consequently, SiSk+1Skve = Sk4+1SkSk+1v¢ since ey (k) # 0. This completes
the proof. 0

Proof of Theorem 4.13. The results from Lemma 4.22 to Proposition
4.30 show that the action of the generators of 7., (u) on A(\) respects all
of the relations of 7, ,,(u). Hence, A()) is a #;. ,(u)-module, as we wanted
to show. N

85. Irreducible representations and Theorem A

In this section we use the seminormal representations to show that the
cyclotomic Nazarov-Wenzl algebras are always free of rank r™(2n — 1)
Before we can do this we need to recall some identities involving updown
tableaux.

First, if A is a multipartition of n — 2m let f(™* be the number of
n-updown A-tableaux. So, in particular, f(M:A) = # .75t ()\) is the number
of standard A-tableaux. Sundaram [Sun86, Lemma 8.7] has given a combi-
natorial bijection to show that if 7 is a partition (so r = 1) then the number
of n-updown 7-tableaux is equal to (‘Z|) (n— || = )N fUT7). Terada [Ter01]
has given a geometric version of this bijection when |7| = 0 and n is even.

LEMMA 5.1. Suppose that 0 < m < |%| and that X € Af(n —2m).
Then

FIN) = pm ( 2:;) (2m — DT (N).

Proof. Using Sundaram’s formula from above we have

() — n r ny NOIEET RPN
! 2 <n1,---,nr>H(|,\(t)|)(”t A= Df

MN1yeeeyNp t=1
ni+-+nr=n
Tlt—|>\(t) ‘EQZ

= E ;HT (ng — |A®] — 1)!!f(\)\(t)|,)\(t))
- n:
t=1 (ne — |AONAG |1

ny+-ne=n
ne—| 2| €2z
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S DA nt w bl
= | _—
e 2 H — @D
t=1 Ty Tp
ni+-+ny= n
n! = (2a; — 1)!
_ ystd t
(n—2m)# ) ZT H (2a4)!
a1+ Far= m
where the summation is now over a; = M, for 1 <t <r. Hence
|
("7)\) L std —m
A e RS LR DR H L
a1t lap=m
n! ‘d r’m n td
L —— s =" 2m — 1) s .
(n —2m)! (A)Qmm! " (2m>( m = D7)
0

It is well-known from the representation theory of the degenerate Hecke
algebras J, i that Y, #.75%4()\)? = r*k!, where in the sum \ € A} (k)

COROLLARY 5.2. Suppose thatn > 1 and r > 1. Then

M=

Z FON? = (2n — 1)L

AFn—2m

Proof. Using the Lemma we have

% > Z > { ( >2m—1>”#98td< )}2

AFn—2m

—Zrm(;ﬁn)Q((?m—DH)Q > #THO
)
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To complete the proof, notice that the sum on the right hand side does
not depend on 7, so we can set r = 1 and deduce the result from the
representation theory of the Brauer algebras. H

A representation theoretic proof of this result is given in [RY04] where
it is obtained as a consequence of the branching rules for the cyclotomic
Brauer algebra. The cell modules of the cyclotomic Brauer algebras are
indexed by the multipartitions of n —2m, for 0 < m < | %]. The branching
rule [RY04, Theorem 6.1] shows that the dimension of the cell module in-
dexed by X is f(™. On the other hand, the cellular basis of the cyclotomic
Brauer algebras constructed in [RY04, Theorem 5.11] contains r™(2n — 1)!!
elements. Combining these two facts proves the result.

Given two multipartitions A and p such that y is obtained by adding a
box to A we write A\ — p, or g «— A.

THEOREM 5.3. Suppose that R is a field with char R > 2n and the
root conditions (Assumption 4.12) hold in R. Assume that the parameters
U1, ..., u, are generic for ¥, () and that Q is u-admissible. Then:

a) Suppose n > 1. There is a #ypn—1(u)-module isomorphism

AN L= P Aaw e @ aw).
o v

= A—v

where A(X) | is A(N) considered as a #y. n—1(u)-module.

b) The seminormal representation A(X) is an irreducible #;.,(u)-module
for each multipartition X of n — 2m, where 0 < m < | §].

¢) The set {AN) | AFn—2m,0 < m < |§]} is a complete set of
irreducible #;. ,(u)-modules.

d) W;n(u) is a split semisimple R-algebra of dimension r™(2n — 1)!1.

Proof. Part (a) follows if we define A(u) to be the vector subspace
spanned by v, with u € %“d()\) and u,_1 = p.

Let 2" = (X1,...,X,). Since Xpv¢ = c(k)vy, for all t € FU(N)
and 1 < k < n, the seminormal representation A(A) = @ gua(y) Roe
decomposes into a direct sum of one dimensional submodules as an 2'-
module. Further, by Lemma 4.4(a), this decomposition is multiplicity free.
In particular, A(X) = A(p) if and only if A = u. Further, if M is a % ,(u)-
submodule of A()) then M is spanned by some subset of {vy | t € F*4(\)}.



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 101

To prove (b) we now argue by induction on n. If n = 1 then A()) is one
dimensional and hence irreducible, for all A. Suppose now that n > 1 and
let M C A(X) be a non-zero #; ,(u)-submodule of A(X). By the remarks
in the last paragraph, M is spanned by a subset of {vy | t € F¥4(\)}).
Therefore, if we consider M as a #;,—1(u)-module then M D> A(u), for
some multipartition g which is obtained by adding or removing a node
from A.

Case 1. |A\| = n: Since |A| = n, The multipartition p is obtained from A
by removing a node. If A = ((0),...,(0),(a%),(0),...,(0)) then A(\)] is
irreducible as a #; ,—1(u)-module, so there is nothing to prove. Suppose
then that A is not of this form and that v is a different multipartition which
is obtained from A by removing a node. Let t € Z"4()\) be an updown
tableau such that t,—1 = g and g\ t,—2 = A\ v. Sowv, € A(pu) C M and
(Snflt)nfl = V. NOW,

Sp—1v¢ = ag(n — D)vg+ be(n — vg, ¢ € M,

and by(n — 1) # 0 since A\ p and X\ v cannot be in the same row or in
the same column. Consequently, vg, ,¢ € M. This implies that A(v) C M
since (Sp—1t)p—1 = v. Therefore, > \A(v) C M, so M = A(X) by
part (a). Hence, A(A) is irreducible as required.

Case 2. |A\| < n:  Since |\ < n, Z%()\) is non-empty so we fix u €
TU (). Let t = (ug,...,uy_9, 1, A), then t € Z%4(X\) and vi € A(u) C M.
Then
E,_1v = Z ew(n — 1)y € M.
w"~t

As ego(n — 1) # 0 whenever o nJt t, we have v, € M for each term in this
sum. If v < X or v — A then 1o = (ug,..., U, 2,0, )) '~ Y so A(v) C M.
Hence, M = A(X) and A()) is irreducible as claimed. This completes the
proof of (b).

Finally, we prove (c) and (d). We have already seen that the seminormal
representations are pairwise non-isomorphic, so it remains to show that
every irreducible is isomorphic to A(\) for some A. Let Rad #;.,,(u) be the
Jacobson radical of #;.,(u). Then

[n/2]
dimpg #;»(u )>d1mR( n(u)/Rad 7, ,(u Z Z dlmRA )

m=0 \n—2m
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By construction, dim A(\) = #.7%4(\) = ™V, So using Corollary 5.2,
and then Proposition 2.15, we have

dimg #;,,(u) > r"(2n — 1)!! > dimpg #; ,,(u).

Therefore, Rad #;. ,(u) = 0, which forces dimg #;.,(u) = r"(2n—1)!!. Now,
parts (c) and (d) both follow from the Wedderburn-Artin Theorem. [

Before establishing a strong version of Theorem A, we show that the
Root conditions (Assumption 4.12) can be satisfied when R = R.

LEMMA 5.4. Suppose that R =R and we choose u; € R in such a way
that

a) |up] > >uy| > n and |u;| — |uit1| > 2n,
b) u; <0 ifiis even and u; > 0 if i is odd.

Suppose that t € T4 \) and 1 < k < n. Then |ayk)|] <1, if th_1 # tpy1,
and ew(k) > 0, if t,—1 = tir1. In particular, the Root Condition (4.12)
holds if we choose non-negative square roots \/by(k) > 0 and \/eu(k) > 0.

Proof. We start with the case ty—1 # tx4+1. Let a =, ©t;_; and g =
tri1 © tr. Note that c¢(a) + ¢(8) # 0. Write a = (4,4,¢) and 8 = (i', j,t').
If t = ¢’ and both nodes are addable, or both nodes are removable, then
a # 3. Thus, ¢(8) — ¢(«) is a nonzero integer and |a¢(k)| < 1. If t = ¢’ and
only one of the nodes is addable (and the other is removable), then

= le(@) —c(B)| = [2ue + (G — i) + (' = )| = 2fue| = 2(n — 1) > 2.
lau(k)|
Hence, |a;(k)] < 1ift =t'. A similar argument shows that |a¢(k)| < 1 when

t£t
Next we consider the case ty_1 = ty41. Let a = t, ©t,_1 and A\ = ;5.
Write oo = (4, 4,t). By (4.8) and because R = R, we have

c(a) +c(8)
ew(k) = (20(04) — (—1)T) e
o=

where § runs over all of the addable and removable nodes of A with 8 # «.
Suppose that t is even. First we show that

(@) +¢(f)
11 (@) = ¢(B)

<o.
sgr®
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Consider the contents of all of the addable and removable nodes of (),
where ¢’ # t. If t' is even then there are [ positive contents |uy |+ d; with
|dj| <n,for 1 <j<I, and [+ 1 negative contents —|uy| — ¢; with |¢;| < n,
for 1 <¢ <1+ 1. Let ey be the sign of the product of % over all
addable and removable nodes 3 of A®). Our aim is to show that

H Ey = —1.
iz
By our assumptions, ey is equal to the sign of

(=fue] + [up D)’ (=l = fue D™ | + [ue|
(=l = Jup )" (=fue] + Juw N fue| = Jug|

Thus, ey < 0 if and only if ¢ < t. If ¢’ is odd then there are [ + 1 positive
contents |uy| + ¢; with |¢;| < n, for 1 <14 <[+ 1, and [ negative contents
—|up| — dj with |dj| < n, for 1 < j < [. Then, by the same argument,
ey < 0if and only if ¢/ < t again. Thus

Let —|u¢| — ¢, for 1 <1 <[+1, be the contents of the addable nodes of
A® and let |ug| + dj;, for 1 < j <, be the contents of the removable nodes
of A, We may assume that

cp>dyp > >c>dp > .

Let ¢ be the sign of the product of %, where ( runs over all of the

addable and removable nodes of A®) such that § # o

If ¢(a) = —|ug| — ¢, for some 4, then ¢; is equal to the sign of
l
H—Q\utl—ci—ck H dk—Ci
ook Ck — G el —2”11,,5‘ —Ci—dk7

s0 ¢ = o U =10 As 2¢(a) — (—1)" = —2fu| — 2+ 1 < 0 and

1y
H Ey = —].,

1<t'<r

we have ey (k) > 0.
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If ¢(o) = |ug| + dj, for some j, then e, is equal to the sign of

ﬁ dj—Ck ﬁ2|ut|+dj+dk
2|ut|—i—dj-|—ck d; — dy, ’

k=1 k#j

S0 £ = (<—1>11 = —1. As 2¢(a) — (—1)" = 2Juy| +2d; £1 > 0 and

_1)J7
H gy = —1,

1<t'<r

we have eg(k) > 0 again.
The case when ¢ is odd is handled similarly. In this case, we have

c(a) + ¢(B)
1 (o) = ¢(B)

>0,
sgr®

because its sign is equal to (—1)'=! = 1. Let |us| + ¢;, for 1 <i <1+1, be
the contents of the addable nodes of A®) and let —|u;| — d;, for 1 < j <1,
be the contents of the removable nodes of A(®) such that

ca>dy > > >d > Cl41-
If ¢(ar) = |ug| + ¢, for some 4, then g4 is equal to the sign of

H2|ut|+ci+ckﬁ c; — dp.
oy ci — i Pt 2ue| + ¢; + dy’

S0 £¢ = % =1. As 2¢(a) — (—1)" > 0 we have ey(k) > 0.

If (o) = —|ug| — dj, for some j, then ¢, is equal to the sign of
I+1 l
li[ o — d; H—2|ut|—dj—dk
el —2|Ut| - dj — Ck Py dk - dj ’

S0 £ = %% = —1. As 2¢(a) — (—1)" < 0 we have eg(k) > 0

again. 0

We can now prove a stronger version of Theorem A.
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THEOREM 5.5. Suppose that R is a commutative ring in which 2 is
invertible and that Q0 is u-admissible. Then W, (1) is free as an R-module
with basis the set of r-reqular monomials. Consequently, #, (u) is free of
rank r"(2n — 1!

Proof. Recall that if R is a ring in which 2 is invertible then % ,(u)
is spanned by the set of r-regular monomials by Proposition 2.15. For
convenience, if S is a ring and us € S” then we let #5(ug) be the cyclotomic
Nazarov-Wenzl algebra defined over S with parameters ug.

First, we consider the special case when R = Z, where Z =
Z[%, Uy, ...,u;] and the @; are indeterminates over Z. Let u = (41,...,4,),
define Q in accordance with Definition 3.6 and consider the cyclotomic
Nazarov-Wenzl algebra #z(11). As R is not finitely generated over Q we can

find r algebraically independent transcendental real numbers v}, ..., u}. € R
which satisfy the hypotheses of Lemma 5.4. Let 2/ = Z[1 u},... ul]
and let § : Z — Z’ be the Z-linear map determined by 6(u;) = v}, for
1 < i < r. Then 6 is a ring isomorphism. Let u’ = (u},...,u}) and

V = {0(wq) | @ > 0}. Then Q' is u’-admissible and € induces an iso-
morphism of Z-algebras #z (1) = #z/(u'), where the inverse map is the
homomorphism induced by =1 : 2/ — Z.

Now, by Lemma 5.4 and Theorem 5.3(d), #&(u’) is an R-algebra of
dimension r"(2n — 1)!l. Hence the set of r-regular monomials is an R-basis
of #& (1) since there are r"(2n — 1)!! r-regular monomials. In particular,
the set of r-regular monomials is linearly independent over R, and hence
linearly independent over Z’. Therefore, #z/(u’) is free as a Z’-module of
rank r"(2n — 1)!l. Hence, #z(0) is free as a Z-module of rank r"(2n — 1)!!.

Now suppose that R is an arbitrary commutative ring (in which 2 is
invertible). Then we can consider R as a Z-algebra by letting u; act on
R as multiplication by wu;, for 1 < ¢ < r. Since #z(u) is Z-free, the R-
algebra #z (1) ®z R is free as an R-module of rank r"(2n — 1)!l. As the
generators of #z (1) ®z R satisfy the relations of #;.,,(u) = #r(u) we have
a surjective homomorphism #;. ,(u) — #z(u) ®z R. By Proposition 2.15
this map must be an isomorphism, so we are done. 0

As an easy application of the Theorem we obtain the following useful
fact which we will use many times below without mention.

PROPOSITION 5.6. Suppose that R is a commutative ring in which 2
is invertible and that §) is u-admissible.
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a) For 1 <m <mn, let #,/,,(0) be the subalgebra of #;.,,(u) generated by
{Si, B, Xj [1<i<mand 1 <j<m}. Then #,(u) =¥} ().

b) The Brauer algebra 9B, (wy) is isomorphic to the subalgebra of #; (1)
generated by {S;, E; | 1 <i<n}.

§6. The degenerate Hecke algebras of type G(r,1,n)

Suppose R is a commutative ring and let u € R". Recall from Section 2
that /7 ,,(u) is the degenerate Hecke algebra with parameters u. In this
section we give several results from the representation theory of J#.,(u)
which we will need in our study of the cyclotomic Nazarov-Wenzl algebras.
As the proofs of these results are very similar to (and easier than) the proofs
of the corresponding results for the Ariki-Koike algebras we are very brief
with the details.

The following result is proved by Kleshchev [Kle05]. We use the semi-
normal representations of #;,,(u) to give another proof.

Let A;f(n) be the set of r-multipartitions of n. We consider A (n) as
a partially ordered set under dominance >, where \ B> y if

s—1 k s—1 k
SIS SRS DILED 1Y
t=1 j=1 t=1 j=1
for1<s<randall k>0. If \> pand A # u we sometimes write A > p.

THEOREM 6.1. The degenerate Hecke algebra €, ,(u) is free as an R-
module of rank r™n!.

Proof. 1t is not difficult to see that for any ring R set
Yoy oy, | 0<k<r-1,we6,}

spans /. ,(u) as an R-module. So we need to prove that these elements
are linearly independent.

We adopt the notation from the proof of Theorem 5.5. As in the
proof of that result, we first consider the case when R = Z, where Z =
Z[%,ul, ...,uy], and we choose r algebraically independent transcenden-
tal real numbers u},...,u,. which satisfy the hypotheses of Lemma 5.4.
Let 2’ = Z[3,u},...,u,]. Then Z = Z’ — R and we can ask whether
the degenerate Hecke algebra % (u’), defined over R and with parameters

u = (u},...,u.), acts on the seminormal representations of #z(u’). By
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definition, if A € A;f(n) then E;A(N) =0, for 1 < i < n. Therefore, over R,
A(X) can be considered as an % (u’)-module by Corollary 2.16. Hence, as
in the proof of Theorem 5.5,

dimg 4% (1) > Z (dimg A(N))? = r"nl.
AeAt (n)

Consequently, by the opening paragraph of the proof, this set is a basis of
A& (W'). As in the proof of Theorem 5.5 it follows that J#z(01) is free as a
Z-module of rank r"™n!. The result for a general ring R now follows by a
specialization argument. 0

We remark that the definition of the seminormal representations of
#;.n(u) required that R satisfy assumption (4.12). It is not hard to modify
the definition of the seminormal representations of .. ,(u) so that the
formulae do not involve any square roots and so that they work over an
arbitrary field (cf. [AK94]). In particular, this leads to a simplification of
the last argument.

DEFINITION 6.2. (Graham and Lehrer [GL96]) Let R be a commuta-
tive ring and A an R-algebra. Fix a partially ordered set A = (A,>) and
for each A € A let T((\) be a finite set. Finally, fix C} € A for all A € A
and s,t € T'(\).

Then the triple (A, T, C) is a cell datum for A if:

a) {C4 | A€ Aand s, t € T(M\)} is an R-basis for 4;
b) the R-linear map * : A — A determined by (C2)* = Cp, for all A € A
and all s,t € T'(\) is an anti-isomorphism of A;
c) forall A € A, s € T(\) and a € A there exist scalars r¢,(a) € R such
that
CLC'E?‘t = Z 7“511(a)(73‘t (mod AP?),
ueT'(N)

where AP = R-span{Ck, | > X and u,0 € T(p)}.

An algebra A is a cellular algebra if it has a cell datum and in this case we
call {C} | s,t € T(\), A € A} a cellular basis of A.

To show that 777, (u) is a cellular algebra we modify the construction
of the Murphy basis of the Ariki-Koike algebras; see [DJM99]. For any mul-
tipartition A = ()\(1),)\(2), ... ,)\(7’)) we define uy = ug, 1Ugp,2° Uy 1 -1,
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where Uq,; = (Y1 — ui+1)(Y2 — ui+1) s (Ya — ui+1) and a; — Z;’:l ‘)\(J)‘,
1 <i<r—1. Let &) be the Young subgroup &, x Gy @) X - x &y of
Gn. Let 2y =3, ce, Tw and define

Mt = Tye)-1unxr Ty € A n(0),
where s, t are standard A-tableaux.

THEOREM 6.3. The set {mg | 5,t € T5(\) and A € Af(n)} is a
cellular basis of ;. ,(u).

Proof. The proof of this result is similar to, but much easier than, the
corresponding result for the cyclotomic Hecke algebras. See [DJM99] for
details. N

We next give a formula for the Gram determinant of the cell modules
of # ,(u). This requires some definitions.

DEFINITION 6.4. The parameters u = (uy,...,u,) are generic for
6. n(u) if whenever there exists d € Z such that u; —u; = d - 1g then
|d| > n.

The following Lemma is well-known (cf. [JM00, Lemma 3.12]), and is
easily verified by induction on n.

LEMMA 6.5. Suppose that the parameters u are generic for 4. ,(u)
and that R is a field with char R > n. Let A and u be multipartitions of n
and suppose that s € T(\) and t € T (u). Then s = t if and only if
cs(k) = e(k), fork=1,... n.

As in the definition of a cellular basis, if A € A% (n) then we let 7> be
the free R-submodule 7, ,,(u) with basis {mg | 5,t € T(u) for u > A}.
It follows directly from Definition 6.2(c) that z%”r?{\ is a two-sided ideal of
S,

LEMMA 6.6. Suppose that X is a multipartition of n and that s,t €
T$t(N). Then

Yimeg = Cs(k)mst + Z TutMut (mOd %IZ)\);

u€ 75t (\)
up>s

for some ry € R.
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Proof. If r = 1 then this is a result of Murphy’s [Mur83]. The general
case can be deduced from this following the argument of [JMO0O0, Prop. 3.7].
0

We can now follow the arguments of [Mat04] to construct a “seminor-
mal” basis of 7. ,(u).

DEFINITION 6.7. Suppose that A € A;F(n).

a) For each t € .T5()\) let

cu(k)F#ce (k)

b) If 5,t € 75%()\) then let fo = FomgFt.

Using the last two results and the definitions it is not hard to show that
if 5, t and u are standard tableaux then fsF), = dwfst; see, for example,
[Mat99, Prop. 3.35]. Hence, from Theorem 6.3 and Lemma 6.6 we obtain
the following.

PROPOSITION 6.8. Suppose that R is a field with char R > n and that
u is generic for A, (0). Then {fs | 5,t € TN, A € Af(n)} is a
basis of 7., (0). Moreover, for each standard tableau t there exists a scalar
vt € R such that

Jstfuo = Syt fovs
where s,t € T(\), u,0 € T3 (), and \, u € A (n).

Notice, in particular, that the Proposition implies that {fs} is also a
cellular basis of J ,,(u).

Although we will not pursue this here, we remark that Fy = % fu and
that these elements give a complete set of pairwise orthogonal primitive
idempotents for .7 ,(u). This can be proved by repeating the argument of
[Mat04, Theorem 2.15]

Suppose that A is a multipartition of n and let S(\) be the associated
Specht module, or cell module, of 7. ,(u). Thus, S(A) is the free R-module
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with basis {ms | s € 7%9(\)} and where the action of 7%, (u) on S(})) is
given by

amg = Z Tsu(@)my,

ue.Istd(\)

where the scalars rq,(a) € R are as in Definition 6.2(c).
It follows directly from Definition 6.2 that S(\) comes equipped with
a symmetric bilinear form (, ) which is determined by

(Mg, m)Myy = Mysmyy  (mod jﬁ?)‘),

for s,t,u,0 € 75(\). Let G()\) = det((ms,mt>), for 5,t € 759()\), be the
Gram determinant of this form. So G(\) is well-defined up to a unit in R.

COROLLARY 6.9. Suppose that R is a field with char R > n and that
u is generic for ., = ;. n(u). Let X be a multipartition of n. Then

= I
M)

te Tstd( )\

Proof. Fixte 759()\). Then Specht module S()) is isomorphic to the
submodule of .,/ #,5} which is spanned by {mg+ 5 | s € T54(N)},
where the isomorphism is given by 0 : 7 ,,/ %’jﬂ"ff‘ — S(A\); mgt + %‘j}?f‘ —
ms. Let fs = 0(fst). Then {fs | 5 € 754(\)} is a basis of S(\) and the tran-
sition matrix between the two bases {ms} and {fs} of S()) is unitriangular
by Lemma 6.6. Consequently, G(A) = det({fs, fi)), where s,t € T%()).
However, it follows from the multiplication formulae in Proposition 6.8 that
(fsy ft) = dstyt; see the proof of [Mat04, Theorem 2.11] for details. Hence
the result. a

Consequently, in order to compute G(A) it is sufficient to determine -y,
for all t € .75%(\). It is possible to give an explicit closed formula for 7
(cf. [Mat04, (2.8)]), however, the following recurrence relation is easier to
check and sufficient for our purposes.

Given two standard A-tableaux s and t write s > t if s, > ¢, for
1 < k < n. Let t* be the unique standard A-tableaux such that t* > s for
all s € 754()\). If s > t and s # t then we write 5 > t.

LEMMA 6.10. Suppose that R is generic for 7, ,(u) and that char R >
n. Let X\ be a multipartition of n.
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t o
o)yo=TTTIO™ T I1 G-i+us—w).
1<t<ri>1 1<s<t<r ij>1
1< <Al
b) Suppose that s,t € T54\) such that s > t and s = Sit, for some k.

Then ~¢ = (Cs(k)_Cl((clz)(jc_)ll(cc,s((kk)));a(k)_l)’Ys

Proof. Part (a) follows easily by induction on n. Part (b) follows using
arguments similar to [JM00, Cor. 3.14 and Prop. 3.19]. [

We remark that the arguments of [JM00, 3.30-3.37] can now be adapted
to give a closed formula for G(A). The final result is that

std
gn= [ &7,

veATl (n)

where g, is a product of terms of the form (cp (k) — cp (l))il, where these
terms are determined in exactly the same way as in [JMO0O, Defn 3.36]. As
we do not need the precise formula we leave the details to the interested
reader.

THEOREM 6.11. Suppose that R is a field and that u € R". Then
I n(u) is (split) semisimple if and only if char R > n and u is generic for
A ().

Proof. First, note that because 7. ,(u) is cellular, it is semisimple if
and only if it is split semisimple; see, for example, [Mat99, Cor. 2.21].

Next, suppose that char R > n and that u is generic for /7. ,(u). Then
G(\) # 0 for all A € A (n) by Lemma 6.10. Consequently, for each \ €
A (n) the Specht module S()) is irreducible. Hence, by [Mat99, Cor 2.21]
again, ¢ ,(u) is semisimple.

To prove the converse, let A = ((n), (0),...,(0)) € A;7(n) and set my =
mp g ; more explicitly,

T n

my = Z Ty - (Y — we).
weGS, t=2 k=1

It is easy to see that T,m) = my = my1,, for any 0 € &,. It also
follows from Lemma 6.6 that Yymy = cp (k)my = myYy. Hence, 2. ,(u)m)
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H.n(n) = Rmy and

r n—1

mizn!HH(ul—l—d—ut)'m)\.

t=2 d=0

If char R < n then n! = 0 in R so that Rm, is a nilpotent ideal in /% ,,(u),
so 4. n(u) is not semisimple. On the other hand if u is not generic for
. n(u) then u; — u; = dlg for some i # j and some d € Z with |d| < n.

By renumbering uq,...,u,, if necessary, we see that Rm) is a nilpotent
ideal. Hence, if either char R < n, or if u is not generic for J#, ,(u), then
;. (1) is not semisimple. U

§7. A cellular basis of 7, ,(u)

Throughout this section we assume that R is a commutative ring in
which 2 is invertible and that 2 is u-admissible. This section constructs
a cellular basis for %, , = #; ,(u) using the cellular bases of the algebras
Hn—2f = Hyn—2y(u) for 0 < f < | 5], together with a series of filtrations
of #;.,,. Our construction of a cellular basis of %, is modelled on Enyang’s
work [Eny04] for the Brauer and BMW algebras.

Before we begin we need to fix some notation. Recall that the set
{S1,...,Sn-1} generates a subalgebra of #,, which is isomorphic to the
group ring of &,. For each permutation w € &, we defined the corre-
sponding braid diagram -y(w) in Section 2; we now set S,, = B, (w)- Equiv-
alently, if w = (41,91 +1)--- (ix, i + 1), where 1 < i; < n for all j, then
Sw = Si; - Si,. Then {S,, | w € &,} is a basis for the subalgebra of #.,,
generated by {S1,...,S,-1}

Next, suppose that f is an integer with 0 < f < [5]. It follows from
Theorem 6.1 that we can identity 7, oy with the subalgebra of 777,
generated by Y; and Tj, where 1 <7 <n—-2fand 1 <j <n—-2f—-1
Similarly, by Proposition 5.6, we can identify #.,_o; with the subalgebra
of W, generated by X;, S; and Ej, where 1 <i¢ <n—-2fand1<j <
n—2f—1.

DEFINITION 7.1. Suppose 0 < f < [5]. Let & = W} n_of ExW 2y
be the two-sided ideal of #,.,,_os generated by Ej.

PROPOSITION 7.2, Suppose that 0 < f < |5 |. Then there is a unique
R-algebra isomorphism e : Ao = Wy n—of/Ep such that

5f(Ti):Si+5f and 8f(Yj):Xj+5f,
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for1<i<n—2f and1 <j<n-—2f.

Proof.  We first show that %, _2¢/Es is a free R-module of rank
r"=2f(n — 2f)!. Tt follows from the multiplication formulae for Brauer
diagrams that an r-regular monomial X*B,X B in Wy n—25 belongs to &
whenever v has a horizontal edge (equivalently, v # ~(w) for some w €
Gp_2f). If v = y(w), for some w € &,_of, then B, = S, and 7 con-
tains no horizontal edges, so the definition of regularity (Definition 2.9),
forces B = 0. So, by Theorem 5.5, #;. ,_2s/E; is spanned by the elements
{XSw+Ep|0<a; <r, for 1 <i<n—2f, and w € &,_9¢}. Note that
this set contains "2 (n — 2f)! elements.

To see that the elements at the end of the last paragraph are linearly
independent we use the seminormal representations from Section 4. Using
the arguments and the notation from the proof of Theorem 5.5, it is enough
to show that dimg #&(u')/Er > r"~2/(n — 2f)!. Now a seminormal rep-
resentation A(X) of #&(u’) is a representation of #&(u’)/& if and only if
ErA(X) = 0, which happens if and only if A is a multipartition of n — 2f.
Therefore, by the arguments of Section 5, dimg #&(w')/Ey > r"~2/ (n—2f)!.
Hence, by the arguments used in the proof of Theorem 5.5 (compare, The-
orem 6.1), the elements above are a basis of #,.,,_2¢/Es and, consequently,
Wyn—2p/Es is free as an R-module of rank 7" ~2/(n — 2f)! as claimed.

Inspecting the relations of J77.,,_of and %, ,_os shows that there is
a unique algebra homomorphism ey : J4.,_of — #; n_oy/Ef such that
ef(T;) = Si+ Ep and e¢(Y;) = X; + E¢. To see that e is an isomorphism
observe that €y maps the basis of 7. ,,_o to the basis of #/.,,_o7 /. Hence,
it is an isomorphism with inverse determined by 5;1(X “Sw+Ef) =Y,
for w € 6,2y and 0 < o <7 where 1 <i <n —2f. O

DEFINITION 7.3. Let EJ = n-1En_3--En_opi1 and let %fn =
”//r,nEf”//r,n be the two-sided ideal of #;.,, generated by ETf. If f = 15
then we set J77.,,_oy = R and %f,jl =0.

Note that this gives a filtration of % ,, by two-sided ideals:

Wrn =Wy D Wy D+ D w2l Sl —o.

For 0 < f < [§] let 7y : %fn — %fn/%f;rl be the corresponding projec-

tion map of #; ,-bimodules.
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For convenience we set N, = {0,1,...,r — 1} and define Ngf) to be
the set of n-tuples Kk = (ki,...,k,) such that k; € N, and k; # 0 only
for i = n — 1,nk— 3,...,n —2f + 1. Thus, if K € Ngf) then X" =
X3 Xst e X € W,

LEMMA 7.4. Suppose that0 < f <[5 ]| andk € Ng). Then EfX’%'f C
Zehas

Proof. As E/*! = EJE, 54, this follows because &5 = #;.,,_of
E, 2 1W;n—2f and every element of % ,_o; commutes with Ef X", 0

Combining the last two results we have a well-defined R-module homo-
morphism oy : . ,_of — %fn/%f;rl, for each integer f, with 0 < f <
|5 ], given by

Jf(h) = Ef&‘f(h) + S+

rn

for h € I ,,_ay.
We will need the following subgroups in order to understand the ideals
Wi,

DEFINITION 7.5. Suppose that 0 < f < [§]. Let By be the sub-
group of &,, generated by {Sn_1,5,-25,-15,-35.-2, ..., Sn—2f12Sn—2f+1
Sn—2f+3Sn—2f42}-

The symmetric group &,, acts on the set of Brauer diagrams B(n) from
the right. Let v = v,-10--- 0y,_2741. Then Ef = B, and By is the
stabilizer in &,, of the diagram v. The group By is isomorphic to the
hyperoctahedral group Z/27Z1 &y, a Coxeter group of type B .

Given an integer f, with 0 < f < [Z], let 7 = ((n — 2f),(2/)) and
define

Df:{dee’n

t"d = (t1,t) is a row standard 7-tableau and the first
column of t5 is increasing from top to bottom.

The following result is equivalent to [Eny04, Prop. 3.1]. (Enyang con-
siders a subgroup of &,, which is conjugate to B.)

LEMMA 7.6. Suppose that 0 < f < |5 |. Then Dy is a complete set of
right coset representatives for G,_op X By in G,,.
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The point of introducing the subgroup % is the following.

LEMMA 7.7. Suppose that 0 < f < [ 5], w € &,_oy and that b € By.
Then SyEf = EfS,, and EfS, = Ef = SyET.

Proof. The first claim is obvious by (2.1)(d)(i). For the second claim
it is enough to consider the case when b is a generator of B . In this case
the claim is easily checked using the tangle relations and the untwisting
relations. []

Motivated by the definition of the elements mg € 2 ,_2y from the
previous section, and by the work of Enyang [Eny04], we make the following
definition.

DEFINITION 7.8. Suppose that 0 < f < |[§] and A € Af(n — 2f).

Then for each pair (s, t) of standard A-tableaux define

ro JAD [ fp AGED)

Mst = Sd(s)*l . H H (Xz — us) Z Sw . Sd(t)'
s=2 =1

weSy

We remark that we will not ever really use this explicit formula for
the elements Mg In what follows all that we need is a family of elements
{Mg} in #;, which are related to some cellular basis of J# ,_of as in
Lemma 7.9(d) below.

The following result follows easily using the relations of %, , and the
definitions.

LEMMA 7.9. Suppose that 0 < f < [%], X € Af(n —2f) and that
s, t € T5(N\). Then:

a) EfMy = MyE! € #,.
b) If s € NY) then My X* = X*My.

¢) If w is a permutation of {n —2f+1,...,n} then MSy = SyyMsi. In
particular, MgS,, = Sy M if w € By.
d) We have of(mep) = ms (B Mg).

The filtration of %#;.,, given by the ideals %fn is still too coarse to be
cellular.
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DEFINITION 7.10. Suppose that A is a multipartition of n — 2f, where
0 < f < (%] Define %I,Zn)\ to be the two-sided ideal of #;., generated by

%f;r 1 and the elements
(Ef My | s,t € 75 (pu) and p € AF(n — 2f) with > A}
We also set #,50 =32 1\ #,5, where in the sum p € A (n — 2f).

Observe that
VRSNl Al el A Sy N
and that %?n)‘ C #51 whenever \ > pu. Consequently, the ideals {%“,Zn)\
give a refinement of the filtration of #;.,, by the ideals {#;7,}.

DEFINITION 7.11. Suppose that 5 € .759(\). We define A4(f,\) to
be the R-submodule of %?n)‘ / 7/751)‘ spanned by the elements

{EsttXKSd + %51)\ (tv R, d) € 5(f’ )‘)}7
where 5(f,A) = {(t, 5, d) | t€ 7)), k € NY) and d € Dy},

We will see below that A¢(f,A) is a right #; ,-module and that the
spanning set in the definition is a basis of Ag(f,A). Moreover, there is a
natural isomorphism Ag(f, \) = A¢(f,\), whenever s,t € .754()).

Before we begin studying the modules A4(f, A) it is convenient to define
a degree function on %#.,,. Recall from Theorem 5.5 that the set of r-regular
monomials is a basis of % ,,.

DEFINITION 7.12. Suppose that a = > 74,X“B, X" € #,.,, where
each of the monomials in the sum is r-regular. Then the degree of a is the
integer

n

dega = maX{Z(ai + ;)

=1

Tayg 7 0 for some v € B(n)}

In particular, degS; = deg F; = 0, for 1 < i < n, and deg X; = 1, for
1 < 7 <n. We note that the proof of [Naz96, Lemma 4.4] implies that

deg(ab) < deg(a) + deg(b), for all a,b € #; .
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LEMMA 7.13. Suppose that 1 < j < n and that 1 < k < r. Then
EjX]’-“Ej = ij](.k), where w](-k) is a central element in W, ;1 with deg w](-k) <
k.

Proof. We argue by induction on j. If j = 1 then deg w%k) = 0 because

wgk) € R by relation (2.1)(f). Suppose then that j > 1.

By Lemma 4.15 w](-k) is a central element of # ;1 in R[X1,..., X;_1]

and deg w](-k) < k. Consequently, if w](-k) = >, TaX®, for some r, € R, then

w](-k)Ej = > ,raX“E; where each of the monomials X*FE; is r-regular.

Hence, deg(w](-k)Ej) = degw](-k). Therefore, it is enough to prove that

deg(w§k)Ej) < k. By Lemma 2.3,

w By = B X[ By = (-1 E; X} By = (~1)FE;8; 1 X185 1 B
= (—1)kEjEj,1Sij+lsjEj,1Ej
— (_1)kEjEj_1(XJ’? + X)E;_1E;,

where X € #;. ;11 and deg X < k since deg(ab) < deg(a)+ deg(b). We have
that deg(E;E;_1XE;j_1E;) < deg X < k and that

EjEj 1 XF By 1 By = (1) E;B; 1 X} By 1 By = (—1) e BB, 1 B
= (-1)*®) B;.

-1
(k)

By induction deg w;y < k, so this completes the proof of the Lemma. []

Given integers j and k, with 1 < j,k < n, let E;; = B, where v is the
Brauer diagram with horizontal edges {j, k} and {7, k}, and with all other
edges being vertical. Thus, Sy E;iS,,-1 = E)w-1,(i41)w-1, for all w € &,,.
Finally, note that Ez = E/iﬂ'Jrl.

Until further notice we fix an integer f, with 0 < f < [%], a multi-
partition A € A;f(n—2f) and a standard A-tableau s and consider A(f,\) =
Ag(f, A). The next two Lemmas show that A(f, \) is a right %, ,,-submodule
of W5} /W5 and that the action of #;.,, on A(f, ) does not depend on s.

If K = (K1,...,kpn) € Nﬁf) we set |k| = Kp—1 + Kp—3 + -+ Kp_2fy1 =
deg X*.

LEMMA 7.14. Suppose that t € T54(\) and d € Dy. For 1 <i <n
and 1 < j < n there exist scalars aye, bye, Cope € R, which do not depend on
s, such that:
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a) EsttSd -8 = Z aneEstnSe (mod %IZ)\)}

e TSt (N)
EGDf

b) EsttSd -F; = Z bneEstnSe (mod %%)\),

e Tt (N)
€€Df

c) EsttSd X = Z CnpeEstnXpSe (mod %51)\)

(0,p,€)€3(f,A)
lpl<1

Proof. (a) Now, S4Si = Sg(,i+1) and by Lemma 7.6 we can write
d(i,7 + 1) = abe where a € &,,_o¢, b € By and e € Dy; s0 S45; = Su5Se.
By part (d) of Lemma 7.9, respectively, we have

EfMS, = Efsf(mst)sa = Efsf(mstTa) (mod %?n)‘),

since %qu 1 ¢ %,Dn’\. As mg is a cellular basis element for J7., o7, we
can write mg1, as a linear combination of terms mg, plus an element of
A5, Consequently, (B Mg+ #,5)S, can be written in the desired form.
Hence, we may now assume that a = 1.

To complete this case, observe that if v € .75()\) then, by Lemma
7.9(c) and Lemma 7.7, Ef My,SyS. = Ef SyMg,S. = Ef M,S, as required.

(b) We have to consider the product Ef MySyE;. Let j = (i)d~' and
k= (i+1)d"'. Then SyE; = E; Sy so that BEf MgS.E; = Ef ME; 1S,
By part (a) we may assume that d = 1. We can also assume that j < k since
Ej = Ei ;. So we need to show that EsttEj,k + %53 has the required
form. There are three cases to consider.

(1) First, suppose that j < k < n —2f. Then E;, € #,,—2f, s0
that Mo E; ), € & and Bf MyE; ), € E/& C #,7 by Lemma 7.4. Hence,
Ef My S,E; € %f;rl C %?n)‘ and part (b) is true when j < k <n — 2f.

(2) Next, suppose that j < n—2f < k. An easy exercise in multiplying
Brauer diagrams shows that

ETS; ifn— k|
Eij = fS(],k71)7 1 n ?s even,
EVS( k1), ifn—kis odd.

So Lemma 7.9(a) implies that EY MySqE; = MaE/E;j 1Sy = ETMySy
Sq-1(j,k+1)d> We again deduce the result from part (a).
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(3) Finally, suppose that n — 2f < j < k. Then MyFE;; = E; ;Mg
and a Brauer diagram calculation shows that E7 Ejr = E7S,,, where w is
a permutation of {n —2f + 1,...,n}. Consequently,

EIMySqE; = B MyF; 1,Sq = EY E; ,MSq
= EfSwMgtSd = EsttSwScb

where the last equality follows from Lemma 7.9(c). As S, Sq = SqSg-144
we are done by part (a).

(c) It follows from the skein relations that SqX; = X(;)¢Sq¢ + B, for
some B € %p(wp). Hence, by parts (a) and (b) it suffices to show that
ET My X, can be written in the required form, for 1 <i<n. Ifi <n—2f
then

BEIMX; + W5} = Elep(me) X + #50) = Elep(ma;) + #5)

rmn )

so the result follows because mg is a cellular basis element of J77,, _of. If
i > n — 2f then the result is immediate if n — ¢ is odd. If n — ¢ is even
then i — 1 > n —2f, so the result follows because F; 1 X; = —F;_1X;_1 by

(2.1)(h).

This completes the proof of the Lemma. 0

PROPOSITION 7.15.  Suppose that (t,K,d) € 0(f,\). For 1 <1i <mn and
1 < j < n there exist scalars aype, bope, Cope € R, which do not depend on s,
such that:

a) EsttXKSd -5 = Z anpeEstnXpSe (mOd %,DnA%

(0,0,€)€8(f,\)
lp<|k|

b) EfM5tXKSd B = Z bnpeEstnXpSe (mod 7/753\)7

(0,0,€)€8(f,\)
lol<|x|

c) EfM5tXKSd X = Z CnpeEstnXpSe (mod 7/751)\)
(0,p,)€6(f,\)
lpI<|k|+1

Proof. The case |k| = 0 is precisely Lemma 7.14. We now assume that
|k| > 0 and argue by induction on |k|.

(a) Write SqS; = SaSpSe, where a € &,_9¢, b € By and e € Dy.
As ETMyX"* = EfX%M, we may assume that ¢ = 1 by repeating the
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argument from the proof part (a) of Lemma 7.14. By the right handed
version of Lemma 2.3, X*S, = S5pX LN e , where X is a linear com-
bination of monomials of the form z; -z, with z; € {S;,E;, X, | 1 <
l<nand 1 <m <n} and k < |k|. For each summand z; - - -z} of X we
have k < || so by induction we can write (Ef Mg + %?n)‘)xl ---x; in the
required form, for [ = 1,...,k; consequently, by induction, we can write
(Bf My + %’Z)‘)xl .-+ xS, in the required form. Hence, we are reduced to
showing that Ef MySy X AL %?n)‘ can be written in the required form.
Now, EfMyS, = EfSyMy = Ef My by Lemma 7.9(c) and Lemma 7.7.
Therefore, using Lemma 7.7 once again,

EfM5beXKb_lSe = EsttXKb_ISe = MstEanb_ISe
= + M Ef X" S,

where k' € Ngf) because b € Bf and E;X;1 = —E;X; by the skein rela-
tions. Hence, Ef M Sy X K S — £ B My X" S, and the inductive step of
the Proposition is proved when h = 5.

(b) As in the proof of part (b) of Lemma 7.14, we have E/ My X*S4E; =
EsttX“Ej,de, where j = (i)d~! and k = (i + 1)d~!. Further, as Ejr=
Ej; we may assume that j < k and, by part (a), we may assume that
d = 1. So we need to show that EsttX“EM + %’Z)‘ has the required
form. There are two cases to consider.

Case bl. k£ = j+1: We must show that EsttX“Ej can be written in
the required form.

First suppose that j < n—2f. Then we may repeat the argument from
the proof of part (b) of Lemma 7.14 to see that My € &, so that

E'MyX"E; = B X" MyE; € BI X"&;.

Hence, B My X"S,E; € %fq{H C #,>2 by Lemma 7.4, and the Proposition
is true when j <n — 2f. ’

Next, suppose that j > n —2f. If k; + kj41 = 0 then X"F; = E; X"
so the result follows by induction. Suppose then that x; 4+ x;11 > 0.

If j = n—1 (mod 2) then Ej is a factor of Ey and x; > 0. By
Lemma 7.13 we have that Eijj E; = jw](-nj ), where w§nj ) is a central

element of #; ;_1 with deg w](»nj) < kj. Write Ef = Eij and X" = X“X;j.
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Then

EsttXﬁEj = EsttX“EijjEj = EsttXNij§ﬁj)

— EsttXﬂijj(ﬂj)
As deg X* = |k| — K and degwﬁ”

w](-ﬂj ) as a linear combination of terms of the form x1---x; and applying

induction to each of the products EsttX“Ej:cl cee X, for T < m <1
(compare the proof of part (a)).
If j = n (mod 2) then Fj; is a factor of E/ and xj41 > 0. Write

El = BTE;;y and X* = X*XI{". Then

< kj, the result now follows by writing

EIMa X Ej = B! My X" Ej X[ By = B My X" Ej XJ7 B
— j:EsttX“Xﬁg+1E +1E = :I:EfMﬁtXmeﬂE -HSij—H

=+ B/ My X Ej 1 X7 8801 = B/ Mo XSS 41

Hence, the result follows by part (a).

Case b2. k > j +1: Since || > 0 we can fix [ with x; #0 (sol =n—1
(mod 2)). Write Ef = E/E; and X® = X*X[". Set I’ = if [ ¢ {j,k} and
U'=1l+1ifle{jk},andput " =1"ifl' #j+1and " =kifl' =j+1.
Note that I’ ¢ {j,k} and I"” ¢ {j,j + 1} since k > j + 1. We have
BIMyX"Ej ) = BT My X "E X} S 110 EjS(js1.k)
= :l:EfM5tXﬂEl(S(J+Lk)Xﬁ/l + X)EJS(J+17]€)
= :tEfMﬂXK(S(]’JrLk)X;} + X)EJS(]JFLIC),

where deg X < k;. Hence, by induction and part (a) it suffices to show
that EsttX“S(j+17k)Xﬁ,lEj can be written in the required form. As [l” ¢

{4.5+1}
EI My XS (i1 iy X[ Ej = BT My X"S(j 1 1 E; X0

Therefore, Ef My X ®Ej  can be written in the required form by induction.

(c) As in the proof of Lemma 7.14, we may assume that r > 1 and, by
the skein relations, SqX; = X ;)44 + B, for some B € %,,(wo). Hence, by
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parts (a) and (b) it suffices to show that EfMyX" - X; can be written in
the required form. If i <n — 2f then

B My X*X; + W5 = BT X" 0(me) X; + #,5)
= Ef X" o(meY;) + #2

rmn o

so the result follows because {mg} is a cellular basis of 77 ,,_of. If i > n—2f
and k; < r — 1 then Ef My X"X; is of the desired form. If k; = r — 1 then
X X; = X[ can be written as a linear combination of r-regular monomials
of degree less than or equal to x; by the proof of Theorem 5.5. Hence, using
parts (a) and (b) and induction for each of these r-regular monomials,
ETM X" X; + %?n)‘ can be written in the required form.

This completes the proof of the Proposition. 0

Recall from (2.2) that # * has a unique anti-automorphism * : 7 —
# % which fixes all of the generators of # . This involution induces an
anti-isomorphism of %.,,, which we also call *. Thus, S} = S;, £ = E;,
X7 = Xj and (ab)* =b*a*, for 1 <i<n,1<j<nandallabe¥,.
Observe that S}, = S,,-1, for w € &,,, and that M} = M.

w

PROPOSITION 7.16. Suppose 0 < f < | %] and X\ € Af(n—2f). Then
%%/\/%5{\ is spanned by the elements

{SEXPEI M X Sa+ #,5) | (t5,d), (s, p€) € 5(f, M)}

Proof. Let W be the R-submodule of #,5/#,5* spanned by the el-
ements in the statement of the Proposition. As the generators {Ef Mg +
WM of WEN [ #EN are contained in W, and W C #,52 /#,52, it suffices
to show that W is a #.,,-bimodule.

First, by Proposition 7.15, W is closed under right multiplication by
elements of %, ,. To see that W is also closed under left multiplication by
elements of #;.,, note that (#,5)* = #,5} as the set of generators for #,5}
is invariant under * because (EfMy)* = Me(ES)* = M E/ = EfM,,.
Therefore, if a € #,,, then

A(SIXPE MaX"Sa+ #5) = ((SIX“E/ MoXS.+ #50a") € W,

by Proposition 7.15. Hence, W is closed under left multiplication by ele-
ments of #;. . U
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Let AF = {(£,A) | 0 < f < [2] and A € Af(n—2/)}. T (£,)) € A}
and (s, p,e), (t,x,d) € §(f,\) then we define

(£, o .
C(ip@)(t,n,d) - SeXpEfMth Sd-

We can now prove Theorem B from the introduction.

THEOREM 7.17. Let R be a commutative ring in which 2 is invertible
and let u € R". Suppose that Q) is u-admissible. Then

% — {cg’pf)e)(w) | (5,p,€), (t, 5, d) € 3(f, ), where (f,)) € A;f}

is a cellular basis of Wy n(u).

Proof. Applying the definitions it is easy to check that (C ((g ’;\’23)( tx, d))* =
oY . Furthermore, by Proposition 7.15, for each h € #. ,, there exist

(tr,d)(s,p.e)
scalars 7(y v ¢y(h) € R, which do not depend on (s, p, e), such that

(f:A) _ (f:A) A
C(s,p,e)(t,ﬁ,d) h = Z "”(t’,fehd/)(h)c(s,p,e)(y,n/,d') (mod Wr% )-
(tw! d)ES(fN)

To show that € is a cellular basis of %, ,, it remains to check that ¢ is a

n
basis of #;.,,. Now, #.n =W, D W}, DD %LRQJ is a filtration of #;.,,

by two-sided ideals, and the two-sided ideals 7//,53‘, where A € A (n —2f),
induce a filtration of %fn/%f;r L Therefore, ¢ spans #;., by Proposi-
tion 7.16. To complete the proof observe that #5(f,\) = #.7.%4(\), by
Lemma 5.1, and #% = r"(2n — 1)!!, by Corollary 5.2. As #;, is a free
R-module of rank r"(2n — 1)!I! by Theorem 5.5, this implies that ¢ is an
R-basis of #;.,,. Hence, € is a cellular basis of #,.,, as required. 0

The reader may check that the proof of Theorem 7.17 does not rely
on the explicit definition of the elements Mg € #; ,,(u). The important
property of these elements, as far as the proof of the Theorem is concerned,
is that they are related to a cellular basis of 7 ,(u) by the formula of
Lemma 7.9(d). Consequently, for each cellular basis of 7 ,(u) the argu-
ment of Theorem 7.17 produces a corresponding cellular basis of #.,,(u).

We now show that we can, in principle, construct all of the finite di-
mensional irreducible representations of the affine Wenzl algebras over an
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algebraically closed field. First recall that € is rational if for ¢ >> 0 it satis-
fies a recurrence relation of the form w;ir + aqwiyrgp—1 + -+ - + arw; = 0, for
some k > 0 and some ai,...,a; € R.

LEMMA 7.18. Suppose that € is admissible and that R is algebraically
closed. Then Q 1is rational if and only if there is a finite dimensional
W,20(Q)-module upon which Ey is non-zero.

Proof. First suppose that 2 is rational. As in the proof of Proposi-
tion 3.11, € is rational if and only if

— 1 N o v+oc

Wl(y)+y——:(y+—) vra

2 2/ 1Ly —¢

=1

for some ¢; € R and some s > 0. Hence, if € is rational then € is u-
admissible where

{(cl,...,cs), if s is odd,
u =

(c1y...,¢s,0), if sis even.

Hence, #;,(u) is a finite dimensional #,*(Q)-module upon which the ac-
tion of Ej is non-zero.

Conversely, suppose that there is a finite dimensional #,*(u)-module
M upon which Ej; is non-zero. Let ¢(t) = det(tI — X1) be the character-
istic polynomial for Xy acting on M, where t is an indeterminate and [
is the identity matrix on M. Write c(t) = Z?:o a;tf=I, where ag = 1.
Then Z?:o anf J =0on M by the Cayley-Hamilton theorem. Hence,
Z?:o ajElXi"Fk_jEl = Z?:o ajwiyk—jI is zero on M, for any i > 0.
Therefore, w;+r + ajwiyg—1 + -+ arw; = 0, for © > 0, since F; is non-zero
on M. Thus, § is rational as required. U

THEOREM 7.19. Suppose that R is an algebraically closed field. Then
we can construct all of the finite dimensional irreducible Wnaﬁ(ﬂ)—modules.

Proof. First suppose that #,*(Q) has a finite dimensional irreducible
module upon which FE; is non-zero. Then () is admissible. Then 2 is
rational by Lemma 7.18. Hence, by Proposition 3.11 every finite dimen-
sional irreducible #,2f(Q2)-module can be considered as a finite dimensional
Wy n(u)-module for some u € R" such that Q is u-admissible. By Theo-
rem 7.17 #; n(u) is a cellular algebra, so every irreducible % ,(u)-module
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arises (in a unique way) as the head of some cell module. Hence, we have
a construction of every finite dimensional irreducible #;2f(Q2)-module when
Q) is rational.

Finally, suppose that E acts as zero on every finite dimensional irre-
ducible #,2f(Q)-module. Then every finite dimensional irreducible module
M can be considered as an irreducible module for the degenerate affine
Hecke algebra of type A. Therefore, M can be considered as an irreducible
module for some degenerate Hecke algebra 7, ,,(u) (cf. the proof of Propo-
sition 3.11). Now .77, (u) is a cellular algebra by Theorem 6.3, so we can
again construct all finite dimensional #,*(Q)-modules. U

Note that any given irreducible #,2f(Q)-module can be considered as an
irreducible module for an infinite number of cyclotomic Nazarov-Wenzl al-
gebras. Consequently, the classification of the irreducible #;. ,(u)-modules
when wy # 0 (Theorem C), does not give a classification of the finite di-
mensional irreducible #,*(Q)-modules when Q2 is admissible and wq # 0.

§8. Classification of the irreducible %, ,(u)-modules

In this section we classify the irreducible %, (u)-modules, for fields in
which 2 is invertible, in terms of the irreducible % ,(u)-modules. As the
involution * induces a functorial bijection between left . ,-modules and
right #,. ,-modules, we continue to work with right %.,,-modules as in the
previous section.

We begin by recalling a useful result of Wenzl’s.

LEMMA 8.1. (Wenzl [Wen88, Propositions 2.1(a) and 2.2(a)])
a) Any monomial B € By (wo) is either in %B,_1(w) or it can be written
in the form ayaag, where a; € Bp_1(wy) and o € {Ep—1,Sn-1}-
b) En_1%n(wo)En_1 = Bn-2(wo)En—1.

LEMMA 8.2. Suppose that n > 2. Then Sp_1Bn—1(wo)Ep—1 =
%n—l(WO)En—l-

Proof. Tt a € PB,_2(wy) then S,_1aFE,—1 = aSp_1E,—1 = aF,_1.
Suppose a ¢ AB,_2(wp). By Lemma 8.1, we can write a = ajaay with
a; € Bp—2(wo) and a € {E,_2,S,—2}. If a = E,_o, then S,,_1aF,_1 =
a1Sn-1En_2oE,_1a3 = a1S,2a2E, 1. If a = S;,_5 then S, _1ak, 1
a1Sp-1Sn—2F,_1a9 = a1 E,—casFE,_1. In all cases we have S,,_1aF,_1
Br—1(wo)En_1.

= m
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LEMMA 8.3. Suppose that n > 2. Then for each a € W, , there exists
h € W, n—o such that degh < dega and E,_1aE,_1 = hE,_1. In particular,
En—l%’,nEn—l = %‘,n—ZEn—l-

Proof. We argue by induction on dega. It is enough to consider the
case where a = X“B, X A is an r-regular monomial in %, ,. Write X¢ =
XO‘XSffXg" and X° = XﬁXfﬁ’llXﬁn and define k = o1 + o + Bp—1 +
Brn. If k =0 then the result follows from Lemma 8.1(b), so we may assume
that k > 0. We split the proof into two cases.

Case 1. B, € #,_1(wo): First suppose that B, € %, _2(wp). Then we
have

En 1 X“B,XPE, | = X*B,E, | X ot xonthn g, X6
= (—1)" T XB E, 1 Xk | E, 1 X"

(k

However, En—lxﬁ,lEn—l = w, )1En—1 by Lemma 4.15, where w(k) is a

- n—1

central element in %} ,_2. If k& < r then degw(k) < k by Lemma 7.13, so

the result follows by induction. Suppose thennthlat k > r then X 'Tffl can
be written as a linear combination of r-regular monomials of degree strictly
less than k, so the result again follows by induction if B, € %, _a(wy).
Next, suppose that B, ¢ %,_2(wg). Then B, = B,zB.s, where
By, By € By_o(wy) and z € {Ep_2,S,-2}. So E,_1X“B,XPE,_; =
By XE, 1 X' Xen X0 X B, XB B,
If z= F,_o then

Ep X0 X0 By o X X R,
= B, X0 T B, o X g,
= 4B, X B, o X,
= XN R, By o By X
— £ xonton g, Xt
=+X} oFEn 1.

This completes the proof when z = E,, .
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Now suppose that z = S,,_2. Using the relations (2.1),

Ep 1 X0 X0 S, o X X,
= 4E, (Xon1tong, o XOntbep
= +FE, 1S, 2XFE,
= +F, 1E, 28, 1X*E, ;.

If k > r then we can write X¥ as a linear combination of r-regular mono-
mials each with degree strictly less than k. So by induction we may as-
sume that & < r. Then, by Lemma 2.3, Sn,lej = f{flSn,l + X,
where X € %, , is a linear combination of terms each of which has to-
tal degree in X,, and X, _1 strictly less than k. Hence, by induction,
En 1En_9XE, | =WE,_1, where b/ € #; ,_ and degh’ < k. Further,

En 1By, oXk S, 1B, 1 =FE, 1E, X" |E, 4
= (—1)*E,_1Ep o Xk ,E,
= (-1)*E,_1Ep 2B, 1 XE
= (DX} 2En 1.

Consequently, En,lXO‘B,YXﬂEn,l = hE,_1, where h € #;.,,_2 and deg h <
dega.

Case 2. By ¢ %,_1(wp): Once again by Lemma 8.1 we can write B, =
By zByr, where By, By € %y, _1(wp) and z € {Sp_1, Ep_1}.

If z = E,,_1 then the result follows using Case 1 twice, so suppose that
z=5Sp_1. Then

E, 1X°B,X"E, 4
— X, 1 X" X2 By Sy 1 By X X E, 1 XP,
If B,—1+ B, = 0 then S,,_1ByvE,_1 = hE,_1, for some h € %,_1(wg) by
Lemma 8.2, so the result follows from Case 1. Hence, we may assume that
Bn—1 + Bn > 0. Similarly, we may assume that a,_1 + a, > 0.
Next, suppose that B.» € %,_2(wp). Then
E, 1X°B,X°E,
— :i:XaEnlegﬁzlJraan/By/ n,ngn_l+'8nEn71X'8.
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Once again, by induction we may assume that §,_1 + 8, < r. Then, by
Lemma 2.3 8, X"t = xPn14hng 4 X, where deg X < B, 1 +
On. As S, 1E,_1 = E,_1 it is enough to consider En,ngfI“La" BBy
Xfﬁ‘llJrﬁ "En—1. As By By € %, _1(wp) this can be written in the required
form by Case 1.

Finally, suppose that By» ¢ %,_2(wp). Then either B, = B Ep—s
Bﬂfé/, or BA/N = B%/ n,ngg, where B%/, ng S r%TL,Q(WO). If BA/N =
B i/ n_2B'Yé/ then

.
EnlegﬁlegnBv’ "levi’ "*QBvé’Xgﬁ_llXﬁ"Enfl

= B, 1 X3 BBy Sy 1 En o By X0 B,

= £ B, 1 X3 BBy Sy 1 B o X' Y B 1By

= LB, X0 BBy Sy 1 By a Xy T BBy

= B, 1 X3 BBy Sy 1 By o By 1 X0 By
= £ B, 1 X0 BBy Sy 2 By 1 X5 P By

Now deg(Xo‘Bv/B%/ n—2) < dega since B,_1 + (B, > 0. Hence, the result
now follows by induction. If B,» = B%/ n,gBA/g then
Bt X0 X0 By St By Sna By X, X[ By
= :i:Enlegnfl—i_a”BW/B%/ n718n72X5n71+/6nEn,1B,yél
= j:En_ng"_lJra"Bw/B%/ n_ngn_lJrﬁ"Sn_gEn_leé/.

By Lemma 2.3 we can write Sn,lXS"’l+ﬁ” = Xgﬁ’lﬁﬁ”Sn,l + X, where
deg X < Bh_1+ Bn- Now,

By X315 By By XIS, 18, 5By 1By
= Byo1By By Xt Xgnten g, 2B, 1By
= Bp 1By By X" By o X0 B, By,
= Eu1By By X0 By o X0 Y B, 1By
= By 1By By X By B, 1 By XSy,
AS @1 + o > 0 we can write Ey,_1By By X0 """, 5B,y in the re-

quired form and so completes the proof of the case—and hence the Lemma.

a
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By iterating the Lemma we obtain the result that we really want.

COROLLARY 8.4. Suppose f >0, w € &,, and that Kk, p € Ngf). Then
Efxrs, x*Ef = hET,
for some h € W,.,,_oy.

As we now briefly recall, by the general theory of cellular algebras
[GL96], [Mat99], every irreducible #. ,-module arises in a unique way as the

simple head of some cell module. For each (f,\) € A, fix (s,p,e) € 8(f,\)
and let C’(({K’\zi) = C((i’;\’)e)(m’d) + #,5}. By Theorem 7.17 the cell modules
of #,,, are the modules A(f, \) which are the free R-modules with basis
{CHN) 1 (4 ,d) € 6(F,))}. The cell module A(f,\) comes equipped with
a natural bilinear form ¢y ) which is determined by the equation

(i) (f:A)
Clompe) i) O @) (s1p.0)
_ (f:A) (f:N) (f:N) A
= Pra (C(t,n,d)’ C(t/,n/,d/)) “Clame)(spe) (mod #,71).

The form ¢y 5 is #; p-invariant in the sense that ¢ \(za,y) = ¢fa(x,ya*),
for x,y € A(f,\) and a € #;.,,. Consequently,

Rad A(f,A) ={z € A(f,A) | ¢pa(z,y) =0 for all y € A(f, A)}

is a #; p-submodule of A(f, \) and D(f, A\) = A(f,\)/Rad A(f, A) is either
zero or absolutely irreducible.

In exactly the same way, for each multipartition A € A (n — 2f) the
corresponding cell module S(A) for 77, ,_o, the Specht module of Section 6,
carries a bilinear form ¢,. The quotient module D(A) = S(A)/Rad S(A) is
either zero or an absolutely irreducible J7. ,,_»¢-module.

We can now prove Theorem C.

THEOREM 8.5. Suppose that R is a field in which 2 is invertible, that
Q is u-admissible and that wy # 0. Let (f,\) € Aj. Then DN #£ 0 if and
only if D # 0.

Proof. 1t is enough to prove that ¢\ # 0 if and only if ¢y # 0.
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First, suppose that ¢, # 0. Recall that the Specht module S()\) has
basis {m¢ | t € 754(\)}. Then ¢y(m¢,my) # 0, for some t,0 € FT(\);
that is, mgmys ¢ %’;DTL)LQJ(. Let 0 to the zero vector in Ng,f). Then

(fv)‘) (f7 ) _ *
Clope)s0.0 Clonn) ) = Se X B My B! My XPS,
= S*XP(E)? MMy X" S,
= wl o (mi, my) S XP B Myp XS,
A
= wy ¢)\(mt, mn)Cg’p’)e)(s’p’e) (mod %,Dn/\)'

Hence, QSfA(C({OAi), C((t{ﬁ)l)) = woqb)\(mt,mn) # 0, so that ¢\ # 0.

Now suppose that ¢fy # 0. Then there exist (u,c,u),(v,3,v) €

0(f, A) such that ¢f)‘(C(LJ:O>:)u) C(t{’ﬂ U)) # 0. That is,
04 CUY oUW

(s,p,€)(wa,u)  (0,8,0)(s,p.€)
= S*XPE My XS, - S*XPES My, XPS,
= S*XP M E' X*S,5* XPEf My X?S,
= S*XP M hMyE/ X?S,,

for some h € #,,_2r by Corollary 8.4. Now, MsquMnsEf - SfEf -
%f,j 1, by Lemma 7.4. Therefore, Proposition 7.2 implies that there is
an h' € A, _of such that mgh'mys # 0 (mod %?L’le). Consequently,
¢x # 0. This completes the proof of the Theorem. 0

We remark that the irreducible representations of the Ariki-Koike alge-
bras are indexed by the u-Kleshchev multipartitions; see [Ari01], [AMO00]. In
the special case when u; = d; - 1g, for 1 <4 < r and where 0 < d; < char R,
Kleshchev [Kle05] has shown that the simple /7, ,,(u)-modules are labelled
by a set of multipartitions which gives the same Kashiwara crystal as the
set of u-Kleshchev multipartitions of n. Hence, in this case, the simple
W n(u)-modules are labelled by the set {(f,\)}, where 0 < f < | 5| and
A is a u-Kleshchev multipartition of n — 2f. By modifying the proof of
[DMO02, Theorem 1.1], or [AMO0O, Theorem 1.3], one can show that under
the assumptions of Theorem 8.5 the simple #.,,(u)-modules are always la-
belled by the u-Kleshchev multipartitions. (Note, however, that we are not
claiming that DY) =£ 0 for the multipartitions A which Kleshchev [Kle05]
uses to label the irreducible 47 ,,(u)-modules.)
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We close by classifying the quasi-hereditary cyclotomic Nazarov-Wenzl
algebras with wy # 0. See [CPS88] for the definition of a quasi-hereditary
algebra.

COROLLARY 8.6. Suppose that R is a field in which 2 is invertible, that
Q is u-admissible and that wy # 0. Then #; n(u) is a quasi-hereditary alge-
bra if and only if char R > n and u is generic for 7, ,,(u) (Definition 6.4).

Proof. By [GL96, (3.10)], a cellular algebra is quasi-hereditary if and
only if the bilinear form on each cell module does not vanish. Therefore, #,.
is a quasi-hereditary algebra if and only if DU £ 0 for all (f,\) € A and
M, p—op(u) is quasi-hereditary if and only if D* # 0 for all A € A (n—2f).
Hence, by Theorem 8.5, #; ,(u) is quasi-hereditary if and only if the alge-
bras J ,_o¢(u) are all quasi-hereditary, for 0 < f < [5]|. However, the
degenerate Hecke algebras are Frobenius algebras by [Kle05, Cor. 5.7.4], so
they are quasi-hereditary precisely when they are semisimple—since Frobe-
nius algebras have infinite global dimension when they are not semisimple,
whereas quasi-hereditary algebras have finite global dimension (see [Don99,

Prop. A2.3]). Hence the result follows from Theorem 6.11. U
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