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EXTENSION FOR JETS OF HOLOMORPHIC

SECTIONS OF A HERMITIAN LINE BUNDLE

DAN POPOVICI

Abstract. Let (X, ω) be a weakly pseudoconvex Kähler manifold, Y ⊂ X
a closed submanifold defined by some holomorphic section of a vector bundle
over X, and L a Hermitian line bundle satisfying certain positivity conditions.
We prove that for any integer k ≥ 0, any section of the jet sheaf L ⊗OX/I

k+1
Y ,

which satisfies a certain L2 condition, can be extended into a global holomorphic
section of L over X whose L2 growth on an arbitrary compact subset of X is
under control. In particular, if Y is merely a point, this gives the existence of a
global holomorphic function with an L2 norm under control and with prescribed
values for all its derivatives up to order k at that point. This result generalizes
the L2 extension theorems of Ohsawa-Takegoshi and of Manivel to the case of
jets of sections of a line bundle. A technical difficulty is to achieve uniformity
in the constant appearing in the final estimate. To this end, we make use of
the exponential map and of a Rauch-type comparison theorem for complete
Riemannian manifolds.

0.1. Introduction

Let (X,ω) be a weakly pseudoconvex Kähler manifold, and Y ⊂ X

a closed smooth hypersurface. In their ground-breaking paper [OT87],

T. Ohsawa and K. Takegoshi proved that every holomorphic function f

on Y which satisfies a weighted L2 condition can be extended to a global

holomorphic function F on X whose weighted L2 norm is bounded above

by a uniform constant multiplied by the weighted L2 norm of the origi-

nal f on Y . T. Ohsawa subsequently generalized this result in a series

of papers ([Ohs88], [Ohs94], [Ohs95]). A far-reaching geometric-oriented

generalization was given by L. Manivel ([Man93]) for submanifolds Y of

arbitrary codimension and sections of holomorphic line bundles satisfying

appropriate positivity conditions, instead of merely functions. Since then,

the Ohsawa-Takegoshi-Manivel L2 extension theorem has grown into a ma-

jor tool of algebraic geometry and complex analysis. Its scope extended over

such vastly different areas as regularization of currents ([Dem92]), invari-
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ance of plurigenera ([Siu98], [Siu02]), very ampleness and freeness criteria

([AS95], [Siu93], [Dem96]), and afforded new deep insights into the struc-

ture of multiplier ideal sheaves and plurisubharmonic functions ([DEL00],

[DK01]). It also found applications in questions related to the Minimal

Model Programme ([Kol97]).

However, a good deal has yet to be done. It has been convincingly

shown by K. Diederich and E. Mazzilli ([DM00]) that the case of exten-

sions from singular subvarieties Y is a subtle question, sometimes with an

unexpected outcome, which still needs further probing. Relations between

the L2 extension problem and Skoda’s L2 division theorem ([Sko78]) were

revealed by T. Ohsawa’s works [Ohs02] and [Ohs04], but the general case

has yet to be grasped. In particular, a unified theory of L2 extension and

division for holomorphic functions is needed.

Our point of view in the present article is different, shifting from subva-

rieties to unreduced subschemes. Motivated by geometric and complex ana-

lytic questions in keeping with those just mentioned, we have undertaken to

obtain an L2 extension result from a certain type of unreduced subschemes

of the given ambient manifold X. In analytic terms, we prove the existence

of holomorphic extensions for line bundle sections which have, in addition

to the properties granted by the now classical Ohsawa-Takegoshi-Manivel

theorem, prescribed partial derivatives (or jets) along a given submanifold

Y up to an arbitrary pregiven order k ∈ N. The result is new even in the

simple case when Y is a point in a bounded pseudoconvex open set Ω ⊂ C
n.

It asserts the existence of a holomorphic function f on Ω having prescribed

values for all its derivatives up to order k at the given point, and an L2

norm under control.

Setting

Let (X,ω) be a weakly pseudoconvex Kähler manifold of complex di-

mension n, and Y ⊂ X a closed submanifold defined as

Y = {x ∈ X ; s(x) = 0, Λr(ds)(x) 6= 0},

for some section s ∈ H0(X, E), assumed to be generically transverse to

the zero section, of some Hermitian holomorphic vector bundle E of rank

r ≥ 1 over X. On the other hand, let L be a holomorphic line bundle over

X equipped with a Hermitian fibre metric which satisfies an appropriate

positivity condition.



JET EXTENSIONS 3

Let IY be the sheaf of germs of holomorphic functions on X which

vanish on Y . For any integer k ≥ 0, let OX/I
k+1
Y be the nonlocally free

sheaf of k-jets which are “transversal” to Y . Its fibre at an arbitrary point

y ∈ Y consists of all Taylor series at y truncated to order k in the vertical

directions. We aim here at extending transversal k-jets of sections (over

Y ) of the line bundle of holomorphic L-valued (n, 0)-forms, namely sections

f ∈ H0(X, ΛnT ?X⊗L⊗OX/I
k+1
Y ). Equivalently, this amounts to extending

sections from the unreduced scheme Y (k+1) defined by the quotient sheaf

OX/I
k+1
Y , to the ambient manifold X.

Construction of relevant metrics on jets

The first obstacle to overcome before even stating the result is to define

a relevant intrinsic Sobolev-type L2
(k) norm of a k-jet. Since the jet sheaf

OX/I
k+1
Y is not locally free, we make the following ad hoc inductive defini-

tion. Let f ∈ H0(X, ΛnT ?X⊗L⊗OX/I
k+1
Y ). The holomorphic line bundle

L′ := ΛnT ?X ⊗L over X is canonically equipped with a fibre metric induced

by the fibre metric of L and the reference metric ω on X. Let ∇ be the

Chern connection associated with this metric of L′, and ∇ = ∇1,0 + ∇0,1

its decomposition into its (1, 0) and (0, 1) parts. Fix an arbitrary point

y ∈ Y , and let U be a Stein neighbourhood in X giving rise to a surjective

morphism H0(U, L′) → H0(U, L′ ⊗ OX/I
k+1
Y ) of local section spaces. Let

f̃ ∈ H0(U, L′) be an arbitrary local lifting of f . Consider now the C∞

vector bundle morphism T ?X|Y → N?
Y/X which is the ω-orthogonal C∞

splitting of the exact sequence

0 −→ N?
Y/X −→ T ?X|Y −→ T ?Y −→ 0.

Let ∇1,0f̃ ∈ H0(U, L′⊗T ?X). Set ∇1f̃ ∈ C∞(U, L′⊗N?
Y/X), the projection

of ∇1,0f̃ under the surjective bundle morphism L′ ⊗ T ?X|Y → L′ ⊗N?
Y/X .

Assume that ∇j−1f̃ ∈ C∞(U, L′ ⊗Sj−1N?
Y/X) has been constructed. Then

∇1,0(∇j−1f̃) ∈ C∞(U, L′ ⊗ Sj−1N?
Y/X ⊗ T ?X). We use here the same

symbol ∇1,0 to designate the (1, 0)-type component of the Chern connec-

tion on L′ ⊗ Sj−1N?
Y/X equipped with the induced metric. Set ∇j f̃ ∈

C∞(U, L′ ⊗ SjN?
Y/X), the projection of ∇1,0(∇j−1f̃) under the surjective

bundle morphisms

L′ ⊗ Sj−1N?
Y/X ⊗ T ?X −→ L′ ⊗ Sj−1N?

Y/X ⊗N?
Y/X −→ L′ ⊗ SjN?

Y/X .
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We have thus inductively constructed ∇j f̃ ∈ C∞(U, L′ ⊗ SjN?
Y/X) for

all nonnegative integers j. The associated pointwise norms |f̃ |2(y), . . . ,
|∇kf̃ |2(y) are well defined at every point y ∈ Y with respect to the induced

metrics.

Definition 0.1.1. For any transversal k-jet f ∈ H 0(U, ΛnT ?X ⊗L⊗
OX/I

k+1
Y ) and any weight function ρ > 0 on U , we define, at every point

y ∈ Y ∩ U , the pointwise ρ-weighted norm associated to the section s, by:

|f |2s,ρ,(k)(y) := |f̃ |2(y) +
|∇1f̃ |2

|Λr(ds)|2 1
r ρ2(r+1)

(y) + · · · + |∇kf̃ |2

|Λr(ds)|2 k
r ρ2(r+k)

(y),

and the L2
(k) weighted norm by:

‖f‖2
s,ρ,(k) =

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 dVY,ω.

Example 0.1.2. Consider the case where X = Ω is a bounded pseu-
doconvex open subset of C

n containing 0, z = (z1, . . . , zn) is the coordinate
on C

n, and Y = {z1 = · · · = zr = 0} ∩ Ω. Take E = Ω × C
r, equipped

with the trivial flat metric, L = Ω × C, and s =
(

z1
e diam Ω , . . . ,

zr

e diam Ω

)

.

For all z ∈ Ω, |s(z)|2 = 1
e2

|z1|2+···+|zr|2
(diam Ω)2

≤ 1
e2

. The jet f is then defined by

holomorphic functions aα, |α| ≤ k, on Y , and its weighted L2
(k) norm is

given by:

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 dVY,ω

=

∫

Y

|a0|2
|Λr(ds)|2 dVY,ω +

∑

|α|=1

∫

Y

|aα|2

|Λr(ds)|2 r+1
r ρ2(r+1)

dVY,ω

+ · · · +
∑

|α|=k

∫

Y

1

(α!)2
|aα|2

|Λr(ds)|2 r+k
r ρ2(r+k)

dVY,ω.

It should be noticed that the norm |f |2s,ρ,(k)(y) of the k-jet f at the point

y ∈ Y is independent of the choice of the local lifting f̃ . Indeed, if f̂ ∈
H0(U, L′) is another lifting of f|U ∈ H0(U, L′ ⊗ OX/I

k+1
Y ), then f̃ and f̂

have the same transversal k-jet on U ∩ Y (equal to f|U). This implies that

∇j f̃ = ∇j f̂ at every point in U ∩ Y , for all integers j = 0, . . . , k.
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Notation 0.1.3. (a) For a transversal k-jet f ∈ H 0(U, ΛnT ?X ⊗ L ⊗
OX/I

k+1
Y ), denote ∇jf := (∇j f̃)|U∩Y , for all j = 0, . . . , k and an arbitrary

lifting f̃ ∈ H0(U, ΛnT ?X ⊗ L) of f .

(b) For every integer k ≥ 0, set

Jk : H0(X, ΛnT ?X ⊗ L) −→ H0(X, ΛnT ?X ⊗ L⊗ OX/I
k+1
Y )

the cohomology group morphism induced by the projection OX → OX/I
k+1
Y .

Statement of results: geometric setting

We can now state the jet extension theorem. In the case of a compact

ambient manifold X, the final L2 estimate of the extension Fk with pre-

scribed k-order jet along Y is obtained over the whole of X. In the general

noncompact case, the boundary of X is avoided by estimating the extension

on an arbitrary relatively compact open subset Ω ⊂ X. If Ω ⊂⊂ X is such

a subset, we define an associated weight function ρ = ρΩ > 0 by

ρ(y) =
1

‖Ds−1
y ‖ supξ∈Ω(‖D2sξ‖ + ‖Dsξ‖)

,

where D stands for the Chern connection of E. It is with respect to this

weight function that the Sobolev-type norm on jets is considered throughout

the paper.

Theorem 0.1.4. (Main theorem) Let X be a complex weakly pseudo-

convex manifold of complex dimension n, equipped with a Kähler metric ω,

L a Hermitian holomorphic line bundle, E a Hermitian holomorphic vector

bundle of rank r ≥ 1 over X, and s ∈ H0(X, E) a section assumed to be

generically transverse to the zero section. Set :

Y := {x ∈ X ; s(x) = 0, Λr(ds)(x) 6= 0},

a subvariety of X of codimension r. Also assume that, for an integer k ≥ 0,
the (1, 1)-form iΘ(L) + (r + k) id′d′′ log |s|2 involving the curvature of L is

semipositive on X, and that there exists a continuous function α ≥ 1 such

that the following two inequalities are satisfied on X:

(a) iΘ(L) + (r + k) id′d′′ log |s|2 ≥ α−1 {iΘ(E)s, s}
|s|2 ,

(b) |s| ≤ e−α.
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Then, for every relatively compact open subset Ω ⊂ X, and every k-jet
f ∈ H0(X, ΛnT ?X ⊗ L⊗ OX/I

k+1
Y ) satisfying

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 dVY,ω < +∞,

there exists Fk ∈ H0(X, ΛnT ?X ⊗ L) such that JkFk = f and

∫

Ω

|Fk|2
|s|2r(− log |s|)2 dVX,ω ≤ C(k)

r

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 dVY,ω,

where C
(k)
r > 0 is a constant depending only on r, k, E, and supΩ ‖iΘ(L)‖.

Remarks. (a) The case when k = 0 is the Ohsawa-Takegoshi-Manivel
L2 extension theorem. The above theorem is new for k ≥ 1.

(b) The section s ∈ H0(X, E) induces a nowhere zero section Λr(ds) of
the vector bundle Λr(TX/TY )? ⊗ detE, and its norm |Λr(ds)| is computed
with respect to the induced metric on this vector bundle. The notation
‖iΘ(L)‖ stands for the norm of the curvature tensor of L viewed as a (1, 1)-
form on X. As with the Ohsawa-Takegoshi-Manivel extension theorem,
only the curvature hypothesis (a) is essential among the inequalities satis-
fied by s, but it is now, significantly, dependent on k. Indeed, if (a) holds
for a choice of the function α ≥ 1, we can always achieve (b) by multi-
plying the metric of E by a sufficiently small weight e−χ◦ψ, where ψ is a
plurisubharmonic exhaustion of X and χ is a real convex increasing func-
tion. Property (a) still holds after multiplying the metric of L by the weight

e−(r+k+α−1
0 )χ◦ψ, where α0 = infx∈X α(x).

The following theorem is a special case of the main theorem for a

bounded pseudoconvex open set Ω ⊂ C
n.

Theorem 0.1.5. Let Ω ⊂ C
n be a bounded pseudoconvex open set,

and Y ⊂ Ω a closed nonsingular subvariety defined by some section s ∈
H0(X, E) of a Hermitian holomorphic vector bundle E of rank r ≥ 1 with

bounded curvature form. Assume that |s| ≤ e−1 on Ω.

Then, for any nonnegative integer k and any plurisubharmonic function

ϕ on Ω, there exists a constant C
(k)
r > 0 depending only on E, on Ω, and

on the modulus of continuity of ϕ, such that for every holomorphic section

f of OΩ/I
k+1
Y satisfying

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 e−ϕ dVY < +∞,
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there exists a holomorphic function Fk on Ω such that JkFk = f and

∫

Ω

|Fk|2
|s|2r(− log |s|)2 e

−ϕ dVΩ′ ≤ C(k)
r

∫

Y
|f |2s,ρ,(k) |Λr(ds)|−2 e−ϕ dVY .

Local analytic setting

The case of a singleton Y = {z0} is of special interest. The jet f at

z0 is given by complex numbers aα ∈ C, |α| ≤ k, α = (α1, . . . , αn). Take

s = (e diam Ω)−1 (z − z0), viewed as a section of the trivial vector bundle

E = Ω × C
n. It is clear that |s| ≤ e−1, and that:

∫

Y
|f |2s,ρ,(k) |Λn(ds)|−2 e−ϕ =

(

∑

|α|≤k
|aα|2

)

e−ϕ(z0).

Since − log |s| = 1
ε log |s|−ε ≤ 1

ε |s|−ε, for all ε > 0, we may replace

|s|2n(− log |s|)2 in the denominator by |s|2(n−ε). We thus get the follow-

ing.

Corollary 0.1.6. Let Ω ⊂ C
n be a bounded pseudoconvex open set,

and let z0 ∈ Ω be a point. Then, for every positive integer k and every

plurisubharmonic function ϕ on Ω, there exists a constant C
(k)
n > 0 de-

pending only on the modulus of continuity of ϕ, with the following property.

For all complex numbers aα, |α| ≤ k, there exists a holomorphic function f
on Ω such that

f(z0) = a0,
∂αf

∂zα
(z0) = aα, 1 ≤ |α| ≤ k, and

∫

Ω

|f |2
|z − z0|2(n−ε)

e−ϕ(z) dVΩ(z) ≤ C
(k)
n

ε2 (diam Ω)2(n−ε)

(

∑

|α|≤k
|aα|2

)

e−ϕ(z0).

To avoid confusion, it is worth entering a caveat. The final constants

in the above statements depend on the modulus of continuity of the weight

function ϕ, and this dependence seems to be inevitable in this setting. If

applications with singular weights are intended, special attention should be

paid to getting smooth regularizing weight functions with the same modulus

of continuity before recovering the same estimate for the singular weight in

the limit.
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Article layout

We will split the proofs of Theorems 0.1.4 and 0.1.5 into two parts. In

the first part, the qualitative one, we make use of techniques of the orig-

inal papers of Ohsawa and Takegoshi ([OT87], [Ohs88]), cast into a more

geometric mould by Manivel ([Man93]), and subsequently simplified by De-

mailly ([Dem00]), that we appropriately fit into our generalized situation.

The main idea, harking back to Ohsawa and Takegoshi ([OT87]), is to use

a “weight bumping” technique to concentrate the curvature of the line bun-

dle L on a tubular neighbourhood of the submanifold Y . This leads to

defining a new curvature operator and to proving L2 estimates modified

accordingly which are analogous to those of Hörmander. The main tool is

a Bochner-Kodaira-Nakano-type inequality due to Ohsawa and Takegoshi

([OT87]) and later improved by Ohsawa ([Ohs95]). This step is performed

in Section 0.3 and is common to the proofs of Theorems 0.1.4 and 0.1.5.

Our method in this section parallels previous methods with the necessary

modifications.

The second half of the proofs of Theorems 0.1.4 and 0.1.5, the quan-

titative one, introduces new ideas. The main goal is to achieve uniformity

for the constant appearing in the final L2 estimate. Here we deal separately

with Theorems 0.1.4 and 0.1.5. In Section 0.4, we apply Cauchy’s inequali-

ties to get a control of the growth of the k-jet of a holomorphic function in

terms of the growth of this very function, and we thus complete the proof

of Theorem 0.1.5. The proof of Theorem 0.1.4 is more involved. In order

to get intrinsic L2 estimates independent of the radii of local holomorphic

coordinate patches on X, we make use of the exponential map to carry the

situation over to the tangent space to X at a point. In Section 0.5, the

Jacobi field technique will enable us to get a Riemannian geometric result

related to the Rauch comparison theorem. In Section 0.6, building on this

comparison theorem, we get the final estimate in the main theorem thanks

to G̊arding’s lemma on the solutions of elliptic systems.

Prospects

We hope the results of this paper will find applications in complex anal-

ysis and algebraic geometry. Here is a very brief outline of some possible

developments. The main interest of the extension theorem lies in its quan-

titative part and was mainly intended as an effective device for producing

sections for Hermitian line bundles with positivity properties. It could thus
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be useful in solving questions related to the Fujita conjecture as a continu-

ation of such works as [Siu93], [AS95], or [Dem96]. It is, indeed, tempting

to think that producing global holomorphic functions, or sections with ef-

fective global bounds, out of much simpler initial data defined merely at a

point or on a line, could prove efficient in problems where an effective con-

trol of the objects involved is needed. In fact, we were originally motivated

by an attempt at getting a regularization of closed positive currents, with

an additional control of the Monge-Ampère masses for the regularizing cur-

rents, to extend Demailly’s regularization-of-currents theorem ([Dem92]).

Such an undertaking is likely to have interesting geometric consequences,

such as singular Morse inequalities or bigness criteria for line bundles.

The present results treat the case of holomorphic extensions from a

special type of unreduced subschemes, namely those which consist of sev-

eral layers of the same submanifold. A further step would be to obtain

holomorphic extensions from more general unreduced subschemes.

0.2. Ingredients

We list here the main preliminary results underlying the proof of the

original Ohsawa-Takegoshi theorem. They will be needed again in our proof.

For proofs and details see, for instance, Demailly’s paper [Dem00].

The main idea in the proof of the Ohsawa-Takegoshi extension theorem

([OT87], [Ohs88]) was to derive and use a modified version of the Bochner-

Kodaira-Nakano inequality. This version was subsequently improved by

Ohsawa ([Ohs95]) in the following form.

Proposition 0.2.1. (Main curvature inequality) Let (X,ω) be a Kähler

manifold with a nonnecessarily complete Kähler metric, let (E, h) be a Her-

mitian vector bundle on X, and let η, λ > 0 be C∞ functions on X.

Then, for every u ∈ D(X, Λp,qT ?X ⊗E), we have:

‖(η 1
2 + λ

1
2 )D

′′?u‖2 + ‖η 1
2D′′u‖2 + ‖λ 1

2D′u‖2 + 2 ‖λ− 1
2 d′η ∧ u‖2

≥ 〈〈[η iΘ(E) − id′d′′η − iλ−1 d′η ∧ d′′η, Λω]u, u〉〉.

In the particular case of (n, q)-forms, the forms D ′u and d′η ∧ u vanish

as having bidegree (n+ 1, q). Then the above inequality reads:

‖(η 1
2 + λ

1
2 )D

′′?u‖2 + ‖η 1
2D′′u‖2

≥ 〈〈[η iΘ(E) − id′d′′η − iλ−1 d′η ∧ d′′η, Λ]u, u〉〉.
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This key curvature inequality enables one to infer the following L2 exis-

tence theorem which parallels Hörmander’s L2 existence theorem ([Hör65],

[Hör66]) for a modified curvature operator.

Proposition 0.2.2. Let (X,ω) be a Kähler manifold. The metric ω
may not be complete but X is assumed to carry a complete Kähler met-

ric. Given a Hermitian vector bundle (E, h) and smooth bounded functions

η, λ > 0 on X, consider the curvature operator

B := Bn,q
E,ω,η,λ := [η iΘ(E) − id′d′′η − iλ−1 d′η ∧ d′′η, Λω],

acting on the sections of the vector bundle Λn,qT ?X⊗E, for some q ≥ 1, and

assume that B is positive definite at every point of X.

Then, for all g ∈ L2(X, Λn,qT ?X ⊗E) such that D′′g = 0, and

∫

X
〈B−1g, g〉 dVω < +∞,

there exists f ∈ L2(X, Λn,q−1T ?X ⊗E) such that D′′f = g and

∫

X
(η + λ)−1 |f |2 dVω ≤ 2

∫

X
〈B−1g, g〉 dVω .

In the course of the proof of the jet extension theorem we shall need to

apply the above proposition for a modified fibre metric of the line bundle

under consideration, which is obtained by multiplying the original smooth

metric by the weight |s|−2(r+k) with singularities along Y = {s = 0}. To

avoid the singularities, we shall restrict to X\Y . The following standard

lemma ensures that X\Y still carries a complete Kähler metric.

Lemma 0.2.3. (see, for instance, [Dem82]) Let (X,ω) be a Kähler weak-

ly pseudoconvex manifold, ψ a plurisubharmonic exhaustion, and Xc = {x ∈
X ; ψ(x) < c}, for c ∈ R. Let Y = {s = 0} ⊂ X be an analytic subset

defined by a section s ∈ H0(X, E) of a Hermitian vector bundle (E, h) over

X.

Then, for all c ∈ R, Xc\Y carries a complete Kähler metric.
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0.3. Proof of Theorem 0.1.4

Assume that the set Σ = {s = 0, Λr(ds) = 0} of singularities of Y is

empty, which means that Y is a smooth closed subvariety of X. This restric-

tion can be lifted through a standard argument like in [Dem00, 4.8, p. 12].

We argue by induction on k ≥ 0. The case k = 0 is the Ohsawa-Takegoshi

theorem. Assume the theorem has been proved for k − 1. Consider the

short exact sequence of sheaves:

0 −→ SkN?
Y/X −→ OX/I

k+1
Y −→ OX/I

k
Y −→ 0

and let Jk−1f ∈ H0(X, ΛnT ?X ⊗ L ⊗ OX/I
k
Y ) be the image of f ∈ H0(X,

ΛnT ?X ⊗L⊗OX/I
k+1
Y ) under the induced cohomology group morphism. By

the induction hypothesis, there exists Fk−1 ∈ H0(X, ΛnT ?X ⊗ L) such that

Jk−1Fk−1 = Jk−1f and
∫

Ω

|Fk−1|2
|s|2r(− log |s|)2 dVω ≤ C(k−1)

r

∫

Y
|f |2s,ρ,(k−1) |Λr(ds)|−2 dVY,ω,

where C
(k−1)
r > 0 is a constant as in the statement of Theorem 0.1.4. Thus

the image of f −JkFk−1 ∈ H0(X, ΛnT ?X ⊗L⊗OX/I
k+1
Y ) in H0(X, ΛnT ?X ⊗

L⊗ OX/I
k
Y ) is Jk−1f − Jk−1Fk−1 = 0. This allows for the jet f − J kFk−1

to be viewed as a global holomorphic section (on Y ) of the sheaf ΛnT ?X ⊗
L⊗ SkN?

Y/X = ΛnT ?X ⊗ L⊗ SkE?|Y .

A C∞ extension of the jet. We start off by constructing an exten-

sion f̃ ∈ C∞(X, ΛnT ?X ⊗ L) of the holomorphic k-jet f ∈ H0(X, ΛnT ?X ⊗
L⊗OX/I

k+1
Y ) by means of a partition of unity. Consider a covering of Y by

coordinate patches Ui ⊂ X on which the vector bundlesE and ΛnT ?X⊗L are

trivial. Let ei be a nonvanishing holomorphic section of ΛnT ?X ⊗ L|Ui
, and

s1, . . . , sr holomorphic functions on Ui such that s|Ui
= (s1, . . . , sr) in a triv-

ialization of E|Ui
. The functions s1, . . . , sr define holomorphic coordinates

on Ui transversal to Y . Let z ′(i) = (z
(i)
r+1, . . . , z

(i)
n ) be holomorphic coordi-

nates on Y ∩Ui, and write the restriction jet f as f|Y ∩Ui
= wi⊗ei|Y ∩Ui

, with

wi ∈ H0(Ui, OX/I
k+1
Y ). The local k-jet wi is given by holomorphic func-

tions a
(i)
α (z′(i)) on Y ∩Ui, indexed over multi-indices α = (α1, . . . , αr) ∈ N

r,

with |α| ≤ k. Set

f̂i(s, z
′
(i)) :=

(

∑

|α|≤k
aα(z′(i)) s

α

)

⊗ ei ∈ H0(Ui, ΛnT ?X ⊗ L).
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Then ∂αf̂i

∂sα (0, z′(i)) = a
(i)
α (z′(i)), for all α, |α| ≤ k, and f̂i defines thus a local

holomorphic extension of the jet f from Ui ∩ Y to Ui. Let θi ∈ D(Ui) be a

partition of unity such that
∑

θi ≡ 1 on a neighbourhood of Y . Then

f̃ :=
∑

i

θif̂i ∈ C∞(X, ΛnT ?X ⊗ L)

defines a C∞ extension of the jet f . Furthermore, we have:

D′′f̃ =
∑

i

d′′θi ∧ f̂i, D′′f̃ = 0 on Y ,

since all f̂i assume the same value at every point of Y and
∑

i d
′′θi = 0

on Y . Likewise, for any multi-index α = (α1, . . . , αr) ∈ N
r, |α| ≤ k, if we

derive locally D′′f̃ along the directions s = (s1, . . . , sr) transversal to Y , we

get:

Dα(D′′f̃) =
∑

β≤α

∑

i

(

α

β

)

Dβ(d′′θi) ∧Dα−β f̂i = 0 on Y ,

since for fixed α−β, all the Dα−β f̂i assume the same value at every point in

Y (as k-order extensions of the same transversal jet f). As the subvariety

Y = {s = 0} is assumed to be smooth, the Taylor expansion of D ′′f̃ near

Y shows that the C∞extension of f we have just constructed satisfies:

|D′′f̃ | = O(|s|k+1) in a neighbourhood of Y .

Weight construction; weight bumping technique. Here we reuse

the auxiliary functions considered in the original proof of the Ohsawa-

Takegoshi theorem, and repeat the computations of [OT87], [Man93] and

[Dem00] with an additional k. Since we hardly know f̃ away from Y , we

take a truncation with support in a tubular neighbourhood of Y . Let

G(k−1)
ε := θ

( |s|2
ε2

)

(f̃ − Fk−1) ∈ C∞(X, ΛnT ?X ⊗ L),

where θ : R → R is a C∞ function such that θ ≡ 1 on ]−∞, 1
2 ], and

Supp θ ⊂ ]−∞, 1[. It is clear that SuppG
(k−1)
ε ⊂ {|s| < ε}. We shall solve

the equation:

(?) D′′uε = D′′G(k−1)
ε ,



JET EXTENSIONS 13

with the extra condition that |uε|2
|s|2(r+k) ∈ L1

loc in a neighbourhood of Y . This

condition ensures that uε, as well as all its jets of order ≤ k, vanish on

Y . Let ψ be a plurisubharmonic exhaustion of X, and set Xc = {ψ <

c} ⊂⊂ X, for all real c. The ideal thing would be to solve the equation

(?) on X. For technical reasons which will become apparent later, we shall

solve the equation (?) on Xc\Yc which is still complete Kähler thanks to

Lemma 0.2.3. The desired holomorphic extension of the jet f will then be

G
(k−1)
ε − uε + Fk−1. The final solution will be obtained by passing to the

limit with c→ ∞ and ε→ 0.

Consider now the following auxiliary functions (as in [OT87], [Man93],

[Dem00]):

σε := log(|s|2 + ε2), ηε := ε− χ0(σε), λε :=
χ′

0(σε)
2

χ′′
0(σε)

,

where χ0 : ]−∞, 0] → ]−∞, 0], χ0(t) = t− log(1 − t), for all t ≤ 0, having

the following properties: χ(t) ≤ t, 1 ≤ χ′
0 ≤ 2, χ′′(t) = 1

(1−t)2 .

The function ηε is close to +∞ near Y and decays upon getting away

from Y . It allows therefore for concentrating the curvature of L on a small

neighbourhood of Y . We define a new curvature operator:

Bε := [ηε(iΘ(L) + (r + k) id′d′′ log |s|2) − id′d′′ηε − λ−1
ε id′ηε ∧ d′′ηε, Λ],

and prove the estimate:

Bε ≥
ε2

2|s|2 (d′′ηε)(d
′′ηε)

?,

as operators acting on the (n, q)-forms. Easy computations yield, in terms

of the canonical sesquilinear pairing { , } of vector bundle valued forms:

d′σε =
{D′s, s}
|s|2 + ε2

, d′′σε =
{s, D′s}
|s|2 + ε2

,

d′d′′σε =
{D′s, D′s}
|s|2 + ε2

+
{s, D′′D′s}
|s|2 + ε2

− {D′s, s} ∧ {s, D′s}
(|s|2 + ε2)2

.

On the other hand, Θ(E) = D2 = D′D′′ +D′′D′, and since D′′s = 0, owing

to s being holomorphic, we see that D ′′D′s = Θ(E)s. This finally yields:

id′d′′σε =
i{D′s, D′s}
|s|2 + ε2

− i{D′s, s} ∧ {s, D′s}
(|s|2 + ε2)2

− {iΘ(E)s, s}
|s|2 + ε2

.
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We now use Lagrange’s inequality: i{D ′s, D′s} ≥ i{D′s, s}∧{s,D′s}
|s|2 to get:

id′d′′σε ≥
ε2

|s|2
i{D′s, s} ∧ {s, D′s}

(|s|2 + ε2)2
− {iΘ(E)s, s}

|s|2 + ε2

=
ε2

|s|2 id
′σε ∧ d′′σε −

{iΘ(E)s, s}
|s|2 + ε2

.

On the other hand, d′ηε = −χ′
0(σε) d

′σε, d′′ηε = −χ′
0(σε) d

′′σε, and

−id′d′′ηε = χ′
0(σε) id

′d′′σε + χ′′
0(σε) id

′σε ∧ d′′σε

≥
(

ε2

2|s|2 +
χ′′

0(σε)

χ′
0(σε)

2

)

id′ηε ∧ d′′ηε − 2
{iΘ(E)s, s}
|s|2 + ε2

.

Let us multiply now the original metric of L by the weight |s|−2(r+k); the

curvature of this new metric satisfies the inequality

iΘ(L) + (r + k) id′d′′ log |s|2 ≥ α−1 {iΘ(E)s, s}
|s|2 + ε2

,

thanks to hypothesis (a). Indeed, the inequality still holds with the denom-

inator |s|2 + ε2 instead of |s|2, owing to the semipositivity of the left-hand

term. On the other hand, |s| ≤ e−α ≤ e−1, which entails σε ≤ 0 for ε small,

and

ηε ≥ ε− σε ≥ ε− log(e−2α + ε2).

In addition, we have: ηε ≥ 2α, for ε < ε(c) small enough. This, along with

the previous inequalities, implies:

ηε(iΘ(L) + (r + k) id′d′′ log |s|2) − id′d′′ηε −
χ′′

0(σε)

χ′
0(σε)

2
id′ηε ∧ d′′ηε

≥ ε2

2|s|2 id
′ηε ∧ d′′ηε,

on Xc. Set λε =
χ′

0(σε)2

χ′′
0 (σε) , and get the lower curvature estimate we were

looking for:

Bε := [ηε(iΘ(L) + (r + k) id′d′′ log |s|2) − id′d′′ηε − λ−1
ε id′ηε ∧ d′′ηε, Λ]

≥
[

ε2

2|s|2 id
′ηε ∧ d′′ηε, Λ

]

=
ε2

2|s|2 (d′′ηε)(d
′′ηε)

?,

as operators acting on the (n, q)-forms.
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∂̄-resolution with L2 estimates. In this section the estimation de-

tails for jets are new, although the idea of resolution is classic. We shall now

solve the equation (?) using Proposition 0.2.2. To avoid the singularities of

the weight |s|−2(r+k) along Y , we will be working on the relatively compact

open subset Xc \ Yc, where Yc = Y ∩Xc = Y ∩ {ψ < c}, instead of working

on X itself. We first need verify that the a priori L2 condition required in

Proposition 0.2.2 is satisfied. Easy computations show that:

D′′G(k−1)
ε = g(1)

ε + g(2)
ε , where

g(1)
ε =

(

1 +
|s|2
ε2

)

θ′
( |s|2
ε2

)

d′′σε ∧ (f̃ − Fk−1),

g(2)
ε = θ

( |s|2
ε2

)

D′′(f̃ − Fk−1).

Since g
(2)
ε converges uniformly to 0 on every compact when ε tends to 0, it

will have no contribution in the limit. Indeed, Supp(g
(2)
ε ) ⊂ {|s| < ε} and

|g(2)
ε | = O(|s|k+1), since we have previously shown that |D ′′f̃ | = O(|s|k+1)

in a neighbourhood of Y . This implies that:
∫

Xc\Yc

〈B−1
ε g(2)

ε , g(2)
ε 〉 |s|−2(r+k) dVX,ω = O(ε),

if Bε is locally uniformly bounded below in a neighbourhood of Y . If this

is not the case, we solve the approximate equation D ′′u+ δ
1
2h = gε, where

δ > 0 is small (see [Dem00, Remark 3.2], for the details). Since there is

no essential extra difficulty in this case, we may assume, for the sake of

perspicuity, that we have the desired lower bound for Bε.

The estimation of g
(1)
ε is different from the case of previous proofs of

extensions without jets. We get the following:
∫

Xc\Yc

〈B−1
ε g(1)

ε , g(1)
ε 〉 |s|−2(r+k) dVX,ω

≤ 8

∫

Xc\Yc

|f̃ − Fk−1|2 θ′
( |s|2
ε2

)2

|s|−2(r+k) dVX,ω.

Indeed,

g(1)
ε = −

(

1 +
|s|2
ε2

)

θ′
( |s|2
ε2

)

χ′
0(σε)

−1 d′′ηε ∧ (f̃ − Fk−1),

B−1
ε ≤ 2|s|2

ε2
(d′′ηε)

?−1(d′′ηε)
−1,
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and therefore:

〈B−1
ε (d′′ηε ∧ u), (d′′ηε ∧ u)〉

≤ 2|s|2
ε2

〈(d′′ηε)−1?(d′′ηε)
−1(d′′ηε ∧ u), (d′′ηε ∧ u)〉

=
2|s|2
ε2

〈u, u〉 =
2|s|2
ε2

|u|2.

Furthermore, 2|s|2
ε2

≤ 2 and
(

1+ |s|2
ε2

)

χ′
0(σε)

−1 ≤ 2, on Supp g
(1)
ε ⊂ {|s| < ε}.

This implies

〈B−1
ε g(1)

ε , g(1)
ε 〉 ≤ 8 θ′

( |s|2
ε2

)2

|f̃ − Fk−1|2.

If z = (z1, . . . , zr) is an arbitrary local holomorphic coordinate system

transversal to Y , we have

|s|2r
|Λr(ds)|2 =

|z|2r
|Λr(dz)|2 ,

the norms of the sections Λr(ds) ∈ H0(X, Λr(TX/TY )? ⊗ detE) and

Λr(dz) ∈ H0(U, Λr(TX/TY )?) being computed with respect to the met-

rics induced on the respective vector bundles by ω and by the given metric

on E.

The integrand of the last integral estimating g
(1)
ε can be locally written,

after the change of variable s ε s, as

|(f̃ − Fk−1)(ε s, z
′)|2

ε2(r+k)|s|2(r+k)
θ′(|s|2)2

|Λr(ds)|2 r+k
r

dVω(ε s, z′)

=
|(f̃ − Fk−1)(ε s, z

′)|2
ε2k|s|2(r+k)

θ′(|s|2)2

|Λr(ds)|2 r+k
r

dVω(s, z′).

Since Jk−1f − Jk−1Fk−1 = 0, the Taylor series development yields:

(f̃ − Fk−1)(ε s, z
′) =

∑

|α|+|β|≥k

ε|α|+|β|

(α+ β)!

∂α+β(f̃ − Fk−1)

∂sα∂s̄β
(0, z′) sαs̄β
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= εk

(

∑

|α|=k

1

α!

∂α(f̃ − Fk−1)

∂sα
(0, z′) sα

+
∑

|α|+|β|≥k+1

ε|α|+|β|−k

(α+ β)!

∂α+β(f̃ − Fk−1)

∂sα∂s̄β
(0, z′) sαs̄β

)

= εk(f − JkFk−1)(z
′) +O(|εs|k+1)

= εk∇k(f − JkFk−1)(z
′) +O(|εs|k+1).

The first sum ranges only on multi-indices α and β such that if |α|+|β| = k,

then |α| = k.

This shows that
|(f̃−Fk−1)(εs,z

′)|2
ε2k converges to |∇k(f − JkFk−1)(z

′)|2,
(see Notation 0.1.3), uniformly on every compact, when ε→ 0.

We have thus proved that:

∫

Xc\Yc

〈B−1
ε g(1)

ε , g(1)
ε 〉 |s|−2(r+k)dVX,ε

≤ 8

∫

Xc\Yc

|f̃ − Fk−1|2 Θ′
( |s|2
ε2

)2

|s|−2(r+k) dVX,ε

→ 8Cr,k

∫

Yc

|∇k(f − JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω,

where

Cr,k :=

∫

z∈Cr , |z|≤1
θ′(|z|2)2 iΛ

r(dz) ∧ Λr(dz̄)

|z|2(r+k) .

It is worth noticing that |∇k(f−JkFk−1)| = |f−JkFk−1|, where |f−JkFk−1|
is the norm of the section:

f − JkFk−1 ∈ H0(Y, ΛnT ?X ⊗ L⊗ SkN?
Y/X)

with respect to the metric induced on SkN?
Y/X by the reference metric ω on

X. Indeed, SkNY/X is a subbundle of (SkTX)|Y ; we merely take the metric

induced on SkNY/X by restriction.

The L2 condition required beforehand in Proposition 0.2.2 is thus sat-

isfied. The solution uc,ε to the equation (?) D′′uc,ε = D′′G(k+1)
ε = g

(1)
ε +g

(2)
ε
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on Xc\Yc satisfies then the estimate:

∫

Xc\Yc

|uc,ε|2
|s|2(r+k)(− log(|s|2 + ε2))2

dVX,ε(1)

≤
∫

Xc\Yc

|uc,ε|2
(ηε + λε)|s|2(r+k)

dVX,ω

≤ 2

∫

Xc\Yc

〈B−1
ε gε, gε〉 |s|−2(r+k) dVX,ω

≤ 16Cr,k

∫

Yc

|∇k(f − JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω +O(ε).

Indeed, we have used the following obvious estimates (cf. [Dem00, 4.6]):

σε = log(|s|2 + ε2) ≤ log(e−2α + ε2) ≤ −2α+O(ε2) ≤ −2 +O(ε2),

ηε = ε− χ0(σε) ≤ (1 +O(ε))σ2
ε ,

λε =
χ′

0(σε)
2

χ′′
0(σε)

= (1 − σε)
2 + (1 − σε) ≤ (3 +O(ε))σ2

ε ,

ηε + λε ≤ (4 +O(ε))σ2
ε ≤ (4 +O(ε))(− log(|s|2 + ε2))2.

The extension of f to Xc\Yc is then given by:

F (k)
c,ε := G(k−1)

ε − uc,ε + Fk−1.

Locally, near an arbitrary point of Y , this means that all partial derivatives

of order ≤ k of F
(k)
c,ε are prescribed by f . The function G

(k−1)
ε is C∞ on

a tubular neighbourhood of Y and SuppG
(k−1)
ε ⊂ {|s| < ε}. This implies

that:

(2)

∫

Xc

|G(k−1)
ε |2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω ≤ Const

(log ε)2
.

Since

∫

Xc\Yc

|uc,ε|2
|s|2r(− log(|s|2 + ε2))2

dVX,ω

≤
∫

Xc\Yc

|uc,ε|2
|s|2(r+k)(− log(|s|2 + ε2))2

dVX,ω,
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(1), (2), and the induction hypothesis made on the L2 norm of Fk−1, imply

the estimate:

∫

Xc\Yc

|F (k)
c,ε |2

(|s|2 + ε2)r(− log(|s|2 + ε2))2
dVX,ω

≤ 16Cr,k

∫

Yc

|∇k(f − JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω

+

∫

Xc

|Fk−1|2
|s|2r(− log |s|)2 dVX,ω +

Const

(log ε)2

≤ 16Cr,k

∫

Yc

|∇k(f − JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω

+ C(k−1)
r

∫

Y
|f |2s, ρ, (k−1) |Λr(ds)|−2 dVY,ω +

Const

(log ε)2

≤ C
′(k)
r

∫

Y
|f |2s, ρ, k |Λr(ds)|−2 dVY,ω

+ 16Cr,k

∫

Yc

|∇k(JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω +
Const

(log ε)2
,

where C
′(k)
r = C

(k−1)
r + 16Cr,k.

We also have D′′F (k)
c,ε = 0 on Xc\Yc, by construction. This relation

extends from Xc\Yc to Xc because F
(k)
c,ε is L2

loc in a neighbourhood of Yc.

The extension is granted by the following standard lemma on the ∂̄ operator

(see, for instance, [Dem82]).

Lemma 0.3.1. Let Ω be an open subset of C
n and Y an analytic subset

of Ω. Let v be a (p, q − 1)-form with L2
loc coefficients, and w a (p, q)-form

with L1
loc coefficients such that d′′v = w on Ω\Y (in the sense of distribu-

tions). Then d′′v = w on Ω.

The ellipticity of the operator ∂̄ in bidegree (0, 0) ensures that uc,ε is

C∞. Consequently, F
(k)
c,ε is C∞ as well.

We have thus obtained a family of solutions (F
(k)
c,ε )ε with corresponding

L2 estimates on the relatively compact open subset Xc of X. By extracting

a weak limit when ε → 0, we thus get a solution F
(k)
c and an L2 estimate

of it on the relatively compact open subset Xc, for all c > 0.
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This completes the qualitative part of the proofs of Theorems 0.1.4

and 0.1.5, and estimates in part the solutions. The final estimates will be

obtained in the subsequent sections.

0.4. Estimation of the solution in Theorem 0.1.5

In order to get the final estimates in Theorems 0.1.4 and 0.1.5, it re-

mains to estimate
∫

Yc

|∇k(JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω.

In this section we will complete the proof of Theorem 0.1.5. Here the

analysis is simplified by the ambient manifold being an open subset Ω ⊂ C
n.

We will use the Cauchy inequalities (or, equivalently, Parseval’s formula).

In the more general case of Theorem 0.1.4, such an approach would yield a

constant depending on the radii of the local holomorphic coordinate balls of

X. Since this is an uncontrollable quantity, we will avoid such arbitrariness

in the subsequent sections by means of the exponential map replacing locally

the ambient manifold X by its tangent space at a point.

Let ω be the standard Kähler metric on Ω. Since the curvature of

E is assumed to be bounded, there exists a constant M > 0 such that

iΘ(E) ≤ Mω ⊗ IdE. Set L = Ω × C, equipped with the metric of weight

e−ϕ−A|z|
2
, with a constant A� 0. If we set α ≡ 1, the curvature hypothesis

(a) in Theorem 0.1.4 reads:

id′d′′ϕ+A id′d′′|z|2 + (r + k) id′d′′ log |s|2 ≥ {iΘ(E)s, s}
|s|2 .

Since id′d′′ϕ ≥ 0, id′d′′ log |s|2 ≥ −{iΘ(E)s, s}
|s|2 , and {iΘ(E)s, s}

|s|2 ≤ Mω, this

relation is satisfied as soon as A has been chosen large enough. This choice

of A depends on the bound M of the curvature tensor of E.

Let ψ : Ω → R be a C∞ plurisubharmonic exhaustion of Ω, namely a

function such that the sublevel sets Ωc := {ψ < c} are relatively compact

in Ω for all c > 0. We may assume that Ω′ = Ωc for some c, and denote

Yc := Y ∩Ωc. Consider now a covering of Yc by open subsets Uj , j = 1, . . . , p,

such that on every Uj there exist local holomorphic coordinates z = (z ′, z′′),
z′ = (z1, . . . , zr), z

′′ = (zr+1, . . . , zn) for which Y ∩ Uj = {z′ = 0}. Pick

such a Uj and assume that Uj = B′(0, ρ) × B′′(0, ρ) ⊂ B(0, ρ
√

2), where

B′(0, ρ) is the ball of radius ρ of C
r, B′′(0, ρ) is the ball of radius ρ of C

n−r,
and B(0, ρ

√
2) is the ball of radius ρ

√
2 of C

n. The jet ∇k(JkFk−1) can be
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written on Uj as
∑

|α|=k
1
α!
∂αFk−1

∂z′α
(0, z′′)z

′α, and its norm is given by

|∇k(JkFk−1)|2 =
∑

|α|=k

∣

∣

∣

∣

∣

∂αFk−1

∂z′α
(0, z′′)

α!

∣

∣

∣

∣

∣

2

e−2ϕ(0,z′′)−2A|z′′|2 .

Parseval’s formula applied for z ′ ∈ B′(0, ρ) gives

Const

ρ2r

∫

z′∈B′(0, ρ)
|Fk−1(z

′, z′′)|2 dλ(z′) =
∑

α

∣

∣

∣

∣

∣

∂αFk−1

∂z′α
(0, z′′)

α!

∣

∣

∣

∣

∣

2
ρ2|α|

2r + 2|α|

≥
∑

|α|=k

∣

∣

∣

∣

∣

∂αFk−1

∂z′α
(0, z′′)

α!

∣

∣

∣

∣

∣

2
ρ2k

2(r + k)
,

where Const is a universal constant. Consequently,

∑

|α|=k

∣

∣

∣

∣

∣

∂αFk−1

∂z
′α

(0, z′′)

α!

∣

∣

∣

∣

∣

2

e−2ϕ(0,z′′)−2A|z′′|2

|Λr(ds)(0, z′′)|2 r+k
r

≤ Const
2(r + k)

ρ2(r+k)

×
∫

z′∈B′(0, ρ)
‖Fk−1(z

′, z′′)‖2 e
2(ϕ(z′ ,z′′)−ϕ(0,z′′)) e2A|z

′|2

|Λr(ds)(0, z′′)|2 r+k
r

dλ(z′),

for all z′′ ∈ B′′(0, ρ), where we have denoted by

‖Fk−1(z
′, z′′)‖2 := |Fk−1(z

′, z′′)|2 e−2ϕ(z′,z′′) e−2A(|z′|2+|z′′|2),

the norm of Fk−1 regarded as a section of the line bundle L. Due to a

notation inconsistency, this vector bundle norm ‖ ‖ is the same as the one

we had denoted by | | in the induction hypothesis (see start of Section 0.3).

Let ε be a modulus of continuity for ϕ, namely a function such that

|ϕ(z′, z′′) − ϕ(0, z′′)| ≤ ε(|z′|), ∀(z′, z′′) ∈
p
⋃

j=1

Uj ,

and ε(δ) ↓ 0 when δ ↓ 0.
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Since ε(|z′|) ≤ ε(ρ) for z′ ∈ B′(0, ρ), the previous estimate entails

∑

|α|=k

∣

∣

∣

∣

∣

∂αFk−1

∂z′α
(0, z′′)

α!

∣

∣

∣

∣

∣

2

e−2ϕ(0,z′′)−2A|z′′|2

|Λr(ds)(0, z′′)|2 r+k
r

≤ Const
2(r + k)

ρ2(r+k)
e2(ε(ρ)+Aρ

2) sup
(z′,z′′)∈Uj

|s(z′, z′′)|2r (− log |s(z′, z′′)|)2

|Λr(ds)(0, z′′)|2 r+k
r

×
∫

z′∈B′(0, ρ)

‖Fk−1(z
′, z′′)‖2

|s(z′, z′′)|2r (− log |s(z′, z′′)|)2 dλ(z′),

for all z′′ ∈ B′′(0, ρ). A topological property of Y ensures that there exists

a nonnegative integer N such that the covering (Uj)j of Yc can be chosen

in such a way that #{j ; Uj 3 y} ≤ N . An integration with respect to z ′′

in the previous inequality, a summation over j, and obvious upper bounds

yield
∫

Yc

|∇k(JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω

≤ Cr,kNM(c)
1

ρ2(r+k)
e2(ε(ρ)+Aρ

2)

∫

Ω′

‖Fk−1‖2

|s|2r (− log |s|)2 dVX,ω,

if

M(c) := sup
(z′,z′′)∈Ω′

|s(z′, z′′)|2r (− log |s(z′, z′′)|)2

|Λr(ds)(0, z′′)|2 r+k
r

and Cr,k := Const 2(r + k). The radius ρ of the local holomorphic coordi-

nate charts on which the submanifold Y can be straightened is explicitly

given by the following elementary lemma which is a refinement of the local

inversion theorem expressing the “size” of the ball on which we get a local

diffeomorphism.

Lemma 0.4.1. Let E and F be Banach spaces, U an open subset of E,

and f : U → F a C1 map such that its differential map dfa : E → F at a

point a ∈ U is a bicontinuos isomorphism.

Then the open neighbourhood V of a, given by the local inversion the-

orem, on which f is a diffeomorphism onto its image, contains the ball

B(a, ρ), where

ρ =
1

6(‖df−1
a ‖)(supξ∈U ‖d2fξ‖)

.
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The elementary proof of this lemma is left to the reader. It can be easily

inferred from the proof of the local inversion theorem. As the submanifold

Y is defined by the section s ∈ H0(X, E), this lemma accounts for the

explicit formula of the weight function ρ featuring in the statements of

Theorems 0.1.4 and 0.1.5. Indeed, if θ : E|U → U × C
r is a trivialization

of E|U , and (e1, . . . , er) the corresponding local holomorphic frame of E|U ,

the restriction of s to U can be uniquely written as

s =

r
∑

j=1

σj ⊗ ej , σj ∈ O(U).

If D is the Chern connection of the Hermitian holomorphic vector bundle

E, the operator D can be written as

Ds ' θ dσ +A ∧ σ,

where A = (ajk) is the matrix of 1-forms representing the connection D in

the trivialization θ. Since the coefficients ajk of A are locally bounded (by

constants depending implicitly on E), Lemma 0.4.1 and the expression of

d in terms of D show that the radius of the coordinate ball on which Y

can be straightened in a neighbourhood of a given point y ∈ Y is bounded

below by

Cρ(y) = C
1

‖Ds−1
y ‖ supξ(‖D2sξ‖ + ‖Dsξ‖)

,

the constant C > 0 depending only on E. This completes the proof of

Theorem 0.1.5.

0.5. A Rauch-type comparison theorem

We still need to complete the proof of Theorem 0.1.4. Unlike its coun-

terpart discussed in the previous section, Theorem 0.1.4 is set on a general

Kähler manifold (X,ω). In order to get final estimates independent of the

radii of local holomorphic coordinate balls of X, we will be working on the

tangent space to X at a point instead of X itself. The exponential map

locally identifies X to its tangent space. In order to estimate the devia-

tion of the pull-back of ω to the tangent space from the standard Euclidian

metric of this very tangent space, we need to establish a Riemannian geo-

metric result related to the Rauch comparison theorem (see, for instance,

[BC64, page 250]). The proof of this result will be a slight reshaping of the

proof of Rauch’s theorem and will use the Jacobi vector fields theory and

an elementary Gronwall-type lemma.
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Let (M, g) be a complete Riemannian manifold, m ∈ M an arbitrary

point, and expm : TmM → M the exponential map at the point m. Let

Id := IdTmM and, for an arbitrary point x ∈ TmM , consider the tangent

linear map (or the differential) Tx expm : TmM → Texpm(x)M of expm at the

point x. We can identify TmM and Texpm(x)M via the isometry defined by

parallel transport along the geodesic γ(t) with initial conditions γ(0) = m

and γ′(0) = x. Our goal is to estimate

‖Tx expm− Id ‖

in terms of ‖x‖, when x ranges over the tangent space TmM . Let u ∈ TmM ,

‖u‖ = 1, and γu the geodesic with γu(0) = m and γ ′u(0) = u. We thus have

γu(t) = expm(tu),

for all t in the interval of definition of γu. Recall that a vector field Y along

the geodesic γu is said to be a Jacobi field if it satisfies the second order

differential equation

Y ′′ +R(γ′u, Y )γ′u = 0,

where R is the curvature tensor of (M, g) defined as R(X,Y )Z = ∇Y∇XZ−
∇X∇Y Z + ∇[X,Y ]Z. It is a well-known fact that the differential of the

exponential map is given by a Jacobi field. More precisely, for any u, v ∈
TmM , we have the relation

(Ttu expm)(tv) = Y (t),

where Y is the unique Jacobi field along γu such that Y (0) = 0 and Y ′(0) =

v.

Assume now the sectional curvature of (M, g) to be bounded, namely

that there exists a constant k > 0 such that

−k ≤ K(p, P ) ≤ k,

for every point p ∈ M and every plane P ⊂ TpM , where K(p, P ) stands

for the sectional curvature of the plane P . To estimate ‖Tx expm− Id ‖ we

need estimate

‖(Ttu expm)(tv) − Id(tv)‖ = ‖Y (t) − Y ′(0)t‖,

when t ranges over R. We need therefore an estimate for Y given that Y sat-

isfies a second order linear differential equation. The following elementary

lemma, of Gronwall-type, provides the necessary estimation.
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Lemma 0.5.1. Let v : [0, T ] → R be a C2 function, v ≥ 0, such that

v(0) = 0, v′(0) = A and

−kv ≤ v′′ ≤ kv, on [0, T ], where k > 0 is a constant.

Then,

A
1√
k

sin(
√
kt) ≤ v(t) ≤ A

1√
k

sinh(
√
kt), for all t ∈ [0, T ].

Proof. Let us first prove the right-hand inequality. Let u be the solu-
tion to the Cauchy problem u′′ = ku with initial conditions u(0) = 0 and
u′(0) = 1. Then, u(t) = 1√

k
sinh(

√
kt). In particular, u ≥ 0, and u(t) = 0 if

and only if t = 0. The hypothesis shows that

v′′

v
≤ k =

u′′

u
⇐⇒ (v′u− vu′)′ ≤ 0 =⇒ v′u− vu′ ≤ 0,

on [0, T ]. This implies

(

v

u

)′
≤ 0 =⇒ v(t)

u(t)
≤ v

u
(0+),

for all t ∈ [0, T ]. Therefore,

v(t) ≤ v

u
(0+)

1√
k

sinh(
√
kt),

for all t ∈ [0, T ]. On the other hand, we see that

v

u
(0+) = lim

t→0

v(t)

u(t)
= lim

t→0

v′(t)
u′(t)

=
v′(0)
u′(0)

= A,

which proves the right-hand inequality. Let us now prove the left-hand
inequality.

Let u be the solution to the Cauchy problem u′′ = −ku, with initial
conditions u(0) = 0 and u′(0) = 1. Then, u(t) = 1√

k
sin(

√
kt). In particular,

u ≥ 0, and u(t) = 0 if and only if t = 0. By hypothesis, we see that

v′′

v
≥ −k =

u′′

u
⇐⇒ (v′u− vu′)′ ≥ 0 =⇒ v′u− vu′ ≥ 0,

on [0, T ]. This implies

(

v

u

)′
≥ 0 =⇒ v(t)

u(t)
≥ v

u
(0+),
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for all t ∈ [0, T ]. Consequently,

v(t) ≥ v

u
(0+)

1√
k

sin(
√
kt),

for all t ∈ [0, T ]. As before, v
u(0+) = v′(0)

u′(0) = A, which proves the left-hand

inequality.

We shall now apply this lemma to the components Yj of the Jacobi field

Y = (Y1, . . . , Y2n) which are real functions satisfying Yj(0) = 0, Y ′
j (0) = vj,

and −kYj ≤ Y ′′
j ≤ kYj, for all j = 1, . . . , 2n, where 2n is the real dimension

of the manifold M , and v = (v1, . . . , v2n) are the components of v ∈ TmM '
R

2n. We get

|Yj(t) − Y ′
j (0)t|2 ≤

∣

∣

∣

∣

sinh(
√
kt)√

k
− t

∣

∣

∣

∣

2

|vj |2, for j = 1, . . . , 2n,

if we take into account that sinx ≤ x ≤ sinhx, for x ≥ 0. A summation

over j = 1, . . . , 2n gives

‖Y (t) − Y ′(0)t‖ ≤
∣

∣

∣

∣

sinh(
√
kt)√

k
− t

∣

∣

∣

∣

‖v‖,

for all t, v, u. From this we get, after dividing out by t, that

‖(Ttu expm)(v) − Id(v)‖ ≤
∣

∣

∣

∣

sinh(
√
kt)√

kt
− 1

∣

∣

∣

∣

‖v‖,

‖Ttu expm− Id ‖ ≤
∣

∣

∣

∣

sinh(
√
kt)√

kt
− 1

∣

∣

∣

∣

,

for all t, u. If we set x = tu, we find

‖Tx expm− Id ‖ ≤
∣

∣

∣

∣

sinh(
√
k‖x‖)√

k‖x‖
− 1

∣

∣

∣

∣

, for all x ∈ TmM.

Since sinhx ≥ x, for all x ≥ 0, the absolute value is superfluous in the

right-hand term. We have thus proved the following.

Proposition 0.5.2. If there exists a constant k > 0 such that

−k ≤ K(p, P ) ≤ k,
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for every point p ∈M and every plane P ⊂ TpM , then

‖Tx expm− Id ‖ ≤ sinh(
√
k‖x‖)√

k‖x‖
− 1, for all x ∈ TmM.

Remark. The Rauch comparison theorem estimates ‖Tx expm ‖. The
above proposition estimates the distance between Tx expm and T0 expm =
Id. The latter is therefore slightly more general.

0.6. Final estimate

We will now complete the proof of Theorem 0.1.4. We only have to get

a uniform control of
∫

Yc

|∇k(JkFk−1)|2

|Λr(ds)|2 r+k
r

dVY,ω

(see the end of Section 0.3).

Fix a point y0 ∈ Y ⊂ X, and let Φ := expy0 : Ty0X → X be the expo-

nential map. The Kähler metric ω on the weakly pseudoconvex manifold

X can be made complete by a standard well-known procedure. We may

therefore assume, without loss of generality, that the exponential map is

defined on the whole tangent space. Let ω0 be the standard Kähler metric

on the Euclidian space Ty0X ' C
n. Our first goal in this section is to find

an explicit formula for the radius of the ball in the tangent space Ty0X on

which the two metrics, Φ?ω and ω0, can be compared. Let us set

(0.6.1) r(y0) := sup
{

r > 0 ; sup
x∈B(y0, r)

0≤l≤m

r2+l ‖∇lΘ(TX)(x)‖ < 10−2a
}

,

where a > 0 is a constant to be specified later, and ∇lΘ(TX) stands for the

lth order derivative of the curvature tensor Θ(TX) viewed as a section of the

C∞ bundle Λ1,1T ?X ⊗ Hom(TX , TX). Locally, this boils down to deriving

the coefficients of Θ(TX). In particular, we get

sup
x∈B(y0, r(y0))

‖Θ(TX)‖ ≤ 10−2a

r(y0)2
:= k,

and hence the sectional curvature of X satisfies:

−k ≤ K(p, P ) ≤ k,
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for all p ∈ B(y0, r(y0)), and all planes P ⊂ Ty0X in the tangent space at

y0 to X.

This shows that the hypothesis of Proposition 0.5.2 is fulfilled in the

ball B(y0, r(y0)). Then we get

(?) ‖Tv expy0 − Id ‖ ≤ sinh(
√
k‖v‖)√

k‖v‖
− 1,

for all v ∈ Ty0X, such that ‖v‖ < r(y0). If ‖Tv expy0 − Id ‖ < 1, the map

Tv expy0 is invertible. Consequently, expy0 is an immersion on B(0, r(y0)) ⊂
Ty0X, if sinh(

√
k‖v‖)√

k‖v‖ < 2 for all v such that ‖v‖ < r(y0). To achieve this, it

is enough to have

(1)
sinh(10−a)

10−a
< 2.

On the other hand, we need a value of the constant a such that we may

have the bounds

(??)
1

2
ω0 ≤ exp?y0 ω ≤ 2ω0, on the ball B(0, r(y0)) in Ty0X.

In order to have these bounds, it is enough to have

1

2
≤ ‖Tv expy0 ‖ ≤ 2,

for all v ∈ Ty0X such that ‖v‖ < r(y0). We thus infer from (?) that

2 − sinh(
√
k‖v‖)√

k‖v‖
≤ ‖Tv expy0 ‖ ≤ sinh(

√
k‖v‖)√

k‖v‖
,

for all v ∈ Ty0X, ‖v‖ < r(y0). This shows that it is enough to have
sinh(

√
k‖v‖)√

k‖v‖ ≤ 3
2 , for all v such that ‖v‖ < r(y0) = 10−a√

k
. The bounds (??)

are therefore guaranteed as soon as the constant a satisfies the inequality

(2)
sinh(10−a)

10−a
≤ 3

2
.

In short, we have proved the following.

Lemma 0.6.1. For a choice of the constant a > 0 satisfying inequality

(2), and for r(y0) defined by relation (0.6.1), the exponential map Φ = expy0
is an immersion and the bounds (??) hold on the ball B(0, r(y0)) in the

tangent space Ty0X.
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Lemma 0.4.1 shows that there exist local holomorphic coordinates ζ =

(ζ ′, ζ ′′), ζ ′ = (ζ1, . . . , ζr), ζ
′′ = (ζr+1, . . . , ζn) on the ball B(0, r) ⊂ Ty0X

such that the subvariety Φ−1(Y ∩ B(y0, r)) ⊂ B(0, r) is defined by the

equations ζ ′ = 0, for the following radius

r = ρ(y0) =
1

6 ‖Ds−1
y0 ‖ω0 supξ(‖(D2sξ‖ω0 + ‖Dsξ‖ω0)

.

Moreover, the bounds (??) imply

r ≥ 1

24 ‖Ds−1
y0 ‖ω supξ(‖D2sξ‖ω + ‖Dsξ‖ω)

:= r0(y0).

In the above expressions all supξ are computed for ξ ∈ B(y0, r(y0)). Let us

set from now on:

(0.6.2) r1(y0) = min(r(y0), r0(y0)).

Recall that Fk−1 ∈ H0(X, ΛnT ?X ⊗ L) is the (k − 1)-order extension of the

jet f ∈ H0(X, ΛnT ?X ⊗L⊗OX/I
k+1
Y ) given by the induction hypothesis we

have set up to prove Theorem 0.1.4 (see the beginning of Section 0.3). The

holomorphic line bundle L′ := ΛnT ?X ⊗L is equipped with a C∞ Hermitian

metric h. Let us consider the C∞ line bundle Φ?L′ equipped with the metric

φ?h, and the section Φ?Fk−1 ∈ C∞(Ty0X, Φ?L′).
Let JX ∈ End(TX) be the complex structure of the manifold X, and

J := Φ?JX the almost complex structure induced on Ty0X. If J0 is the

canonical complex structure of Ty0 ' C
n, the map Φ is not (J0, JX)-

holomorphic, but it certainly is (J, JX )-holomorphic. If iΘ(L′) is the cur-

vature form (of type (1, 1)) of (L′, h), Φ?(iΘ(L′)) is a type (1, 1)-form for J

on Ty0X.

Lemma 0.6.2. There exists a real function ϕ̃ ∈ C∞ on the ball B =
B(0, r1(y0)) in the tangent space Ty0X such that i∂J ∂̄J ϕ̃ = Φ?(iΘ(L′)) and

sup
B

|ϕ̃| ≤ C sup
B

‖Φ?(iΘ(L′))‖,

where C > 0 is a constant depending only on r1(y0).

Proof. With respect to real coordinates x1, . . . , x2n on B, the real d-
closed 2-form Φ?(iΘ(L′)) can be written as Φ?(iΘ(L′)) =

∑

i<j vij dxi ∧
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dxj, with functions vij ∈ C∞(B). The Poincaré lemma gives the explicit
formula:

U(x) =
∑

i<j

(
∫ 1

0
t vij(tx) dt

)

(xi dxj − xj dxi),

for a C∞ solution to the equation dU = Φ?(iΘ(L′)) on B. We see then that

‖U‖L∞(B) ≤ C1 ‖Φ?(iΘ(L′))‖L∞(B),

with a constant C1 > 0 depending only on the radius of B. With respect
to the almost complex structure J , the real 1-form U decomposes as U =
U1,0 + U0,1, with U 0,1 = U1,0. Then dU = ∂JU

0,1 + ∂JU0,1, since dU is
of type (1, 1) for J . The almost complex structure J is integrable as the
inverse image of an integrable almost complex structure. Let (z1, . . . , zn) be
J -holomorphic complex coordinates centred at 0 on a neighbourhood of the
ball B ⊂ Ty0X. We thus have ∂̄JU

0,1 = 0 on B. The bounds (??), relating
the metrics ω and ω0, allow us to assume that the ball B is J -pseudoconvex
(if not so, we multiply the radius r1(y0) by a fixed constant). Since for
an integrable almost complex structure we have the same formalism as for
a complex analytic structure, a classical result on the solvability of the ∂̄
operator on bounded strictly pseudoconvex domains with a C 2 boundary
in C

n (see, for instance, [HL84, Theorem 2.3.5]), yields the existence of
a constant C2 > 0 depending only on the radius of the ball B, and of a
solution to the equation ∂̄Jv = U0,1 on B obtained by an explicit integral
formula, such that

‖v‖L∞(B) ≤ C2 ‖U0,1‖L∞(B) ≤ 2C2 ‖U‖L∞(B).

Then ϕ̃ := i(v̄ − v) is the function we were looking for.

Since φ is an immersion on B(0, r1(y0)), there exists a neighbourhood

V ⊂ B(0, r1(y0)) of 0 such that φ is a diffeomorphism of V onto a neigh-

bourhood U of y0 in X. Let ψ : U → V be the inverse diffeomorphism. In

a local trivialization of L′ in a neighbourhood of y0, the section Fk−1 can

be written as Fk−1 = u ⊗ e, with respect to a local holomorphic frame e.

The function v = u ◦ Φ is then C∞ on V , and u being holomorphic implies

∂̄(v◦ψ) = 0. If z = (z1, . . . , zn) is a system of local holomorphic coordinates

on U , this means that v is a solution to the following elliptic system

(? ? ?)
∑

j

∂v

∂ζj
◦ ψ ∂ψj

∂z̄k
+
∑

j

∂v

∂ζ̄j
◦ ψ ∂ψ̄j

∂z̄k
= 0, k = 1, . . . , n.
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Let us remind now a standard differential operator theory result. G̊arding’s

lemma controls the growth of the derivatives of a solution to an elliptic

equation in terms of the growth of this very solution. This lemma plays the

role of Cauchy’s inequalities in the nonholomorphic case. Let H loc
j be the

Sobolev space of locally L2 functions whose all derivatives in the sense of

distributions up to order j are still locally L2, and let ‖ ‖j be its Sobolev

norm. We refer for the details to [Agm65] (Lemma 6.1 and Theorems 6.2–

6.7, pages 53–67).

Theorem 0.6.3. (Theorem 6.5 in [Agm65]) Let Ω be an open subset of

R
n, and A1(x,D), . . . , AN (x,D) differential operators of respective orders

m1, . . . ,mN , with coefficients aiα ∈ C∞, which make up an elliptic system

in Ω. Let u ∈ L2
loc(Ω) such that A?iu ∈ H loc

ki
(Ω), for all i = 1, . . . , N .

If j := min(m1 + k1, . . . ,mN + kN ), then u ∈ H loc
j (Ω). In addition, for

all Ω′ ⊂⊂ Ω, there exists γ = γ(Ai,Ω
′,Ω) such that

‖u‖j,Ω′ ≤ γ

( N
∑

i=1

|A?iu|ki,Ω + ‖u‖0,Ω

)

,

where γ = Const · p · N · K · M , Const is a universal constant, p =
p(n, l) = card{α ∈ Nn | |α| = l}, K = supξ∈Ω′, |α|≤l,i |daiα(ξ)|, M =

supx∈Ω′, |α|≤l,i |aiα(x)|.

The actual dependence of the constant γ on the data is not explicit

in [Agm65], but it can be easily inferred from the proofs given there to

Theorems 6.2–6.7. Likewise, the statement given there is slightly more

general as the coefficients of the operators Ai(x,D) are only assumed to be

“s-smooth”.

Since v is a solution to the elliptic system (? ? ?), the previous theorem

shows that we have the estimate

sup
‖ζ′′‖≤ 1

2
r1(y0)

∑

|α|=k

∣

∣

∣

∣

∂αv

∂ζ ′α
(0, ζ ′′)

∣

∣

∣

∣

2

≤ γk

∫

B(0, r1(y0))
|v(ζ ′, ζ ′′)|2 dλ(ζ ′, ζ ′′),

where γk = Const · pk · max
(

supξ∈U ‖dξψ‖, supξ∈U ‖d2
ξψ‖

)

, pk = card{α |
|α| = k}, and Const is a universal constant. For the following norms

computed in the Hermitian vector bundle (Φ?L′, Φ?h), equipped with the
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local weight ϕ̃,

∥

∥

∥

∥

∂αv

∂ζ ′α
(0, ζ ′′)

∥

∥

∥

∥

2

=

∣

∣

∣

∣

∂αv

∂ζ ′α
(0, ζ ′′)

∣

∣

∣

∣

2

e−2ϕ̃(0,ζ′′),

‖v(ζ ′, ζ ′′)‖2 = |v(ζ ′, ζ ′′)|2 e−2ϕ̃(ζ′, ζ′′),

we get the estimate

∫

‖ζ′′‖≤ 1
2
r1(y0)

∑

|α|=k

∥

∥

∥

∥

∂αv

∂ζ ′α
(0, ζ ′′)

∥

∥

∥

∥

2

dζ ′′

≤ γk

∫

B(0, r1(y0))
‖v(ζ ′, ζ ′′)‖2 e2(ϕ̃(ζ′,ζ′′)−ϕ̃(0,ζ′′)) dλ(ζ ′, ζ ′′),

and also, thanks to Lemma 0.6.2,

∫

‖ζ′′‖≤ 1
2
r1(y0)

∑

|α|=k

∥

∥

∥

∥

∂αv

∂ζ
′α

(0, ζ ′′)

∥

∥

∥

∥

2

d ζ ′′(3)

≤ γk CL′

∫

B(0, r1(y0))
‖v(ζ ′, ζ ′′)‖2 dλ(ζ ′, ζ ′′),

where the constant CL′ := e2C supU ‖iΘ(L′)‖ depends only on the growth of

the curvature of L′.
It remains to infer from the estimate (3) for v an analogous estimate

for u. If z is the variable on U ⊂ X, and ζ is the variable on V ⊂ Ty0X,

the change of variable ζ = ψ(z) implies the following estimate for u

(4) ‖u‖2
k,U ′∩Y ≤ γ̃k CL′ ‖u‖2

0,U , U ′ ⊂⊂ U,

where γ̃k = Const · pk · sup1≤l≤k

ξ∈U

‖dlξψ‖, Const being a universal constant.

Proposition 0.5.2 has already given an estimate for the norm of the

differential of the exponential map φ, and implicitly for the differential map

of ψ. The formula for γ̃k would also require an estimation of the growth

of the differentials of order ≤ k of ψ. It is clear that sup1≤l≤k

ξ∈U

‖dlξψ‖ is

bounded above by a constant depending only on the radius r1(y0) of the

ball on which we are working. These are standard calculations that can

well be left to the reader.

We are now in a position to conclude that the constant C
(k)
r in the state-

ment of Theorem 0.1.4 depends only on r, on k, on E, and on supΩ ‖iΘ(L)‖.
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A standard argument (see [Dem00, 4.8, p. 12]) shows that the restriction

imposed at the beginning of Section 0.3 on the singular set Σ = {s =

0, Λr(ds) = 0} of Y to be empty, is superfluous.
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