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CYCLOTOMIC NAZAROV-WENZL ALGEBRAS
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On the occasion of Professor George Lusztig’s 60 th birthday

Abstract. Nazarov [Naz96] introduced an infinite dimensional algebra, which
he called the affine Wenzl algebra, in his study of the Brauer algebras. In this
paper we study certain “cyclotomic quotients” of these algebras. We construct
the irreducible representations of these algebras in the generic case and use this
to show that these algebras are free of rank rn(2n−1)!! (when Ω is u-admissible).
We next show that these algebras are cellular and give a labelling for the simple
modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In
particular, this gives a construction of all of the finite dimensional irreducible
modules of the affine Wenzl algebra.

§1. Introduction

The Brauer algebras were introduced by Richard Brauer [Bra37] in

his study of representations of the symplectic and orthogonal groups. In

introducing these algebras Brauer was motivated by Schur’s theory (see

[Gre80]), which links the representation theory of the symmetric group Sn

and the general linear group GL(V ) via their commuting actions on “tensor

space” V ⊗n, where Sn acts by place permutations. Analogously, the Brauer

algebras are the centralizers of the image of a symplectic or orthogonal group

in End(V ⊗n), where V is the defining representation of the group.

The Brauer algebras have now been studied by many authors and they

have applications ranging from Lie theory, to combinatorics and knot the-
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ory; see, for example, [BW89], [Bro56], [DWH99], [Eny04], [FG95], [HR95],

[HW89a], [HW89b], [Jon94], [LR97], [Mar96], [Naz96], [Ram95], [Rui05],

[Ter01], [Wen88], [Wey97], [Xi00]. In this paper we are interested not so

much in the Brauer algebra itself but in affine and cyclotomic analogues of

it. Our starting point is a (special case of) Nazarov’s [Naz96] affine Wenzl

algebra W aff
n (Ω), an algebra which could legitimately be called the degen-

erate affine BMW algebra. Nazarov introduced the affine Wenzl algebra

when studying the action of “Jucys-Murphy operators” on the irreducible

representations of the Brauer algebras. Nazarov’s idea was that the affine

Wenzl algebra should play a similar role in the representation theory of the

Brauer algebras to that played by the affine degenerate Hecke algebra of

type A in the representation theory of the symmetric group.

Let R be a commutative ring. The representation theory of the affine

Wenzl algebras W aff
n (Ω), where Ω = {ωa ∈ R | a ≥ 0}, has not yet been

studied. Motivated by the theory of the affine Hecke algebras and the

cyclotomic Hecke algebras of type G(r, 1, n) [Ari96], [DJM99], [Kle05] we

introduce a “cyclotomic” quotient Wr,n(u) = W aff
n (Ω)/〈

∏r
i=1(X1 − ui)〉 of

W aff
n (Ω), which depends on an r-tuple of parameters u = (u1, . . . , ur) ∈ Rr.

We call Wr,n(u) a cyclotomic Nazarov-Wenzl algebra. This paper develops

the representation theory of the algebras Wr,n(u).

The first question that we are faced with is whether the cyclotomic

Nazarov-Wenzl algebra Wr,n(u) is always free as an R-module. The Brauer

algebra Bn is free of rank (2n − 1)!! = (2n − 1) · (2n − 3) · · · · 3 · 1. We

expect that the cyclotomic Nazarov-Wenzl algebra Wr,n(u) should be free

of rank rn(2n − 1)!!. In Section 3, a detailed study of the representation

theory of Wr,2(u) shows that, in the semisimple case, Wr,2(u) has rank

rn(2n − 1)!!|n=2 if and only if Ω is u-admissible (Definition 3.6). This

constraint on Ω involves Schur’s q-functions. Our first main result is the

following.

Theorem A. Let R be a commutative ring in which 2 is invertible.

Suppose that u ∈ Rr and that Ω is u-admissible. Then the cyclotomic

Nazarov-Wenzl algebra Wr,n(u) is free as an R-module of rank rn(2n− 1)!!.

The proof of this result occupies a large part of this paper. The idea be-

hind the proof comes from [AK94]: for “generic” R we explicitly construct

a class of irreducible representations of Wr,n(u) and use them to show that

the dimension of Wr,n(u)/Rad Wr,n(u) is at least rn(2n− 1)!!. It is reason-

ably easy to produce a set of rn(2n− 1)!! elements which span Wr,n(u), so
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this is enough to prove Theorem A. We construct these irreducible repre-

sentations by giving “seminormal forms” for them (Theorem 4.13); that is,

we give explicit matrix representations for the actions of the generators of

Wr,n(u). The main difficulty in this argument is in showing that these ma-

trices respect the relations of Wr,n(u), we do this using generating functions

introduced by Nazarov [Naz96]. There is an additional subtlety in that we

have to work over the real numbers in order to make a consistent choice of

square roots in the representing matrices.

The next main result of the paper shows that Wr,n(u) is a cellular

algebra in the sense of Graham and Lehrer [GL96]. This gives a lot of

information about the representations of the cyclotomic Nazarov-Wenzl al-

gebras. For example, cellularity implies that the decomposition matrix of

Wr,n(u) is unitriangular.

Theorem B. Suppose that 2 is invertible in R and that Ω is u-ad-

missible. Then the cyclotomic Nazarov-Wenzl algebra Wr,n(u) is a cellular

algebra.

We prove Theorem B by constructing a cellular basis for Wr,n(u). We

recall the definition of a cellular basis in Section 6; however, for the impa-

tient experts we mention that the cell modules of Wr,n(u) are indexed by

ordered pairs (f, λ), where 0 ≤ f ≤ bn
2 c and λ is a multipartition of n− 2f ,

where 0 ≤ f ≤ bn
2 c, and the bases of the cell modules are indexed by certain

ordered triples which are in bijection with the n-updown λ-tableaux.

Finally we consider the irreducible Wr,n(u)-modules over a field R. The

cell modules of Wr,n(u) have certain quotients D(f,λ), where 0 ≤ f ≤ bn
2 c

and λ is a multipartition of n − 2f , which the theory of cellular algebras

says are either zero or absolutely irreducible. Now, the cyclotomic Nazarov-

Wenzl algebra Wr,n(u) is filtered by two sided ideals with the degenerate

Hecke algebras Hr,n−2f (u) of type G(r, 1, n − 2f) appearing as the succes-

sive quotients for 0 ≤ f ≤ bn
2 c. In Section 6 we show that the algebras

Hr,m(u) are also cellular (in fact, this is the key to proving Theorem B); as

a consequence, the irreducible Hr,m(u)-modules are the non-zero modules

Dλ, where λ is a multipartition of m.

Using the results of the last paragraph we can construct all of the irre-

ducible representations of the cyclotomic Nazarov-Wenzl algebras when Ω

is admissible. This enables us to construct all finite dimensional represen-

tations of the affine Wenzl algebras over an algebraically closed field when
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Ω is admissible (Theorem 7.19). In the special case when ω0 6= 0 we also

have the following classification of the irreducible Wr,n(u)-modules.

Theorem C. Suppose that R is a field in which 2 is invertible, that

Ω is u-admissible and that ω0 6= 0. Then {D(f,λ) | 0 ≤ f ≤ bn
2 c, λ `

n−2f and Dλ 6= 0} is a complete set of pairwise non-isomorphic irreducible

Wr,n(u)-modules.

As an application of Theorem C we give necessary and sufficient con-

ditions for Wr,n(u) to be quasi-hereditary when R is a field and ω0 6= 0.

We note that Orellana and Ram [OR], building on [LR97], gave ex-

plicit formulae for the seminormal representations of the affine and cyclo-

tomic BMW algebras [OR, Theorem 6.20]. As the (degenerate) affine Wenzl

algebra is the degeneration of the affine BMW algebra, it is natural to ex-

pect that we should be able to derive the seminormal representations of

W aff
n (Ω) from the results of [OR]. Unfortunately, this is not possible be-

cause Orellana and Ram construct the seminormal representations only for

a very restrictive class of cyclotomic BMW algebras corresponding to cer-

tain specializations of the parameters (see [OR, Theorem 6.17(c-d)]). These

parameter choices are sufficient for the purposes of [OR], however, it is not

clear that “enough” of these parameter choices are u-admissible so we are

unable to exploit [OR]. We also remark we had to work quite hard to ensure

that we had made a consistent choice of square roots in our seminormal rep-

resentations (cf. Assumption 4.12), and that it is not clear to us that [OR]

have made a coherent choice of roots in their seminormal representations.

Another possible approach to the construction of the seminormal rep-

resentations in this paper is via Jones’ “basic construction” [Wen88]. Wenzl

constructed the semisimple irreducible representations of the Brauer alge-

bras this way. The final step of his argument used the non-degeneracy of

the Markov trace to show that all partitions of n are “permissible” (see

[Wen88, Theorem 3.4]). We were unable to extend Wenzl’s arguments to

the cyclotomic Nazarov-Wenzl algebras because we were unable to prove

that we have an analogous non-degenerate trace form. Note also that, a

priori, it is not clear that Wr,n−1(u) is a subalgebra of Wr,n(u).

Finally, we remark that other variants of signed and cyclotomic Brauer

algebras, G-Brauer algebras and cyclotomic BMW have been studied pre-

viously in the papers [CGW05], [GH], [HO01], [PK98], [PK02], [PS02],

[RY04].



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 51

Notational index

at(k) Seminormal matrix entry . . . . . . . . . 76

bt(k) Seminormal matrix entry . . . . . . . . . 76

Bn(ω) Brauer algebra . . . . . . . . . . . . . . . . . . . 56

B(n) Set of Brauer diagrams . . . . . . . . . . . 55

Bγ Element of W aff
n (λ) or Wr,n . . . . . . . 57

ct(k) Content of k in t . . . . . . . . . . . . . . . . . 73

C
(f,λ)
(∗)(∗)

Cellular basis element of Wr,n . . . .123

deg Degree function on Wr,n . . . . . . . . . .116

Ei Generator of W aff
n (Ω). . . . . . . . . . . . . 51

Ef = En−1En−3 · · ·En−2f+1 . . . . . . . .113

Ef = Wr,n−2f E1Wr,n−2f . . . . . . . . . . . .112

etu(k) Seminormal matrix entry . . . . . . . . . 75

f(n,λ) = #T ud
n (λ) . . . . . . . . . . . . . . . . . . . . . . 98

Hr,n(u) Degenerate Hecke algebra . . . . . . . . 61

mst Cellular basis element of Hr,n . . . .108

Mst Element of Wr,n(u) . . . . . . . . . . . . . . .115

Si Generator of W aff
n (Ω). . . . . . . . . . . . . 51

stu(k) Seminormal matrix entry . . . . . . . . . 77

Ti Generator of Hr,n(u) . . . . . . . . . . . . 61

T std(λ) Standard λ-tableaux . . . . . . . . . . . . . 73

T ud
n (λ) Updown λ-tableaux . . . . . . . . . . . . . . 73

u Parameters for Wr,n(u) . . . . . . . . . . . 59

Wr,n(u) Cyclotomic Nazarov-Wenzl alg. . . . 59

W
f

r,n = Wr,nEfWr,n . . . . . . . . . . . . . . . . . . .113

W
Dλ

r,n Two-sided ideal in W
f

r,n . . . . . . . . . .116

W aff
n (Ω) Affine Wenzl algebra . . . . . . . . . . . . . 51

W̃1(y) =
P

a≥0 ωay−a . . . . . . . . . . . . . . . . . . 58

Wk(y) = 1
2
− y + (y −

(−1)r

2
)

Q

α
y+c(α)
y−c(α)

. 74

Xj Generator of W aff
n (Ω). . . . . . . . . . . . . 51

Xα A monomial Xα1

1 · · ·Xαn

n . . . . . . . . 57

Yj Generator of Hr,n(u) . . . . . . . . . . . . 61

∆(λ) Seminormal representation . . . . . . . 78

σf A map Hr,n−2f → W
f

r,n/W
f+1

r,n . .114

ωa,Ω Parameters for W aff
n (Ω) . . . . . . . . . . 51

ω
(a)
k

Central element . . . . . . . . . . . . . . . . . . 78
k
∼ Equivalence relation on T ud

n (λ) . . 73

t 	 u t \ u or u \ t . . . . . . . . . . . . . . . . . . . . . . 76

§2. Affine and cyclotomic Nazarov-Wenzl algebras

In [Naz96], Nazarov introduced an affine analogue of the Brauer algebra

which he called the (degenerate) affine Wenzl algebra. The main objects

of interest in this paper are certain “cyclotomic” quotients of Nazarov’s

algebra. In this section we define these algebras and prove some elementary

results about them.

Fix a positive integer n and a commutative ring R with multiplicative

identity 1R. Throughout this paper we will assume that 2 is invertible in R.

Definition 2.1. (Nazarov [Naz96, §4]) Fix Ω = {ωa | a ≥ 0} ⊆ R.
The (degenerate) affine Wenzl algebra W aff

n = W aff
n (Ω) is the unital asso-

ciative R-algebra with generators {Si, Ei, Xj | 1 ≤ i < n and 1 ≤ j ≤ n}
and relations

a) (Involutions) S2
i = 1, for 1 ≤ i < n.

b) (Affine braid relations)

(i) SiSj = SjSi if |i− j| > 1,

(ii) SiSi+1Si = Si+1SiSi+1, for 1 ≤ i < n− 1,

(iii) SiXj = XjSi if j 6= i, i + 1.

c) (Idempotent relations) E2
i = ω0Ei, for 1 ≤ i < n.
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d) (Commutation relations)

(i) SiEj = EjSi, if |i− j| > 1,

(ii) EiEj = EjEi, if |i− j| > 1,

(iii) EiXj = XjEi, if j 6= i, i + 1,

(iv) XiXj = XjXi, for 1 ≤ i, j ≤ n.

e) (Skein relations) SiXi−Xi+1Si = Ei−1 and XiSi−SiXi+1 = Ei−1,
for 1 ≤ i < n.

f ) (Unwrapping relations) E1X
a
1 E1 = ωaE1, for a > 0.

g) (Tangle relations)

(i) EiSi = Ei = SiEi, for 1 ≤ i ≤ n− 1,

(ii) SiEi+1Ei = Si+1Ei, for 1 ≤ i ≤ n− 2,

(iii) Ei+1EiSi+1 = Ei+1Si, for 1 ≤ i ≤ n− 2.

h) (Untwisting relations) Ei+1EiEi+1 = Ei+1 and EiEi+1Ei = Ei, for
1 ≤ i ≤ n− 2.

i) (Anti-symmetry relations) Ei(Xi +Xi+1) = 0 and (Xi +Xi+1)Ei = 0,
for 1 ≤ i < n.

Our definition of W aff
n differs from Nazarov’s in two respects. First,

Nazarov considers only the special case when R = C; however, as we will in-

dicate, most of the arguments that we need from [Naz96] go through without

change when R is an arbitrary ring. More significantly, Nazarov considers

a more general algebra which is generated by the elements {Si, Ei, Xj , ω̂a |

1 ≤ i < n, 1 ≤ j ≤ n and a ≥ 0} such that the ω̂a are central and the

remaining generators satisfy the relations above. For our purposes it is

more natural to define the elements ωa to be elements of R because with-

out this assumption the cyclotomic quotients of W aff
n would not be finite

dimensional.

Note that EiEi+1Si = EiEi+1EiSi+1 = EiSi+1 and Si+1EiEi+1 =

SiEi+1EiEi+1 = SiEi+1. Thus a quick inspection of the defining relations

shows that W aff
n has the following useful involution.

2.2. There is a unique R-linear anti-isomorphism ∗ : W
aff

n → W
aff

n

such that

S∗
i = Si, E∗

i = Ei and X∗
j = Xj ,

for all 1 ≤ i < n and all 1 ≤ j ≤ n. Moreover, ∗ is an involution.
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Using the defining relations it is not hard to see that W aff
n is generated

by the elements S1, . . . , Sn−1, E1, X1. There is no real advantage, however,

to using this smaller set of generators as the corresponding relations are

more complicated.

Lemma 2.3. (cf. [Naz96, (2.6)]) Suppose that 1 ≤ i < n and that a ≥ 1.
Then

SiX
a
i = Xa

i+1Si +
a∑

b=1

Xb−1
i+1 (Ei − 1)Xa−b

i .

Proof. We argue by induction on a. When a = 1 this is relation 2.1(e).
If a ≥ 1 then, by induction, we have

SiX
a+1
i = SiX

a
i Xi =

{
Xa

i+1Si +
a∑

b=1

Xb−1
i+1 (Ei − 1)Xa−b

i

}
Xi

= Xa
i+1SiXi +

a∑

b=1

Xb−1
i+1 (Ei − 1)Xa+1−b

i .

Now, by the skein relation 2.1(e), SiXi = Xi+1Si + Ei − 1, so

SiX
a+1
i = Xa

i+1

(
Xi+1Si + Ei − 1

)
+

a∑

b=1

Xb−1
i+1 (Ei − 1)Xa+1−b

i

= Xa+1
i+1 Si +

a+1∑

b=1

Xb−1
i+1 (Ei − 1)Xa+1−b

i ,

as required.

Corollary 2.4. Suppose that a ≥ 0. Then

ω2a+1E1 =
1

2

{
−ω2a +

2a+1∑

b=1

(−1)b−1ωb−1ω2a+1−b

}
E1.

Proof. Take i = 1 and multiply the equation in Lemma 2.3 on the left
and right by E1. Since S1E1 = E1 = E1S1, this gives

E1X
a
1 E1 = E1X

a
2 E1 +

a∑

b=1

E1X
b−1
2 (E1 − 1)Xa−b

1 E1.
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Since E1X
c
1E1 = ωcE1, E1(X1 +X2) = 0 and X1X2 = X2X1 we can rewrite

this equation as

ωaE1 = (−1)aωaE1 +
a∑

b=1

(−1)b−1E1X
b−1
1 (E1 − 1)Xa−b

1 E1

= (−1)aωaE1 +

a∑

b=1

(−1)b−1
(
E1X

b−1
1 E1X

a−b
1 E1 −E1X

a−1
1 E1

)

= (−1)aωaE1 +

a∑

b=1

(−1)b−1(ωb−1ωa−b − ωa−1)E1

= (−1)aωaE1 +

a∑

b=1

(−1)b−1ωb−1ωa−bE1 +

a∑

b=1

(−1)bωa−1E1.

Setting a = 2a′ + 1 proves the Corollary.

If we assume that E1 6= 0 in W aff
n and that W aff

n is torsion free then this

result says that the ωa, for a odd, are determined by the ωb, for b even.

Remark 2.5. If a > 0 then the proof of the Corollary also gives the
identity

0 =
{ 2a∑

b=1

(−1)b−1ωb−1ω2a−b

}
E1.

However, this relation holds automatically because

2a∑

b=1

(−1)b−1ωb−1ω2a−b =

a∑

b=1

(−1)b−1ωb−1ω2a−b +

2a∑

b=a+1

(−1)b−1ωb−1ω2a−b

=

a∑

b=1

(−1)b−1ωb−1ω2a−b +

a∑

b′=1

(−1)2a−b′ω2a−b′ωb′−1

= 0.

Before we define the cyclotomic quotients of W aff
n , which are the main

objects of study in this paper, we recall some standard definitions and

notation from the theory of Brauer algebras and some of Nazarov’s results.

A Brauer diagram on the 2n vertices {1, . . . , n, 1, . . . , n} is a graph with

n edges such that each vertex lies on a (unique) edge. Equivalently, a Brauer

diagram is a partitioning of {1, . . . , n, 1, . . . , n} into n two element subsets.
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Let B(n) be the set of all Brauer diagrams on {1, . . . , n, 1, . . . , n}. Then

#B(n) = (2n− 1)!!.

Let γ ∈ B(n) be a Brauer diagram. A vertical edge in γ is any edge

of the form {m,m}, where 1 ≤ m ≤ n. Horizontal edges are edges of the

form {m, p}, or {m, p}, where 1 ≤ m < p ≤ n.

For i = 1, . . . , n − 1 let γ(i, i + 1) be the Brauer diagram with edges

{i, i + 1}, {i + 1, i} and all other edges being vertical. Similarly, let γi be

the Brauer diagram with edges {i, i+1}, {i, i + 1}, and with all other edges

being vertical. We set si = bγ(i,i+1) and ei = bγi
. We also let γe be the

graph with edges {{i, i} | 1 ≤ i ≤ n}.

Brauer diagrams can be represented diagrammatically as in the follow-

ing examples. The vertices in the first rows are labelled from left to right

as 1 to 4, and the vertices in the second row are labelled 1 to 4.

γe = , γ(1, 2) = , and γ2 = .

Given two Brauer diagrams γ, γ ′ ∈ B(n) we define their product to be

the diagram γ •γ ′ which is obtained by identifying vertex i in γ with vertex

i in γ′, for 1 ≤ i ≤ n. Let `(γ, γ ′) be the number of loops in the graph γ •γ ′

and let γ ◦ γ ′ be the Brauer diagram obtained by deleting these loops. The

following pictures give two examples of the multiplication γ◦γ ′ of diagrams.

= and =

In the first example γ = γ(1, 2), γ ′ = γ2 and `(γ, γ ′) = 0. In the second

example γ = γ ′ = γ2 and `(γ, γ ′) = 1.

Recall that R is a commutative ring.

Definition 2.6. (Brauer [Bra37]) Suppose that ω ∈ R. The Brauer

algebra Bn(ω), with parameter ω, is the R-algebra which is free as an R-
module with basis {bγ | γ ∈ B(n)} and with multiplication determined
by

bγbγ′ = ω`(γ,γ′)bγ◦γ′ ,

for γ, γ′ ∈ B(n).
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It is easy to see that Bn(ω) is an associative algebra with identity bγe .

We abuse notation and sometimes write 1 = bγe .

The second example above indicates that e2
i = ωei, for 1 ≤ i < n.

Similarly, s2
i = 1, for 1 ≤ i < n.

Let Sn be the symmetric group on n letters. To each permutation

w ∈ Sn we associate the Brauer diagram γ(w) which has edges {{i, w(i)} |
for 1 ≤ i ≤ n}. Notice that if w = (i, i + 1) then this is consistent with the

notation introduced above for the elements si = bγ(i,i+1) ∈ Bn(ω).

The diagrams {γ(w) | w ∈ Sn} are precisely the Brauer diagrams which

do not have any horizontal edges. It is easy to see that the map w 7→ bγ(w)

induces an algebra embedding of the group ring RSn of Sn into Bn(ω). In

this way, RSn can be considered as a subalgebra of Bn(ω).

There is a well-known presentation of Bn(ω), which we now describe.

See [MW00] for example.

Proposition 2.7. Suppose that R is a commutative ring. The Brauer

algebra Bn(ω) is generated by the elements s1, . . . , sn−1, e1, . . . , en−1 subject

to the relations

s2
i = 1, e2

i = ωei, siei = eisi = ei,

sisj = sjsi, siej = ejsi, eiej = ejei,

sksk+1sk = sk+1sksk+1, ekek+1ek = ek, ek+1ekek+1 = ek+1,

skek+1ek = sk+1ek, ek+1eksk+1 = ek+1sk,

where 1 ≤ i, j < n, with |i− j| > 1, and 1 ≤ k < n− 1.

Let sij = bγ(i,j), and let eij = bγij
where γij is the Brauer diagram with

edges {i, j}, {i, j} and {k, k}, for k 6= i, j.

Corollary 2.8. (Nazarov [Naz96, (2.2)]) Suppose that ω ∈ R and let

Ω = {ωa | a ≥ 0}, where ωa = ω
(

ω−1
2

)a
, for a ≥ 0. Then there is a sur-

jective algebra homomorphism π : W
aff

n (Ω) → Bn(ω) which is determined

by

π(Si) = si, π(Ei) = ei, and π(Xj) =
ω − 1

2
+

j−1∑

k=1

(skj − ekj),

for 1 ≤ i < n and 1 ≤ j ≤ n. Moreover, ker π =
〈
X1 − (ω−1

2 )
〉
, so that

W
aff

n (Ω)/
〈
X1 − (ω−1

2 )
〉
∼= Bn(ω).
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Notice, in particular, that π(X1) = ω−1
2 . To prove this result it is

enough to show that the elements π(Xj), for 1 ≤ j ≤ n, satisfy the rela-

tions in W aff
n (Ω). For these calculations see [Naz96, Lemma 2.1 and Propo-

sition 2.3].

Fix a Brauer diagram γ ∈ B(n). By Proposition 2.7 we can write

bγ as a word in the generators s1, . . . , sn−1, e1, . . . , en−1. Fix such a word

for bγ and let Bγ ∈ W aff
n (Ω) be the corresponding word in the generators

S1, . . . , Sn−1, E1, . . . , En−1. Then π(Bγ) = bγ .

Given α, β ∈ Nn
0 and γ ∈ B(n) write

XαBγXβ = Xα1
1 · · ·X

αn
n BγXβ1

1 · · ·X
βn
n .

We want to use these monomials to give a basis of W aff
n (Ω). The anti-

symmetry relations Ei(Xi + Xi+1) = 0, for 1 ≤ i < n, show that the set of

all monomials is not linearly independent. In Theorem 2.12 below we will

show that the following monomials are linearly independent.

Definition 2.9. Suppose that α, β ∈ Nn
0 and γ ∈ B(n). A monomial

XαBγXβ in W aff
n (Ω) is regular if

a) αr = 0 whenever r is the left endpoint of a horizontal edge in the top
row of γ.

b) if βl 6= 0 then l is the left endpoint of a horizontal edge in the bottom
row of γ.

We can view a regular monomial XαBγXβ as a Brauer diagram if we

colour the horizontal and vertical edges with the non-negative integers using

α and β.

Following Corollary 2.4 we also make the following definition. (Recall

that we are assuming that 2 is invertible in R.)

Definition 2.10. Let Ω = {ωa ∈ R | a ≥ 0}. Then Ω is admissible if

ω2a+1 =
1

2

{
−ω2a +

2a+1∑

b=1

(−1)b−1ωb−1ω2a+1−b

}
,

for all a ≥ 0.

By Corollary 2.4 E1 is a torsion element if Ω is not admissible.
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Remark 2.11. Let y be an indeterminate and consider the generating
series W̃1(y) =

∑
a≥0 ωay

−a. Then the condition for Ω to be admissible can
be written as

(
W̃1(y) + y −

1

2

)(
W̃1(−y)− y −

1

2

)
=

(1

2
− y

)(1

2
+ y

)
.

Similar generating functions play an important role in Section 4.

Theorem 2.12. (Nazarov [Naz96, Theorem 4.6]) Suppose R is a com-

mutative ring in which 2 is a unit and that Ω = {ωa ∈ R | a ≥ 0} is

admissible. Then W
aff

n (Ω) is free as an R-module with basis {XαBγXβ |
α, β ∈ Nn

0 , γ ∈ B(n), and XαBγXβ is regular}.

Sketch of proof. We have defined the elements of Ω to be scalars, but

Nazarov [Naz96] works with a larger algebra Ŵ aff
n (Ω̂) generated by elements

Si, Ei, Xj , for 1 ≤ i < n and 1 ≤ j ≤ n, and Ω̂ = {ω̂a | a ≥ 0} where
these generators satisfy the same relations as the corresponding generators

of W aff
n (Ω) except that the elements of Ω are central elements of Ŵ aff

n (Ω̂),

rather than scalars. Hence, W aff
n (Ω) ∼= Ŵ aff

n (Ω̂)/I, where I is the two sided

ideal of Ŵ aff
n (Ω̂) generated by the elements {ω̂a − ωa | a ≥ 0}.

Nazarov puts a grading on Ŵ aff
n (Ω̂) by setting deg Si = deg Ei =

deg ω̂a = 0 and deg Xi = 1. To prove the result it is enough to work with the

associated graded algebra gr(Ŵ aff
n (Ω̂)), where the grading is that induced

by the degree function. The arguments of Lemma 4.4 and Lemma 4.5 from

[Naz96] go through without change for an arbitrary ring, so Ŵ aff
n (Ω̂) is

spanned by
{

XαBγXβω̂h2
2 ω̂h4

4 · · ·

∣∣∣∣
α, β ∈ Nn

0 , γ ∈ B(n), h2i ≥ 0, for i ≥ 1,
with only finitely many h2i 6= 0

}
,

where the monomials XαBγXβ are all regular (see [Naz96, Theorem 4.6]).
This implies that the regular monomials span W aff

n (Ω) for any ring R.
To complete the proof we first consider the case where the elements of Ω′

are indeterminates over Z and we consider the affine Wenzl algebras defined
over the field C(Ω′) and over the ring Z[Ω′]. We write W aff

R,n(Ω′) = W aff
n (Ω′)

to emphasize that W aff
n (Ω′) is defined over the ring R.

Using Nazarov’s algebra Ŵ aff
n (Ω̂′) and arguing as above, it follows from

[Naz96, Lemma 4.8] that the set of regular monomials are linearly indepen-
dent when R = C(Ω′). By the last paragraph, the regular monomials span
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W aff
Z[Ω′],n(Ω′). Using the natural map W aff

Z[Ω′],n(Ω′) → W aff
C(Ω′),n(Ω′) it follows

that W aff
Z[Ω′],n(Ω′) is free as a Z[Ω′]-module and has basis the set of regular

monomials. Hence, by a specialization argument, if R is arbitrary ring R
and Ω ⊆ R then

W
aff

R,q(Ω) ∼= W
aff

Z[Ω′],n(Ω′)⊗Z[Ω′] R,

where we consider R as a Z[Ω′]-module by letting ω′
a ∈ Ω′ act on R as

multiplication by ωa ∈ Ω, for a ≥ 0. Hence, W aff
R,n(Ω) is free as an R-module

with basis the set of regular monomials as claimed.

We are now ready to define the cyclotomic Nazarov-Wenzl algebras.

We assume henceforth that Ω is admissible.

Definition 2.13. Fix an integer r ≥ 1 and u = (u1, . . . , ur) ∈ Rr.
The cyclotomic Nazarov-Wenzl algebra Wr,n = Wr,n(u) is the R-algebra
W aff

n (Ω)/〈(X1 − u1) · · · (X1 − ur)〉.

We should write Wr,n(u,Ω), however, in Section 3 we will restrict to

the case where Ω is u-admissible (Definition 3.6), which implies that ωa is

determined by u, for a ≥ 0. For this reason we omit Ω from the notation

for Wr,n(u).

By Corollary 2.8 the Brauer algebras Bn(ω) are a special case of the cy-

clotomic Nazarov-Wenzl algebras corresponding to r = 1 and Ω ={
ω
(

ω−1
2

)a
| a ≥ 0

}
.

By definition there is a surjection πr,n : W aff
n (Ω) → Wr,n(u). Abusing

notation, we write Si = πr,n(Si), Ei = πr,n(Ei), Xj = πr,n(Xj), and Bγ =

πr,n(Bγ) for 1 ≤ i < n, 1 ≤ j ≤ n and γ ∈ B(n).

Notice that because (X1−u1) · · · (X1−ur) = 0 in Wr,n(u) the cyclotomic

Nazarov-Wenzl algebras have only r unwrapping relations; that is, we only

need to impose the relations E1X
a
1 E1 = ωaE1, for 0 ≤ a ≤ r − 1.

Every Wr,n(u)-module can be considered as a W aff
n (Ω)-module by in-

flation along the surjection πr,n : W aff
n (Ω) → Wr,n(u). In particular, every

irreducible Wr,n(u)-module is also an irreducible W aff
n (Ω)-module. Con-

versely, it is not hard to see that every irreducible W aff
n (Ω)-module M over

an algebraically closed field can be considered as an irreducible module for

some cyclotomic Nazarov-Wenzl algebra Wr,n(u), where u depends on Ω and

M . At first sight this is not very useful because almost all of the results in

this paper require that Ω be u-admissible (Definition 3.6) and, in general, it

seems unlikely that Ω will be u-admissible for all of the parameters u that
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arise in this way. Nevertheless, this observation and the theory of cellular

algebras allows us to construct all of the finite dimensional W aff
n (Ω) modules

over an algebraically closed field when Ω is admissible; see Theorem 7.19.

For our first result about the cyclotomic Nazarov-Wenzl algebras we

prove the easy half of Theorem A. That is, we show that Wr,n(u) is spanned

by rn(2n− 1)!! elements.

Definition 2.14. Suppose that α, β ∈ Nn
0 and γ ∈ B(n).

a) The monomial XαBγXβ in Wr,n(u) is regular if XαBγXβ is a regular
monomial in W aff

n (Ω).

b) The monomial XαBγXβ in Wr,n(u) is r-regular if it is regular and
0 ≤ αi, βi < r, for all 1 ≤ i ≤ n.

Proposition 2.15. The cyclotomic Nazarov-Wenzl algebra Wr,n(u) is

spanned by the set of r-regular monomials {XαBγXβ}. In particular, if R
is a field then

dimR Wr,n(u) ≤ rn(2n− 1)!!.

Proof. By Theorem 2.12, and the definitions, Wr,n(u) is spanned by
the regular monomials in Wr,n(u). As in the proof of Theorem 2.12, we put
a grading on Wr,n(u). Then in the associated graded algebra, gr Wr,n(u),
we have the relation (Xi − u1) · · · (Xi − ur) = 0. We claim that the regular
monomial XαBγXβ can be written as a linear combination of r-regular
monomials. If XαBγXβ is an r-regular monomial then there is nothing to
prove so we may assume that XαBγXβ is not r-regular and, in particular,
that |α| + |β| > 0. Then, using the relation (Xi − u1) · · · (Xi − ur) = 0 we
can subtract a linear combination of r-regular monomials from XαBγXβ

to obtain a linear combination of regular elements of smaller degree. The
claim now follows by induction.

Finally, a counting argument shows that the number of r-regular mono-
mials is equal to rn(2n−1)!!. Therefore, if R is a field then dimR Wr,n(u) ≤
rn(2n− 1)!!.

The degenerate (cyclotomic) Hecke algebra Hr,n(u) of type G(r, 1, n)

is the unital associative R-algebra with generators T1, . . . , Tn−1, Y1, . . . , Yn
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and relations

(Y1 − u1) · · · (Y1 − ur) = 0, T 2
i = 1,

TiTj = TjTi, YiYk = YkYi,

TiYi − Yi+1Ti = −1, YiTi − TiYi+1 = −1,

TjTj+1Tj = Tj+1TjTj+1, TiY` = Y`Ti

for 1 ≤ i < n, 1 ≤ j < n − 1 with |i − j| > 1, and 1 ≤ k ≤ n, ` 6= i, i + 1.

Therefore there is a surjective algebra homomorphism Wr,n(u) → Hr,n(u)

determined by

Si 7−→ Ti, Ei 7−→ 0, and Xj 7−→ Yj,

for 1 ≤ i < n and 1 ≤ j ≤ n. (In fact, a special case of Proposition 7.2

below shows that Hr,n(u) ∼= Wr,n(u)/〈E1〉.) Consequently, every irreducible

Hr,n(u)-module can be considered as an irreducible Wr,n(u)-module via

inflation. These irreducible modules are precisely the irreducibles upon

which Ei acts as zero. We record this fact for future use.

Corollary 2.16. Suppose that R is a field and that M is an irre-

ducible Wr,n(u)-module which is annihilated by some Ei. Then M is an

irreducible Hr,n(u)-module.

Proof. As Ei+1 = SiSi+1EiSi+1Si and Sj is invertible for all j, the
two-sided ideal of Wr,n(u) generated by E1 is the same as the two-sided
ideal generated by Ei, for 1 ≤ i < n. The result now follows from the
remarks above.

Recall that the degenerate affine Hecke algebra is a finitely generated

module over its center (see, for example, [Kle05]), which is the ring of the

symmetric polynomials in Y1, . . . , Yn. This fact, together with Dixmier’s

version of Schur’s lemma, implies that all of the irreducible modules of the

degenerate affine Hecke algebra are finite dimensional.

By the last paragraph the power sum symmetric functions are central

elements of the degenerate affine Hecke algebra. In contrast, only the power

sums of odd degree are central in W aff
n (Ω). Another difference is that the

affine Wenzl algebra is not finitely generated over its center. To see this,

we give an example of an infinite dimensional irreducible W aff
2 (Ω)-module.
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Example 2.17. Suppose that Ω is admissible and that W̃1(y) =∑
a≥0 ωay

−a is not a rational function in y. Consider V =
⊕

n≥0 Rvn. De-

fine an action of W aff
2 (Ω) on V by Evn = ωnv0, X1vn = vn+1, X2vn = −vn+1

and

Svn = (−1)nvn − εvn−1 +

n−1∑

k=0

(−1)kωn−k−1vk,

where ε = 1, if n ≡ 1 (mod 2), and ε = 0, otherwise. All of the defining
relations except for the relation S2 = 1 are easy to check. As S2 commutes
with X1, S2v0 = v0 and X1vn = vn+1, we have that S2 acts as the identity
on V .

Now we show that V is irreducible. Let W be a W aff
2 (Ω)-submodule

of V . Suppose that EW = 0. If
∑

cnvn ∈ W then
∑

cnωn+k = 0, for
all k ≥ 0. As the vectors {(ωk, ωk+1, . . . ) ∈ R∞ | k ≥ 0} span an infinite
dimensional subspace of R∞, we have cn = 0, for all n ≥ 0. Hence W = 0.
Thus, W 6= 0 implies EW 6= 0. Then v0 ∈W and W = V . Therefore, V is
an irreducible W aff

2 (Ω)-module as claimed.

In light of this example, we restrict our attention to finite dimensional

W aff
n (Ω)-modules in what follows.

§3. Restrictions on Ω and the irreducible representations of Wr,2

In this section we explicitly compute the (possible) irreducible repre-

sentations of the cyclotomic Nazarov-Wenzl algebras Wr,2(u). As a conse-

quence we find a set of conditions on the parameter set Ω which ensure that

Wr,2(u) has dimension 3r2 = rn(2n− 1)!!|n=2 when R is a field. In the next

section we will see that these conditions on Ω are exactly what we need for

general n.

The cyclotomic Nazarov-Wenzl algebra Wr,2(u) is generated by S1, E1,

X1 and X2. Throughout this section we suppose that R is an algebraically

closed field and, for convenience, we set S = S1 and E = E1.

Proposition 3.1. Suppose that M is an irreducible Wr,2(u)-module

such that EM = 0. Then either :

a) M = Rm is one dimensional and the action of Wr,2(u) is determined

by

Sm = εm, Em = 0, X1m = uim, and X2m = (ui + ε)m,
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where ε = ±1 and 1 ≤ i ≤ r. In particular, up to isomorphism, there

are at most 2r such representations.

b) M is two dimensional and the action of Wr,2(u) is given by

S 7→ 1
ui−uj

(
−1 b
c 1

)
, E 7→

(
0 0
0 0

)
, X1 7→

( ui 0
0 uj

)
, and X2 7→

( uj 0
0 ui

)
,

for some non-zero b, c ∈ R such that bc = (ui−uj)
2−1, where ui 6= uj.

Up to isomorphism there are at most
(
r
2

)
such representations.

c) M is two dimensional and the action of Wr,2(u) is given by

S 7→
(

0 1
1 0

)
, E 7→

(
0 0
0 0

)
, X1 7→

(
ui −1
0 ui

)
, and X2 7→

(
ui 1
0 ui

)
.

Up to isomorphism there are at most r such representations.

Proof. As noted in Corollary 2.16 M is an irreducible Hr,2(u)-module.
The result now follows from the representation theory of Hr,2(u): choose
a simultaneous eigenvector m of R[Y1, Y2]. Then, because Hr,2(u) =
R[Y1, Y2] + T1R[Y1, Y2], if M is not one dimensional then it must be two
dimensional. If this is the case, {m,Sm} is a basis of M . Further, if the
eigenvalues for the action Y1 on M are distinct, then we can simultaneously
diagonalize Y1 and Y2. All of our claims now follow.

Note that since
∏r

i=1(X1 − ui) acts as zero on M , case (c) can only

arise if the ui are not pairwise distinct. The irreducible representations of

Wr,2(u) upon which E acts non-trivially take more effort to understand.

Proposition 3.2. Let F be a field in which 2 is invertible and that

u1, . . . , ur are algebraically independent over F . Let R = F (u1, . . . , ur)
and let Wr,2(u) be the cyclotomic Nazarov-Wenzl algebra defined over R,

where ω0 6= 0. Then Wr,2(u) has a unique irreducible module M such that

EM 6= 0. Moreover, if d = dimR M then d ≤ r and there exists a basis

{m1, . . . ,md} of M and scalars {v1, . . . , vd} ⊆ {u1, . . . , ur}, with vi 6= vj

when i 6= j, such that for 1 ≤ i ≤ d the following hold :

a) X1mi = vimi and X2mi = −vimi,

b) Emi = γi(m1 + · · ·+ md) and

c) Smi = γi−1
2vi

mi +
∑

j 6=i
γi

vi+vj
mj,
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where γi = (2vi − (−1)d)
∏

1≤j≤d
j 6=i

vi+vj

vi−vj
. Moreover, ωa =

∑d
j=1 va

j γj, for all

a ≥ 0; and, in particular,

ω0 =

{
2(v1 + · · ·+ vd), if d is even,

2(v1 + · · ·+ vd) + 1, if d is odd.

Conversely, if ωa =
∑d

j=1 va
j γj, for all a ≥ 0, then (a)–(c) define a Wr,2(u)-

module M with EM 6= 0.

Proof. Suppose that M is an irreducible Wr,2-module such that EM 6=
0. Note that M is finite dimensional. Let d = dimR M . We first show
that (a)–(c) hold. Since u1, . . . , ur are pairwise distinct, we can fix a basis
{m1, . . . ,md} of M consisting of eigenvectors for X1. Write X1mi = vimi,
for some vi ∈ {u1, . . . , ur}.

Set f := 1
ω0

E. This is a non-zero idempotent and fM 6= 0 since
EM 6= 0.

Fix an element 0 6= m ∈ fM . Then Em = ω0m and Sm = m (since
SE = E). As 0 = (X1+X2)Em = (X1+X2)ω0m, we have (X1+X2)m = 0.
However, X1 + X2 is central in Wr,2, so X1 + X2 acts as a scalar on M by
Schur’s lemma. Hence, X2mi = −X1mi = −vimi, for i = 1, . . . , d, proving
(a).

We claim that {m,X1m, . . . ,Xd−1
1 m} is a basis of M . To see this, for

any a≥ 0 let Ma be the R-submodule of M spanned by {m,X1m, . . . ,Xa
1 m}.

Notice that Ma is closed under left multiplication by E since if k ≥ 0 then

EXk
1 m = EXk

1 fm =
1

ω0
EXk

1 Em =
ωk

ω0
Em = ωkm.

Also, by Lemma 2.3,

SXa
1 m =

(
Xa

2 S +

a∑

b=1

Xb−1
2 (E − 1)Xa−b

1

)
m

= Xa
2 m +

a∑

b=1

(
Xb−1

2 EXa−b
1 E

1

ω0
m−Xa−b

1 Xb−1
2 m

)

= Xa
2 m +

a∑

b=1

(ωa−b

ω0
Xb−1

2 Em−Xa−b
1 Xb−1

2 m
)

= (−1)aXa
1 m +

a∑

b=1

(
(−1)b−1ωa−bX

b−1
1 m− (−1)b−1Xa−1

1 m
)
.
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So, Ma is closed under multiplication by S. Choose a ≥ 0 to be mini-
mal such that {m,X1m, . . . ,Xa+1

1 m} is not linearly independent. Since
Xa+1

1 m ∈ Ma, Ma is closed under multiplication by X1. Hence, Ma = M
since M is irreducible. By counting dimensions, M = Md−1, proving the
claim.

Next we show that EM = Rm. Suppose that m′ =
∑d−1

i=0 ciX
i
1m ∈

EM . Then

m′ =
1

ω0
Em′ =

1

ω0

d−1∑

i=0

ciEXi
1m =

1

ω2
0

d−1∑

i=0

ciEXi
1Em =

1

ω2
0

(d−1∑

i=0

ciωi

)
m,

since Ea = ω0a whenever a ∈ EM . Hence, EM = Rm, as claimed.
Recall that we have fixed a basis {m1, . . . ,md} of M . Write m =∑d

i=1 rimi, for some ri ∈ R. Suppose that ri = 0 for some i. Then

∏

1≤j≤d
j 6=i

(X1 − vj) ·m = 0.

This contradicts the linear independence of {m,X1m, . . . ,Xd−1
1 m}; hence,

ri 6= 0 for i = 1, . . . , d. By rescaling the mi, if necessary, we can and do
assume that m = m1 + · · ·+ md in the following.

By the argument of the last paragraph, all of the eigenvalues {v1, . . . , vd}
of m must be distinct. This also shows that d = dimM ≤ r and that
{v1, . . . , vd} are algebraically independent (since we are assuming that
u1, . . . , ur are algebraically independent). In particular, vi and vi + vj ,
for i 6= j, are invertible. So the formula in part (c) makes sense.

As EM = Rm, we can define elements γi ∈ R by

Emi = γim = γi(m1 + · · ·+ md), for i = 1, . . . , d.

Write Smi =
∑d

j=1 c
(i)
j mj . Then X1Smi − SX2mi = (E − 1)mi reads

d∑

j=1

c
(i)
j vjmj + vi

( d∑

j=1

c
(i)
j mj

)
= γi(m1 + · · ·+ md)−mi.

Thus, (vi + vj)c
(i)
j = γi − δij and we have

Smi =
γi − 1

2vi
mi +

∑

j 6=i

γi

vi + vj
mj.
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This proves (c).
Next we prove the formula for γi given in (b). Since E = SE we find

that

γi

d∑

j=1

mj = Emi = SEmi = γi

d∑

j=1

{γj − 1

2vj
+

∑

k 6=j

γk

vj + vk

}
mj ,

for i = 1, . . . , r. Note that some γi is non-zero, since EM 6= 0. Thus,
comparing the coefficient of mj on both sides shows that

d∑

k=1

γk

vj + vk
= 1 +

1

2vj
,

for j = 1, . . . , d.

We claim that

det
( 1

vi + vj

)
1≤i,j≤d

=
( d∏

i=1

2vi

)−1 ∏

i>j

(vi − vj

vi + vj

)2
.

To see this, observe that

( d∏

i=1

2vi

)∏

i>j

(vi + vj)
2 det

( 1

vi + vj

)
1≤i,j≤d

is a symmetric polynomial in v1, . . . , vd which is divisible by vi−vj for i 6= j.
This shows that this determinant is a constant multiple of

∏
i>j(vi − vj)

2.

To determine the constant, we multiply det
(

1
vi+vj

)
1≤i,j≤d

by vn, set vn =∞

and use induction.
By the last paragraph, the matrix

(
1

vi+vj

)
1≤i,j≤d

is invertible, so

γ1, . . . , γd are uniquely determined. Hence, to prove the formula for γi

it suffices to show that

d∑

k=1

2vk − (−1)d

vj + vk

∏

i6=k

vk + vi

vk − vi
= 1 +

1

2vj
,

for 1 ≤ j ≤ d. Let f(z) = 2z−(−1)d

2z(z+vj)

∏d
i=1

z+vi

z−vi
and view f(z) as an element

of the function field of the projective line defined over F (v1, . . . , vd). Then,
the left hand side can be interpreted as the sum

∑d
k=1 Resz=vk

f(z) dz,
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where Resz=v f(z) dz is the residue of f(z) at v, if v 6= ∞, and it is the
residue of − 1

z2 f
(

1
z

)
at 0, if v =∞. Thus, the residue theorem for complete

non-singular curves implies that

d∑

k=1

2vk − (−1)d

vj + vk

∏

i6=k

vk + vi

vk − vi
= −

(
Res
z=∞

f(z) dz + Res
z=0

f(z) dz
)

= 1 +
1

2vj
,

as required. Hence, we have shown that, for 1 ≤ j ≤ d,

γj = (2vj − (−1)d)
∏

k 6=j

vj + vk

vj − vk
,

so (b) is proved. (For a combinatorial proof see Proposition 4.21(a) below.)
Now, since Em = ω0m and m =

∑d
i=1 mi, we have that ω0 =

∑d
i=1 γi.

Similarly, we have that ωa =
∑m

j=1 va
j γj because

ωam =
ωa

ω0
Em =

1

ω0
EXa

1 Em = EXa
1 m

=
d∑

i=1

EXa
1 mi =

d∑

i=1

va
i Emi =

( d∑

i=1

va
i γi

)
m.

We now show that

ω0 =

d∑

i=1

γi =

{
2(v1 + · · · + vd), if d is even,

2(v1 + · · · + vd) + 1, if d is odd.

To evaluate
∑d

i=1 γi, we consider g(z) = 2z−(−1)d

2z

∏d
i=1

z+vi

z−vi
and interpret

the sum as
∑d

i=1 Resz=vi
g(z) dz. Then the residue theorem gives the desired

formula for ω0.
We next show that M is uniquely determined, up to isomorphism. Sup-

pose that Wr,n(u) has another irreducible module of dimension d′ upon
which e acts non-trivially. Then, by the argument above,

ω0 =

{
2(v′1 + · · ·+ v′d′), if d′ is even,

2(v′1 + · · ·+ v′d′) + 1, if d′ is odd,

for some v′1, . . . , v
′
d′ ⊆ {u1, . . . , ur}. As we are assuming that u1, . . . , ur are

algebraically independent, this forces d′ = d and v′i = v(i)σ , for some σ ∈ Sd

and 1 ≤ i ≤ d. Hence, by (a)–(c), M ∼= M ′ as required.
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Finally, it remains to verify that (a)–(c) define a representation of
Wr,2(u) whenever ωa =

∑d
i=1 va

i γi, for a ≥ 0 and γi as above. It is easy to
check that the action respects the relations E(X1 +X2) = 0 = (X1 +X2)E,
EXa

1 E = ωaE and X1S − SX2 = E − 1 = SX1 − X2S. That SE = E
and ES = E on M , follows from the identity

∑d
k=1

γk

vj+vk
= 1 + 1

2vj
proved

above. We now prove that S2 = 1. Observe that S2 commutes with X1

when acting on M . As the vi are pairwise distinct, we have S2mi = cimi, for
some ci ∈ R. Explicit computation shows that ci = 1−2γi

4v2
i

+γi
∑d

j=1
γj

(vi+vj)2
.

Computing the residues of h(z) dz, when h(z) = 2z−(−1)d

2z(z+vi)2
∏d

k=1
z+vi

z−vi
, proves

that ci = 1, for 1 ≤ i ≤ d.

Remark 3.3. The action of X1 on an irreducible Wr,2(u)-module is not
semisimple in general. For example, let Ω be given by ω0 = 1, ω1 = 0 and

ωa+2 =
1

2
ωa+1 −

1

16
ωa,

for a ≥ 0. For r = 2 we set (u1, u2) =
(

1
4 , 1

4

)
and for r = 3 set (u1, u2, u3) =(

1
4 , 1

4 ,−1
2

)
. Then Wr,2(u) has a two dimensional irreducible module upon

which the generators act as follows:

E 7→
(

1 0
0 0

)
, S 7→

(
1 0
0 −1

)
, X1 7→

(
0 1

4

− 1
4

1
2

)
and X2 7→

(
0 − 1

4
1
4
− 1

2

)
.

Further, X1 −
1
4 6= 0 and

(
X1 −

1
4

)2
= 0.

Theorem 3.4. Let F be a field in which 2 is invertible and that

u1, . . . , ur are algebraically independent over F . Let R = F (u1, . . . , ur) and

suppose that Wr,2(u) is a split semisimple R-algebra and that ω0 6= 0. Then

Wr,2(u) has dimension 3r2 = rn(2n− 1)!!|n=2 if and only if Wr,2(u) has an

irreducible representation of dimension r upon which E acts non-trivially.

Proof. We have constructed all the irreducible Wr,2-modules in Propo-
sitions 3.1 and 3.2 above. Under our assumptions, Proposition 3.1 implies
that Wr,2(u) has (a) 2r pairwise non-isomorphic one dimensional representa-
tions and (b)

(
r
2

)
pairwise non-isomorphic two dimensional representations.

Note that case (c) from Proposition 3.1 does not occur since u1, . . . , ur

are pairwise distinct. Further, Proposition 3.2 implies that Wr,2(u) has a
unique irreducible representation M such that EM 6= 0 and, moreover, if
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d = dimM then 1 ≤ d ≤ r. Hence, by the Wedderburn-Artin theorem we
have

dimWr,2(u) = 2r + 4
(r
2

)
+ d2 = 2r2 + d2,

so that dimWr,2(u) = 3r2 if and only if r = d. The result follows.

Note that by Proposition 3.2, under the conditions of the theorem,

Wr,2(u) has a (unique) representation of dimension r upon which E acts

non-trivially if and only if ωa =
∑r

j=1 ua
jγj, for a ≥ 0, where γi = (2ui −

(−1)r)
∏

1≤j≤r
j 6=i

ui+uj

ui−uj
.

Recall that Schur’s q-functions qa = qa(x) in the indeterminates x =

(x1, . . . , xr) [Mac95, p. 250] are defined by the equation

r∏

i=1

1 + xiy

1− xiy
=

∑

a≥0

qa(x)ya.

Note that qa(x) is a polynomial in x, for all a ≥ 0.

Lemma 3.5. Assume that R is an integral domain and that 2 is in-

vertible in R. Suppose that u ∈ Rr, with ui − uj 6= 0 whenever i 6= j. Let

F be the quotient field of R and for a ≥ 0 define

ωa =
r∑

i=1

(2ui − (−1)r)ua
i

∏

1≤j≤r
j 6=i

ui + uj

ui − uj
∈ F,

as in Theorem 3.4. Then ωa = qa+1(u)− 1
2 (−1)rqa(u)+ 1

2δa0. In particular,

ωa ∈ R.

Proof. If a = 0 then the result follows from Proposition 3.2, so we
can assume that a > 0. Let f(z) = 1

2za−1(2z − (−1)r)
∏r

i=1
z+ui

z−ui
. Then

ωa can be interpreted as
∑r

i=1 Resz=ui
f(z) dz = −Resz=∞ f(z) dz. Cal-

culating the residue of f(z) dz at z = ∞ now shows that ωa = qa+1(u) −
1
2(−1)rqa(u) + 1

2δa0. (See [Mac95, (2.9), p. 209] for a more direct proof.)
Hence, ωa ∈ R since qb(x) ∈ R[x], for b ≥ 0.

We want the cyclotomic Nazarov-Wenzl algebras to be “cyclotomic”

generalizations of the Brauer algebras. In particular, we want them to be

free R-modules of rank rn(2n−1)!!. Theorem 3.4 gives sufficient conditions
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on Ω = {ωa | a ≥ 0} for Wr,2(u) to have dimension rn(2n − 1)!! when R

is an algebraically closed field and n = 2. Consequently, in our study of

Wr,n(u) we will require that Ω have the following property.

Definition 3.6. Let Ω = {ωa | a ≥ 0} ⊆ R and suppose that u ∈ Rr.
Then Ω is u-admissible if ωa = qa+1(u)− 1

2 (−1)rqa(u) + 1
2δa0, for a ≥ 0.

Remark 3.7. Let R = Z[u] where u1, . . . , ur are indeterminates. As-
sume that each ωa, for a ≥ 0, is a polynomial in u and that ω0 6= 0. Then,
by Theorem 3.4 and Theorems 5.3 and 7.17 below, Ω is u-admissible if and
only if

a) Wr,n(Ω)⊗Z[u] Q(u) is semisimple, and,

b) Wr,n(Ω) is a free R-module of rank rn(2n− 1)!!,

for all n ≥ 0.

Recall from Remark 2.11 that W̃1(y) =
∑

a≥0 ωay
−a, where y is an

indeterminate.

Lemma 3.8. Suppose that u ∈ Rr. Then Ω is u-admissible if and only

if

W̃1(y) + y −
1

2
=

(
y −

1

2
(−1)r

) r∏

i=1

y + ui

y − ui
.

Proof. By definition, u-admissibility is equivalent to the identity

W̃1(y) =
1

2
+

∑

a≥0

(
qa+1(u)−

1

2
(−1)rqa(u)

)
y−a.

Now expand this equation using the definition of the Schur q-functions.

Corollary 3.9. Suppose that Ω is u-admissible. Then Ω is admissi-

ble.

Proof. First suppose that x = (x1, . . . , xr) are algebraically indepen-
dent and let Ω = {ωa | a ≥ 0}, where ωa = qa+1(x)− 1

2(−1)rqa(x)+ 1
2δa0, for

a ≥ 0. Then Ω is x-admissible by definition and hence admissible by Corol-
lary 2.4 and Proposition 3.2. Therefore, by the definition of admissibility
we have the following polynomial identity in x1, . . . , xr

ω2a+1 =
1

2

{
−ω2a +

2a+1∑

b=1

(−1)b−1ωb−1ω2a+1−b

}
.
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The general case now follows by specializing xi = ui, for 1 ≤ i ≤ r.
For a second proof, note that if Ω is u-admissible then

(
W̃1(y) + y −

1

2

)(
W̃1(−y)− y −

1

2

)
=

(1

2
− y

)(1

2
+ y

)
,

by Lemma 3.8. Hence, Ω is admissible by Remark 2.11.

Definition 3.10. The parameter set Ω is rational if there exists a
k > 0 and a1, . . . , ak ∈ R such that Ω satisfies the linear recursion

ωi+k + a1ωi+k−1 + · · ·+ akωi = 0,

for all i� 0.

Equivalently, Ω is rational if Ω is admissible and W̃1(y) is a rational

function. See Lemma 7.18 for another characterization of rationality.

Rationality allows us to give a partial converse to Corollary 3.9.

Proposition 3.11. Suppose that R is an algebraically closed field and

that Ω is rational. Then every finite dimensional irreducible W
aff

n (Ω)-module

can be considered as an irreducible module for some cyclotomic Nazarov-

Wenzl algebra Wr,n(u) with Ω being u-admissible.

In particular, if Ω is rational then Ω is u-admissible for some u.

Proof. As Ω is rational, W̃1(y) is a rational function and we may write

W̃1(y) + y − 1
2

y + 1
2

=

∏
i(y − αi)

ni

∏
j(y − βj)mj

,

for some non-negative integers ni and mj and with the αi, βj ∈ R being
pairwise distinct. Using Remark 2.11 it follows easily that

W̃1(y) + y −
1

2
=

(
y +

1

2

) s∏

i=1

y + ci

y − ci
,

for some ci ∈ R and some s ≥ 0.
Now suppose that M is a finite dimensional irreducible W aff

n (Ω)-module
and let (X1−λ1) · · · (X1−λd) be the characteristic polynomial for the action
of X1 on M . Set

u =

{
(c1, . . . , cs, λ1, . . . , λd,−λ1, . . . ,−λd), if s is odd,

(c1, . . . , cs, λ1, . . . , λd,−λ1, . . . ,−λd, 0), if s is even.

Put r = s + 2d if s is odd and r = s + 2d + 1 if s is even. Then M is an
irreducible Wr,n(u)-module and Ω is u-admissible.
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We will improve on this result by showing that we can construct all

of the irreducible modules for the affine Wenzl algebras in Theorem 7.19

below.

§4. The seminormal representations of Wr,n(u)

In this section, we will give an explicit description of the irreducible

representations of Wr,n(u) in the special case when R is an field of char-

acteristic greater than 2n and when the parameters u satisfy some rather

technical assumptions; see Theorem 4.13.

The semisimple irreducible representations of the Brauer algebra Bn(ω)

are labelled by partitions of n − 2m, where 0 ≤ m ≤ b n
2 c, and a basis of

the representation indexed by the partition λ is indexed by the set of up-

down λ-tableaux. Analogously, we might expect that the semisimple irre-

ducible representations of Wr,n(u) should be indexed by the multipartitions

of n − 2m, with the bases of these modules being indexed by the updown

λ-tableaux, where λ is a multipartition. We will see that this is the case.

We begin by defining these combinatorial objects.

Recall that a partition of m is a sequence of weakly decreasing non-

negative integers τ = (τ1, τ2, . . . ) such that |τ | := τ1 + τ2 + · · · = m.

Similarly, an r-multipartition of m, or more simply a multipartition, is

an ordered r-tuple λ = (λ(1), . . . , λ(r)) of partitions λ(s), with |λ| := |λ(1)|+

· · ·+ |λ(r)| = m. If λ is a multipartition of m then we write λ ` m.

If λ and µ are two multipartitions we say that µ is obtained from λ by

adding a box if there exists a pair (i, s) such that µ
(s)
i = λ

(s)
i +1 and µ

(t)
j =

λ
(t)
j for (j, t) 6= (i, s). In this situation we will also say that λ is obtained

from µ by removing a box and we write λ ⊂ µ and µ \ λ = (i, λ
(s)
i , s).

We will also say that the triple (i, λ
(s)
i , s) is an addable node of λ and a

removable node of µ. Note that |µ| = |λ|+ 1.

Fix an integer m with 0 ≤ m ≤ bn
2 c and let λ be a multipartition of

n − 2m. An n-updown λ-tableau, or more simply an updown λ-tableau,

is a sequence u = (u1, u2, . . . , un) of multipartitions where un = λ and

the multipartition ui is obtained from ui−1 by either adding or removing

a box, for i = 1, . . . , n, where we set u0 equal to the empty multipartition

∅. Let T ud
n (λ) be the set of updown λ-tableaux of n. Note that λ is

a multipartition of n − 2m and each element of T ud
n (λ) is an n-tuple of

multipartitions, so the n is necessary in this notation.
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In the special case when λ is a multipartition of n (so m = 0), there

is a natural bijection between the set of n-updown λ-tableaux and the set

of standard λ-tableaux in the sense of [DJM99]. This is the origin of the

terminology of updown λ-tableaux. If λ is a multipartition of n we set

T std(λ) = T ud
n (λ) and refer to the elements of T std(λ) as standard λ-

tableaux.

Definition 4.1. Suppose 1 ≤ k ≤ n. Define an equivalence relation
k
∼ on T ud

n (λ) by declaring that u
k
∼ t if uj = tj whenever 1 ≤ j ≤ n and

j 6= k, for t, u ∈ T ud
n (λ).

The following result is an immediate consequence of Definition 4.1.

Lemma 4.2. Suppose t ∈ T ud
n (λ) with tk−1 = tk+1. Then there is a

bijection between the set of all addable and removable nodes of tk−1 and the

set of u ∈ T ud
n (λ) with u

k
∼ t.

Let λ be a multipartition and suppose that u is an n-updown λ-tableaux.

For k = 2, . . . , n the multipartitions uk and uk−1 differ by exactly one box;

so either uk ⊂ uk−1 or uk−1 ⊂ uk. We define the content of k in u to be the

scalar cu(k) ∈ R given by

cu(k) =

{
j − i + us, if uk \ uk−1 = (i, j, s),

i− j − us, if uk−1 \ uk = (i, j, s).

More generally, if α = (i, j, s) is an addable node of λ we define c(α) =

us + j − i and if α is a removable node of λ we set c(α) = −(us + j − i).

The key property of contents that we need to construct the seminormal

representations is the following. Note that we are not (yet) assuming that

R is a field.

Definition 4.3. The parameters u = (u1, . . . , ur) are generic for
Wr,n(u) if whenever there exists d ∈ Z such that either ui ± uj = d · 1R

and i 6= j, or 2ui = d · 1R then |d| ≥ 2n.

For example, u is generic for Wr,n(u) if u1, . . . , ur are algebraically

independent over a subfield of R.

Lemma 4.4. Suppose that the parameters u are generic for Wr,n(u)
and that char R > 2n. Let λ be a multipartition of n− 2m, where 0 ≤ m ≤
bn2 c, and suppose that t, u ∈ T ud

n (λ). Then
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a) t = u if and only if ct(k) = cu(k), for k = 1, . . . , n;

b) if 1 ≤ k < n then ct(k)− ct(k + 1) 6= 0; and,

c) if tk−1 = tk+1 then ct(k)± cu(k) 6= 0, whenever u
k
∼ t and u 6= t.

d) 2ct(k)± 1 6= 0, for 1 ≤ k ≤ n.

Proof. Part (a) follows by induction on n. The key point is that our
assumptions imply that the contents of the addable and removable nodes
in λ are distinct so a λ-tableau t is uniquely determined by the sequence of
contents ct(k), for k = 1, . . . , n. The same argument proves parts (b), (c)
and (d).

Until further notice we fix an integer m with 0 ≤ m ≤ b n
2 c and we fix

a multipartition λ of n− 2m.

Motivated by [Naz96], we introduce the following rational functions in

an indeterminate y. These functions will play a key role in the construction

of seminormal representations of Wr,n(u).

Definition 4.5. Suppose that t ∈ T ud
n (λ). For 1 ≤ k ≤ n, define

rational functions Wk(y, t) by

Wk(y, t) =
1

2
− y +

(
y −

1

2
(−1)r

)∏

α

y + c(α)

y − c(α)
,

where α runs over the addable and removable nodes of the multipartition
tk−1.

The rational functions Wk(y, t) are related to the combinatorics above

by the following result. If f(y) is a rational function and α ∈ R then we

write Resy=α f(y) for the residue of f(y) at y = α.

Lemma 4.6. Suppose that u is generic and char R > 2n. Let t ∈
T ud

n (λ) and 1 ≤ k ≤ n. Then

Wk(y, t)

y
=

∑

α

(
Res

y=c(α)

Wk(y, t)

y

)
·

1

y − c(α)
,

where α runs over the addable and removable nodes of tk−1.
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Proof. As the c(α) are pairwise distinct, we can certainly write

Wk(y, t)

y
= a +

b

y
+

∑

α

(
Res

y=c(α)

Wk(y, t)

y

)
·

1

y − c(α)
,

for some a, b ∈ R, where α runs over the addable and removable nodes of
tk−1. Now, a = Wk(y,t)

y |y=∞ = 0. Let c be the number of addable and
removable nodes of tk−1. Since a partition always has an odd number of
addable and removable nodes, we have that (−1)c = (−1)r. Therefore,

b = Res
y=0

Wk(y, t)

y
=

1

2

(
1− (−1)c(−1)r

)
= 0,

as we needed to show.

We are now ready to define the matrices which make up the seminormal

form.

Definition 4.7. Let λ be a multipartition and k an integer with 1 ≤
k ≤ n. Suppose that t and u are updown λ-tableaux in T ud

n (λ) such that
tk−1 = tk+1. Then we define the scalars etu(k) ∈ R by

etu(k) =





Res
y=ct(k)

Wk(y, t)

y
, if t = u,

√
ett(k)

√
euu(k), if t 6= u and u

k
∼ t,

0, otherwise.

(In (4.12) below we will fix the choice of square roots
√

ett(k), for t ∈ T ud
n (λ)

and 1 ≤ k ≤ n.)

Note that when ct(k) 6= 0 then ett(k) = Resy=ct(k)
Wk(y,t)+y−1/2

y .

We remark that if tk−1 6= tk+1 then the definition of ett(k) still makes

sense, however, we do not define ett(k) in this case as we will not need it

(see Theorem 4.13 below).

It follows from Definition 4.5 that

(4.8) ett(k) =
(
2ct(k)− (−1)r

)∏

α

ct(k) + c(α)

ct(k)− c(α)
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where α runs over all addable and removable nodes of tk−1 with c(α) 6= ct(k).

Note that Lemma 4.4 now implies that:

If u
k
∼ t then etu(k) 6= 0, for 1 ≤ k < n.

This will be used many times below without mention. Also observe that

Lemma 4.6 can be restated as

(4.9)
Wk(y, t)

y
=

∑

u
k
∼t

euu(k)

y − cu(k)
.

Given two partitions t and u write t	u = α if either u ⊂ t and t\u = α,

or t ⊂ u and u \ t = α.

Definition 4.10. Let t ∈ T ud
n (λ) and suppose that tk−1 6= tk+1, for

some k with 1 ≤ k < n.

a) We define

at(k) =
1

ct(k + 1)− ct(k)
and bt(k) =

√
1− at(k)2.

(We fix the choice of square root for bt(k) in (4.12) below. Note that
ct(k + 1)− ct(k) 6= 0 by Lemma 4.4(b).)

b) If tk	 tk−1 and tk+1	 tk are in different rows and in different columns
then we define Skt to be the updown λ-tableau

Skt = (t1, . . . , tk−1, uk, tk+1, . . . , tn)

where uk is the multipartition which is uniquely determined by the
conditions uk	 tk+1 = tk−1	 tk and tk−1	uk = tk	 tk+1. If the nodes
tk 	 tk−1 and tk+1	 tk are both in the same row, or both in the same
column, then Skt is not defined.

We remark that if tk−1 = tk+1 then the definitions of at(k) and bt(k)

both make sense, however, we do not define them in this case as we will never

need them (see Theorem 4.13 below). Moreover, the condition tk−1 6= tk+1 is

crucial in proving Lemma 4.11(b) below. (In fact, if we drop this condition

then Lemma 4.11(b) is not correct.)

We leave the following Lemma as an exercise to help the reader famil-

iarize themselves with the definitions.
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Lemma 4.11. Suppose that t ∈ T ud
n (λ) and 1 ≤ k < n. Then:

a) If Skt is defined then ct(k) = cSkt(k + 1) and ct(k + 1) = cSkt(k);
consequently, aSkt(k) = −at(k).

b) If Skt is not defined then at(k) = ±1 and bt(k) = 0.

Finally, if tk−1 = tk+1 and u
k
∼ t, where 1 ≤ k < n, we set

stu(k) =
etu(k)− δtu

ct(k) + cu(k)
.

Note that ct(k) + cu(k) 6= 0 by Lemma 4.4.

We will assume that we have chosen the square roots in the definitions

of bt(k) and etu(k) so that the following equalities hold.

Assumption 4.12. (Root conditions) We assume that the ring R is

large enough so that
√

ett(k) ∈ R and bt(k) =
√

1− at(k)2 ∈ R, for all

t, u ∈ T ud
n (λ) and 1 ≤ k < n, and that the following equalities hold :

a) If tk−1 6= tk+1 and Skt is defined then bSkt(k) = bt(k).

b) If tk−1 6= tk+1 and t
l
∼ u, where |k − l| > 1, then bt(k) = bu(k).

c) If tk−1 6= tk+1, tk 6= tk+2 and Skt and Sk+1t are both defined then

bSk+1t(k) = bSkt(k + 1).

d) If tk−1 = tk+1 and tk = tk+2 then
√

ett(k)
√

ett(k + 1) = 1.

e) If tk−1 = tk+1, uk−1 = uk+1 and ett(k) = euu(k) then
√

ett(k) =√
euu(k).

f ) If tk−1 = tk+1, tk = tk+2 and u
k+1
∼ t, w

k
∼ t with Sku and Sk+1w

both defined and Sku = Sk+1w then bu(k)
√

euu(k + 1) = bw(k +
1)

√
eww(k).

In Lemma 5.4 below we show that if R = R then it is possible to choose

u so that the Root Condition is satisfied.

Assuming (4.12) we can now give the formulas for the seminormal rep-

resentations of Wr,n(u).

Theorem 4.13. Suppose that R is a field such that charR > 2n and

that the root conditions (4.12) hold in R. Assume that u is generic for
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Wr,n(u). Let ∆(λ) be the R-vector space with basis {vt | t ∈ T ud
n (λ)}. Then

∆(λ) becomes a Wr,n(u)-module via

• Skvt =





∑

u
k
∼t

stu(k)vu, if tk−1 = tk+1,

at(k)vt + bt(k)vSkt, if tk−1 6= tk+1,

• Ekvt =





∑

u
k
∼t

etu(k)vu, if tk−1 = tk+1

0, if tk−1 6= tk+1,

• Xjvt = ct(j)vt,

for 1 ≤ k < n and 1 ≤ j ≤ n and where we set vSkt = 0 if Skt is not defined.

Definition 4.14. We call ∆(λ) a seminormal representation of
Wr,n(u).

We note that the action of the operators Ek and Sk on ∆(λ), with

respect to the basis {vt | t ∈ T ud
n (λ)}, are given by symmetric matrices, for

0 ≤ k < n.

For the remainder of this section we assume that R is an algebraically

closed field with charR > 2n and that the parameters u are generic for

Wr,n(u) and satisfy (4.12). The proof of Theorem 4.13 will occupy the rest

of this section. Our strategy is to use the rational functions Wk(t, k) to

verify that the action that we have just defined of Wr,n(u) on ∆(λ) respects

all of the relations in Wr,n(u).

Throughout this section it will be convenient to work with formal (infi-

nite) linear combinations of elements of ∆(λ) and Wr,n(u); alternatively, the

reader may prefer to think that we have extended our coefficient ring from

R to R((y−1)), where y is an indeterminate over R. In fact, at times we will

need to work with formal series involving more than one indeterminate.

If A is an algebra we let Z(A) be its center.

Lemma 4.15. Suppose k ≥ 0 and that a ≥ 0. Then there exist elements

ω
(a)
k in Z

(
Wr,k−1(u)

)
∩R[X1, . . . , Xk−1] such that

EkX
a
kEk = ω

(a)
k Ek,
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and the degree of ω
(a)
k , as a polynomial in X1, . . . , Xk−1, is less than or

equal to a. Moreover, the generating series W̃k(y) =
∑

a≥0 ω
(a)
k y−a satisfies

W̃k+1(y) = −y +
1

2
+

(y + Xk)
2 − 1

(y −Xk)2 − 1

(y −Xk)
2

(y + Xk)2

(
W̃k(y) + y −

1

2

)
.

Proof. Observe that
∑

a≥0 EkX
a
kEky

−a = Ek
y

y−Xk
Ek, so to prove the

Lemma it is enough to argue by induction on k to show that Ek
1

y−Xk
Ek =

1
yW̃k(y)Ek, where W̃k(y) and its coefficients are as above.

If k = 1 then there is nothing to prove. Assume that k > 1. Starting
with the identity

Sk
1

y −Xk
=

1

y −Xk+1
Sk +

1

y + Xk
Ek

1

y −Xk
−

1

(y −Xk)(y −Xk+1)
.

Nazarov [Naz96, Prop. 4.2] proves that Ek+1
1

y−Xk+1
Ek+1 = 1

y W̃k+1(y)Ek+1,

where W̃k+1(y) satisfies the recurrence relation above. Nazarov assumes
that he is working over the complex field (so, R = C), however, his argu-
ments are valid over an arbitrary ring. Nazarov also proves that if R = C

then the coefficients of W̃k(y) are central in Wr,k−1(u). We modify Nazarov’s
arguments to establish centrality for fields of positive characteristic.

By induction we may assume that the coefficients of W̃k(y) commute
with E1, . . . , Ek−2 and S1, . . . , Sk−2, so it is enough to show that the co-
efficients of W̃k+1(y) commute with Ek−1 and Sk−1. Since k ≥ 2 we can
write

W̃k+1(y) + y − 1
2

W̃k−1(y) + y − 1
2

=
X

Y
:=

(y + Xk)
2 − 1

(y −Xk)2 − 1

(y −Xk)
2

(y + Xk)2

×
(y + Xk−1)

2 − 1

(y −Xk−1)2 − 1

(y −Xk−1)
2

(y + Xk−1)2
.

As Ek−1 and Sk−1 commute with Wr,k−2(u) it is enough to show that
Ek−1

X
Y = X

Y Ek−1 and Sk−1
X
Y = X

Y Sk−1. Now, Ek−1
X
Y = X

Y Ek−1 if and
only if YEk−1X = XEk−1Y, and this follows easily using relation 2.1(i).

To prove that Sk−1 commutes with X
Y let

∑

m≥0

amzm =
(1 + Xk−1z)(1 + Xkz)

(1−Xk−1z)(1 −Xkz)
,
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where z = −y−1 or z = (y ± 1)−1. Then a0 = 1, a1 = 2(Xk−1 + Xk),
a2 = 2(Xk−1 + Xk)

2 and

am = (Xk−1 + Xk)am−1 −Xk−1Xkam−2, for m ≥ 3.

Consequently, if m ≥ 1 then am = (Xk−1 + Xk)fm(Xk−1, Xk), for some
fm ∈ R[Xk−1, Xk]. Now, relation 2.1(e) implies that Sk−1 and Xk−1 + Xk

commute. Therefore, by induction,

Sk−1am = (Xk−1 + Xk)Sk−1am−1

− (Xk−1XkSk−1 + Ek−1Xk −XkEk−1)am−2

= (Xk−1 + Xk)am−1Sk−1 −Xk−1Xkam−2Sk−1

= amSk−1

as required.

Finally, it follows from the recurrence relation that ω
(a)
k ∈ R[X1, . . . ,

Xk−1] and that ω
(a)
k has total degree at most a as a polynomial in X1, . . . ,

Xk−1.

Remark 4.16. To prove that the ω
(a)
k ∈ Z

(
Wr,k−1(u)

)
Nazarov uses the

identity

exp

(∑

a≥0

2
(
X2a+1

k−1 + X2a+1
k

)y−2a−1

2a + 1

)
=

(y + Xk−1)(y + Xk)

(y −Xk−1)(y −Xk)
.

However, this formula is only valid in characteristic zero.

By Lemma 4.15, we have

W̃k(y) + y −
1

2
=

(
W̃1(y) + y −

1

2

) k−1∏

i=1

(y + Xi)
2 − 1

(y −Xi)2 − 1
·
(y −Xi)

2

(y + Xi)2
.

As the right hand side acts on each vt as multiplication by a scalar we can

define W̃k(y, t) ∈ R((y−1)) by W̃k(y)vt = W̃k(y, t)vt.

The next Proposition gives a representation theoretic interpretation of

the rational functions Wk(y, t) which were introduced in Definition 4.5.

Proposition 4.17. Suppose that t ∈ T ud
n (λ) and that 1 ≤ k ≤ n.

Then

Wk(y, t) = W̃k(y, t).
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Proof. As Ω is u-admissible, by Lemma 3.8 we have

W̃1(y, t) + y −
1

2
=

(
y +

1

2
(−1)r+1

) r∏

t=1

y + ut

y − ut
.

Consequently, we can rewrite the definition of W̃k(y, t) as

W̃k(y, t) + y −
1

2
=

(
y −

1

2
(−1)r

)
·

r∏

t=1

(y + ut)

(y − ut)

×
k−1∏

i=1

(y + ct(i))
2 − 1

(y − ct(i))2 − 1
·
(y − ct(i))

2

(y + ct(i))2
.

If ct(i) = −ct(j), for some 1 ≤ i, j ≤ k − 1 with i 6= j, then

(y + ct(i))
2 − 1

(y − ct(i))2 − 1
·
(y − ct(i))

2

(y + ct(i))2
·
(y + ct(j))

2 − 1

(y − ct(j))2 − 1
·
(y − ct(j))

2

(y + ct(j))2
= 1.

Hence, in computing W̃k(y, t) we can assume that t = (t1, . . . , tm, . . . ,
tk−1, . . . , tn) where m = |tk−1|, tm = tk−1 and ct(i) + ct(i + 1) = 0 for
m < i < k − 1 with i −m odd (so ti+1 is obtained by adding a box to ti,
for 1 ≤ i < m, and ti = tk−1 for m ≤ i ≤ k − 1 with i − m even). Let
tk−1 = (µ(1), µ(2), . . . , µ(r)). Fix t with 1 ≤ t ≤ r and, abusing notation,

write β ∈ µ
(t)
k to indicate that β = (k, j, t) is a node in row k of µ(t). Let

p1 = (k, 1, t), p2 = (k, µ
(t)
k , t), p3 = (k, µ

(t)
k + 1, t) and p4 = (k + 1, 1, t).

Then
∏

β∈µ
(t)
k

(y + c′(β))2 − 1

(y − c′(β))2 − 1
·
(y − c′(β))2

(y + c′(β))2

=
∏

β∈µ
(t)
k

y − c′(β)

y − (c′(β) + 1)

y − c′(β)

y − (c′(β)− 1)

y + (c′(β) + 1)

y + c′(β)

y + (c′(β) − 1)

y + c′(β)

=
y − c′(p1)

y − c′(p3)

y − c′(p2)

y − c′(p4)

y + c′(p3)

y + c′(p1)

y + c′(p4)

y + c′(p2)

=
y − c′(p1)

y + c′(p1)

y − c′(p2)

y + c′(p2)

y + c′(p3)

y − c′(p3)

y + c′(p4)

y − c′(p4)
,

where for β = (a, b, t) we write c′(β) = b− a + ut. Taking the product over
all k shows that

(y + ut)

(y − ut)

∏

β∈µ(t)

(y + c(β))2 − 1

(y − c(β))2 − 1
·
(y − c(β))2

(y + c(β))2
=

∏

α

y + c(α)

y − c(α)
,
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where, in the first product, every node is considered to be an addable node
and, in the second product, α runs over the addable and removable nodes
of µ(t). Hence,

W̃k(y, t) + y −
1

2
=

(
y −

1

2
(−1)r

)∏

α

y + c(α)

y − c(α)
,

where α runs over the addable and removable nodes of tk−1 = (µ(1), . . . ,
µ(r)).

Corollary 4.18. Suppose that t ∈ T ud
n (λ) and that 1 ≤ k < n and

a ≥ 0. Then EkX
a
kEkvt = ω

(a)
k Ekvt.

Proof. If tk−1 6= tk+1 then EkX
i
kEkvt = 0 = ω

(i)
k Ekvt, so we may

assume that tk−1 = tk+1. Now, by definition, etu(k) =
√

ett(k)
√

euu(k). So

Ek
y

y −Xk
Ekvt = Ek

∑

u
k
∼t

y

y − cu(k)
etu(k)vu

=
∑

w
k
∼u

∑

u
k
∼t

y

y − cu(k)
euw(k)etu(k)vw

=
∑

w
k
∼t

(∑

u
k
∼t

y

y − cu(k)
euu(k)

)
etw(k)vw

= Wk(y, t)Ekvt = W̃k(y, t)Ekvt,

by Proposition 4.17. By Lemma 4.15, ω
(a)
k ∈ R[X1, . . . , Xk−1], so ω

(a)
k vt =

ω
(a)
k vu whenever t

k
∼ u. Therefore,

Ek
y

y −Xk
Ekvt =

∑

u
k
∼t

etu(k)W̃k(y, t)vu =
∑

u
k
∼t

etu(k)W̃k(y, u)vu

= W̃k(y)
∑

u
k
∼t

etu(k)vu = W̃k(y)Ekvt.

Comparing the coefficient of y−a, for a ≥ 0, on both sides of the last
equation proves the Corollary.

Lemma 4.19. Suppose that t ∈ T ud
n (λ) with tk−1 = tk+1 and tk = tk+2.

Then ett(k)ett(k + 1) = 1.



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 83

Proof. The recursion formula of Lemma 4.15 and Proposition 4.17
show that

Wk+1(y, t) + y −
1

2
=

(
Wk(y, t) + y −

1

2

)(y − ct(k))2

(y + ct(k))2
(y + ct(k))2 − 1

(y − ct(k))2 − 1
,

and, by definition,

Wk(y, t) + y −
1

2
=

(
y −

1

2
(−1)r

)∏

u
k
∼t

y + cu(k)

y − cu(k)
.

Thus,

Wk+1(y, t) + y − 1
2

y
=

(
1−

1

2y
(−1)r

)y − ct(k)

y + ct(k)

(y + ct(k))2 − 1

(y − ct(k))2 − 1

×
∏

u
k
∼t, u6=t

y + cu(k)

y − cu(k)
.

Taking residues at y = −ct(k) = ct(k + 1) on both sides of this equation,
we have

ett(k + 1) =
2ct(k) + (−1)r

4ct(k)2 − 1

∏

u
k
∼t, u6=t

ct(k)− cu(k)

ct(k) + cu(k)

=
1

2ct(k)− (−1)r

∏

u
k
∼t, u6=t

ct(k)− cu(k)

ct(k) + cu(k)
=

1

ett(k)
.

where the last equality uses (4.8).

We remark that the condition tk = tk+2 is needed in Lemma 4.19 only

because ett(k + 1) is not defined without this assumption.

Lemma 4.20. Fix an integer k with 1 ≤ k < n − 1 and suppose that

t, u,w ∈ T ud
n (λ) are updown λ-tableaux such that tk−1 = tk+1, tk = tk+2,

u
k+1
∼ t, w

k
∼ t and that Sku and Sk+1w are both defined with Sku = Sk+1w.

Then bu(k)2euu(k + 1) = bw(k + 1)2eww(k).

Proof. Let σ = tk 	 tk−1 and τ = uk+1 	 tk. Sku = Sk+1w implies
τ = wk 	 tk−1. Then, by (4.8),

eww(k) = (2c(τ) − (−1)r)
∏

α

c(τ) + c(α)

c(τ)− c(α)
,
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where α runs over the addable and removable nodes of tk−1 = wk−1 with
c(α) 6= c(τ) and, similarly,

euu(k + 1) = (2c(τ) − (−1)r)
∏

α

c(τ) + c(α)

c(τ)− c(α)
,

where α runs over all addable and removable nodes of tk = uk with c(α) 6=

c(τ). We have eww(k) = Resy=c(τ)
Wk(y,t)+y−1/2

y and euu(k + 1) =

Resy=c(τ)
Wk+1(y,t)+y−1/2

y . Further, by Lemma 4.15 and Proposition 4.17,
we have

Wk+1(y, t) + y −
1

2
=

(
Wk(y, t) + y −

1

2

)(y + c(σ))2 − 1

(y − c(σ))2 − 1

(y − c(σ))2

(y + c(σ))2
.

It follows that

euu(k + 1)

eww(k)
=

(c(σ) + c(τ))2 − 1

(c(σ) + c(τ))2
(c(τ) − c(σ))2

(c(τ)− c(σ))2 − 1
=

bw(k + 1)2

bu(k)2
,

where the last equality follows from the definitions because (cu(k), cu(k +
1), cu(k + 2)) = (c(σ), c(τ),−c(τ)) and (cw(k), cw(k + 1), cw(k + 2)) =
(c(τ),−c(τ), c(σ)).

The following combinatorial identities will be used in the proof of The-

orem 4.13.

Proposition 4.21. Suppose that t, u′ ∈ T ud
n (λ) with tk−1 = tk+1, tk 6=

tk+2, u
′ k
∼ t and u

′ 6= t, where 1 ≤ k < n− 1. Let t̃ ∈ T ud
n (λ) be the updown

tableau which is uniquely determined by the conditions t̃
k
∼ t and t̃k = tk+2.

Then the following identities hold :

a)
∑

u
k
∼t

euu(k)

ct(k) + cu(k)
= 1 +

1

2ct(k)
,

b)
∑

u
k
∼t

euu(k)

(ct(k) + cu(k))2
=

(
1−

1

4ct(k)2

) 1

ett(k)
+

1

2ct(k)2
,

c)
∑

u
k
∼t

euu(k)

(ct(k) + cu(k))(cu(k) + cu′(k))
=

1

2ct(k)cu′(k)
.
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Proof. It follows from (4.9) and Definition 4.7 that

Wk(y, t)

y
=

∑

u
k
∼t

euu(k)

y − cu(k)
.

Evaluating both sides at y = −ct(k) and using (4.5) gives (a).

By Proposition 4.17 and Corollary 4.18 we have

Ek
1

(y −Xk)(v −Xk)
Ekvt =

1

v − y

(Wk(y, t)

y
−

Wk(v, t)

v

)
Ekvt.

Comparing the coefficients of vt on both sides of this equation we obtain

∑

u
k
∼t

euu(k)

(y − cu(k))(v − cu(k))
=

1

v − y

{Wk(y, t)

y
−

Wk(v, t)

v

}
.

Setting y = −ct(k) we obtain

∑

u
k
∼t

euu(k)

(ct(k) + cu(k))(v − cu(k))

=
1

v + ct(k)

{(Wk(v, t)

v
+ 1−

1

2v

)
+

( 1

2ct(k)
+

1

2v

)}

=
2v − (−1)r

2v(v + ct(k))

∏

u
k
∼t

v + cu(k)

v − cu(k)
+

1

2ct(k)v
.

Setting v = −cu′(k) gives (c). Now we set v = −ct(k). Then it gives

∑

u
k
∼t

euu(k)

(ct(k) + cu(k))2
=

2ct(k) + (−1)r

4ct(k)2

∏

u
k
∼t

u6=t

ct(k)− cu(k)

ct(k) + cu(k)
+

1

2ct(k)2
.

On the other hand, multiplying the reciprocal of (4.8) by
(
1− 1

4ct(k)2

)
gives

(
1−

1

4ct(k)2

) 1

ett(k)
=

2ct(k) + (−1)r

4ct(k)2

∏

u
k
∼t, u6=t

ct(k)− cu(k)

ct(k) + cu(k)
.

Combining these two equations gives (b).
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We are now ready to start checking that the action of Wr,n(u) on ∆(λ)

respects the relations of Wr,n(u). We break the proof into several lemmas

and propositions.

Lemma 4.22. Suppose t ∈ T ud
n (λ). Then

a) E2
i vt = ω0Eivt, for 1 ≤ i < n.

b) E1X
a
1 E1vt = ωaE1vt, for a > 0.

c) (X1 − u1)(X1 − u2) · · · (X1 − ur)vt = 0.

d) XiXjvt = XjXivt for 1 ≤ i, j ≤ n.

e) Ei(Xi + Xi+1)vt = (Xi + Xi+1)Eivt = 0, 1 ≤ i ≤ n− 1.

f ) (SiXi−Xi+1Si)vt = (Ei−1)vt = (XiSi−SiXi+1)vt, for 1 ≤ i ≤ n−1.

g) EkElvt = ElEkvt if |k − l| > 1.

h) EkXlvt = XlEkvt if l 6= k, k + 1.

i) SkXlvt = XlSkvt if l 6= k, k + 1.

Proof. As ω0 = ω
(0)
1 and ωa = ω

(a)
1 by Lemma 4.15, parts (a) and (b)

have already been proved in Corollary 4.18. Parts (c)–(f) follow directly
from the definitions of the actions. If |k − l| > 1 then (4.12)(e) shows that
(g) holds. Assume now that l 6= k, k +1. If tk−1 6= tk+1 then cSkt(l) = ct(l).

If u
k
∼ t then cu(l) = ct(l). Combining the last two statements forces (h)

and (i) to be true.

Lemma 4.23. Suppose t ∈ T ud
n (λ). Then EkEk±1Ekvt = Ekvt.

Proof. We only prove that EkEk+1Ekvt = Ekvt, since the argument
for the case EkEk−1Ekvt = Ekvt is almost identical.

We may assume tk−1 = tk+1 since, otherwise, EkEk+1Ekvt = 0 = Ekvt.

Let t̃ be the unique n-updown tableau such that t̃
k
∼ t and t̃k = tk+2. We

have

EkEk+1Ekvt = e
t̃t
(k)e

t̃̃t
(k + 1)

∑

u
k
∼t̃

e
t̃u

(k)vu = e
t̃̃t
(k)e

t̃̃t
(k + 1)

∑

u
k
∼t

etu(k)vu.

Hence, EkEk+1Ekvt = Ekvt by Lemma 4.19.

It remains to check relations (a), (b)(i), (b)(ii), (d)(i) and (g) from

Definition 2.1.
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Lemma 4.24. Suppose that t ∈ T ud
n (λ). Then S2

kvt = vt.

Proof. Case 1. tk−1 6= tk+1: If Skt is not defined then at(k) ∈ {−1, 1}

and bt(k) = 0, which implies S2
kvt = vt. If Skt ∈ T ud

n (λ) then by the choice
of the square roots in (4.12)(a) we have

S2
kvt =

(
at(k)2 + bt(k)bSkt(k)

)
vt +

(
at(k) + aSkt(k)

)
bt(k)vSkt = vt.

Case 2. tk−1 = tk+1: We have S2
kvt =

∑
u

k
∼t

(∑
v

k
∼t

stv(k)svu(k)
)
vu. So,

the coefficient of vt in S2
kvs is

∑

u
k
∼t

stu(k)sut(k) =
∑

u
k
∼t

ett(k)euu(k)

(ct(k) + cu(k))2
−

ett(k)

2ct(k)2
+

1

4ct(k)2
= 1,

where the last equality follows by rearranging Proposition 4.21(b). If u
k
∼ t

and u 6= t then the coefficient of vu in S2
kvt is

∑

v
k
∼t

stv(k)svu(k) =
∑

v∼t
t6=v6=u

etv(k)evu(k)

(ct(k) + cv(k))(cv(k) + cu(k))

+
(ett(k)− 1)etu(k)

2ct(k)(ct(k) + cu(k))
+

(euu(k)− 1)etu(k)

2cu(k)(ct(k) + cu(k))

= etu(k)
(∑

v
k
∼t

evv(k)

(ct(k) + cv(k))(cv(k) + cu(k))
−

1

2ct(k)cu(k)

)

= 0

by Proposition 4.21(c). Therefore, S2
kvt = vt.

The next two Propositions prove that the action of Wr,n(u) on ∆(λ)

respects the tangle relations 2.1(g).

Proposition 4.25. For any t ∈ T ud
n (λ), EkSkvt = Ekvt = SkEkvt.

Proof. Suppose that tk−1 6= tk+1. Then either Skt is not defined, or
(Skt)k−1 6= (Skt)k+1. In either case, we have EkSkvt = Ekvt = SkEkvt = 0.
Suppose tk−1 = tk+1. Then

SkEkvt =
∑

u
k
∼t

etu(k)Skvu =
∑

u′
k
∼u

∑

u
k
∼t

suu′(k)etu(k)vu′ .
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By Proposition 4.21(a), we have

∑

u
k
∼t

etu(k)suu′(k) =
∑

u
k
∼t, u6=u′

etu(k)euu′(k)

cu(k) + cu′(k)
+ etu′(k)

eu′u′(k)− 1

2cu′(k)

= etu′(k)
(∑

u
k
∼t

euu(k)

cu(k) + cu′(k)
−

1

2cu′(k)

)

= etu′(k).

Hence, SkEkvt = Ekvt. One can prove that EkSkvt = Ekvt similarly.

Proposition 4.26. Suppose that t ∈ T ud
n (λ). Then

a) SkEk+1Ekvt = Sk+1Ekvt.

b) Ek+1EkSk+1vt = Ek+1Skvt.

Proof. (a) We may assume that tk−1 = tk+1 since otherwise SkEk+1

Ekvt = Sk+1Ekvt = 0. Let t̃ ∈ T ud
n (λ) be the unique updown tableau such

that t̃
k
∼ t and t̃k = tk+2. We have

SkEk+1Ekvt = e
t̃t
(k)e

t̃̃t
(k + 1)

(
s
t̃̃t
(k)v

t̃
+

∑

u
k
∼t̃, u6=t̃

s
t̃u

(k)vu

)

+
∑

u
k+1
∼ t̃, u6=t̃

e
t̃t
(k)e

t̃u
(k + 1)

(
au(k)vu + bu(k)vSku

)
.

Observe that if Sku is defined, for u in the second sum, then (Sku
′)k 6= tk+2

and w = Sk+1Sku is also defined. Further, we have w
k
∼ t̃ and w 6= t.

Similarly,

Sk+1Ekvt = e
t̃t
(k)

(
s
t̃̃t
(k + 1)v

t̃
+

∑

u
k+1
∼ t̃, u6=t̃

s
t̃u

(k + 1)vu

)

+
∑

u
k
∼t̃, u6=t̃

etu(k)
(
au(k + 1)vu + bu(k + 1)vSk+1u

)
.

We now compare the coefficients of vu in SkEk+1Ekvt and in Sk+1Ekvt.
First, observe that e

t̃̃t
(k)e

t̃̃t
(k + 1) = 1 by Lemma 4.19.
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Case 1. u = t̃: Since c
t̃
(k) = −c

t̃
(k + 1), the definitions and the remarks

above show that the coefficient of vu in SkEk+1Ekvt is equal to

e
t̃t
(k)e

t̃̃t
(k + 1)s

t̃̃t
(k) = e

t̃t
(k)

1− e
t̃̃t
(k + 1)

2c
t̃
(k)

= e
t̃t
(k)s

t̃̃t
(k + 1),

which is the coefficient of vu in Sk+1Ekvt.

Case 2. u
k
∼ t̃ and u 6= t̃: Now, c

t̃
(k) = cu(k + 2) and cu(k + 1) = −cu(k),

so the coefficient of vu in SkEk+1Ekvt is

e
t̃t
(k)e

t̃̃t
(k + 1)s

t̃u
(k) =

etu(k)

c̃
t
(k) + cu(k)

= etu(k)au(k + 1),

which is the coefficient of vu in Sk+1Ekvt.

Case 3. u
k+1
∼ t̃ and u 6= t̃: Since cu(k) = −c

t̃
(k + 1), the coefficient of vu

in SkEk+1Ekvt is

au(k)e
t̃u

(k + 1)es̃t(k) =
e
t̃u

(k + 1)es̃t(k)

cu(k + 1) + c
t̃
(k + 1)

= e
t̃t
(k)s

t̃u
(k + 1),

which is the coefficient of vu in Sk+1Ekvt.
Now suppose that Sku is defined and let w = Sk+1Sku be as above.

Then the coefficient of vSku in SkEk+1Ekvt is

e
t̃t
(k)e

t̃u
(k + 1)bu(k) =

√
ett(k)

√
euu(k + 1)bu(k)

=
√

ett(k)
√

eww(k)bw(k + 1)

= etw(k)bw(k + 1),

where the second equality comes from (4.12)(f). As Sku = Sk+1w this is
the coefficient of vSku in Sk+1Ekvt. This completes the proof of (a).

(b) We let the reader work out the expansions of Ek+1EkSk+1vt and
Ek+1Skvt. To show that these two expressions are equal there are four cases
to consider.

Case 1. tk = tk+2 and tk−1 = tk+1: We have

Ek+1EkSk+1vt = Ek+1ett(k)stt(k + 1)vt =
1− ett(k)

2ct(k + 1)
Ek+1vt

= stt(k)Ek+1vt = Ek+1Skvt.
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Case 2. tk 6= tk+2 and tk−1 = tk+1: Define t̃ ∈ T ud
n (λ) to be the unique

updown tableau such that t̃
k
∼ t and t̃k = tk+2. Then t̃ 6= t and

Ek+1EkSk+1vt = at(k + 1)e
t̃t
(k)Ek+1vt̃

= s
t̃t
(k)Ek+1vt̃

= Ek+1Skvs,

where the second equality uses the facts that ct(k+1) = −ct(k), ct(k+2) =
c̃
t
(k) and (Sk+1t)k−1 6= (Sk+1t)k+1.

Case 3. tk = tk+2 and tk−1 6= tk+1: Define t̃ ∈ T ud
n (λ) to be the unique

updown tableau such that t̃
k+1
∼ t and t̃k+1 = tk−1. Then

Ek+1EkSk+1vt = s
t̃t
(k + 1)e

t̃̃t
(k)Ek+1vt̃

=
e
t̃t
(k + 1)e

t̃̃t
(k)

ct(k + 1) + c
t̃
(k + 1)

∑

u
k+1
∼ t̃

e
t̃u

(k + 1)vu

= at(k)
∑

t̃
k+1
∼ u

etu(k + 1)vu = Ek+1Skvt,

where we have used the facts that c
t̃
(k+1) = −ct(k) and (Skt)k 6= (Skt)k+2.

Case 4. tk 6= tk+2 and tk−1 6= tk+1: First observe that because of our as-
sumptions we have Ek+1EkSk+1vt = bt(k+1)Ek+1EkvSk+1t and Ek+1Skvt =
bt(k)Ek+1vSkt. If (Sk+1t)k−1 6= (Sk+1t)k+1 then we also have (Skt)k 6=
(Skt)k+2 so that Ek+1SkSk+1vt = 0 = Ek+1Skvt.

Suppose now that (Sk+1t)k−1 = (Sk+1t)k+1 and let t̃ ∈ T ud
n (λ) be

the unique updown tableau such that t̃
k
∼ Sk+1t and t̃k = tk+2. Set u =

Skt and w = Sk+1t and observe that the assumptions of (4.12)(f) hold,
so that bu(k)

√
euu(k + 1) = bw(k + 1)

√
eww(k). As bt(k) = bu(k) and

bt(k + 1) = bw(k + 1), the reader should now have no difficulty in using

(4.12)(d), together with the fact that u
′ k+1
∼ t̃ if and only if u

′ k+1
∼ Skt, to

show that

Ek+1EkSk+1vt = bt(k + 1)
∑

u′
k+1
∼ t̃

e
t̃,Sk+1t

(k)e
t̃,u′(k + 1)vu′

= bt(k)
∑

u′
k+1
∼ Skt

eSkt,u′(k + 1)vu′ = Ek+1Skvt.

The next Proposition shows that the action of Wr,n(u) on ∆(λ) respects

the two relations 2.1(b)(i) and 2.1(d)(i).
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Proposition 4.27. Suppose that t ∈ T ud
n (λ) and that |k − l| > 1.

Then:

a) SkSlvt = SlSkvt.

b) SkElvt = ElSkvt.

Proof. We prove only (a) as the proof of part (b) is similar to, but
easier than (a).

First suppose that tk−1 = tk+1 and tl−1 = tl+1. Then

SkSlvt =
∑

u
l
∼t,w

k
∼u

stu(l)suw(k)vw.

Now for each pair of updown tableaux (w, u) with w
k
∼ u

l
∼ t there is a

unique updown tableau u
′ such that w

l
∼ u

′ k
∼ t; more precisely, u

′
k = wk

and u
′
a = ta for a 6= l. Notice that δuw = δtu′ and δtu = δwu′ . Therefore,

stu(l)suw(k) =

√
ett(l)

√
euu(l)− δtu

ct(l) + cu(l)

√
euu(k)

√
eww(k)− δuw

cu(k) + cw(k)

=

√
eu′u′(l)

√
eww(l)− δwu′

cu′(l) + cw(l)

√
ett(k)

√
eu′u′(k) − δu′t

ct(k) + cu′(k)

= su′w(l)stu′(k),

where the second equality uses (4.8) and (4.12)(e). Hence,

SkSlvt =
∑

u
l
∼t,w

k
∼u

stu(l)suw(k)vw =
∑

u′
k
∼t, w

l
∼u

stu′(k)su′w(l)vw = SlSkvt,

as required.

Assume now that tk−1 6= tk+1 and tl−1 = tl+1. Then

SkSlvt =
∑

u
l
∼t

stu(l)
(
au(k)vu + bu(k)vSku

)

= at(k)
∑

u
l
∼t

stu(l)vu + bt(k)
∑

u
l
∼t

stu(l)vSku

= at(k)
∑

u
l
∼t

stu(l)vu + bt(k)
∑

u′
l
∼Skt

sSkt,u′(l)vu′ = SlSkvt.
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Interchanging k and l covers the case when tk−1 = tk+1 and tl−1 6= tl+1

Finally, consider the case when tk−1 6= tk+1 and tl−1 6= tl+1. Then

SkSlvt = at(k)at(l)vt + aSlt
(k)bt(l)vSlt

+ bt(k)at(l)vSkt + bSlt
(k)bt(l)vSkSlt

= at(l)at(k)vt + at(k)bt(l)vSlt
+ aSkt(l)bt(k)vSkt + bSkt(l)bt(k)vSlSkt,

since aSlt
(k) = at(k) and at(l) = aSkt(l), by definition, and bSlt

(k) = bt(k)
and bSkt(l) = bt(l) by (4.12)(b). Hence, SkSlvt = SlSkvt if tk−1 6= tk+1 and
tl−1 6= tl+1. This completes the proof of (a).

Finally, we prove that the action of Wr,n(u) on ∆(λ) respects the braid

relations of length three.

Lemma 4.28. Suppose that t ∈ T ud
n (λ) with tk−1 6= tk+1 and tk 6= tk+2,

where 1 ≤ k < n− 1. Then SkSk+1Skvt = Sk+1SkSk+1vt.

Proof. We consider two cases.

Case 1. Skt is not defined, or Skt is defined and (Skt)k 6= (Skt)k+2:
First suppose that Skt is defined. If Sk+1t is defined then (Sk+1t)k−1 6=
(Sk+1t)k+1, and if Sk+1Skt is defined then (Sk+1Skt)k−1 6= (Sk+1Skt)k+1

because tk 6= tk+2. Thus we have

SkSk+1Skvt =
(
at(k)2at(k + 1) + bt(k)aSkt(k + 1)bSkt(k)

)
vt

+
(
at(k)at(k + 1)bt(k) + bt(k)aSkt(k + 1)aSkt(k)

)
vSkt

+ at(k)bt(k + 1)aSk+1t(k)vSk+1t + at(k)bt(k + 1)bSk+1t(k)vSkSk+1t

+ bt(k)bSkt(k + 1)aSk+1Skt(k)vSk+1Skt

+ bt(k)bSkt(k + 1)bSk+1Skt(k)vSkSk+1Skt.

Now, tk−1 6= tk+1, or if SkSk+1t is defined, then (SkSk+1t)k 6= (SkSk+1t)k+2.
Therefore, we have

Sk+1SkSk+1vt =
(
at(k + 1)2at(k) + bt(k + 1)aSk+1t(k)bSk+1t(k + 1)

)
vt

+
(
at(k + 1)at(k)bt(k + 1) + bt(k + 1)aSk+1t(k)aSk+1t(k + 1)

)
vSk+1t

+ at(k + 1)bt(k)aSkt(k + 1)vSkt + at(k + 1)bt(k)bSkt(k + 1)vSk+1Skt

+ bt(k + 1)bSk+1t(k)aSkSk+1t(k + 1)vSkSk+1t

+ bt(k + 1)bSk+1t(k)bSkSk+1t(k + 1)vSk+1SkSk+1t.
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Now, bSkt(k) = bt(k) and bSk+1t(k +1) = bt(k +1) by (4.12)(a). So, in order
to check that the coefficients of vt are equal in the last two equations we
have to show that

at(k)2at(k + 1) + aSkt(k + 1)(1 − at(k)2)

= at(k)at(k + 1)2 + aSk+1t(k + 1)(1 − at(k + 1)2);

however, this is just a special case of the easy identity

1

(b− a)2(c− b)
+

1

c− a

(
1−

1

(b− a)2

)

=
1

(b− a)(c− b)2
+

1

c− a

(
1−

1

(c− b)2

)
.

To see that the coefficients of vSkt and vSk+1t are equal amounts to the
following easily checked identities

aSkt(k)aSkt(k + 1) + at(k)at(k + 1) = at(k + 1)aSkt(k + 1),

aSk+1t(k)aSk+1t(k + 1) + at(k)at(k + 1) = at(k)aSk+1t(k).

For the coefficients of vSk+1Skt and vSkSk+1t, note that aSk+1Skt(k) = at(k+1)
and aSkSk+1t(k + 1) = at(k). Finally, three applications of (4.12)(c) shows
that the coefficients in vSkSk+1Skt = vSk+1SkSk+1t are equal in both equations.

If Skt is not defined then at(k) = ±1 and bt(k) = 0 by Lemma 4.11(b).
Hence, the argument above is still valid if we set bt(k) = 0.

Case 2. Skt is defined and (Skt)k = (Skt)k+2: If Sk+1t is defined
then (Sk+1t)k−1 = (Sk+1t)k+1. Let t̃ be the unique updown tableau such

that t̃
k+1
∼ Skt and t̃k+1 = tk−1. Observe that if u

k+1
∼ t̃ and u 6= t̃ then

uk−1 6= uk+1. Therefore,

SkSk+1Skvt = at(k)2at(k + 1)vt + at(k)at(k + 1)bt(k)vSkt

+ at(k)bt(k + 1)
∑

u
k
∼t̃

sSk+1t,u(k)vu + bt(k)
∑

u
k
∼t̃

sSkt,̃t(k + 1)s
t̃u

(k)vu

+
∑

u
k+1
∼ Skt

u6=t̃

bt(k)sSkt,u(k + 1)
(
au(k)vu + bu(k)vSku

)
.
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Similarly,

Sk+1SkSk+1vt = at(k + 1)2at(k)vt + at(k + 1)at(k)bt(k + 1)vSk+1t

+ at(k + 1)bt(k)
∑

u
k+1
∼ t̃

sSkt,u(k + 1)vu

+ bt(k + 1)
∑

u
k+1
∼ t̃

sSk+1t,̃t(k)s
t̃u

(k + 1)vu

+
∑

u
k
∼Sk+1t

u6=t̃

bt(k + 1)sSk+1t,u(k)
(
au(k + 1)vu + bu(k + 1)vSk+1u

)
.

We now compare each of the coefficients in the last two displayed equations.
First we consider the coefficient of vt. To show that the coefficients of

vt are equal in the two expressions above, we have to prove that

at(k)2at(k + 1) + bt(k)sSkt,Skt(k + 1)bSkt(k)

= at(k + 1)2at(k) + bt(k + 1)sSk+1t,Sk+1t(k)bSk+1t(k + 1).

Now, bt(k) = bSkt(k) and bt(k +1) = bSk+1t(k +1) by (4.12)(a). So, the last
identity is equivalent to

at(k)2at(k + 1) +
eSkt,Skt(k + 1)− 1

2cSkt(k + 1)
bSkt(k)2

= at(k + 1)2at(k) +
eSk+1t,Sk+1t(k)− 1

2cSk+1t(k)
bSk+1t(k + 1)2.

This equation is easily verified using the definitions and Lemma 4.20. Hence,
the coefficients of vt in SkSk+1Skvt and Sk+1SkSk+1 are equal.

Now consider the coefficient of vSkt in both equations. Since aSkt(k)−
at(k + 1) = 2cSkt(k + 1)/(c

t̃
(k) + cSk+1t(k))(c

t̃
(k) + cSkt(k)), we see that

sSkt,Skt(k + 1)(aSkt(k)− at(k + 1))bt(k) + at(k)at(k + 1)bt(k)

= eSkt,Skt(k + 1)at(k)at(k + 1)bt(k)

=
bSkt(k)eSkt,Skt(k + 1)

(c
t̃
(k) + cSk+1t(k))(c

t̃
(k + 1) + cSkt(k + 1))

=
bSk+1t(k + 1)

√
eSk+1t,Sk+1t(k)

√
eSkt,Skt(k + 1)

(c
t̃
(k) + cSk+1t(k))(c

t̃
(k + 1) + cSkt(k + 1))

,

= bt(k + 1)sSk+1t,̃t(k)s
t̃,Skt

(k + 1).
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where the second last equality uses (4.12)(f). Consequently,

at(k)at(k + 1)bt(k) + bt(k)sSkt,Skt(k + 1)aSkt(k)

= at(k + 1)bt(k)sSkt,Skt(k + 1) + bt(k + 1)sSk+1t,̃t(k)s
t̃,Skt

(k + 1).

Hence, the coefficients of vSkt in SkSk+1Skvt and Sk+1SkSk+1vt are equal.
A similar argument shows that

at(k)bt(k + 1)sSk+1t,Sk+1t(k) + bt(k)sSkt,̃t(k + 1)s
t̃,Sk+1t

(k)

= at(k + 1)at(k)bt(k + 1) + bt(k + 1)sSk+1t,Sk+1t(k)aSk+1t(k + 1).

This proves that the coefficient of vSk+1t in SkSk+1Skvt and Sk+1SkSk+1vt

are equal.

Now consider the coefficient of vu where u
k
∼ t̃ and u /∈ {̃t, Sk+1t}. This

time

au(k + 1)− at(k) =
cSk+1t(k) + cu(k)

(cSkt(k + 1) + c
t̃
(k + 1))(c

t̃
(k) + cu(k))

.

An argument similar to that for vSkt now shows that

bt(k)sSkt,̃t(k + 1)s
t̃u

(k) = bt(k + 1)sSk+1t,u(k)
(
au(k + 1)− at(k)

)
.

Therefore, the coefficients of vu for such u in SkSk+1Skvt and Sk+1SkSk+1vt

are equal.

Another variation of this argument shows that if u
k+1
∼ Skt and u /∈

{̃t, Skt} then the coefficients of vu in SkSk+1Skvt and Sk+1SkSk+1vt are
both equal.

Next, we suppose that Sku is defined and we compare the coefficients of

vSku in SkSk+1Skvt and Sk+1SkSk+1vt, when u
k+1
∼ Skt and u /∈ {̃t, Skt}. As

Skt is defined, w = Sk+1Sku is defined and w
k
∼ Sk+1t with w /∈ {̃t, Sk+1t}.

Conversely, if Sk+1w is defined for such w then u = SkSk+1w is defined.
Applying (4.12)(f) twice, we have

bt(k)bu(k)
√

eSkt,Skt(k + 1)
√

euu(k + 1)

= bt(k + 1)bw(k + 1)
√

eSk+1t,Sk+1t(k)
√

eww(k).

Consequently, because cSkt(k + 1) + cu(k + 1) = cw(k) + cSk+1t(k), we have

bt(k)sSkt,u(k + 1)bu(k) = bt(k + 1)sSk+1t,w(k)bw(k + 1).
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That is, the coefficients of vSku in Sk+1SkSk+1vt and SkSk+1Skvt are equal.
It remains to compare the coefficients of v

t̃
in the two equations. To

show that these two coefficients are equal we have to prove that

at(k)bt(k + 1)sSk+1t,̃t(k) + bt(k)sSkt,̃t(k + 1)s
t̃̃t
(k)

= at(k + 1)bt(k)sSkt,̃t(k + 1) + bt(k + 1)sSk+1t,̃t(k)s
t̃̃t
(k + 1).

First note that, by the definitions and (4.12)(a),

bt(k + 1)sSk+1t,̃t(k) =
bt(k + 1)

√
eSk+1t,Sk+1t(k)

√
e
t̃,̃t(k)

cSk+1t(k) + c
t̃
(k)

=
bt(k)

√
eSk+1t,Sk+1t(k)

√
e
t̃,̃t(k + 1)

cSk+1t(k) + c
t̃
(k)

= bt(k)sSkt,̃t(k + 1)
cSk t(k + 1) + c

t̃
(k + 1)

cSk+1t(k) + c
t̃
(k)

e
t̃̃t
(k).

So, it is enough to show that
(
cSkt(k + 1) + c

t̃
(k + 1)

)
e
t̃̃t
(k)

(
at(k)− s

t̃̃t
(k + 1)

)

=
(
cSk+1t(k) + c

t̃
(k)

)(
at(k + 1)− s

t̃̃t
(k)

)
;

however, this follows from Lemma 4.19. Hence, the coefficients of v
t̃

in
Sk+1SkSk+1vt and SkSk+1Skvt are equal.

This completes the proof of Lemma 4.28.

Lemma 4.29. Suppose that t ∈ T ud
n (λ) and that either tk−1 = tk+1

and tk 6= tk+2, or tk−1 6= tk+1 and tk = tk+2, for 1 ≤ k < n − 1. Then

SkSk+1Skvt = Sk+1SkSk+1vt.

Proof. There are again two cases to consider.

Case 1. Sk+1t is defined: Suppose first that tk−1 = tk+1 and tk 6=
tk+2. Then u = Sk+1t ∈ T ud(λ) is well-defined. Furthermore, uk 6= uk+2

and uk−1 6= uk+1, so SkSk+1Skvu = Sk+1SkSk+1vu by Lemma 4.28. Now,
Sk+1vu = au(k + 1)vu + bu(k + 1)vt and bu(k + 1) 6= 0. Therefore

SkSk+1Skvt =
1

bu(k + 1)
SkSk+1Sk

(
Sk+1vu − au(k + 1)vu

)

=
1

bu(k + 1)

(
Sk(Sk+1SkSk+1)vu − au(k + 1)(SkSk+1Sk)vu

)

=
1

bu(k + 1)

(
Sk(SkSk+1Sk)vu − au(k + 1)(Sk+1SkSk+1)vu

)
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by Lemma 4.28. Hence, using Lemma 4.24 twice,

SkSk+1Skvt =
1

bu(k + 1)

(
Sk+1Skvu − au(k + 1)(Sk+1SkSk+1)vu

)

=
1

bu(k + 1)

(
Sk+1Sk(Sk+1Sk+1)vu − au(k + 1)(Sk+1SkSk+1)vu

)

=
1

bu(k + 1)
(Sk+1SkSk+1)

(
Sk+1vu − au(k + 1)vu

)

= (Sk+1SkSk+1)vt

as required.
The case when tk−1 6= tk+1 and tk = tk+2 can be proved similarly.

Case 2. Sk+1t is not defined: This is equivalent to saying that the two
nodes tk+2	 tk+1 and tk+1	 tk are in the same row or in the same column.
Therefore, either tk ⊂ tk+1 ⊂ tk+2 or tk ⊃ tk+1 ⊃ tk+2. Note that in either
case tk−1 = tk+1, so we have

Ekvt =
∑

u
l
∼t

u6=t

etu(k)vu + ett(k)vt.

By Proposition 4.26 and Proposition 4.25, SkSk+1SkEkvt = SkSk+1Ekvt =
Ek+1Ekvt and Sk+1SkSk+1Ekvt = Sk+1Ek+1Ekvt = Ek+1Ekvt.

Suppose that u
k
∼ t and u 6= t. Then Sk+1u is well-defined and

uk−1 = uk+1—indeed, the two boxes tk+2	 tk+1 and tk+1	uk belong to dif-
ferent rows and columns. Hence, by Case 1, Sk+1SkSk+1vu = SkSk+1Skvu.
Consequently, Sk+1SkSk+1ett(k)vt = SkSk+1Skett(k)vt. Cancelling the non-
zero factor ett(k) shows that SkSk+1Skvt = Sk+1SkSk+1vt.

Proposition 4.30. Suppose that 1 ≤ k < n−1 and t ∈ T ud
n (λ). Then

SkSk+1Skvt = Sk+1SkSk+1vt.

Proof. By Lemma 4.28 and Lemma 4.29 it only remains to consider
the case when tk−1 = tk+1 and tk = tk+2. By Lemma 4.24, Proposition 4.25
and Proposition 4.26(a), we have

Sk+1SkSk+1Ekvt = Sk+1Sk · SkEk+1Ekvt = Sk+1Ek+1Ekvt = Ek+1Ekvt,

on the one hand. Similarly, we also have

SkSk+1SkEkvt = SkSk+1Ekvt = Sk · SkEk+1Ekvt = Ek+1Ekvt.
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Therefore, recalling the definition of Ekvt, we have

(
Sk+1SkSk+1 − SkSk+1Sk

)(
ett(k)vt +

∑

u
k
∼t, u6=t

etu(k)vu

)
= 0.

Now, if u
k
∼ t and u 6= t then SkSk+1Skvu = Sk+1SkSk+1vu by Lemma 4.29.

Consequently, SkSk+1Skvt = Sk+1SkSk+1vt since ett(k) 6= 0. This completes
the proof.

Proof of Theorem 4.13. The results from Lemma 4.22 to Proposition
4.30 show that the action of the generators of Wr,n(u) on ∆(λ) respects all
of the relations of Wr,n(u). Hence, ∆(λ) is a Wr,n(u)-module, as we wanted
to show.

§5. Irreducible representations and Theorem A

In this section we use the seminormal representations to show that the

cyclotomic Nazarov-Wenzl algebras are always free of rank rn(2n − 1)!!.

Before we can do this we need to recall some identities involving updown

tableaux.

First, if λ is a multipartition of n − 2m let f (n,λ) be the number of

n-updown λ-tableaux. So, in particular, f (|λ|,λ) = #T std(λ) is the number

of standard λ-tableaux. Sundaram [Sun86, Lemma 8.7] has given a combi-

natorial bijection to show that if τ is a partition (so r = 1) then the number

of n-updown τ -tableaux is equal to
( n
|τ |

)
(n−|τ |−1)!!f (|τ |,τ). Terada [Ter01]

has given a geometric version of this bijection when |τ | = 0 and n is even.

Lemma 5.1. Suppose that 0 ≤ m ≤ bn
2 c and that λ ∈ Λ+

r (n − 2m).
Then

f (n,λ) = rm

(
n

2m

)
(2m− 1)!!#T

std(λ).

Proof. Using Sundaram’s formula from above we have

f (n,λ) =
∑

n1,...,nr
n1+···+nr=n
nt−|λ(t)|∈2Z

(
n

n1, . . . , nr

) r∏

t=1

(
nt

|λ(t)|

)
(nt − |λ

(t)| − 1)!!f (|λ(t)|,λ(t))

=
∑

n1,...,nr
n1+···+nr=n
nt−|λ(t)|∈2Z

n!

r∏

t=1

(nt − |λ
(t)| − 1)!!f (|λ(t)|,λ(t))

(nt − |λ(t)|)!|λ(t)|!
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= n!

r∏

t=1

f (|λ(t)|,λ(t))

|λ(t)|!

∑

n1,...,nr
n1+···+nr=n

r∏

t=1

(nt − |λ
(t)| − 1)!!

(nt − |λ(t)|)!

=
n!

(n− 2m)!
#T

std(λ)
∑

a1,...,ar
a1+···+ar=m

r∏

t=1

(2at − 1)!!

(2at)!
,

where the summation is now over at = nt−|λ(t)|
2 , for 1 ≤ t ≤ r. Hence

f (n,λ) =
n!

(n− 2m)!
#T

std(λ)2−m
∑

a1,...,ar
a1+···+ar=m

r∏

t=1

1

at!

=
n!

(n− 2m)!
#T

std(λ)
rm

2mm!
= rm

(
n

2m

)
(2m− 1)!!#T

std(λ).

It is well-known from the representation theory of the degenerate Hecke

algebras Hr,k that
∑

λ #T std(λ)2 = rkk!, where in the sum λ ∈ Λ+
r (k).

Corollary 5.2. Suppose that n ≥ 1 and r ≥ 1. Then

b
n
2 c∑

m=0

∑

λ`n−2m

f (n,λ)2 = rn(2n− 1)!!.

Proof. Using the Lemma we have

b
n
2 c∑

m=0

∑

λ`n−2m

f (n,λ)2 =

b
n
2 c∑

m=0

∑

λ`n−2m

{
rm

(
n

2m

)
(2m− 1)!!#T

std(λ)

}2

=

b
n
2 c∑

m=0

r2m

(
n

2m

)2(
(2m− 1)!!

)2
∑

λ`n−2m

#T
std(λ)2

=

b
n
2 c∑

m=0

r2m

(
n

2m

)2(
(2m− 1)!!

)2
rn−2m(n− 2m)!

= rn

b
n
2 c∑

m=0

(
n

2m

)2(
(2m− 1)!!

)2
(n− 2m)!.
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To complete the proof, notice that the sum on the right hand side does
not depend on r, so we can set r = 1 and deduce the result from the
representation theory of the Brauer algebras.

A representation theoretic proof of this result is given in [RY04] where

it is obtained as a consequence of the branching rules for the cyclotomic

Brauer algebra. The cell modules of the cyclotomic Brauer algebras are

indexed by the multipartitions of n− 2m, for 0 ≤ m ≤ b n
2 c. The branching

rule [RY04, Theorem 6.1] shows that the dimension of the cell module in-

dexed by λ is f (n,λ). On the other hand, the cellular basis of the cyclotomic

Brauer algebras constructed in [RY04, Theorem 5.11] contains rn(2n− 1)!!

elements. Combining these two facts proves the result.

Given two multipartitions λ and µ such that µ is obtained by adding a

box to λ we write λ→ µ, or µ← λ.

Theorem 5.3. Suppose that R is a field with char R > 2n and the

root conditions (Assumption 4.12) hold in R. Assume that the parameters

u1, . . . , ur are generic for Wr,n(u) and that Ω is u-admissible. Then:

a) Suppose n > 1. There is a Wr,n−1(u)-module isomorphism

∆(λ) ↓ =
⊕

µ
µ→λ

∆(µ)⊕
⊕

ν
λ→ν

∆(ν).

where ∆(λ) ↓ is ∆(λ) considered as a Wr,n−1(u)-module.

b) The seminormal representation ∆(λ) is an irreducible Wr,n(u)-module

for each multipartition λ of n− 2m, where 0 ≤ m ≤ b n
2 c.

c) The set {∆(λ) | λ ` n − 2m, 0 ≤ m ≤ bn
2 c} is a complete set of

irreducible Wr,n(u)-modules.

d) Wr,n(u) is a split semisimple R-algebra of dimension rn(2n− 1)!!.

Proof. Part (a) follows if we define ∆(µ) to be the vector subspace
spanned by vu with u ∈ T ud

n (λ) and un−1 = µ.
Let X = 〈X1, . . . , Xn〉. Since Xkvt = ct(k)vt, for all t ∈ T ud

n (λ)
and 1 ≤ k ≤ n, the seminormal representation ∆(λ) =

⊕
t∈T ud

n (λ) Rvt

decomposes into a direct sum of one dimensional submodules as an X -
module. Further, by Lemma 4.4(a), this decomposition is multiplicity free.
In particular, ∆(λ) ∼= ∆(µ) if and only if λ = µ. Further, if M is a Wr,n(u)-
submodule of ∆(λ) then M is spanned by some subset of {vt | t ∈ T ud

n (λ)}.
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To prove (b) we now argue by induction on n. If n = 1 then ∆(λ) is one
dimensional and hence irreducible, for all λ. Suppose now that n > 1 and
let M ⊂ ∆(λ) be a non-zero Wr,n(u)-submodule of ∆(λ). By the remarks
in the last paragraph, M is spanned by a subset of {vt | t ∈ T ud

n (λ)}.
Therefore, if we consider M as a Wr,n−1(u)-module then M ⊃ ∆(µ), for
some multipartition µ which is obtained by adding or removing a node
from λ.

Case 1. |λ| = n: Since |λ| = n, The multipartition µ is obtained from λ
by removing a node. If λ = ((0), . . . , (0), (ab), (0), . . . , (0)) then ∆(λ) ↓ is
irreducible as a Wr,n−1(u)-module, so there is nothing to prove. Suppose
then that λ is not of this form and that ν is a different multipartition which
is obtained from λ by removing a node. Let t ∈ T ud

n (λ) be an updown
tableau such that tn−1 = µ and µ \ tn−2 = λ \ ν. So vt ∈ ∆(µ) ⊂ M and
(Sn−1t)n−1 = ν. Now,

Sn−1vt = at(n− 1)vt + bt(n− 1)vSn−1t ∈M,

and bt(n − 1) 6= 0 since λ \ µ and λ \ ν cannot be in the same row or in
the same column. Consequently, vSn−1t ∈M . This implies that ∆(ν) ⊂M
since (Sn−1t)n−1 = ν. Therefore,

∑
ν→λ ∆(ν) ⊂ M , so M = ∆(λ) by

part (a). Hence, ∆(λ) is irreducible as required.

Case 2. |λ| < n: Since |λ| < n, T ud
n−2(λ) is non-empty so we fix u ∈

T ud
n−2(λ). Let t = (u1, . . . , un−2, µ, λ), then t ∈ T ud

n (λ) and vt ∈ ∆(µ) ⊂M .
Then

En−1vt =
∑

w
n−1
∼ t

etw(n− 1)vw ∈M.

As etw(n− 1) 6= 0 whenever w
n−1
∼ t, we have vw ∈M for each term in this

sum. If ν ← λ or ν → λ then w = (u1, . . . , un−2, ν, λ)
n−1
∼ t, so ∆(ν) ⊂ M .

Hence, M = ∆(λ) and ∆(λ) is irreducible as claimed. This completes the
proof of (b).

Finally, we prove (c) and (d). We have already seen that the seminormal
representations are pairwise non-isomorphic, so it remains to show that
every irreducible is isomorphic to ∆(λ) for some λ. Let Rad Wr,n(u) be the
Jacobson radical of Wr,n(u). Then

dimR Wr,n(u) ≥ dimR

(
Wr,n(u)/Rad Wr,n(u)

)
≥

bn/2c∑

m=0

∑

λ`n−2m

(
dimR ∆(λ)

)2
.
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By construction, dim∆(λ) = #T ud
n (λ) = f (n,λ). So using Corollary 5.2,

and then Proposition 2.15, we have

dimR Wr,n(u) ≥ rn(2n− 1)!! ≥ dimR Wr,n(u).

Therefore, RadWr,n(u) = 0, which forces dimR Wr,n(u) = rn(2n−1)!!. Now,
parts (c) and (d) both follow from the Wedderburn-Artin Theorem.

Before establishing a strong version of Theorem A, we show that the

Root conditions (Assumption 4.12) can be satisfied when R = R.

Lemma 5.4. Suppose that R = R and we choose ui ∈ R in such a way

that

a) |u1| > · · · > |ur| ≥ n and |ui| − |ui+1| ≥ 2n,

b) ui < 0 if i is even and ui > 0 if i is odd.

Suppose that t ∈ T ud
n (λ) and 1 ≤ k < n. Then |at(k)| ≤ 1, if tk−1 6= tk+1,

and ett(k) > 0, if tk−1 = tk+1. In particular, the Root Condition (4.12)
holds if we choose non-negative square roots

√
bt(k) ≥ 0 and

√
ett(k) > 0.

Proof. We start with the case tk−1 6= tk+1. Let α = tk 	 tk−1 and β =
tk+1 	 tk. Note that c(α) + c(β) 6= 0. Write α = (i, j, t) and β = (i′, j′, t′).
If t = t′ and both nodes are addable, or both nodes are removable, then
α 6= β. Thus, c(β)− c(α) is a nonzero integer and |at(k)| ≤ 1. If t = t′ and
only one of the nodes is addable (and the other is removable), then

1

|au(k)|
= |c(α) − c(β)| = |2ut + (j − i) + (j ′ − i′)| ≥ 2|ut| − 2(n− 1) ≥ 2.

Hence, |at(k)| ≤ 1 if t = t′. A similar argument shows that |at(k)| ≤ 1 when
t 6= t′.

Next we consider the case tk−1 = tk+1. Let α = tk	 tk−1 and λ = tk−1.
Write α = (i, j, t). By (4.8) and because R = R, we have

ett(k) =
(
2c(α) − (−1)r

)∏

β

c(α) + c(β)

c(α) − c(β)
,

where β runs over all of the addable and removable nodes of λ with β 6= α.
Suppose that t is even. First we show that

∏

β/∈λ(t)

c(α) + c(β)

c(α)− c(β)
< 0.
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Consider the contents of all of the addable and removable nodes of λ(t′),
where t′ 6= t. If t′ is even then there are l positive contents |ut′ | + dj with
|dj | < n, for 1 ≤ j ≤ l, and l + 1 negative contents −|ut′ | − ci with |ci| < n,

for 1 ≤ i ≤ l + 1. Let εt′ be the sign of the product of c(α)+c(β)
c(α)−c(β) over all

addable and removable nodes β of λ(t′). Our aim is to show that

∏

t′ 6=t

εt′ = −1.

By our assumptions, εt′ is equal to the sign of

(−|ut|+ |ut′ |)
l

(−|ut| − |ut′ |)l
(−|ut| − |ut′ |)

l+1

(−|ut|+ |ut′ |)l+1
=
|ut|+ |ut′ |

|ut| − |ut′ |
.

Thus, εt′ < 0 if and only if t′ < t. If t′ is odd then there are l + 1 positive
contents |ut′ | + ci with |ci| < n, for 1 ≤ i ≤ l + 1, and l negative contents
−|ut′ | − dj with |dj | < n, for 1 ≤ j ≤ l. Then, by the same argument,
εt′ < 0 if and only if t′ < t again. Thus

∏

t′ 6=t

εt′ = (−1)t−1 = −1.

Let −|ut|− ci, for 1 ≤ i ≤ l+1, be the contents of the addable nodes of
λ(t) and let |ut|+ dj , for 1 ≤ j ≤ l, be the contents of the removable nodes
of λ(t). We may assume that

c1 > d1 > · · · > cl > dl > cl+1.

Let εt be the sign of the product of c(α)+c(β)
c(α)−c(β) , where β runs over all of the

addable and removable nodes of λ(t) such that β 6= α.
If c(α) = −|ut| − ci, for some i, then εt is equal to the sign of

∏

k 6=i

−2|ut| − ci − ck

ck − ci

l∏

k=1

dk − ci

−2|ut| − ci − dk
,

so εt = (−1)l

(−1)l+1−i

(−1)l−i+1

(−1)l = 1. As 2c(α)− (−1)r = −2|ut| − 2ci ± 1 < 0 and

∏

1≤t′≤r

εt′ = −1,

we have ett(k) > 0.
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If c(α) = |ut|+ dj, for some j, then εt is equal to the sign of

l+1∏

k=1

dj − ck

2|ut|+ dj + ck

l∏

k 6=j

2|ut|+ dj + dk

dj − dk
,

so εt = (−1)j

(−1)j−1 = −1. As 2c(α) − (−1)r = 2|ut|+ 2dj ± 1 > 0 and

∏

1≤t′≤r

εt′ = −1,

we have ett(k) > 0 again.

The case when t is odd is handled similarly. In this case, we have

∏

β/∈λ(t)

c(α) + c(β)

c(α)− c(β)
> 0,

because its sign is equal to (−1)t−1 = 1. Let |ut|+ ci, for 1 ≤ i ≤ l + 1, be
the contents of the addable nodes of λ(t) and let −|ut| − dj , for 1 ≤ j ≤ l,
be the contents of the removable nodes of λ(t) such that

c1 > d1 > · · · > cl > dl > cl+1.

If c(α) = |ut|+ ci, for some i, then εt is equal to the sign of

∏

k 6=i

2|ut|+ ci + ck

ci − ck

l∏

k=1

ci − dk

2|ut|+ ci + dk
,

so εt = (−1)i−1

(−1)i−1 = 1. As 2c(α) − (−1)r > 0 we have ett(k) > 0.

If c(α) = −|ut| − dj , for some j, then εt is equal to the sign of

l+1∏

k=1

ck − dj

−2|ut| − dj − ck

l∏

k 6=j

−2|ut| − dj − dk

dk − dj
,

so εt = (−1)l−j+1

(−1)l+1
(−1)l−1

(−1)l−j = −1. As 2c(α) − (−1)r < 0 we have ett(k) > 0

again.

We can now prove a stronger version of Theorem A.
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Theorem 5.5. Suppose that R is a commutative ring in which 2 is

invertible and that Ω is u-admissible. Then Wr,n(u) is free as an R-module

with basis the set of r-regular monomials. Consequently, Wr,n(u) is free of

rank rn(2n− 1)!!.

Proof. Recall that if R is a ring in which 2 is invertible then Wr,n(u)
is spanned by the set of r-regular monomials by Proposition 2.15. For
convenience, if S is a ring and us ∈ Sr then we let WS(uS) be the cyclotomic
Nazarov-Wenzl algebra defined over S with parameters uS .

First, we consider the special case when R = Z, where Z =
Z[12 , u̇1, . . . , u̇r] and the u̇i are indeterminates over Z. Let u̇ = (u̇1, . . . , u̇r),

define Ω̇ in accordance with Definition 3.6 and consider the cyclotomic
Nazarov-Wenzl algebra WZ(u̇). As R is not finitely generated over Q we can
find r algebraically independent transcendental real numbers u′

1, . . . , u
′
r ∈ R

which satisfy the hypotheses of Lemma 5.4. Let Z ′ = Z[12 , u′
1, . . . , u

′
r]

and let θ : Z → Z ′ be the Z-linear map determined by θ(u̇i) = u′
i, for

1 ≤ i ≤ r. Then θ is a ring isomorphism. Let u′ = (u′
1, . . . , u

′
r) and

Ω′ = {θ(ω̇a) | a ≥ 0}. Then Ω′ is u′-admissible and θ induces an iso-
morphism of Z-algebras WZ(u̇) ∼= WZ′(u′), where the inverse map is the
homomorphism induced by θ−1 : Z ′ → Z.

Now, by Lemma 5.4 and Theorem 5.3(d), WR(u′) is an R-algebra of
dimension rn(2n− 1)!!. Hence the set of r-regular monomials is an R-basis
of WR(u′) since there are rn(2n − 1)!! r-regular monomials. In particular,
the set of r-regular monomials is linearly independent over R, and hence
linearly independent over Z ′. Therefore, WZ′(u′) is free as a Z ′-module of
rank rn(2n− 1)!!. Hence, WZ(u̇) is free as a Z-module of rank rn(2n− 1)!!.

Now suppose that R is an arbitrary commutative ring (in which 2 is
invertible). Then we can consider R as a Z-algebra by letting u̇i act on
R as multiplication by ui, for 1 ≤ i ≤ r. Since WZ(u̇) is Z-free, the R-
algebra WZ(u̇) ⊗Z R is free as an R-module of rank rn(2n − 1)!!. As the
generators of WZ(u̇)⊗Z R satisfy the relations of Wr,n(u) = WR(u) we have
a surjective homomorphism Wr,n(u) → WZ(u̇) ⊗Z R. By Proposition 2.15
this map must be an isomorphism, so we are done.

As an easy application of the Theorem we obtain the following useful

fact which we will use many times below without mention.

Proposition 5.6. Suppose that R is a commutative ring in which 2
is invertible and that Ω is u-admissible.
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a) For 1 ≤ m ≤ n, let W ′
r,m(u) be the subalgebra of Wr,n(u) generated by

{Si, Ei, Xj | 1 ≤ i < m and 1 ≤ j ≤ m}. Then W ′
r,m(u) ∼= Wr,m(u).

b) The Brauer algebra Bn(ω0) is isomorphic to the subalgebra of Wr,n(u)
generated by {Si, Ei | 1 ≤ i < n}.

§6. The degenerate Hecke algebras of type G(r, 1, n)

Suppose R is a commutative ring and let u ∈ Rr. Recall from Section 2

that Hr,n(u) is the degenerate Hecke algebra with parameters u. In this

section we give several results from the representation theory of Hr,n(u)

which we will need in our study of the cyclotomic Nazarov-Wenzl algebras.

As the proofs of these results are very similar to (and easier than) the proofs

of the corresponding results for the Ariki-Koike algebras we are very brief

with the details.

The following result is proved by Kleshchev [Kle05]. We use the semi-

normal representations of Wr,n(u) to give another proof.

Let Λ+
r (n) be the set of r-multipartitions of n. We consider Λ+

r (n) as

a partially ordered set under dominance D, where λ D µ if

s−1∑

t=1

|λ(t)|+
k∑

j=1

λ
(s)
k ≥

s−1∑

t=1

|µ(t)|+
k∑

j=1

µ
(s)
k ,

for 1 ≤ s ≤ r and all k ≥ 0. If λ D µ and λ 6= µ we sometimes write λ B µ.

Theorem 6.1. The degenerate Hecke algebra Hr,n(u) is free as an R-

module of rank rnn!.

Proof. It is not difficult to see that for any ring R set

{Y k1
1 Y k2

2 · · · Y
kn
n Tw | 0 ≤ ki ≤ r − 1, w ∈ Sn}

spans Hr,n(u) as an R-module. So we need to prove that these elements
are linearly independent.

We adopt the notation from the proof of Theorem 5.5. As in the
proof of that result, we first consider the case when R = Z, where Z =
Z[12 , u̇1, . . . , u̇r], and we choose r algebraically independent transcenden-
tal real numbers u′

1, . . . , u
′
r which satisfy the hypotheses of Lemma 5.4.

Let Z ′ = Z[12 , u′
1, . . . , u

′
r]. Then Z ∼= Z ′ ↪→ R and we can ask whether

the degenerate Hecke algebra HR(u′), defined over R and with parameters
u′ = (u′

1, . . . , u
′
r), acts on the seminormal representations of WR(u′). By
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definition, if λ ∈ Λ+
r (n) then Ei∆(λ) = 0, for 1 ≤ i < n. Therefore, over R,

∆(λ) can be considered as an HR(u′)-module by Corollary 2.16. Hence, as
in the proof of Theorem 5.5,

dimR HR(u′) ≥
∑

λ∈Λ+
r (n)

(dimR ∆(λ))2 = rnn!.

Consequently, by the opening paragraph of the proof, this set is a basis of
HR(u′). As in the proof of Theorem 5.5 it follows that HZ(u̇) is free as a
Z-module of rank rnn!. The result for a general ring R now follows by a
specialization argument.

We remark that the definition of the seminormal representations of

Wr,n(u) required that R satisfy assumption (4.12). It is not hard to modify

the definition of the seminormal representations of Hr,n(u) so that the

formulae do not involve any square roots and so that they work over an

arbitrary field (cf. [AK94]). In particular, this leads to a simplification of

the last argument.

Definition 6.2. (Graham and Lehrer [GL96]) Let R be a commuta-
tive ring and A an R-algebra. Fix a partially ordered set Λ = (Λ,D) and
for each λ ∈ Λ let T (λ) be a finite set. Finally, fix Cλ

st ∈ A for all λ ∈ Λ
and s, t ∈ T (λ).

Then the triple (Λ, T, C) is a cell datum for A if:

a) {Cλ
st | λ ∈ Λ and s, t ∈ T (λ)} is an R-basis for A;

b) the R-linear map ∗ : A→ A determined by (Cλ
st)

∗ = Cλ
ts, for all λ ∈ Λ

and all s, t ∈ T (λ) is an anti-isomorphism of A;

c) for all λ ∈ Λ, s ∈ T (λ) and a ∈ A there exist scalars rsu(a) ∈ R such
that

aCλ
st =

∑

u∈T (λ)

rsu(a)Cλ
ut (mod ABλ),

where ABλ = R-span{Cµ
uv | µ B λ and u, v ∈ T (µ)}.

An algebra A is a cellular algebra if it has a cell datum and in this case we
call {Cλ

st | s, t ∈ T (λ), λ ∈ Λ} a cellular basis of A.

To show that Hr,n(u) is a cellular algebra we modify the construction

of the Murphy basis of the Ariki-Koike algebras; see [DJM99]. For any mul-

tipartition λ = (λ(1), λ(2), . . . , λ(r)) we define uλ = ua1,1ua2,2 · · · uar−1,r−1,
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where ua,i = (Y1 − ui+1)(Y2 − ui+1) · · · (Ya − ui+1) and ai =
∑i

j=1 |λ
(j)|,

1 ≤ i ≤ r− 1. Let Sλ be the Young subgroup Sλ(1) ×Sλ(2) × · · · ×Sλ(r) of

Sn. Let xλ =
∑

w∈Sλ
Tw and define

mst = Td(s)−1uλxλTd(t) ∈Hr,n(u),

where s, t are standard λ-tableaux.

Theorem 6.3. The set {mst | s, t ∈ T std(λ) and λ ∈ Λ+
r (n)} is a

cellular basis of Hr,n(u).

Proof. The proof of this result is similar to, but much easier than, the
corresponding result for the cyclotomic Hecke algebras. See [DJM99] for
details.

We next give a formula for the Gram determinant of the cell modules

of Hr,n(u). This requires some definitions.

Definition 6.4. The parameters u = (u1, . . . , ur) are generic for
Hr,n(u) if whenever there exists d ∈ Z such that ui − uj = d · 1R then
|d| ≥ n.

The following Lemma is well-known (cf. [JM00, Lemma 3.12]), and is

easily verified by induction on n.

Lemma 6.5. Suppose that the parameters u are generic for Hr,n(u)
and that R is a field with charR > n. Let λ and µ be multipartitions of n
and suppose that s ∈ T std

n (λ) and t ∈ T std
n (µ). Then s = t if and only if

cs(k) = ct(k), for k = 1, . . . , n.

As in the definition of a cellular basis, if λ ∈ Λ+
r (n) then we let H Bλ

r,n be

the free R-submodule Hr,n(u) with basis {mst | s, t ∈ T std(µ) for µ B λ}.
It follows directly from Definition 6.2(c) that H Bλ

r,n is a two-sided ideal of

Hr,n.

Lemma 6.6. Suppose that λ is a multipartition of n and that s, t ∈
T std

n (λ). Then

Ykmst = cs(k)mst +
∑

u∈T std
n (λ)

uBs

rutmut (mod H
Bλ

r,n ),

for some rut ∈ R.



CYCLOTOMIC NAZAROV-WENZL ALGEBRAS 109

Proof. If r = 1 then this is a result of Murphy’s [Mur83]. The general
case can be deduced from this following the argument of [JM00, Prop. 3.7].

We can now follow the arguments of [Mat04] to construct a “seminor-

mal” basis of Hr,n(u).

Definition 6.7. Suppose that λ ∈ Λ+
r (n).

a) For each t ∈ T std(λ) let

Ft =
n∏

k=1

∏

µ∈Λ+
r (n)

u∈T std(µ)
cu(k)6=ct(k)

Yk − cu(k)

ct(k) − cu(k)
.

b) If s, t ∈ T std(λ) then let fst = FsmstFt.

Using the last two results and the definitions it is not hard to show that

if s, t and u are standard tableaux then fstFu = δtufst; see, for example,

[Mat99, Prop. 3.35]. Hence, from Theorem 6.3 and Lemma 6.6 we obtain

the following.

Proposition 6.8. Suppose that R is a field with char R > n and that

u is generic for Hr,n(u). Then {fst | s, t ∈ T std(λ), λ ∈ Λ+
r (n)} is a

basis of Hr,n(u). Moreover, for each standard tableau t there exists a scalar

γt ∈ R such that

fstfuv = δtuγtfsv,

where s, t ∈ T std(λ), u, v ∈ T std(µ), and λ, µ ∈ Λ+
r (n).

Notice, in particular, that the Proposition implies that {fst} is also a

cellular basis of Hr,n(u).

Although we will not pursue this here, we remark that Ft = 1
γt

ftt and

that these elements give a complete set of pairwise orthogonal primitive

idempotents for Hr,n(u). This can be proved by repeating the argument of

[Mat04, Theorem 2.15]

Suppose that λ is a multipartition of n and let S(λ) be the associated

Specht module, or cell module, of Hr,n(u). Thus, S(λ) is the free R-module
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with basis {ms | s ∈ T std(λ)} and where the action of Hr,n(u) on S(λ) is

given by

ams =
∑

u∈T std(λ)

rsu(a)mu,

where the scalars rsu(a) ∈ R are as in Definition 6.2(c).

It follows directly from Definition 6.2 that S(λ) comes equipped with

a symmetric bilinear form 〈 , 〉 which is determined by

〈ms,mt〉muv ≡ musmtv (mod H
Bλ

r,n ),

for s, t, u, v ∈ T std(λ). Let G(λ) = det
(
〈ms,mt〉

)
, for s, t ∈ T std(λ), be the

Gram determinant of this form. So G(λ) is well-defined up to a unit in R.

Corollary 6.9. Suppose that R is a field with charR > n and that

u is generic for Hr,n = Hr,n(u). Let λ be a multipartition of n. Then

G(λ) =
∏

t∈T std(λ)

γt.

Proof. Fix t ∈ T std(λ). Then Specht module S(λ) is isomorphic to the
submodule of Hr,n/H Bλ

r,n which is spanned by {mst +H Bλ
r,n | s ∈ T std(λ)},

where the isomorphism is given by θ : Hr,n/H Bλ
r,n → S(λ); mst + H Bλ

r,n 7→

ms. Let fs = θ(fst). Then {fs | s ∈ T std(λ)} is a basis of S(λ) and the tran-
sition matrix between the two bases {ms} and {fs} of S(λ) is unitriangular
by Lemma 6.6. Consequently, G(λ) = det

(
〈fs, ft〉

)
, where s, t ∈ T std(λ).

However, it follows from the multiplication formulae in Proposition 6.8 that
〈fs, ft〉 = δstγt; see the proof of [Mat04, Theorem 2.11] for details. Hence
the result.

Consequently, in order to compute G(λ) it is sufficient to determine γt,

for all t ∈ T std(λ). It is possible to give an explicit closed formula for γt

(cf. [Mat04, (2.8)]), however, the following recurrence relation is easier to

check and sufficient for our purposes.

Given two standard λ-tableaux s and t write s D t if sk D tk, for

1 ≤ k ≤ n. Let t
λ be the unique standard λ-tableaux such that t

λ D s for

all s ∈ T std(λ). If s D t and s 6= t then we write s B t.

Lemma 6.10. Suppose that R is generic for Hr,n(u) and that char R >
n. Let λ be a multipartition of n.
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a) γtλ =
∏

1≤t≤r

∏

i≥1

(λ
(t)
i )! ·

∏

1≤s<t≤r

∏

i,j≥1

1≤j≤λ
(s)
i

(j − i + us − ut).

b) Suppose that s, t ∈ T std(λ) such that s B t and s = Skt, for some k.

Then γt = (cs(k)−ct(k)+1)(cs(k)−ct(k)−1)
(cs(k)−ct(k))2

γs.

Proof. Part (a) follows easily by induction on n. Part (b) follows using
arguments similar to [JM00, Cor. 3.14 and Prop. 3.19].

We remark that the arguments of [JM00, 3.30–3.37] can now be adapted

to give a closed formula for G(λ). The final result is that

G(λ) =
∏

ν∈Λ+
r (n)

g
|T std(λ)|
λν ,

where gλν is a product of terms of the form
(
ctλ(k)− ctν (l)

)±1
, where these

terms are determined in exactly the same way as in [JM00, Defn 3.36]. As

we do not need the precise formula we leave the details to the interested

reader.

Theorem 6.11. Suppose that R is a field and that u ∈ Rr. Then

Hr,n(u) is (split) semisimple if and only if charR > n and u is generic for

Hr,n(u).

Proof. First, note that because Hr,n(u) is cellular, it is semisimple if
and only if it is split semisimple; see, for example, [Mat99, Cor. 2.21].

Next, suppose that charR > n and that u is generic for Hr,n(u). Then
G(λ) 6= 0 for all λ ∈ Λ+

r (n) by Lemma 6.10. Consequently, for each λ ∈
Λ+

r (n) the Specht module S(λ) is irreducible. Hence, by [Mat99, Cor 2.21]
again, Hr,n(u) is semisimple.

To prove the converse, let λ = ((n), (0), . . . , (0)) ∈ Λ+
r (n) and set mλ =

mtλtλ ; more explicitly,

mλ =
∑

w∈Sn

Tw ·
r∏

t=2

n∏

k=1

(Yk − ut).

It is easy to see that Tσmλ = mλ = mλTσ, for any σ ∈ Sn. It also
follows from Lemma 6.6 that Ykmλ = ctλ(k)mλ = mλYk. Hence, Hr,n(u)mλ
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Hr,n(u) = Rmλ and

m2
λ = n!

r∏

t=2

n−1∏

d=0

(u1 + d− ut) ·mλ.

If char R ≤ n then n! = 0 in R so that Rmλ is a nilpotent ideal in Hr,n(u),
so Hr,n(u) is not semisimple. On the other hand if u is not generic for
Hr,n(u) then ui − uj = d1R for some i 6= j and some d ∈ Z with |d| < n.
By renumbering u1, . . . , ur, if necessary, we see that Rmλ is a nilpotent
ideal. Hence, if either char R ≤ n, or if u is not generic for Hr,n(u), then
Hr,n(u) is not semisimple.

§7. A cellular basis of Wr,n(u)

Throughout this section we assume that R is a commutative ring in

which 2 is invertible and that Ω is u-admissible. This section constructs

a cellular basis for Wr,n = Wr,n(u) using the cellular bases of the algebras

Hr,n−2f = Hr,n−2f (u) for 0 ≤ f ≤ bn
2 c, together with a series of filtrations

of Wr,n. Our construction of a cellular basis of Wr,n is modelled on Enyang’s

work [Eny04] for the Brauer and BMW algebras.

Before we begin we need to fix some notation. Recall that the set

{S1, . . . , Sn−1} generates a subalgebra of Wr,n which is isomorphic to the

group ring of Sn. For each permutation w ∈ Sn we defined the corre-

sponding braid diagram γ(w) in Section 2; we now set Sw = Bγ(w). Equiv-

alently, if w = (i1, i1 + 1) · · · (ik, ik + 1), where 1 ≤ ij < n for all j, then

Sw = Si1 · · ·Sik . Then {Sw | w ∈ Sn} is a basis for the subalgebra of Wr,n

generated by {S1, . . . , Sn−1}.

Next, suppose that f is an integer with 0 ≤ f ≤ b n
2 c. It follows from

Theorem 6.1 that we can identity Hr,n−2f with the subalgebra of Hr,n

generated by Yi and Tj , where 1 ≤ i ≤ n − 2f and 1 ≤ j ≤ n − 2f − 1.

Similarly, by Proposition 5.6, we can identify Wr,n−2f with the subalgebra

of Wr,n generated by Xi, Sj and Ej , where 1 ≤ i ≤ n − 2f and 1 ≤ j ≤

n− 2f − 1.

Definition 7.1. Suppose 0 ≤ f < bn
2 c. Let Ef = Wr,n−2fE1Wr,n−2f

be the two-sided ideal of Wr,n−2f generated by E1.

Proposition 7.2. Suppose that 0 ≤ f < bn
2 c. Then there is a unique

R-algebra isomorphism εf : Hr,n−2f
∼= Wr,n−2f/Ef such that

εf (Ti) = Si + Ef and εf (Yj) = Xj + Ef ,
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for 1 ≤ i < n− 2f and 1 ≤ j ≤ n− 2f .

Proof. We first show that Wr,n−2f/Ef is a free R-module of rank
rn−2f (n − 2f)!. It follows from the multiplication formulae for Brauer
diagrams that an r-regular monomial XαBγXβ in Wr,n−2f belongs to Ef
whenever γ has a horizontal edge (equivalently, γ 6= γ(w) for some w ∈
Sn−2f ). If γ = γ(w), for some w ∈ Sn−2f , then Bγ = Sw and γ con-
tains no horizontal edges, so the definition of regularity (Definition 2.9),
forces β = 0. So, by Theorem 5.5, Wr,n−2f/Ef is spanned by the elements
{XαSw + Ef | 0 ≤ αi < r, for 1 ≤ i ≤ n− 2f, and w ∈ Sn−2f}. Note that
this set contains rn−2f (n− 2f)! elements.

To see that the elements at the end of the last paragraph are linearly
independent we use the seminormal representations from Section 4. Using
the arguments and the notation from the proof of Theorem 5.5, it is enough
to show that dimR WR(u′)/Ef ≥ rn−2f (n − 2f)!. Now a seminormal rep-
resentation ∆(λ) of WR(u′) is a representation of WR(u′)/Ef if and only if
Ef∆(λ) = 0, which happens if and only if λ is a multipartition of n − 2f .
Therefore, by the arguments of Section 5, dimR WR(u′)/Ef ≥ rn−2f (n−2f)!.
Hence, by the arguments used in the proof of Theorem 5.5 (compare, The-
orem 6.1), the elements above are a basis of Wr,n−2f/Ef and, consequently,
Wr,n−2f/Ef is free as an R-module of rank rn−2f (n− 2f)! as claimed.

Inspecting the relations of Hr,n−2f and Wr,n−2f shows that there is
a unique algebra homomorphism εf : Hr,n−2f → Wr,n−2f/Ef such that
εf (Ti) = Si + Ef and εf (Yj) = Xj + Ef . To see that εf is an isomorphism
observe that εf maps the basis of Hr,n−2f to the basis of Wr,n−2f/Ef . Hence,
it is an isomorphism with inverse determined by ε−1

f (XαSw + Ef ) = Y αTw,
for w ∈ Sn−2f and 0 ≤ αi < r where 1 ≤ i ≤ n− 2f .

Definition 7.3. Let Ef = En−1En−3 · · ·En−2f+1 and let W
f

r,n =
Wr,nEfWr,n be the two-sided ideal of Wr,n generated by Ef . If f = bn

2 c

then we set Hr,n−2f = R and W
f+1

r,n = 0.

Note that this gives a filtration of Wr,n by two-sided ideals:

Wr,n = W
0

r,n ⊃ W
1

r,n ⊃ · · · ⊃ W
b
n
2 c

r,n ⊃ W
b
n
2 c+1

r,n = 0.

For 0 ≤ f ≤ bn
2 c let πf : W

f
r,n → W

f
r,n/W f+1

r,n be the corresponding projec-

tion map of Wr,n-bimodules.
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For convenience we set Nr = {0, 1, . . . , r − 1} and define N
(f)
r to be

the set of n-tuples κ = (k1, . . . , kn) such that ki ∈ Nr and ki 6= 0 only

for i = n − 1, n − 3, . . . , n − 2f + 1. Thus, if κ ∈ N
(f)
r then Xκ =

X
kn−1

n−1 X
kn−3

n−3 · · ·X
kn−2f+1

n−2f+1 ∈ Wr,n.

Lemma 7.4. Suppose that 0 ≤ f ≤ bn
2 c and κ ∈ N

(f)
r . Then EfXκEf ⊂

W
f+1

r,n .

Proof. As Ef+1 = EfEn−2f−1, this follows because Ef = Wr,n−2f

En−2f−1Wr,n−2f and every element of Wr,n−2f commutes with EfXκ.

Combining the last two results we have a well-defined R-module homo-

morphism σf : Hr,n−2f → W
f

r,n/W f+1
r,n , for each integer f , with 0 ≤ f ≤

bn2 c, given by

σf (h) = Efεf (h) + W
f+1

r,n ,

for h ∈Hr,n−2f .

We will need the following subgroups in order to understand the ideals

W
f

r,n.

Definition 7.5. Suppose that 0 ≤ f ≤ bn
2 c. Let Bf be the sub-

group of Sn generated by {Sn−1, Sn−2Sn−1Sn−3Sn−2, . . . , Sn−2f+2Sn−2f+1

Sn−2f+3Sn−2f+2}.

The symmetric group Sn acts on the set of Brauer diagrams B(n) from

the right. Let γ = γn−1 ◦ · · · ◦ γn−2f+1. Then Ef = Bγ and Bf is the

stabilizer in Sn of the diagram γ. The group Bf is isomorphic to the

hyperoctahedral group Z/2Z oSf , a Coxeter group of type Bf .

Given an integer f , with 0 ≤ f ≤ bn
2 c, let τ = ((n − 2f), (2f )) and

define

Df =

{
d ∈ Sn

∣∣∣∣
t
τd = (t1, t2) is a row standard τ -tableau and the first

column of t2 is increasing from top to bottom.

}

The following result is equivalent to [Eny04, Prop. 3.1]. (Enyang con-

siders a subgroup of Sn which is conjugate to Bf .)

Lemma 7.6. Suppose that 0 ≤ f ≤ bn
2 c. Then Df is a complete set of

right coset representatives for Sn−2f ×Bf in Sn.
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The point of introducing the subgroup Bf is the following.

Lemma 7.7. Suppose that 0 ≤ f ≤ bn
2 c, w ∈ Sn−2f and that b ∈ Bf .

Then SwEf = EfSw and EfSb = Ef = SbE
f .

Proof. The first claim is obvious by (2.1)(d)(i). For the second claim
it is enough to consider the case when b is a generator of Bf . In this case
the claim is easily checked using the tangle relations and the untwisting
relations.

Motivated by the definition of the elements mst ∈ Hr,n−2f from the

previous section, and by the work of Enyang [Eny04], we make the following

definition.

Definition 7.8. Suppose that 0 ≤ f ≤ bn
2 c and λ ∈ Λ+

r (n − 2f).
Then for each pair (s, t) of standard λ-tableaux define

Mst = Sd(s)−1 ·
r∏

s=2

|λ(1)|+···+|λ(s−1)|∏

i=1

(Xi − us)
∑

w∈Sλ

Sw · Sd(t).

We remark that we will not ever really use this explicit formula for

the elements Mst. In what follows all that we need is a family of elements

{Mst} in Wr,n which are related to some cellular basis of Hr,n−2f as in

Lemma 7.9(d) below.

The following result follows easily using the relations of Wr,n and the

definitions.

Lemma 7.9. Suppose that 0 ≤ f ≤ bn
2 c, λ ∈ Λ+

r (n − 2f) and that

s, t ∈ T std(λ). Then:

a) EfMst = MstE
f ∈ W

f
r,n.

b) If κ ∈ N
(f)
r then MstX

κ = XκMst.

c) If w is a permutation of {n− 2f +1, . . . , n} then MstSw = SwMst. In

particular, MstSw = SwMst if w ∈ Bf .

d) We have σf (mst) = πf (EfMst).

The filtration of Wr,n given by the ideals W
f

r,n is still too coarse to be

cellular.
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Definition 7.10. Suppose that λ is a multipartition of n− 2f , where
0 ≤ f ≤ bn2 c. Define W Dλ

r,n to be the two-sided ideal of Wr,n generated by

W
f+1

r,n and the elements

{EfMst | s, t ∈ T
std(µ) and µ ∈ Λ+

r (n− 2f) with µ D λ}.

We also set W Bλ
r,n =

∑
µBλ W

Dµ
r,n , where in the sum µ ∈ Λ+

r (n− 2f).

Observe that

W
f+1

r,n ⊆ W
Bλ

r,n ⊂ W
Dλ

r,n ⊆ W
f

r,n

and that W Dλ
r,n ⊂ W

Bµ
r,n whenever λ B µ. Consequently, the ideals {W Dλ

r,n }

give a refinement of the filtration of Wr,n by the ideals {W f
r,n}.

Definition 7.11. Suppose that s ∈ T std(λ). We define ∆s(f, λ) to
be the R-submodule of W Dλ

r,n /W Bλ
r,n spanned by the elements

{EfMstX
κSd + W

Bλ
r,n | (t, κ, d) ∈ δ(f, λ)},

where δ(f, λ) = {(t, κ, d) | t ∈ T std(λ), κ ∈ N
(f)
r and d ∈ Df}.

We will see below that ∆s(f, λ) is a right Wr,n-module and that the

spanning set in the definition is a basis of ∆s(f, λ). Moreover, there is a

natural isomorphism ∆s(f, λ) ∼= ∆t(f, λ), whenever s, t ∈ T std(λ).

Before we begin studying the modules ∆s(f, λ) it is convenient to define

a degree function on Wr,n. Recall from Theorem 5.5 that the set of r-regular

monomials is a basis of Wr,n.

Definition 7.12. Suppose that a =
∑

rαγβXαBγXβ ∈ Wr,n, where
each of the monomials in the sum is r-regular. Then the degree of a is the
integer

deg a = max

{ n∑

i=1

(αi + βi)

∣∣∣∣ rαγβ 6= 0 for some γ ∈ B(n)

}
.

In particular, deg Si = deg Ei = 0, for 1 ≤ i < n, and deg Xj = 1, for

1 ≤ j ≤ n. We note that the proof of [Naz96, Lemma 4.4] implies that

deg(ab) ≤ deg(a) + deg(b), for all a, b ∈ Wr,n.
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Lemma 7.13. Suppose that 1 ≤ j < n and that 1 ≤ k < r. Then

EjX
k
j Ej = Ejω

(k)
j , where ω

(k)
j is a central element in Wr,j−1 with deg ω

(k)
j <

k.

Proof. We argue by induction on j. If j = 1 then deg ω
(k)
1 = 0 because

ω
(k)
1 ∈ R by relation (2.1)(f). Suppose then that j > 1.

By Lemma 4.15 ω
(k)
j is a central element of Wr,j−1 in R[X1, . . . , Xj−1]

and deg ω
(k)
j ≤ k. Consequently, if ω

(k)
j =

∑
α rαXα, for some rα ∈ R, then

ω
(k)
j Ej =

∑
α rαXαEj where each of the monomials XαEj is r-regular.

Hence, deg(ω
(k)
j Ej) = deg ω

(k)
j . Therefore, it is enough to prove that

deg(ω
(k)
j Ej) < k. By Lemma 2.3,

ω
(k)
j Ej = EjX

k
j Ej = (−1)kEjX

k
j+1Ej = (−1)kEjSj−1X

k
j+1Sj−1Ej

= (−1)kEjEj−1SjX
k
j+1SjEj−1Ej

= (−1)kEjEj−1(X
k
j + X)Ej−1Ej,

where X ∈ Wr,j+1 and deg X < k since deg(ab) ≤ deg(a)+deg(b). We have
that deg(EjEj−1XEj−1Ej) ≤ deg X < k and that

EjEj−1X
k
j Ej−1Ej = (−1)kEjEj−1X

k
j−1Ej−1Ej = (−1)kω

(k)
j−1EjEj−1Ej

= (−1)kω
(k)
j−1Ej.

By induction deg ω
(k)
j−1 < k, so this completes the proof of the Lemma.

Given integers j and k, with 1 ≤ j, k ≤ n, let Ej,k = Bγ where γ is the

Brauer diagram with horizontal edges {j, k} and {j, k}, and with all other

edges being vertical. Thus, SwEiSw−1 = E(i)w−1,(i+1)w−1 , for all w ∈ Sn.

Finally, note that Ei = Ei,i+1.

Until further notice we fix an integer f , with 0 ≤ f ≤ b n
2 c, a multi-

partition λ ∈ Λ+
r (n−2f) and a standard λ-tableau s and consider ∆(f, λ) =

∆s(f, λ). The next two Lemmas show that ∆(f, λ) is a right Wr,n-submodule

of W Dλ
r,n /W Bλ

r,n and that the action of Wr,n on ∆(f, λ) does not depend on s.

If κ = (κ1, . . . , κn) ∈ N
(f)
r we set |κ| = κn−1 + κn−3 + · · · + κn−2f+1 =

deg Xκ.

Lemma 7.14. Suppose that t ∈ T std(λ) and d ∈ Df . For 1 ≤ i < n
and 1 ≤ j ≤ n there exist scalars ave, bve, cvρe ∈ R, which do not depend on

s, such that :
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a) EfMstSd · Si ≡
∑

v∈T std(λ)
e∈Df

aveE
fMsvSe (mod W

Bλ
r,n ),

b) EfMstSd ·Ei ≡
∑

v∈T std(λ)
e∈Df

bveE
fMsvSe (mod W

Bλ
r,n ),

c) EfMstSd ·Xj ≡
∑

(v,ρ,e)∈δ(f,λ)
|ρ|≤1

cvρeE
fMsvX

ρSe (mod W
Bλ

r,n ).

Proof. (a) Now, SdSi = Sd(i,i+1) and by Lemma 7.6 we can write
d(i, i + 1) = abe where a ∈ Sn−2f , b ∈ Bf and e ∈ Df ; so SdSi = SaSbSe.
By part (d) of Lemma 7.9, respectively, we have

EfMstSa ≡ Efεf (mst)Sa ≡ Efεf (mstTa) (mod W
Bλ

r,n ),

since W
f+1

r,n ⊆ W Bλ
r,n . As mst is a cellular basis element for Hr,n−2f , we

can write mstTa as a linear combination of terms msv plus an element of
H Bλ

r,n . Consequently, (EfMst +W Bλ
r,n )Sa can be written in the desired form.

Hence, we may now assume that a = 1.

To complete this case, observe that if v ∈ T std(λ) then, by Lemma
7.9(c) and Lemma 7.7, EfMsvSbSe = EfSbMsvSe = EfMsvSe as required.

(b) We have to consider the product EfMstSdEi. Let j = (i)d−1 and
k = (i + 1)d−1. Then SdEi = Ej,kSd so that EfMstSdEi = EfMstEj,kSd.
By part (a) we may assume that d = 1. We can also assume that j < k since
Ej,k = Ek,j. So we need to show that EfMstEj,k + W Bλ

r,n has the required
form. There are three cases to consider.

(1) First, suppose that j < k ≤ n − 2f . Then Ej,k ∈ Wr,n−2f , so

that MstEj,k ∈ Ef and EfMstEj,k ∈ EfEf ⊆ W
f+1

r,n by Lemma 7.4. Hence,

EfMstSdEi ∈ W
f+1

r,n ⊆ W Bλ
r,n and part (b) is true when j < k ≤ n− 2f .

(2) Next, suppose that j ≤ n−2f < k. An easy exercise in multiplying
Brauer diagrams shows that

EfEj,k =

{
EfS(j,k−1), if n− k is even,

EfS(j,k+1), if n− k is odd.

So Lemma 7.9(a) implies that EfMstSdEi = MstE
fEj,kSd = EfMstSd

Sd−1(j,k±1)d, we again deduce the result from part (a).
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(3) Finally, suppose that n − 2f < j < k. Then MstEj,k = Ej,kMst

and a Brauer diagram calculation shows that EfEj,k = EfSw, where w is
a permutation of {n− 2f + 1, . . . , n}. Consequently,

EfMstSdEi = EfMstEj,kSd = EfEj,kMstSd

= EfSwMstSd = EfMstSwSd,

where the last equality follows from Lemma 7.9(c). As SwSd = SdSd−1wd

we are done by part (a).

(c) It follows from the skein relations that SdXj = X(j)dSd + B, for
some B ∈ Bn(ω0). Hence, by parts (a) and (b) it suffices to show that
EfMstXi can be written in the required form, for 1 ≤ i ≤ n. If i ≤ n− 2f
then

EfMstXi + W
Bλ

r,n = Efεf (mst)Xi + W
Bλ

r,n = Efεf (mstYi) + W
Bλ

r,n ,

so the result follows because mst is a cellular basis element of Hr,n−2f . If
i > n − 2f then the result is immediate if n − i is odd. If n − i is even
then i− 1 > n− 2f , so the result follows because Ei−1Xi = −Ei−1Xi−1 by
(2.1)(h).

This completes the proof of the Lemma.

Proposition 7.15. Suppose that (t, κ, d) ∈ δ(f, λ). For 1 ≤ i < n and

1 ≤ j ≤ n there exist scalars avρe, bvρe, cvρe ∈ R, which do not depend on s,

such that :

a) EfMstX
κSd · Si ≡

∑

(v,ρ,e)∈δ(f,λ)
|ρ|≤|κ|

avρeE
fMsvX

ρSe (mod W
Bλ

r,n ),

b) EfMstX
κSd ·Ei ≡

∑

(v,ρ,e)∈δ(f,λ)
|ρ|≤|κ|

bvρeE
fMsvX

ρSe (mod W
Bλ

r,n ),

c) EfMstX
κSd ·Xj ≡

∑

(v,ρ,e)∈δ(f,λ)
|ρ|≤|κ|+1

cvρeE
fMsvX

ρSe (mod W
Bλ

r,n ).

Proof. The case |κ| = 0 is precisely Lemma 7.14. We now assume that
|κ| > 0 and argue by induction on |κ|.

(a) Write SdSi = SaSbSe, where a ∈ Sn−2f , b ∈ Bf and e ∈ Df .
As EfMstX

κ = EfXκMst we may assume that a = 1 by repeating the
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argument from the proof part (a) of Lemma 7.14. By the right handed
version of Lemma 2.3, XκSb = SbX

κb−1
+ X, where X is a linear com-

bination of monomials of the form x1 · · · xk with xj ∈ {Sl, El, Xm | 1 ≤
l < n and 1 ≤ m ≤ n} and k < |κ|. For each summand x1 · · · xk of X we
have k < |κ| so by induction we can write (EfMst + W Bλ

r,n )x1 · · · xl in the
required form, for l = 1, . . . , k; consequently, by induction, we can write
(EfMst + W Bλ

r,n )x1 · · · xkSe in the required form. Hence, we are reduced to

showing that EfMstSbX
κb−1

Se +W Bλ
r,n can be written in the required form.

Now, EfMstSb = EfSbMst = EfMst by Lemma 7.9(c) and Lemma 7.7.
Therefore, using Lemma 7.7 once again,

EfMstSbX
κb−1

Se = EfMstX
κb−1

Se = MstE
fXκb−1

Se

= ±MstE
fXκ′

Se,

where κ′ ∈ N
(f)
r because b ∈ Bf and EjXj+1 = −EjXj by the skein rela-

tions. Hence, EfMstSbX
κb−1

Se = ±EfMstX
κ′

Se and the inductive step of
the Proposition is proved when h = Si.

(b) As in the proof of part (b) of Lemma 7.14, we have EfMstX
κSdEi =

EfMstX
κEj,kSd, where j = (i)d−1 and k = (i + 1)d−1. Further, as Ej,k =

Ek,j we may assume that j < k and, by part (a), we may assume that
d = 1. So we need to show that EfMstX

κEj,k + W Bλ
r,n has the required

form. There are two cases to consider.

Case b1. k = j + 1: We must show that EfMstX
κEj can be written in

the required form.

First suppose that j < n−2f . Then we may repeat the argument from
the proof of part (b) of Lemma 7.14 to see that MstEj ∈ Ef , so that

EfMstX
κEj = EfXκMstEj ∈ EfXκEf .

Hence, EfMstX
κSdEi ∈ W

f+1
r,n ⊆ W Bλ

r,n by Lemma 7.4, and the Proposition
is true when j < n− 2f .

Next, suppose that j ≥ n− 2f . If κj + κj+1 = 0 then XκEj = EjX
κ

so the result follows by induction. Suppose then that κj + κj+1 > 0.

If j ≡ n − 1 (mod 2) then Ej is a factor of Ef and κj > 0. By

Lemma 7.13 we have that EjX
κj

j Ej = Ejω
(κj)
j , where ω

(κj)
j is a central

element of Wr,j−1 with deg ω
(κj)
j < κj . Write Ef = ĖfEj and Xκ = ẊκX

κj

j .
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Then

EfMstX
κEj = ĖfMstẊ

κEjX
κj

j Ej = ĖfMstẊ
κEjω

(κj)
j

= EfMstẊ
κEjω

(κj)
j .

As deg Ẋκ = |κ| − κj and deg ω
(κj)
j < κj , the result now follows by writing

ω
(κj)
j as a linear combination of terms of the form x1 · · · xl and applying

induction to each of the products EfMstẊ
κEjx1 · · · xm, for 1 ≤ m ≤ l

(compare the proof of part (a)).

If j ≡ n (mod 2) then Ej+1 is a factor of Ef and κj+1 > 0. Write
Ef = ĖfEj+1 and Xκ = ẊκX

κj+1

j+1 . Then

EfMstX
κEj = ĖfMstẊ

κEj+1X
κj+1

j+1 Ej = ±ĖfMstẊ
κEj+1X

κj+1

j Ej

= ±ĖfMstẊ
κX

κj+1

j Ej+1Ej = ±ĖfMstẊ
κX

κj+1

j Ej+1SjSj+1

= ±ĖfMstẊ
κEj+1X

κj+1

j SjSj+1 = EfMstX
κSjSj+1.

Hence, the result follows by part (a).

Case b2. k > j + 1: Since |κ| > 0 we can fix l with κl 6= 0 (so l ≡ n− 1
(mod 2)). Write Ef = ĖfEl and Xκ = ẊκXκl

l . Set l′ = l if l /∈ {j, k} and
l′ = l + 1 if l ∈ {j, k}, and put l′′ = l′ if l′ 6= j + 1 and l′′ = k if l′ = j + 1.
Note that l′ /∈ {j, k} and l′′ /∈ {j, j + 1} since k > j + 1. We have

EfMstX
κEj,k = ±ĖfMstẊ

κElX
κl

l′ S(j+1,k)EjS(j+1,k)

= ±ĖfMstẊ
κEl(S(j+1,k)X

κl

l′′ + X)EjS(j+1,k)

= ±EfMstẊ
κ(S(j+1,k)X

κl

l′′ + X)EjS(j+1,k),

where deg X < κl. Hence, by induction and part (a) it suffices to show
that EfMstẊ

κS(j+1,k)X
κl

l′′ Ej can be written in the required form. As l′′ /∈
{j, j + 1}

EfMstẊ
κS(j+1,k)X

κl

l′′ Ej = EfMstẊ
κS(j+1,k)EjX

κl

l′′ .

Therefore, EfMstX
κEj,k can be written in the required form by induction.

(c) As in the proof of Lemma 7.14, we may assume that r > 1 and, by
the skein relations, SdXj = X(j)dSd + B, for some B ∈ Bn(ω0). Hence, by
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parts (a) and (b) it suffices to show that EfMstX
κ · Xi can be written in

the required form. If i ≤ n− 2f then

EfMstX
κXi + W

Bλ
r,n = EfXκσ(mst)Xi + W

Bλ
r,n

= EfXκσ(mstYi) + W
Bλ

r,n ,

so the result follows because {mst} is a cellular basis of Hr,n−2f . If i > n−2f
and κi < r − 1 then EfMstX

κXi is of the desired form. If κi = r − 1 then
Xκi

i Xi = Xr
i can be written as a linear combination of r-regular monomials

of degree less than or equal to κi by the proof of Theorem 5.5. Hence, using
parts (a) and (b) and induction for each of these r-regular monomials,
EfMstX

κXi + W Bλ
r,n can be written in the required form.

This completes the proof of the Proposition.

Recall from (2.2) that W aff has a unique anti-automorphism ∗ : W aff →

W aff which fixes all of the generators of W aff. This involution induces an

anti-isomorphism of Wr,n, which we also call ∗. Thus, S∗
i = Si, E∗

i = Ei,

X∗
j = Xj and (ab)∗ = b∗a∗, for 1 ≤ i < n, 1 ≤ j ≤ n and all a, b ∈ Wr,n.

Observe that S∗
w = Sw−1 , for w ∈ Sn, and that M ∗

st = Mts.

Proposition 7.16. Suppose 0 ≤ f ≤ bn
2 c and λ ∈ Λ+

r (n− 2f). Then

W Dλ
r,n /W Bλ

r,n is spanned by the elements

{S∗
eXρEfMstX

κSd + W
Bλ

r,n | (t, κ, d), (s, ρ, e) ∈ δ(f, λ)}.

Proof. Let W be the R-submodule of W Dλ
r,n /W Bλ

r,n spanned by the el-

ements in the statement of the Proposition. As the generators {EfMst +
W Bλ

r,n } of W Dλ
r,n /W Bλ

r,n are contained in W , and W ⊆ W Dλ
r,n /W Bλ

r,n , it suffices
to show that W is a Wr,n-bimodule.

First, by Proposition 7.15, W is closed under right multiplication by
elements of Wr,n. To see that W is also closed under left multiplication by
elements of Wr,n note that (W Bλ

r,n )∗ = W Bλ
r,n as the set of generators for W Bλ

r,n

is invariant under ∗ because (EfMst)
∗ = Mts(E

f )∗ = MtsE
f = EfMts.

Therefore, if a ∈ Wr,n then

a(S∗
eXρEfMstX

κSd + W
Bλ

r,n ) =
(
(S∗

dXκEfMtsX
ρSe + W

Bλ
r,n )a∗

)∗
∈W,

by Proposition 7.15. Hence, W is closed under left multiplication by ele-
ments of Wr,n.
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Let Λ+
r = {(f, λ) | 0 ≤ f ≤ bn

2 c and λ ∈ Λ+
r (n − 2f)}. If (f, λ) ∈ Λ+

r

and (s, ρ, e), (t, κ, d) ∈ δ(f, λ) then we define

C
(f,λ)
(s,ρ,e)(t,κ,d) = S∗

eXρEfMstX
κSd.

We can now prove Theorem B from the introduction.

Theorem 7.17. Let R be a commutative ring in which 2 is invertible

and let u ∈ Rr. Suppose that Ω is u-admissible. Then

C =
{

C
(f,λ)
(s,ρ,e)(t,κ,d)

∣∣ (s, ρ, e), (t, κ, d) ∈ δ(f, λ), where (f, λ) ∈ Λ+
r

}

is a cellular basis of Wr,n(u).

Proof. Applying the definitions it is easy to check that (C
(f,λ)
(s,ρ,e)(t,κ,d))

∗ =

C
(f,λ)
(t,κ,d)(s,ρ,e). Furthermore, by Proposition 7.15, for each h ∈ Wr,n there exist

scalars r(t′,κ′,d′)(h) ∈ R, which do not depend on (s, ρ, e), such that

C
(f,λ)
(s,ρ,e)(t,κ,d) · h =

∑

(t′,κ′,d′)∈δ(f,λ)

r(t′,κ′,d′)(h)C
(f,λ)
(s,ρ,e)(t′,κ′,d′) (mod W

Bλ
r,n ).

To show that C is a cellular basis of Wr,n it remains to check that C is a

basis of Wr,n. Now, Wr,n = W 0
r,n ⊃ W 1

r,n ⊃ · · · ⊃ W
b
n
2 c

r,n is a filtration of Wr,n

by two-sided ideals, and the two-sided ideals W Dλ
r,n , where λ ∈ Λ+

r (n− 2f),

induce a filtration of W
f

r,n/W f+1
r,n . Therefore, C spans Wr,n by Proposi-

tion 7.16. To complete the proof observe that #δ(f, λ) = #T ud
n (λ), by

Lemma 5.1, and #C = rn(2n − 1)!!, by Corollary 5.2. As Wr,n is a free
R-module of rank rn(2n − 1)!! by Theorem 5.5, this implies that C is an
R-basis of Wr,n. Hence, C is a cellular basis of Wr,n as required.

The reader may check that the proof of Theorem 7.17 does not rely

on the explicit definition of the elements Mst ∈ Wt,,n(u). The important

property of these elements, as far as the proof of the Theorem is concerned,

is that they are related to a cellular basis of Hr,n(u) by the formula of

Lemma 7.9(d). Consequently, for each cellular basis of Hr,n(u) the argu-

ment of Theorem 7.17 produces a corresponding cellular basis of Wr,n(u).

We now show that we can, in principle, construct all of the finite di-

mensional irreducible representations of the affine Wenzl algebras over an
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algebraically closed field. First recall that Ω is rational if for i� 0 it satis-

fies a recurrence relation of the form ωi+k + a1ωi+k−1 + · · ·+ akωi = 0, for

some k > 0 and some a1, . . . , ak ∈ R.

Lemma 7.18. Suppose that Ω is admissible and that R is algebraically

closed. Then Ω is rational if and only if there is a finite dimensional

W
aff

n (Ω)-module upon which E1 is non-zero.

Proof. First suppose that Ω is rational. As in the proof of Proposi-
tion 3.11, Ω is rational if and only if

W̃1(y) + y −
1

2
=

(
y +

1

2

) s∏

i=1

y + ci

y − ci
,

for some ci ∈ R and some s ≥ 0. Hence, if Ω is rational then Ω is u-
admissible where

u =

{
(c1, . . . , cs), if s is odd,

(c1, . . . , cs, 0), if s is even.

Hence, Wr,n(u) is a finite dimensional W aff
n (Ω)-module upon which the ac-

tion of E1 is non-zero.
Conversely, suppose that there is a finite dimensional W aff

n (u)-module
M upon which E1 is non-zero. Let c(t) = det(tI − X1) be the character-
istic polynomial for X1 acting on M , where t is an indeterminate and I
is the identity matrix on M . Write c(t) =

∑k
j=0 ajt

k−j, where a0 = 1.

Then
∑k

j=0 ajX
k−j
1 = 0 on M by the Cayley-Hamilton theorem. Hence,∑k

j=0 ajE1X
i+k−j
1 E1 =

∑k
j=0 ajωi+k−jE1 is zero on M , for any i ≥ 0.

Therefore, ωi+k + a1ωi+k−1 + · · ·+ akωi = 0, for i ≥ 0, since E1 is non-zero
on M . Thus, Ω is rational as required.

Theorem 7.19. Suppose that R is an algebraically closed field. Then

we can construct all of the finite dimensional irreducible W
aff

n (Ω)-modules.

Proof. First suppose that W aff
n (Ω) has a finite dimensional irreducible

module upon which E1 is non-zero. Then Ω is admissible. Then Ω is
rational by Lemma 7.18. Hence, by Proposition 3.11 every finite dimen-
sional irreducible W aff

n (Ω)-module can be considered as a finite dimensional
Wr,n(u)-module for some u ∈ Rr such that Ω is u-admissible. By Theo-
rem 7.17 Wr,n(u) is a cellular algebra, so every irreducible Wr,n(u)-module
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arises (in a unique way) as the head of some cell module. Hence, we have
a construction of every finite dimensional irreducible W aff

n (Ω)-module when
Ω is rational.

Finally, suppose that E1 acts as zero on every finite dimensional irre-
ducible W aff

n (Ω)-module. Then every finite dimensional irreducible module
M can be considered as an irreducible module for the degenerate affine
Hecke algebra of type A. Therefore, M can be considered as an irreducible
module for some degenerate Hecke algebra Hr,n(u) (cf. the proof of Propo-
sition 3.11). Now Hr,n(u) is a cellular algebra by Theorem 6.3, so we can
again construct all finite dimensional W aff

n (Ω)-modules.

Note that any given irreducible W aff
n (Ω)-module can be considered as an

irreducible module for an infinite number of cyclotomic Nazarov-Wenzl al-

gebras. Consequently, the classification of the irreducible Wr,n(u)-modules

when ω0 6= 0 (Theorem C), does not give a classification of the finite di-

mensional irreducible W aff
n (Ω)-modules when Ω is admissible and ω0 6= 0.

§8. Classification of the irreducible Wr,n(u)-modules

In this section we classify the irreducible Wr,n(u)-modules, for fields in

which 2 is invertible, in terms of the irreducible Hr,n(u)-modules. As the

involution ∗ induces a functorial bijection between left Wr,n-modules and

right Wr,n-modules, we continue to work with right Wr,n-modules as in the

previous section.

We begin by recalling a useful result of Wenzl’s.

Lemma 8.1. (Wenzl [Wen88, Propositions 2.1(a) and 2.2(a)])

a) Any monomial Bγ ∈ Bn(ω0) is either in Bn−1(ω) or it can be written

in the form a1αa2, where ai ∈Bn−1(ω0) and α ∈ {En−1, Sn−1}.

b) En−1Bn(ω0)En−1 = Bn−2(ω0)En−1.

Lemma 8.2. Suppose that n ≥ 2. Then Sn−1Bn−1(ω0)En−1 =
Bn−1(ω0)En−1.

Proof. If a ∈ Bn−2(ω0) then Sn−1aEn−1 = aSn−1En−1 = aEn−1.
Suppose a /∈ Bn−2(ω0). By Lemma 8.1, we can write a = a1αa2 with
ai ∈ Bn−2(ω0) and α ∈ {En−2, Sn−2}. If α = En−2, then Sn−1aEn−1 =
a1Sn−1En−2En−1a2 = a1Sn−2a2En−1. If α = Sn−2 then Sn−1aEn−1 =
a1Sn−1Sn−2En−1a2 = a1En−2a2En−1. In all cases we have Sn−1aEn−1 ∈
Bn−1(ω0)En−1.
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Lemma 8.3. Suppose that n ≥ 2. Then for each a ∈ Wr,n there exists

h ∈ Wr,n−2 such that deg h ≤ deg a and En−1aEn−1 = hEn−1. In particular,

En−1Wr,nEn−1 = Wr,n−2En−1.

Proof. We argue by induction on deg a. It is enough to consider the
case where a = XαBγXβ is an r-regular monomial in Wr,n. Write Xα =

ẊαX
αn−1

n−1 Xαn
n and Xβ = ẊβX

βn−1

n−1 Xβn
n and define k = αn−1 +αn +βn−1 +

βn. If k = 0 then the result follows from Lemma 8.1(b), so we may assume
that k > 0. We split the proof into two cases.

Case 1. Bγ ∈ Bn−1(ω0): First suppose that Bγ ∈ Bn−2(ω0). Then we
have

En−1X
αBγXβEn−1 = ẊαBγEn−1X

αn−1+βn−1

n−1 Xαn+βn
n En−1Ẋ

β

= (−1)αn+βnẊαBγEn−1X
k
n−1En−1Ẋ

β .

However, En−1X
k
n−1En−1 = ω

(k)
n−1En−1 by Lemma 4.15, where ω

(k)
n−1 is a

central element in Wr,n−2. If k < r then deg ω
(k)
n−1 < k by Lemma 7.13, so

the result follows by induction. Suppose then that k ≥ r then X k
n−1 can

be written as a linear combination of r-regular monomials of degree strictly
less than k, so the result again follows by induction if Bγ ∈ Bn−2(ω0).

Next, suppose that Bγ /∈ Bn−2(ω0). Then Bγ = Bγ′zBγ′′ , where
Bγ′ , Bγ′′ ∈ Bn−2(ω0) and z ∈ {En−2, Sn−2}. So En−1X

αBγXβEn−1 =

Bγ′ẊαEn−1X
αn−1

n−1 Xαn
n zX

βn−1

n−1 Xβn
n En−1Ẋ

βBγ′′ .

If z = En−2 then

En−1X
αn−1

n−1 Xαn
n En−2X

βn−1

n−1 Xβn
n En−1

= ±En−1X
αn−1+αn

n−1 En−2X
βn−1+βn

n−1 En−1

= ±En−1X
αn−1+αn

n−2 En−2X
βn−1+βn

n−2 En−1

= ±X
αn−1+αn

n−2 En−1En−2En−1X
βn−1+βn

n−2

= ±X
αn−1+αn

n−2 En−1X
βn−1+βn

n−2

= ±Xk
n−2En−1.

This completes the proof when z = En−2.
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Now suppose that z = Sn−2. Using the relations (2.1),

En−1X
αn−1

n−1 Xαn
n Sn−2X

βn−1

n−1 Xβn
n En−1

= ±En−1X
αn−1+αn
n Sn−2X

βn−1+βn
n En−1

= ±En−1Sn−2X
k
nEn−1

= ±En−1En−2Sn−1X
k
nEn−1.

If k ≥ r then we can write Xk
n as a linear combination of r-regular mono-

mials each with degree strictly less than k. So by induction we may as-
sume that k < r. Then, by Lemma 2.3, Sn−1X

k
n = Xk

n−1Sn−1 + X,
where X ∈ Wr,n is a linear combination of terms each of which has to-
tal degree in Xn and Xn−1 strictly less than k. Hence, by induction,
En−1En−2XEn−1 = h′En−1, where h′ ∈ Wr,n−2 and deg h′ < k. Further,

En−1En−2X
k
n−1Sn−1En−1 = En−1En−2X

k
n−1En−1

= (−1)kEn−1En−2X
k
n−2En−1

= (−1)kEn−1En−2En−1X
k
n−2

= (−1)kXk
n−2En−1.

Consequently, En−1X
αBγXβEn−1 = hEn−1, where h ∈ Wr,n−2 and deg h ≤

deg a.

Case 2. Bγ /∈ Bn−1(ω0): Once again by Lemma 8.1 we can write Bγ =
Bγ′zBγ′′ , where Bγ′ , Bγ′′ ∈ Bn−1(ω0) and z ∈ {Sn−1, En−1}.

If z = En−1 then the result follows using Case 1 twice, so suppose that
z = Sn−1. Then

En−1X
αBγXβEn−1

= ẊαEn−1X
αn−1

n−1 Xαn
n Bγ′Sn−1Bγ′′X

βn−1

n−1 Xβn
n En−1Ẋ

β.

If βn−1 + βn = 0 then Sn−1Bγ′′En−1 = hEn−1, for some h ∈ Bn−1(ω0) by
Lemma 8.2, so the result follows from Case 1. Hence, we may assume that
βn−1 + βn > 0. Similarly, we may assume that αn−1 + αn > 0.

Next, suppose that Bγ′′ ∈ Bn−2(ω0). Then

En−1X
αBγXβEn−1

= ±ẊαEn−1X
αn−1+αn

n−1 Bγ′Bγ′′Sn−1X
βn−1+βn
n En−1Ẋ

β .
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Once again, by induction we may assume that βn−1 + βn < r. Then, by

Lemma 2.3 Sn−1X
βn−1+βn
n = X

βn−1+βn

n−1 Sn−1 + X, where deg X < βn−1 +

βn. As Sn−1En−1 = En−1 it is enough to consider En−1X
αn−1+αn

n−1 Bγ′Bγ′′

X
βn−1+βn

n−1 En−1. As Bγ′Bγ′′ ∈ Bn−1(ω0) this can be written in the required
form by Case 1.

Finally, suppose that Bγ′′ /∈ Bn−2(ω0). Then either Bγ′′ = Bγ′′
1
En−2

Bγ′′
2
, or Bγ′′ = Bγ′′

1
Sn−2Bγ′′

2
, where Bγ′′

1
, Bγ′′

2
∈ Bn−2(ω0). If Bγ′′ =

Bγ′′
1
En−2Bγ′′

2
then

En−1X
αn−1

n−1 Xαn
n Bγ′Sn−1Bγ′′

1
En−2Bγ′′

2
X

βn−1

n−1 Xβn
n En−1

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1En−2Bγ′′

2
X

βn−1+βn

n−1 En−1

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1En−2X

βn−1+βn

n−1 En−1Bγ′′
2

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1En−2X

βn−1+βn

n−2 En−1Bγ′′
2

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1En−2En−1X

βn−1+βn

n−2 Bγ′′
2

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−2En−1X

βn−1+βn

n−2 Bγ′′
2
.

Now deg(XαBγ′Bγ′′
1
Sn−2) < deg a since βn−1 + βn > 0. Hence, the result

now follows by induction. If Bγ′′ = Bγ′′
1
Sn−2Bγ′′

2
then

En−1X
αn−1

n−1 Xαn
n Bγ′Sn−1Bγ′′

1
Sn−2Bγ′′

2
X

βn−1

n−1 Xβn
n En−1

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1Sn−2X

βn−1+βn
n En−1Bγ′′

2

= ±En−1X
αn−1+αn
n Bγ′Bγ′′

1
Sn−1X

βn−1+βn
n Sn−2En−1Bγ′′

2
.

By Lemma 2.3 we can write Sn−1X
βn−1+βn
n = X

βn−1+βn

n−1 Sn−1 + X, where
deg X < βn−1 + βn. Now,

En−1X
αn−1+αn
n Bγ′Bγ′′

1
X

βn−1+βn

n−1 Sn−1Sn−2En−1Bγ′′
2

= En−1Bγ′Bγ′′
1
X

βn−1+βn

n−1 Xαn−1+αn
n En−2En−1Bγ′′

2

= En−1Bγ′Bγ′′
1
X

βn−1+βn

n−1 En−2X
αn−1+αn
n En−1Bγ′′

2

= En−1Bγ′Bγ′′
1
X

βn−1+βn

n−1 En−2X
αn−1+αn

n−2 En−1Bγ′′
2

= En−1Bγ′Bγ′′
1
X

βn−1+βn

n−1 En−2En−1Bγ′′
2
X

αn−1+αn

n−2 .

As αn−1 + αn > 0 we can write En−1Bγ′Bγ′′
1
X

βn−1+βn

n−1 En−2En−1 in the re-
quired form and so completes the proof of the case—and hence the Lemma.
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By iterating the Lemma we obtain the result that we really want.

Corollary 8.4. Suppose f > 0, w ∈ Sn and that κ, ρ ∈ N
(f)
r . Then

EfXρSwXκEf = hEf ,

for some h ∈ Wr,n−2f .

As we now briefly recall, by the general theory of cellular algebras

[GL96], [Mat99], every irreducible Wr,n-module arises in a unique way as the

simple head of some cell module. For each (f, λ) ∈ Λ+
r fix (s, ρ, e) ∈ δ(f, λ)

and let C
(f,λ)
(t,κ,d) = C

(f,λ)
(s,ρ,e)(t,κ,d) + W Bλ

r,n . By Theorem 7.17 the cell modules

of Wr,n are the modules ∆(f, λ) which are the free R-modules with basis

{C
(f,λ)
(t,κ,d) | (t, κ, d) ∈ δ(f, λ)}. The cell module ∆(f, λ) comes equipped with

a natural bilinear form φf,λ which is determined by the equation

C
(f,λ)
(s,ρ,e)(t,κ,d)C

(f,λ)
(t′,κ′,d′)(s,ρ,e)

≡ φf,λ

(
C

(f,λ)
(t,κ,d), C

(f,λ)
(t′,κ′,d′)

)
· C

(f,λ)
(s,ρ,e)(s,ρ,e) (mod W

Bλ
r,n ).

The form φf,λ is Wr,n-invariant in the sense that φf,λ(xa, y) = φf,λ(x, ya∗),

for x, y ∈ ∆(f, λ) and a ∈ Wr,n. Consequently,

Rad∆(f, λ) = {x ∈ ∆(f, λ) | φf,λ(x, y) = 0 for all y ∈ ∆(f, λ)}

is a Wr,n-submodule of ∆(f, λ) and D(f, λ) = ∆(f, λ)/Rad∆(f, λ) is either

zero or absolutely irreducible.

In exactly the same way, for each multipartition λ ∈ Λ+
r (n − 2f) the

corresponding cell module S(λ) for Hr,n−2f , the Specht module of Section 6,

carries a bilinear form φλ. The quotient module D(λ) = S(λ)/Rad S(λ) is

either zero or an absolutely irreducible Hr,n−2f -module.

We can now prove Theorem C.

Theorem 8.5. Suppose that R is a field in which 2 is invertible, that

Ω is u-admissible and that ω0 6= 0. Let (f, λ) ∈ Λ+
r . Then D(f,λ) 6= 0 if and

only if Dλ 6= 0.

Proof. It is enough to prove that φf,λ 6= 0 if and only if φλ 6= 0.
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First, suppose that φλ 6= 0. Recall that the Specht module S(λ) has
basis {mt | t ∈ T std(λ)}. Then φλ(mt,mv) 6= 0, for some t, v ∈ T std(λ);

that is, mstmvs /∈H
Bλ

r,n−2f . Let 0 to the zero vector in N
(f)
r . Then

C
(f,λ)
(s,ρ,e)(t,0,1)C

(f,λ)
(v,0,1)(s,ρ,e) = S∗

eXρEfMstE
fMvsX

ρSe

= S∗
eXρ(Ef )2MstMvsX

ρSe

≡ ωf
0φλ(mt,mv)S

∗
eXρEfMssX

ρSe

≡ ωf
0φλ(mt,mv)C

(f,λ)
(s,ρ,e)(s,ρ,e) (mod W

Bλ
r,n ).

Hence, φf,λ

(
C

(f,λ)
(t,0,1), C

(f,λ)
(v,0,1)

)
= ωf

0φλ(mt,mv) 6= 0, so that φf,λ 6= 0.

Now suppose that φf,λ 6= 0. Then there exist (u, α, u), (v, β ′ , v) ∈

δ(f, λ) such that φf,λ

(
C

(f,λ)
(u,α,u), C

(f,λ)
(v,β,v)

)
6= 0. That is,

0 6= C
(f,λ)
(s,ρ,e)(u,α,u) · C

(f,λ)
(v,β,v)(s,ρ,e)

= S∗
eXρEfMsuX

αSu · S
∗
vXβEfMvsX

ρSe

= S∗
eXρMsuE

fXαSuS∗
vXβEfMvsX

ρSe

= S∗
eXρMsuhMvsE

fXρSe,

for some h ∈ Wr,n−2f by Corollary 8.4. Now, MsuEfMvsE
f ⊆ EfEf ⊆

W
f+1

r,n , by Lemma 7.4. Therefore, Proposition 7.2 implies that there is
an h′ ∈ Hr,n−2f such that msuh

′mvs 6= 0 (mod H
Bλ

r,n−2f ). Consequently,
φλ 6= 0. This completes the proof of the Theorem.

We remark that the irreducible representations of the Ariki-Koike alge-

bras are indexed by the u-Kleshchev multipartitions; see [Ari01], [AM00]. In

the special case when ui = di · 1R, for 1 ≤ i ≤ r and where 0 ≤ di < char R,

Kleshchev [Kle05] has shown that the simple Hr,n(u)-modules are labelled

by a set of multipartitions which gives the same Kashiwara crystal as the

set of u-Kleshchev multipartitions of n. Hence, in this case, the simple

Wr,n(u)-modules are labelled by the set {(f, λ)}, where 0 ≤ f ≤ b n
2 c and

λ is a u-Kleshchev multipartition of n − 2f . By modifying the proof of

[DM02, Theorem 1.1], or [AM00, Theorem 1.3], one can show that under

the assumptions of Theorem 8.5 the simple Wr,n(u)-modules are always la-

belled by the u-Kleshchev multipartitions. (Note, however, that we are not

claiming that D(f,λ) 6= 0 for the multipartitions λ which Kleshchev [Kle05]

uses to label the irreducible Hr,n(u)-modules.)
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We close by classifying the quasi-hereditary cyclotomic Nazarov-Wenzl

algebras with ω0 6= 0. See [CPS88] for the definition of a quasi-hereditary

algebra.

Corollary 8.6. Suppose that R is a field in which 2 is invertible, that

Ω is u-admissible and that ω0 6= 0. Then Wr,n(u) is a quasi-hereditary alge-

bra if and only if char R > n and u is generic for Hr,n(u) (Definition 6.4).

Proof. By [GL96, (3.10)], a cellular algebra is quasi-hereditary if and
only if the bilinear form on each cell module does not vanish. Therefore, Wr,n

is a quasi-hereditary algebra if and only if D(f,λ) 6= 0 for all (f, λ) ∈ Λ+
r and

Hr,n−2f (u) is quasi-hereditary if and only if Dλ 6= 0 for all λ ∈ Λ+
r (n−2f).

Hence, by Theorem 8.5, Wr,n(u) is quasi-hereditary if and only if the alge-
bras Hr,n−2f (u) are all quasi-hereditary, for 0 ≤ f ≤ b n

2 c. However, the
degenerate Hecke algebras are Frobenius algebras by [Kle05, Cor. 5.7.4], so
they are quasi-hereditary precisely when they are semisimple—since Frobe-
nius algebras have infinite global dimension when they are not semisimple,
whereas quasi-hereditary algebras have finite global dimension (see [Don99,
Prop. A2.3]). Hence the result follows from Theorem 6.11.

References

[AK94] S. Ariki and K. Koike, A Hecke algebra of (Z/rZ) oSn and construction of its

irreducible representations, Adv. Math., 106 (1994), 216–243.

[AM00] S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras

of type G(r, 1, n), Math. Z., 233 (2000), 601–623.

[Ari96] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J.

Math. Kyoto Univ., 36 (1996), 789–808.

[Ari01] , On the classification of simple modules for cyclotomic Hecke algebras

of type G(m, 1, n) and Kleshchev multipartitions, Osaka J. Math., 38 (2001),

827–837.

[Bra37] R. Brauer, On algebras which are connected with the semisimple continuous

groups, Ann. of Math., 38 (1937), 857–872.

[Bro56] W. P. Brown, The semisimplicity of ωn
f , Ann. of Math. (2), 63 (1956), 324–335.

[BW89] J. S. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans.

Amer. Math. Soc., 313 (1989), 249–273.

[CGW05] A. M. Cohen, D. A. H. Gijsbers and D. B. Wales, BMW algebras of simply

laced type, J. Algebra, 286 (2005), 107–153.

[CPS88] E. Cline, B. Parshall and L. Scott, Finite-dimensional algebras and highest

weight categories, J. Reine Angew. Math., 391 (1988), 85–99.

[DJM99] R. Dipper, G. James and A. Mathas, Cyclotomic q-Schur algebras, Math. Z.,

229 (1999), 385–416.



132 S. ARIKI, A. MATHAS AND H. RUI

[DM02] R. Dipper and A. Mathas, Morita equivalences of Ariki-Koike algebras, Math.

Z., 240 (2002), 579–610.

[Don99] S. Donkin, The q-Schur algebra, Lond. Math. Soc. Lecture Notes, 253, CUP,

Cambridge, 1999.

[DWH99] W. F. Doran, IV, D. B. Wales and P. J. Hanlon, On the semisimplicity of the

Brauer centralizer algebras, J. Algebra, 211 (1999), 647–685.

[Eny04] J. Enyang, Cellular bases for the Brauer and Birman-Murakami-Wenzl alge-

bras, J. Algebra, 281 (2004), 413–449.

[FG95] S. Fishel and I. Grojnowski, Canonical bases for the Brauer centralizer algebra,

Math. Res. Lett., 2 (1995), 15–26.

[GH] F. M. Goodman and H. M. Hauschild, Affine Birman-Wenzl-Murakami Alge-

bras and Tangles in the Solid Torus, arXiv:math.QA/0411155.

[GL96] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996),

1–34.

[Gre80] J. A. Green, Polynomial representations of gln, SLN, 830, Springer-Verlag,

New York, 1980.
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