ON SOME INFINITE DIMENSIONAL REPRESEN-
TATIONS OF SEMI-SIMPLE LIE ALGEBRAS

HIROSHI KIMURA

1. Introduction

Let 8 be a semi-simple Lie algebra over an algebraically closed field K of
characteristic 0. For finite dimensional representations of 8§, the following im-
portant results are known;

1) H'(8, V) =0 for any finite dimensional 8 space V. This is equivalent to
the complete reducibility of all the finite dimensional representations.

2) Determination of all irreducible representations in connection with their
highest weights.

3) Weyl's formula for the character of irreducible representations [9].

4) Kostant’s formula for the multiplicity of weights of irreducible represen-
tations [6].

5) The law of the decomposition of the tensor product of two irreducible
representations [1].

Harish-Chandra [3] studied the infinite dimensional g-spaces with dominant
vectors, and established 2) and 3) for such spaces. The lacking of the complete
reducibility 1) necessitates the study of Exty(U, V). A. Hattori determined the
structure of H'(8, V) = Exty(K, V) for an irreducible g-space V with a dominant
vector [4]. To study the general case we need more. If U is finite dimensional,

we have
Exty(U, V) = H'(8, Homg(U, V)) = H'(8, U*Q V)

where U™ is the contragredient representation of U, so that we are led to the
study of U*® V, a special case of 5). Theorem 1 of § 2 concerns with the
structure of the tensor product. It follows from this theorem together with a
generalization of Hattori’s result (Theorem 2) that Exty(U, V) =0 for certain
U and V (Theorem 3 of §3). In § 4 we obtain a formula for the multiplicity
of weights in case ¢ =3l(3, K).
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2. Tensor product

Let ¢ be a semi-simple Lie algebra over an algebraically closed field K of
characteristic 0, § a Cartan subalgebra and 7 the rank of 4. Let 4 be the set
of roots associated with ¥, {a:, ..., a;} the set of the simple positive roots
relative to some ordering and 4" and 4~ the sets of positive and negative
roots, respectively. We write

1
ny = >0, n-=>,8-, and = 20
asat aEAt acsat

where ¢, is the root space corresponding to « € 4.
Let V, be the representation space of § with a dominant weight A4 and Mx

the set of the weights of V. V, has following decomposition into the weight
spaces

Va=2Valp), u=4-2mi(wai,

WEMp

where m;(u) are non-negative integers.

Let V, be another representation space with the decomposition
Vi=23Valp), v=4— 2 ni(v)ai,
VEM)

where 7;(») are non-negative integers. We consider the tensor product of the
representation spaces V, and V.

TrEOREM 1. V= VAQ® V) has a sequence of 8-sugspaces
(0)=V0CV1C o e CV,,C « e
such that i) UVi=V i) for each i=1,2, . . ., Viwi/ Vi is a representation space
)
with a dominant vector and iii) the highest weight of Vi«i/Vi is of the form

A+ v, vieEM\. If in particular V, is finite dimensional, then the sequence con-

sists of a finite number of terms.
Proof. We can decompose V into the following form
where V(w) = > Va(u)® Vilp) and Ii{w), i=1, ..., ], are non-negative inte-
ptv=w

gers. Put »y=24. Next, let V; be the 8-subspace of V generated by vA® v},
va€ Va(4), vie V,.(2), and consider the factor space V/Vi=W. Let W'=>)
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W), o=pu+v, v¥po or ux4, be the decomposition of W' into the weight
spaces. Let A+pi=A+2—>2mi(pv)a; be a maximal weight in A;={4+»;
veM ~ {»o}}. Itis clear that W'(4+ »,) is finite dimensional. Let {w!, . .., wh,}
be a base of W'(A+w»). Let U} be the g-subspace of W' generated by w:.
Then there is a 8-subspace V, of V such that U} = V;/ V.. Let U, be the subspace
of V/V. generated by w; (mod V;). Then there exists a subspace V3 of V such
that U; = V»/ V.. Similarly we get subspaces Vi, . . ., Vi+p, of V. In consider-
ing Av={4+v; ve M—{2 v1}} by the same manner, we get subspaces Viip, 1
C -+« CVisp+p,. By repeating this process we get a sequence of subspaces
of V.

(0)=V,cV,C « - CVpC -~
It is clear from the construction of the sequence that V;.;/ V; has a dominant
vector and its highest weight is of the form A+, veM, (i=1,2,...). To
see V*=UV; coincides with V, it is sufficient to show V(w)C V* for all w.
1

V(w) is spanned by following vectors,

ea_ae’ig e eiTvA®ega’e€'5’ v ei”r'vi
where a, 8, ..., 7 a', 8 ..., v are positive roots, e-,, -3, ..., €-v, €-u,
e-s, ..., e-v are non-zero vectors corresponding to «, 83, ..., 1, a, B\ ...,
v’ respectively, @, b, .. ., ¢, a', b, . . ., ¢’ are non-negative integers and A+ 4

—(aa+b3+ -+ +er+da+0'f+ - c'Y) =0

Case 1. w=A+p, veM,. It is clear that V* contains such vectors, i.e.
V(w)c VA

Case 2. 2— > li(w)ai% M, and there exists »;, €M, such that o> A+ uj,
Let »j,€ M) be the minimal weight such that 4 + »j, > w.

i) The case a'a’'+ -+ +c'v' = > ni(vj)ai. By assumption on j; we have
e-yey ey o v, =0for =a, B,..., 7. Therefore

ey (a®€% e v =€ €A, . . ., &),

From this we have V(w)c V.

il) The case j; =0.

e, e (vaQv)) =€%, - - - 1A QL.

Therefore V(w) < V"



214 HIROSHI KIMURA

iii) The case A+A—{(a—Da+bf+ -+ +cr+ada'+ -« +c'1r'}=A+vj,
We may assume that if w;=4+ v, V(er) < V* and that e%3'e%y - - - e£10a® s
%y« + v vhe V. From the equality,

PR Ol PPN I |
-2 ey AR ey - €S 0h

=el.ely - s e va®e%e ¢ - e,

we have V(o)C V™

iv) The general case. By i), iii) we can assume that e, - * + €2;vA® %o
e he V¥ if xa+ - - - zr is smaller than aa+ *++ +cr or 2'a’+ < - - 2'7!
is greater than a'a’+ +++ +c¢'y’. From the same equality as in iii) we get
V(w)c V%

Case 3. There exists no weight »;j= M, such that o> A+ ;. Let »;, be a
minimal weight such that 4+ 2;, > w.

i) The case a'a'+ -+ +c'v' = > ni(v;)ai. This case is treated similarly
as case 2, i)

ii) Thecase A+Ai—{(a—1Da+bp+ ++* +cr+aa'+ - +c'r'}=A+vj,
By case 1 and 2, V(w)cV”® for all wy= A+ vj,. Therefore the result comes
from the same equality as in case 2, iii).

iii) The general case. By use of i), ii) the proof is similar to case 2, iv).

Finally, if V, is finite dimensional, then

the length of the sequence =< >\dim V(A4+p) < o,
VEM)

This completes the proof of Theorem 1.

3. Ext!(Vy Va)

The factor spaces in Theorem 1 are not necessarily irreducible. Therefore
we need to extend Hattori's result to such a space.

THEOREM 2. Let V be a representation space of 3§ with a dominant vector

and 1 its highest weight. Then
HY, V)= {K, A= —-a

0, otherwise.

Proof. Let C be the Casimir operator of V. First we assume that C 0.
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Let v, be a dominant vector. We have Cu, = kv, kK. Therefore Cv = kv for
all ve V, so CV=V. It follows that H™@, V)=0,n=1,2, ..., similarly as
in the irreducible case. On the other hand if V is irreducible and H'(g, V) =0
it was shown by A. Hattori that 1 = — a; for some # and that H'(g, V) = K. But
his proof in [4] does not need the irreducibility. This completes the proof of
Theorem 2.

TueoreM 3. Let Vi, Vi be the representation spaces with dominant weights
A, A respectively, and assume that V. is finite dimensional. If there is no simple

root a; such that A+ ai= M\, we have
Extg( Vi, Va) =0.

Proof. Let VI be the contragredient representation space of V.. The set
of the weights of Vi is { — u; p€M,}. By Theorem 1 there exists the follow-
ing sequence of g-subspaces of Vi ® V,,

(0)=VOCV1C ce CVn= V;®VA»

such that V;.i/V; has a dominant vector for each ¢ and its highest weight is
of the form A—p, pn=M,. By our assumption, 4~ u% —a;, i=1,..., 1 for
any pg=M,. Hence we have H'(8, Viiy/V:) =0 by Theorem 2. By the half
exactness of H', we have H'(g, V¥® V,) =0. Namely

Ext};( Vy, VA) ;HI(Q, HomK(Vx, VA));HI(Q, V)T@ VA) =0.

4. The multiplicity of a weight

In this section we consider the multiplicity of weights of an irreducible
infinite dimensional representation with a dominant vector for 8 =8{(3, K) .Let
{a1, a=} be a fundamental system of the roots with respect to a Cartan sub-
algebra Y. Then § is spanned by H,, H., and the roots are =aj, =+ as,
+ (a;+ az). Let e, be a non-zero vector contained in the roct space 8, of a.
Let W be the Weyl group of 8. W is generated by S =S,, and S, =S.,, where
S,, are given by

Sei{p2) = u—2(pn, adei/(ai, ai), nEh

where 1 is the real vector space spanned by 4, and W={1, S;, S;, S$:Si, S5,
Si1S:S: = $:S1S:t.  Let {fi, f2} be the dual base to the base {2a1/(ai, a1), 2as/
(az, az)} of Do, ie,
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2ai, fi)]ai, ai) = dij.
Let 2 =ci/1+ c:f> be a highest weight, where the ¢; are the integers and
put 2, =g(A+p) —p for s= W, where p= —%— Ma=fi+r.. Then

>0

Ao =4--(c1+ Day

A, =24—(c,+ Dae

o =A—(c1+Dar— (c1+ 2+ 2)a,
Ass=A—(c2+Daz— (c1+ 2 +2)as
Aases, = A — (e1+ 2+ 2) (a1 + az).

Let U(8) be the universal enveloping algebra and /. the left ideal gener-
ated by n+ and H — A(H), Hel). We study the structure of U(8)/]Jx = Vi.

LemMA 4.1. Let V' be a 8-subspace of V. with a dominant vector and X
its highest weight. Then 2=1' and there exists =W such that X' = A,.

Proof. The first part is trivial. Let 7, and X» be the characters of Vi
and V), respectively. By the definition of the character ([8] Exposé 18)

ZA = z}\'
Therefore, by ([8] Exposé 19, Théorém 1), there is s W such that
a(A+p)=2+op.

This completes the proof of Lemma 4.1.

LemMma 4.2. For any A, such that A=>1,, there is one and only one sub-
space V).

Proof. If 2,=24, this is trivial. Therefore we may assume that 1> 1,.
(1) The case ¢;+1>0, c24+1>0. For any s W, o1, A.<i. For i, we
consider the following vectors,

— pf1+1
UAR; - e-¢v.

. Cat1
v}.gz = e-dz

— F1+Cz+2 Ci+1
Uhgysy = €-az €-q,

_ ci+€ar2 _c2¥1
v"S;Sz =€-q, € g,

. pC2+1 C1+Ca+2 C1+1
UASIstl = e—a, e—-a; e-al .

We can easily verify the relations
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e, =0,1=1,2.
Therefore
N+t =0,

so that there exists a subspace V), with the dominant vector v,,.

(2) The case ¢c:+1<0, e1+¢2+2>0. oW such that 1,<2 are S;, S:Si,
SiS$:S;. If 6=S; or $;S, we can construct V,, from v,, in (1). If ¢=S,S:S;,
in the expression of v,,;

Vg = €20 eE et et
_Ek C1+Ca+2-7 C1+C»+2 r

€-q, ~az € (arran

c1+c2+2—7=0 for k%0, because eZi{**’¢‘,! is a linear combination of

elements

e0—1+11 'eiﬁ.:z*z re_(¢1+¢2), r= 0 1, o« o ey 61+(:2+2.

And we can verify the relations
e, =0. =12

Therefore there exists a subspace V), with the dominant vector v,

(8) The case ¢1+1<0, ¢1+¢c2+2>0. The proof is similar to case (2).

(4) The case ¢;+1>0, ¢1+¢:+2=<0. There is only one element ¢=3S,
such that 2,<A. Therefore there is the subspace V,, with the dominant vector
Vg,

(5) The case c2+1>0, ¢;+2:+2=0. There is the subspace V,,, with the
dominant vector vyg,.

(6) The case ¢:1+1>0, 2 +1=0. A, <A foranyo=1, S: and As, = ds;s,, Asps,
= Ays,s,» Then there are the subspaces Vi, Vi, with the dominant vectors
Urgyr Urg,s, Tespectively.

(7) The case c+1>0, c;+1=0. The proof is similar to case (6).

(8) The case ¢;+1=<0, c2+1=0. There is no element s W such that
A <A

Next we shall show that V), is unique for i,<i. Write 1, =21 — > \mia;

where m; are non-negative integers and
vo=2 kel e el g4y where r < min(my, m.).

vs is a dominant vector if and only if
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€s,0a=0 (i)
€, Vs = 0. (li)

We can verify that the coefficients {k,} satisfying (i), (ii) are unique for o.
This completes the proof of Lemma 4.2.

Lemma 4.3, Let P(up) be the number of ways in which p may be partitioned
into a sum of positive roots. Let A= cifi+c:fs, where c; are integers, be the
highest weight of an infinite dimensional representation of 8 with a dominant
vector and my,(p) = dim Vi (), where V,, is an irreducible §-space. Then

P - #) = meo(ﬂ).
AG=N

Proof. In the decomposition to the weight spaces

U@/ = % Vi(n),

it is clear that
dim Vi(u) = P(1— u).

First we shall prove that any subspace V of V, is the union of subspaces with
dominant vectors. If V=7V),, then this is clear. So we assume that V= V,.
Then

V=3)VAV(p) and VN Vi) =0.
'S

Put 1V=r§_}(},’xo. We consider V/'V=V". Let » be the maximal weight of V'
and v(»)(mod 'V) a non-zero vector belonging to ». Let V! be the subspace

of V' generated by v(p)(mod 'V). The characters of V) and V' are equal.
Therefore there is c= W such that » =4,. Write

1 my—-1-7r mz2~ .
e, (2s) = 2 hreTa T e T € oy ey 7 S min(my — 1, my),

e, ¥(Ae) = D hiels " e el (aihay 7 = min(my, ms—1).

Then h; = — h} for all ». On the other hand if 1, > A, then by the construction
of v,, we have V,, D> Vi.. Therefore

1V = U Vlm
Ao

where any 4, is a maximal weight in the set {1:; V. c V).

(1) The case ¢:+1<0, ¢1+¢.+2>0. In this case 1> 15> Aqs and A>
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Ayss > Ags.  When 'V = Vi, Vags, or Vi, there is no element v(1.). If
'V = Vis, U Vas,s,» then the vectors of 'V belonging to the weights s, + ai,
Assi+ s are e"i efiftielifl, oS rctt g1t respectively. From this we obtain
that k; % — h’ for some r if hy, hi are not zero for all . Therefore v(1s) = 21,
and V="V.

(2) The case ¢;+1<0, ci+¢2+2>0. The proof is similar to case (1).

(3) The case ¢i+1>0, ci+¢:+2<0. 2, such that 4,<A is 45, Therefore
the result is trivial.

(4) The case ¢c;+1>0, c1+c:+2<0. The proof is similar toithe case (3).

(5) The case ¢;+1>0, c:+1=0. 2>215,>Ass. If 'V=1V,, then

ealv(ls,sx) =0.

Therefore v(Ags,) € Vas,s,

(6) The case ¢;+1>0, ¢c;+1=0. The proof is similar to case (5).

(7) The case ¢1+1=<0,c:+1=<0. There is no 2 such that ., <2. Therefore
V» is a simple g-module.

Now we consider a composition series, and we obtain

P(/l - u) =x§°m;o(u).

This completes the proof of Lemma 4.3.

TueoreM 3. Let g be 8((3, K). We assume that o(A+ p) 2 A+ p unless o = 1.
Then we have

m(u) =AZEA Sg(a) P(ds — p).

Proof. (1) The case ¢c1+1>0, c2+1>0. This is Kostant’s formula.
(2) The other case. We may easily examine that

R Sg(a)={1, =1

AZAoZ=At
0, tx1
By these relations and Lemma 4.3, we have

(1)

Sy ma(p) > Sglo)
AZAT A=hg=hT
3 Sg(a)xz_.l_mh(u)

AZAg

X;A Sg(a) P(Ae — u1).
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This completes the proof of Theorem 3.
Finally we consider the case that there is ¢(+1)e W such that s(1+p) =
A+p. By Lemma 4.3,

my(p) = P(A—p) — Agomxc(u)-

(1) The case ¢1+1>0, c1+c:+2=0.

m(u) = P(A — pu) — P(Rs, ~ ).
(2) The case c2+1>0, c1+e:+2=0.

ma(u) = P(A— p1) = P(Rg, — 12).
(3) The case ¢1+1>0, 2+ 1=0.

m(u) = P(X — u) — P(As, — p).
(4) The case ¢;+1=0, c;+1>0.

mi(p) = P(A— p) — P(Re, — 22).
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