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Introduction. Let /' be a maximal order over a complete discrete rank one

valuation ring R in a central simple algebra over the quotient field of R. The

purpose of this paper is to determine necessary and sufficient conditions for Γ

to be equivalent to a crossed product over a tamely ramified extension of R.

It is a classical result that every central simple algebra over a field k is

equivalent to a crossed product over a Galois extension of k. Furthermore, it

has been proved by Auslander and Goldman in [2] that every central separable

algebra over a local ring is equivalent to a crossed product over an unramified

extension.

Let R denote a discrete rank one valuation ring. The set of maximal

orders M'(R) over R forms a subset of the set of hereditary orders Hf{R) over

R (see [3]). An equivalence relation on the set of hereditary orders has been

defined in [2]. Namely, if Λi and Λ2 are in H'{R), then Λι is said to be equi-

valent to AΊ if there exist finitely generated free /^-modules Ei and E > and an

/?-algebra isomorphism

β, E2).

It is established in [2] that an hereditary order which is equivalent to a maxi-

mal order is itself a maximal order.

The author has proved in [10] that every crossed product Δ(f% S, G) over

a tamely ramified extension S of a discrete rank one valuation ring R is an

hereditary order, and that J(f, S, G) is a maximal order if and only if the

order of the conductor group H/ is one (see Section 1 for the definition of H/)>

She has also exhibited in this paper an example of a non-maximal hereditary

order which is not equivalent to a crossed product over a tamely ramified

extension. Now let Γ be a maximal order over a complete discrete rank one

valuation ring R in a central simple algebra Σ over the quotient field of R.
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The main theorem of this paper states that a necessary and sufficient condition

for Γ to be equivalent to a crossed product over a tamely ramified extension

of R is the existence of a splitting field K of Σ for which

(1) the integral closure S of R in K is a tamely ramified extension of R

(2) / is in the image of the natural map Z2(G, ί/(S))-*Z2(G, UHO) where

/ is a 2-cocycle with the property that Aif, Ky G) is equivalent to Σ.

At the end of the paper we present an example of a maximal order which

is not equivalent to a crossed product over a tamely ramified extension.

The following notation shall be in use throughout the paper. If R is a

local ring, then R shall denote its residue class field. The multiplicative group

of units of a ring R shall be denoted by U(R). Unless otherwise stated, R shall

always denote a complete discrete rank one valuation ring, S the integral

closure of R in a finite Galois extension of the quotient field of R, and G the

Galois group of the quotient field extension. Since R is complete, S is also a

complete discrete rank one valuation ring. The inertia group and the inertia

ring of the extension S of R shall be denoted by Gi ana U respectively and

the image of a 2-cocycle / under the natural map Z2{G, U(S)) -*Z2(G, U(S))

shall be denoted by /. For the definitions of crossed product, hereditary order,

and tamely ramified extension we refer the reader to [10]. For convenience

we recall that when the extension S of R is a tamely ramified extension of

complete discrete rank one valuation rings then the inertia group Gi is cyclic,

and the eth roots of unity are present in the inertia ring U, where e is the

order of Gi.

1. Cohomology and tame ramification. A crossed product over a tamely

ramified extension is a maximal order if and only if its conductor group is

trivial (see [10]). Therefore this section is devoted to the study of cohomology

and the conductor group in the tamely ramified case.

DEFINITION Let S be a tamely ramified extension of a complete discrete

rank one valuation ring R. For each cohomology class [/] we define four

subgroups of the cyclic group Gi:

(1) Ω/ is the maximal subgroup of Gi such that the image of [/] under

the restriction map H\G, U(S)) ->H'z(Ω/t U\S)) is trivial,

(2) 7/ is the maximal subgroup of Gi such that the image of [/] under

the restriction map //2(G, U{E))->H2(Γf, U(S)) is trivial,



CROSSED PRODUCTS AND MAXIMAL ORDERS 167

(3) // is the maximal subgroup of d with the property that [/] is in the

image of the inflation map H2(G/J/y U(S)) -*H2(G, U(S)),

(4) Ή/ is the maximal subgroup of Gi with the property that Γ/] is in the

image of the inflation map H2(G/H/, U(S))-*H2(G, U(S)).

The group H/ was named the conductor group in [101 An element / of

Z2(G, U(S)) is said to be properly normalized if / is trivial on Ω/x Ω/. Simi-

larly, an element / i n Z2{G, U(S)) is said to be properly normalized if / is

trivial on Γ/X/>. The purpose of this section is to establish the equalities

£ / = / / and // = #/.

PROPOSITION 1.1. Let S be a tamely ramified extension of a complete discrete

rank one valuation ring R, and f an element of Z2(G, U(S)). Then J2/ = Γ/,

and f is cohomologous to a properly normalized 2-cocycle.

Proof. Since the image of [/] under the restriction map H2iG, U(S)) -+

H2(Ω/> U(S)) is trivial, certainly the image of [/] under the map H2(Gf U(S))

-*H\Ωf, U(S)) is trivial. Therefore ΩfQΓf.

Let U denote the inertia ring of S over R. Since S is a tamely ramified

extension of R we know that ~Ό -S. To show that Γ/ c Ω/ we shall make use

of the fact that Γ/ is a cyclic group to first observe that the map Ψ : H2(Γ/y

U{S))-*H2(Γf, U(U)) induced by the natural map S-+S = (J is a monomorphism.

For let [/Γ] be in the kernel of Ψ, and let u be an element of U{T) such that

[/rl corresponds to u mod N(U(S)) under the canonical identification H2{Γ/,

U(S)) = UiT)/N(U(S)) where T is the integral closure of R in the fixed field

of />, and N(U(S)) denotes the norm of'ϋ(S) in T. Since $ΠΓ/r]) is the

identity we know that (ΰ) (cn) = ϊ for some element c in UW) where n is

the order of 7/ using the identification H\Γ/, UW)) = Uw)/(UW))n. There-

fore the separable polynomial P(X) =Xn~l/ΰ in UίXl has a root in Z7. By

HenseΓs lemma it follows that jP(X) —Xn -1/u has a solution, say c, in U.

Therefore N(c) ~cn and ucn = ly and hence / Γ is cohomologus to the trivial 2-

cocycle and Ψ is a monomorphism.

Now letting fΓ denote the restriction of / to Γ/X J > it follows from the

definition of Γ/ together with the above observation that fΓ is cohomologous

to the trivial 2-cocycle in Z2{Γ/t U(S)). Therefore there exists a map φ : />

->ί/(S) such that fΓ(σ, r) = ό(α)φn{τ)/φ(στ) for α and τ in Γ/. Extend φ to
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G by defining ψip) == 1 if p is not in />. Then the element g of Z\G> U(S))

defined by giσ, r) =/(<;, τ)φiστ)/φiσ)φ°iτ) is cohomologous to / and has the

property that g(σ, r) = 1 when σ and τ are in Γf. Thus Γ/EΩ/ and this con-

cludes the proof.

In order to establish that / / = # / we next prove three preliminary lemmas

in which it is always assumed that S is a tamely ramified extension of a com-

plete discrete rank one valuation ring R.

LEMMA 1.2. For each element f of Z2(G, UiS)) there exists an element g

of Z2(G, UiS)) such thai g is cohomologous to f, whenever p is in Hf it is true

that giτ, p) = 1, and giτ, p) =1 if τ or p is in Hf.

Proof. By Prop. 1.1 we may as well assume that / is a properly normali-

zed 2-cocycle. Then / is also properly normalized. From the definition of Hf

we know by Prop. 2.3 of Qθ] that there exists a map Φ - G->U(S) such that

the 2-cocycle g in H2{G} UiS)) defined by g(τ, a) =/(r, σ)φ{τ)ψ{o)lΦ(τa) has

the property that g(τ, a) = 1 if τ or a is in ///, and that the restriction of φ

to Hf takes values in the multiplicative group of hth roots of unity where h is

the order of Hf.

We shall use g to produce the definition of the desired 2-cocycle g. Let

G= UτjHf be a disjoint left coset decomposition of G relative to the subgroup

Hf, and let a now denote a generator of Hf. If <ρ(σ) is the hth root of unity

V, define φ(σ) to be -η where -η is an htH root of unity in U(S) whose existence

is guaranteed by the assumption that the extension S of R is a tamely ramified

extension of complete local rings and HenseΓs lemma.

For each J define φ(τj) and φ(τjσ) by choosing representatives of ψ(τj) and

φ(τja) in U(S) such that ^(ry, σ) = l where g(τj, σ) is defined by g(τj, a) =•

fiτj, ύ)φ{τj)φ~3(σ)lφ{τjσ). We next define φiτjσ2) to be a representative of

φiτjσ2) for which g{ τjσ, a)-\ where g(τjσ, a)-f(τjσ, σ) φiτjσ) φX:>σ (σ)/φ(τjσ2).

Proceeding in this way we finally define φiτjσ*1'1) by choosing a representative

of φiτjβ*1-1) for which g(τjoH~2, a) = 1 where g{r)oh~2, a)^f{τjah'2f o)φ{τjσh-2)

φX3°h~\σ)!φiτjσh'1). Thus we have defined a map φ G-*U(S). It remains to

verify that the 2-cocycle g cohomologous to / by φ satisfies the conclusion of

the lemma. In order to do this we first check that the above definitions imply
A \ σ) = l. Now
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\ a) φ(τ

= Π / W . σ)φ^'{a)lng{τjσ\ a)
t=0 t=0

= 1

since the htH root of unity φ(σ) is present in the inertia ring and hence is left

fixed by σ.

Therefore g(τ> a) = 1 for all T in G where a is a generator of Hf. We

verify finally that g(τ, a%) = 1 for l<i<h. From the associativity relation on

g together with the above, we have that g(τ, a) = g(τσt"1

f σ)g(τ, at~1)/gx(σ~1, a)

= 1 for l< i 11 and therefore g(τ, a) = 1 for all r in G and p in Hf.

As in Prop. 2.1 of CLOD, for each element r of G we let n(τ) be the integer

defined modulo e by the relation τaτ~ι - σn{τ) where a is a generator of Gι and

e is the order of G/. With this definition it is easy to check that τpτ~ι - pn{~]

for each p in G/.

LEMMA 1.3. Assume the notation of Lemma 1.2. Then there exists a 2-

cocycle g in Z2(G, U(S)) cohomologous to g such that g(τ, p) =g(pn^\ τ) = 1

for each element o in Hf and τ in G.

Proof. Let p be in Hf and τ in G. Denote by K the quotient field of S

and by F the fixed field of {pn(τ)}. We first show that NK/F(g(ρMτ\ τ)) = 1.

By the assumption on g and its associativity property we have that^(pM(τ), τpι)

= g(pn{"\ τ) and g(pin{τ\ r) = g(pn{"\ τt1)g^x\p{i'1)n{'\ τ) for all i. These

equalities imply that g(pimτ\ τ) = Ug?iniτ)ίpn{x), τ) for l<j<b, from which
t = 0

it follows that Π * p ' n ( τ V ( τ ) , r) = g(pbmτ\ τ) =g{l, τ) =1 where £ is the order

of {pnlτ)}. Ύhus°NKJF(g(pn{x), τ)) = 1 .

Since NK/F(g(pn{Ί:), r)) = 1 it follows from Th. 3 p. 171 of [11] and the fact

that K is a tamely ramified inertial extension of F that g(ρn{x\ r)=jypnίτ)?/^ for

some y in U{S) and £*Λ root of unity ξ. And ? = 1 since g\p"^\ τ) = ϊ . Now

we may construct £. Let G = U /7/ry be a disjoint coset decomposition of G

relative to Hf. Fix a generator <; of Hf. For each r in G define φ(τ) = 1/ y

where τ is in fl>r/ and y is an element of U{S) for which g(σn{Xj\ τj) =y"n{"3)/y.

Now define £ by £(r, |9) =<§r(r, β)φ(τ)φτ(β)/φ(τβ). It is easy to verify that g

has the desired properties.
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LEMMA 1.4. Assume the notation of Lemma 1.3. Then there exists a 2-

cocycle q in Z2{G, U(S)) cohomologous to g and satisfying q(τt a) = 1 whenever

τ or σ is in Hf.

Proof. Let G— U H/τj be a disjoint right coset decomposition of G relative

to the subgroup Hf. Define ψ : G-+U(S) by φ(στj) = l/gio, τj) where a is in

Hf. Define q : GxG-*U(S) by q(τ, μ)=g(τ, p)φ(τσ)/φ(τ)φτ(p). Let r = ωτj

be any element of G where ω is in Hf, and let a be any element of Hf.

Then from the definition of q we obtain the equality q(τ, σ) = q(ωτjt a) =

giωτj, σ)g(ω, τj)lg(ωσn{Xύ\ τj). By the associativity relation satisfied by the

2-cocycle g we have that g(ωan['j), τj)g(ω9 an{X3)) = g(ω, σn(X:>)τj)gm{σnlτ>\ TJ)

and together with the assumption on g this implies that g{ωσn{τ3)

f τj) = g(ω,

τjΰ). Since ^(ωry, σ)g(ω, τj) = g(ω, τjσ)g°(τj, a) = g(ω, τja) we conclude that

<?(r, a) = 1 .

On the other hand q(a> τ) = q(σ, ωτj) = g(σ, ωτj)g°(ω, τj)/g(σω, τj). But

g(o, ωτj)g"(ω, τj) =g(σω, τj)g(σ} ω) =g(aω, τj). Therefore q{σy τ) = 1, and this

concludes the proof.

PROPOSITION 1.5. Let S be a tamely ramified extension of a complete discrete

rank one valuation ring R, and f an element of Z2(G, U(S)). Then Hf^Jf.

Proof. By the definition of // there exists a 2-cocycle g in Z2(G, U(S))

such that g is cohomologous to / and g(σ, τ) = 1 if a or τ is in //. If g is

cohomologous to / by φ : G^U(S), then g is cohomologous to / by φ : G->

U(S). The fact that g(σ, τ) = 1 if a or r is in // implies that JfQHf.

To obtain the inclusion HfCiJf we apply the preceding lemmas to /, and so

obtain a 2-cocycle # in Z2(G, U(S)) cohomologous to / and satisfying q(σ, τ)

-1 whenever a or τ is in Hf. It now follows from the definition of // that

2. Maximal orders. In order to establish necessary and sufficient conditions

for a maximal order to be equivalent to a crossed product over a tamely rami-

fied extension in the complete case, the following lemma shall be useful.

LEMMA 2.1. Let Σι and Σ2 be equivalent central simple k-algebras, where k

is the quotient field of a discrete rank one valuation ring R. If Γ\ and F2 are

maximal orders in 2Ί and Σ2 respectively, then Λ is equivalent to Γ2.
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Proof. Since 2Ί and Σ2 are equivalent, there exist finitely generated k-

modules Vx and V2 such that

litekHomkiVi, V1) = 22®knomk(V2, V2).

Let Ωι and Ω2 be maximal orders in Hoπu( VΊ, Vx) and Honu( V2% V2) respectively.

It is a classical result that Ωi and Ω2 are of the form .G^Hom^i i , Ei) and

Ω2 - HomR(E2, Ei) where Ei and E2 are finitely generated free i?-submodules of

Vi and V2 respectively. Now Ωι and Ω2 are central separable i?-algebras, and

therefore it follows from Prop. 8.6 of [2] that Γi® RQI and Γ2®RQ2 are maximal

orders. Since all maximal orders in a central simple algebra over a discrete

rank one valuation ring are isomorphic (see Prop. 3.5 of [3]) we conclude that

1 = Γ2®Ω2. Therefore 7\ is equivalent to Γ2.

PROPOSITION 2.2. Let S be α tamely ramified extension of a complete discrete

rank one valuation ring R, and f an element of Z2{G, U(S)). Then every

maximal order in the central simple k-algebra Δ(ft K, G) is equivalent to a

crossed product over a tamely ramified extension of R.

Proof. By Lemma 1.4 we know that there exists a 2-cocycle q in Z2(G,

U(S)) such that q is cohomologous to / and q(τ, a) = 1 whenever τ or σ is in

The subgroup H/ is a normal subgroup of G, so that the fixed field L of

Hf is a Galois extension of k with Galois group G/H/. Let T denote the

integral closure of R in L and observe that T is a tamely ramified extension

of R. To show that q takes values in U(T) we shall make use of the following

definition. For each element τ of G let m(τ) be the integer defined modulo e

by the relation τ'1ωτ = ωmτ) where ω is a generator of the inertia group Gι

and e is the order of Gι. We proceed to show that q°{τ, p) =<?(r, p) for all a

in i// and all r and p in G. By the associativity property of q we have the

equalities

q{σ, τp)qn(τ, β) = q(στ, p)q(ΰ, τ)

q(τamx\ p)q(τ, am^) = q(τ, σmz)p)qτ(am{τ\ μ)

from which it follows that q"(τ, p)=q(στf p) and also q{τomτ\ p) = q(τ9 σmx)p).

Therefore q(aτ, p) = q{τσmx\ p) = q(τt pσmτ)mp)). And the equality

q(τ, pσmτ)m{?))q"(p, a

m^)m{?)) = q(τp, σmx)m^)q(τ, p)
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implies that qn(τ, p) = q(τ, p). Hence #(r, p) is in the fixed field of H/f and

so q takes values in U(T).

We may now consider the crossed product Δ(g, T, G/H/) where g is the

preimage of q under the inflation map Z2(G/H/, U(T))-+Z2(Gy ί/(S)). It fol-

lows from the definition of the conductor group H/ and the second Noether

isomorphism theorem, that the conductor group Hg is trivial. Therefore we

conclude from Theorem 2.5 of [10] that Δ(g, T, G/Hf) is a maximal order in

Δ(g, L% G/H/). Now the central simple ^-algebra Jig, L, G/H/) is equivalent

to Δ(q, K, G) (see [1]). If Γ denotes a maximal order in d(q, K, G) it fol-

lows from the preceding lemma that Γ is equivalent to the crossed product

Jig, T, G/H/).

Thus we have stablished the following main theorem.

THEOREM 2.3. Let Γ be a maximal order over a complete discrete rank one

valuation ring R in a central simple algebra Σ. For Γ to be equivalent to a

crossed product over a tamely ramified extension of R it is necessary and sufficient

that there exists a splitting field K of Σ such that

(1) the integral closure S of R in K is a tamely ramified extension of R

(2) / is in the image of the natural map Z2(G, £7(S))-»Z2(G, U(K)) where

f is a 2cocycle for which Δ{f, K, G) is equivalent to Σ.

COROLLARY 2.4. Let Σ be a central simple algebra over the quotient field

k of a complete discrete rank one valuation ring R. If Σ has a splitting field

K such that the integral closure S of R in K is a tamely ramified inertial

extension of R, then each maximal order Γ in Σ is equivalent to a crossed pro-

duct over a tamely ramified extension o} R.

Proof We shall prove first that if an extension S of R is a tamely ramified

inertial extension of complete discrete rank one valuation rings, then the natural

map H2{G, U(S))-*H2(G, U(K)) is an epimorphism, where K denotes the

quotient field of S, and G is the Galois group of K over k. Let / be an element

of Z2(G, U(K)) and let [/] correspond to c mod N (U(K)) under the canonical

identification H2(Gy U{K)) = U{k))/N(U{K)) which holds because G i^ a cyclic

group. As usual, N denotes norm. Next write c in the form c = up* where u

is in U(R), x is an integer, and p denotes the prime element of R. Let e be

the order of G. Because of the assumption on S and R we know that for a
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proper choice of the prime element P of S it is true that Pe = vp for some

element v in U{R), and σ(P) =• ζP, where ξ is a primitive eth root of unity in

R and a is a generator of G (see Prop. 3.1 of [10]). Therefore N(P) = ±vp9

and so the element b = ( ± vp)~x is also a norm. Hence c£ is an element of U{R)

which is congruent to c mod N{U{K))} and from this it follows that the map

H\G, U(S))-*H2(G, U(K)) is an epimorphism.

Now we may prove the corollary. Since Σ is split by K we know that Σ

is equivalent to a crossed product Δ(f, K> G) for some element [/] in H2(Gt

U(K)), (see [1]). By the first part of the proof we may assume that/ is in

the image of the natural map Z2(G, U(S)) -> Z2(G, U(K)). It now follows from

the theorem that a maximal order Γ in Σ is equivalent to a crossed product

over a tamely ramified extension of R,

EXAMPLE 2.5. We present an example to show that a maximal order over

a discrete rank one valuation ring need not be equivalent to a crossed product

over a tamely ramified extension.

Consider the ring of polynomials ZίXl with coefficients in the integers Z.

Let R = ZZXlv) be the localization of ZίXl at the minimal prime ideal generated

by the element 2. Let K = k( V 2 ) where k denotes the quotient field of R.

Then the integral closure S of R in K is S = Rί\J 2 ] and the Galois group G

of K over ft is of order two. Note that S is not a tamely ramified extension

of R since the field characteristic of R and the ramification index of S over R

are both equal to two. Consider the element [/] of H2(G, U(S)) which corre-

sponds to X mod N(U(S)) under the canonical identification H2(G, U(S))~

U(R)/N{U(S))> and the crossed product Δ = Δ(ft S, G).

It may be verified by computation that Δ\l 2 is the unique maximal two-

sided ideal of Δ. Since Δy/ 2 is a free left J-module it follows from Theorems

2.2 and 2.3 of [3] that J is a maximal order.

Suppose now that Δ(f, S, G) is equivalent to a crossed product Δ(g, T, H).

We shall prove that T cannot be a tamely ramified extension of R. The defini-

tion of equivalence implies that there exist finitely generated free i?-modules

Ex and E2 such that Δ(f, S, G)®ΛHomΛί£Ί, EJ^Δig, T, H) ®R HomΛ(fi, E-z).

Let rad T= (A). Then the above isomorphism must map yj 2 into An where

u is a unit in Δ(g, T> # ) ΘHomί/ϊ^ E%). Therefore A2 = 2 υ for some element

z; in U(T): Hence the ramification,index of T over R is two, and so T cannot
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be a tamely ramified extension of R.
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