CROSSED PRODUCTS AND MAXIMAL ORDERS
SUSAN WILLIAMSON

Introduction. Let 7" be a maximal order over a complete discrete rank one
valuation ring R in a central simple algebra over the quotient field of . The
purpose of this paper is to determine necessary and sufficient conditions for I
to be equivalent to a crossed product over a tamely ramified extension of R.

It is a classical result that every central simple algebra cver a field % is
equivalent to a crossed product over a Galois extension of k. Furthermore, it
has been proved by Auslander and Goldman in [2] that every central separable
algebra over a local ring is equivalent to a crossed product over an unramified
extension.

Let R denote a discrete rank one valuation ring. The set of maximal
orders M'(R) over R forms a subset of the set of hereditary orders H'(R) over
R (see [3]). An equivalence relation on the set of hereditary orders has been
defined in [2]. Namely, if 4; and 4. are in H'(R), then . is said to be equi-
valent to A, if there exist finitely generated free R-modules E; and E: and an

R-algebra isomorphism
A1Qr HomR(El, EN=4HQ=z HomR(Ez, Ey).

It is established in [2] that an hereditary order which is equivalent to a maxi-
mal order is itself a maximal order.

The author has proved in [10] that every crossed product 4(f, S, G) over
a tamely ramified extension S of a discrete rank one valuation ring R is an
hereditary order, and that 4(f, S, G) is a maximal order if and only if the
order of the conductor group Hy is one (see Section 1 for the definition of Hy).
She has also exhibited in this paper an example of a non-maximal hereditary
order which is not equivalent to a crossed product over a tamely ramified
extension. Now let I" be a maximal order over a complete discrete rank one

valuation ring R in a central simple algebra X over the quotient field of R.
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The main theorem of this paper states that a necessary and sufficient condition
for I to be equivalent to a crossed product over a tamely ramified extension
of R is the existence of a splitting field K of X for which

(1) the integral closure S of R in K is a tamely ramified extension of R

(2) f is in the image of the natural map Z*(G, U(S)) - Z* G, U(K)) where
f is a 2-cocycle with the property that 4(f, K, G) is equivalent to 2.

At the end of the paper we present an example of a maximal order which
is not equivalent to a crossed product over a tamely ramified extension.

The following notation shall be in use throughout the paper. If Ris a
local ring, then R shall denote its residue class field. The multiplicative group
of units of a ring R shall be denoted by U(R). Unless otherwise stated, R shall
always denote a complete discrete rank one valuation ring, S the integral
closure of R in a finite Galois extension of the quotient field of R, and G the
Galois group of the quotient field extension. Since R is complete, S is also a
complete discrete rank one valuation ring. The inertia group and the inertia
ring of the extension S of R shall be denoted by G, ana U respectively; and
the image of a 2-cocycle f under the natural map Z*(G, U(S)) - Z*G, U(S))
shall be denoted by /. For the definitions of crossed product, hereditary order,
and tamely ramified extension we refer the reader to [10]. For convenience
we recall that when the extension S of R is a tamely ramified extension of
complete discrete rank one valuation rings then the inertia group G; is cyclic,
and the ¢ roots of unity are present in the inertia ring U, where e is the
order of G;.

1. Cohomology and tame ramification. A crossed product over a tamely
ramified extension is a maximal order if and only if its conductor group is
trivial (see [10]). Therefore this section is devoted to the study of cohomology

and the conductor group in the tamely ramified case.

DeriniTioNn Let S be a tamely ramified extension of a complete discrete
rank one valuation ring R. For each cohomology class [f1 we define four
subgroups of the cyclic group G;:

(1) Qr is the maximal subgroup of G, such that the image of [f] under
the restriction map H*(G, U(S)) - H*(2y, UiS)) is trivial,

(2) I'r is the maximal subgroup of G, such that the image of [ ] under
the restriction map H*(G, U(S)) - H*(I's, U(S)) is trivial,
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(3) Jr is the maximal subgroup of G, with the property that [ /] is in the
image of the inflation map H*(G/Js, U(S)) > HXG, U(S)),

(4) Hy is the maximal subgroup of G, with the property that [ /] is in the
image of the inflation map H*(G/Hy, U(S)) - HXG, US)).

The group Hy was named the conductor group in [10]. An element f of
Z*G, U(S)) is said to be properly normalized if f is trivial on 25 x Q. Simi-
larly, an element f in Z*(G. U(S)) is said to be properly normalized if f is
trivial on I'sxIy. The purpose of this section is to establish the equalities
Qr=Tr and Jr= Hy.

Prorosition 1.1. Let S be a tamely ramified extension of a complete discrete
rank one valuation ring R, and f an element of Z*(G, U(S)). Then 2s=1Ty,

and f is cohomologous to a properly normalized 2-cocycle.

Proof. Since the image of [ /] under the restriction map H*(G, U(S)) —
H*(Qf, U(S)) is trivial, certainly the image of [7] under the map H*(G, U(S))
- H*(Qf, US)) is trivial. Therefore 2 < I'y.

Let U denote the inertia ring of S over R. Since S is a tamely ramified
extension of R we know that U=3S. To show that I'y C 2 we shall make use
of the fact that I's is a cyclic group to first observe that the map ¥ : H*(Iy,
U(S)) - H* Ty, UU)) induced by the natural map S->S = U is a monomorphism.
For let [ fr] be in the kernel of ¥, and let % be an element of {/(T) such that
[ fr] corresponds to # mod N(U(S)) under the canonical identification H*(Iy,
U(S)) =UT)/N(U(S)) where T is the integral closure of R in the fixed field
of I'y, and N(U(S)) denotes the norm of U(S) in T. Since ¥([fr]) is the
identity we know that (#%) (¢”) =1 for some element ¢ in U(U) where n is
the order of I'r using the identification H*(I'r, U\U)) = U(D)/(U\T))". There-
fore the separable polynomial P(X) = X" ~1/% in ULX] has a root in U. By
Hensel's lemma it follows that P(X) =X "—1/& has a solution, say ¢, in U.
Therefore N(c¢) =c¢" and uc” =1, and hence fr is cohomologus to the trivial 2-
cocycle and ¥ is a monomorphism.

Now letting fr denote the restriction of f to I'rx I’y it follows from the
definition of 7'y together with the above observation that fr is cohomologous
‘to the trivial 2-cocycle in Z*(I'y, U(S)). Therefore there exists a map ¢ : I¥
- U(S) such that fr(s, ) =0¢(a)¢"(t)/¢(sr) for ¢ and 7 in I'y. Extend ¢ to
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G by defining ¢(p) =1 if p is not in I'y. Then the element g of Z*(G, U(S))
defined by glo. t) = f (g, v)¢(ar)/p(a)¢"(x) is cohomologous to f and has the
property that g(s, r) =1 when o and ¢ are in I'y. Thus I’y <82, and this con-
cludes the proof.

In order to establish that /r= Hy we next prove three preliminary lemmas
in which it is always assumed that S is a tamely ramified extension of a com-

plete discrete rank one valuation ring R.

Lemma 1.2, For each element f of ZX(G, U(S)) there exists an element g
of ZG, U(S)) such thai g is cohomologous to f, whenever p is in Hy it is true
that g(t, p) =1, and g(r, p) =1 if v or p is in Hy.

Proof. By Prop. 1.1 we may as well assume that f is a properly normali-
zed 2-cocycle. Then f is also properly normalized. From the definition of Hy
we know by Prop. 2.3 of [10] that there exists a map ¢ : G- U(S) such that
the 2-cocycle & in H*(G, U(S)) defined by g(z, 0) =f(x, 0)¢(z)p (0)/¢(rs) has
the property that g(«, ¢) =1 if ¢ or ¢ is in Hy, and that the restriction of @
to Hy takes values in the multiplicative group of 1" roots of unity where his
the order of Hy.

We shall use & to produce the definition of the desired 2-cocycle g. Let
G = UtjHy be a disjoint left coset decomposition of G relative to the subgroup
Hy, and let ¢ now denote a generator of Hy. If (o) is the A root of unity
%, define ¢(s) to be 4 where 7 is an A™ root of unity in U(S) whose existence
is guaranteed by the assumption that the extension S of R is a tamely ramified
extension of complete local rings and Hensel’s lemma.

For each j define ¢(z;) and ¢(rjo) by choosing representatives of ¢(r;) and
#(tje) in U(S) such that g(zj, ¢) =1 where g(rj, o) is defined by g(rj, ¢) =
f(zj, ple)g(a)/¢(rjs). We next define ¢(rjo’) to be a representative of
#(7jo®) for which g(rjo, o) =1 where g(rjo, o) = f(tja, o) plt;0)9"° (0)/p(rid®).
Proceeding in this way we finally define ¢(¢;5""") by choosing a representative
of $(r;jd" ™) for which g(1;6"% o) =1 where g{1;0" ™ o) = f(1;8"% o)op(rjd"™?)
¢1]°h—2(d)/¢(‘l‘jo‘h—1). Thus we have defined a map ¢ : G- U(S). It remains to
verify that the 2-cocycle g cohomologous to f by ¢ satisfies the conclusion of

the lemma. In order to do this we first check that the above definitions imply
that g{z;6"", ¢) =1. Now
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g(cid™ o) = flejd™ ™ o) g(eid" ™) ™" () /(1))
-1 . ; h—2 .
=hgf(rja', a) e (a)/gg(rja'. a)
= f(zj, )7 (a)]"
=1

since the A root of unity ¢(s) is present in the inertia ring and hence is left
fixed by o.

Therefore g(r, ¢) =1 for all r in G where ¢ is a generator of Hy. We
verify finally that g(r, /) =1 for 1<i<h. From the associativity relation on
g together with the above, we have that g(z, o') = g(td’™, a)g(z, ™) /g (&7, o)
=1 for 1<i< h and therefore g(r, ¢) =1 for all - in G and p in Hy.

As in Prop. 2.1 of [10], for each element r of G we let n(t) be the integer
defined modulo e by the relation ror ™' = ¢™* where ¢ is a generator of G; and
¢ is the order of G,. With this definition it is easy to check that rpr™'=p™"

for each p in G;.

Lemma 1.3, Assume the notation of Lemma 1.2. Then there exists a 2-
cocycle & in Z*(G, U(S)) cohomologous to g such that §(r, p) = 5(p™™, v) =1

for each element o in Hy and v in G.

Proof. Let p be in Hy and = in G. Denote by K the quotient field of S
and by F the fixed field of {p™™}. We first show that Ngwx(g(p™®, ¢)) =1
By the assumption on g and its associativity property we have that g(o™", to’)
=g(p MO o) for all . These

) -1
equalities imply that g(p’™®, ) =1 g"*" (™™, ¢) for 1<j<b, from which
i=0

7n(<) n(T)

, T) and g(piﬂ(‘t)’ T) =g(p , Tpi—l)gp

it follows that :i__l:gpi"(:)(p"(”, ) =g(o"™™, ) =g(1, ) =1 where b is the order
of {p™™}. Thus Ngr(g(o™®, ) =1.

Since Nir(g(o™™, ©)) =1 it follows from Th. 3 p. 171 of [11] and the fact
that K is a tamely ramified inertial extension of F that g(p™®, t)=y*"""¢/y for
some y in 7/(S) and 4" root of unity £. And £=1 since g(p*, r) =1. Now
we may construct 2. Let G= UHjyr; be a disjoint coset decomposition of G
relative to Hy. Fix a generator ¢ of Hy. For each r in G define ¢(r) =1/y
where t is in Hyr; and y is an element of U(S) for which g(¢""?, t;) =3"" /3.
Now define & by &(r, B) =g(r, B) ¢plt)gp (3)/¢(<B). It is easy to verify that g
has the desired properties.

an(T,)
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Lemma 1.4.  Assume the notation of Lemma 1.3. Then there exists a 2-
cocycle q in ZX(G, U(S)) cohomologous to & and satisfying q(r, o) =1 whenever

T or ¢ is in Hy.

Proof. Let G= U Hytj be a disjoint right coset decomposition of G relative
to the subgroup Hy. Define ¢ : G- U(S) by ¢(orj) =1/8(s, v;) where ¢ is in
Hy. Define q: GXG-U(S) by ql(r, o) =g(r, p)¢(ra)/¢()¢"(p). Let = wr;
be any element of G where w is in Hy, and let ¢ be any element of Hy.

Then from the definition of g we obtain the equality ¢(z, ¢) = q(wrj, o) =

n(t;)

g(wtj, 6)8(w, 1)/8(ws"™, ;). By the associativity relation satisfied by the

2-cocycle & we have that 2(ws™ ™, ) (w, ") = g(w, ")) 2“6, ;)
and together with the assumption on 2 this implies that &(ws""?, r;) = Z(w,
tja). Since g(wrj, 0)8(w, 7j) = g(w, t70)2"(vj, ¢) = &(w, tj0) we conclude that
q(r, ¢) =1.

On the other hand ¢(s, 7) = gqlo, wrj) = &lo, wr))3°(w, v;)/g(sw, tj). But
(o, 0t))g"(w, ) = glow, t))gls, w) = glow, t;). Therefore q(s, ) =1, and this
concludes the proof.

ProposiTiON 1.5. Let S be a tamely ramified extension of a complete discrete
rank one valuation ring R, and f an element of Z*(G, U(S)). Then Hy = Jy.

Proof. By the definition of Js there exists a 2-cocycle g in Z%(G, U(S))
such that g is cohomologous to f and glo, r)=1if s or risin Jr. If g is
cohomologous to f by ¢ : G~ U(S), then g is cohomologous to f by ¢ : G-
U(S). The fact that §(s, v) =1 if ¢ or 7 is in Js implies that J,< Hy.

To obtain the inclusion HrZ Jr we apply the preceding lemmas to f, and so
obtain a 2-cocycle ¢ in Z*(G, U(S)) cohomologous to f and satisfying ¢(s. t)
=1 whenever ¢ or t is in Hy. It now follows from the definition of jr that
HsicJy.

2. Maximal orders. In order to establish necessary and sufficient conditions
for a maximal order to be equivalent to a crossed product over a tamely rami-

fied extension in the complete case, the following lemma shall be useful.

Lemma 2.1. Let X and 2, be equivalent central simple k-algebras, where k
is the quotient field of a discrete rank one valuation ring R. If Iy and I are

maximal orders in Xy and X respectively, then I'y is equivalent to I..
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Proof. Since &y and 2 are equivalent, there exist finitely generated k-
modules V; and V, such that

2‘1®k Homk( V], Vl) E’Zz@k Homk( Vz, Vz)

Let 2, and 2, be maximal orders in Homz(V;, V;) and Hom( V2, V2) respectively.
It is a classical result that 2, and £, are of the form 2, =Homg(E;, E\) and
2, = Homg(E,, E;) where E; and E; are finitely generated free R-submodules of
V; and V: respectively. Now £2; and 2. are central separable R-algebras, and
therefore it follows from Prop. 8.6 of [2] that I'T® @ and I:® r2: are maximal
orders. Since all maximal orders in a central simple algebra over a discrete
rank one valuation ring are isomorphic (see Prop. 3.5 of [3]) we conclude that

ILiR2:=I,® 2.. Therefore Iy is equivalent to 5.

ProrosiTION 2.2. Let S be a tamely ramified extension of a complete discrete
rank one valuation ring R, and f an element of Z*(G, U(S)). Then every
maximal order in the central simple k-algebra 4(f, K, G) is equivalent to a

crossed product over a tamely ramified extension of R.

Proof. By Lemma 1.4 we know that there exists a 2-cocycle ¢ in Z%(G,
U(S)) such that g is cohomologous to f and g(r, ¢) =1 whenever r or ¢ is in
Hy.

The subgroup Hy is a normal subgroup of G, so that the fixed field L of
Hy is a Galois extension of 2 with Galois group G/Hy. Let T denote the
integral closure of R in L and observe that T is a tamely ramified extension
of R. To show that g takes values in U(T) we shall make use of the following

definition. For each element = of G let m(r) be the integer defined modulo e

7M(T)

by the relation r 'wr = @ where o is a generator of the inertia group G

and e is the order of G;,. We proceed to show that ¢°(r, p) =¢q(r, p) for all ¢
in Hy and all r and o in G. By the associativity property of g we have the

equalities

a(s, t0)q’(z, p) =qlor, p)qla, 7)

m(<) m(t)) _ m(T) m(T)
- 3

a(<d™™, 0)q(z, o a(z, ™ 7p) g (4 o)

from which it follows that ¢’(z, p) = q(o7, 0) and also g(za™™, p) = g(z, ™ p).

m(T) mivymip) )

Therefore q(or, 0) = g(rd™, p) = q(z, po And the equality

m(T)m(p) m(t)m(p)) = m(T)m(p)

a(r, ps )q (p, q(zo, o )a(r, o)
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implies that ¢"(r, o) =¢g(z, p). Hence q(r, p) is in the fixed field of Hy, and
so ¢q takes values in U(T).

We may now consider the crossed product 4(g, T, G/Hys) where g is the
preimage of ¢ under the inflation map ZX(G/Hy, U(T)) - Z*(G, U(S)). It fol-
lows from the definition of the conductor group Hy and the second Noether
isomorphism theorem, that the conductor group Hg is trivial. Therefore we
conclude from Theorem 2.5 of [10] that 4(g, T, G/Hy) is a maximal order in
4(g, L, G/Hy). Now the central simple k-algebra 4(g, L, G/Hy) is equivalent
to 4(q, K, G) (see [1]). If I denotes a maximal order in 4(g, K, G) it fol-
lows from the preceding lemma that I' is equivalent to the crossed product
4(g, T, G/Hy).

Thus we have stablished the following main theorem.

TueoreM 2.3. Let I" be a maximal order over a complete discrete rank one
valuation ring R in a central simple algebra 2. For I' to be equivalent to a
crossed product over a tamely ramified extension of R it is necessary and sufficient
that there exists a splitting field K of X such that

(1) the integral closure S of R in K is a tamely ramified extension of R

(2) f is in the image of the natural map Z*(G, U(S)) » Z*(G, U(K)) where
f is a 2-cocycle for which A(f, K, G) is equivalent to 3.

CoroLLARY 2.4. Let X be a central simple algebra over the quotient field
k of a complete discrete rank one valuation ring R. If 2 has a splitting field
K such that the integral closure S of R in K is a lamely ramified snertial
extension of R, then each maximal order I" in X is equivalent to a crossed pro-

duct over a tamely ramified extension of R.

Proof. We shall prove first that if an extension S of Ris a tamely ramified
inertial extension of complete discrete rank one valuation rings, then the natural
map H*G, U(S))-»H*G, U(K)) is an epimorphism, where X denotes the
quotient field of S, and G is the Galois group of K over k. Let f be an element
of Z*G, U(K)) and let [ f] correspond to ¢ mod N (U(K)) under the canonical
identification H*(G, U(K)) = U(k))/N(U(K)) which holds because G is a cyclic
group. As usual, V denotes norm. Next write ¢ in the form ¢ = up* where »
is in U(R), x is an integer, and p denotes the prime element of R. Let e be

the order of G. Because of the assumption on S and R we know that for a
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proper choice of the prime element P of S it is true that P°=uwp for some
element v in U(R), and ¢(P) = £P, where ¢ is a primitive ¢ root of unity in
R and ¢ is a generator of G (see Prop. 3.1 of [10]). Therefore N(P) = + vp,
and so the element b= ( = vp) *is also a norm. Hence cb is an element of U(R)
which is congruent to ¢ mod N(U(K)), and from this it follows that the map
H*(G, U(S)) - H*G, U(K)) is an epimorphism.

Now we may prove the corollary. Since J is split by X we know that %
is equivalent to a crossed product 4(f, K, G) for some element [f] in H*(G,
U(K)), (see [1]). By the first part of the proof we may assume that f is in
the image of the natural map Z*(G, U(S)) - ZX(G, U(K)). It now follows from
the theorem that a maximal order I' in X is equivalent to a crossed product
over a tamely ramified extension of R.

ExampLE 2.5, We present an example to show that a maximal order over
a discrete rank one valuation ring need not be equivalent to a crossed product
over a tamely ramified extension.

Consider the ring of polynomials Z[X] with coefficients in the integers Z.
Let R=Z[X ], be the localization of Z[X] at the minimal prime ideal generated
by the element 2. Let K =%(y2) where & denotes the quotient field of R.
Then the integral closure S of R in K is S=R[v 2] and the Galois group G
of K over k is of order two. Note that S is not a tamely ramified extension
of R since the field characteristic of R and the ramification index of S over R

.are both equal to two. Consider the element [ f] of H*(G, U(S)) which corre-
sponds to X mod N(U(S)) under the canonical identification H*(G, U(S)) =
U(R)/N(U(S)), and the crossed product 4= 4(f, S, G).

It may be verified by computation that 4v 2 is the unique maximal two-
sided ideal of 4. Since 4y 2 is a free left 4-module it follows from Theorems
2.2 and 2.3 of [3] that 4 is a maximal order.

Suppose now that 4(f, S, G) is equivalent to a crossed product 4(g, T, H).
We shall prove that T cannot be a tamely ramified extension of R. The defini-
tion of equivalence implies that there exist finitely generated free R-modules
E, and E: such that 4(f, S, G) @k Homg(E;, E\) = 4(g, T, H) @ r Homg(E:, E).
Let rad T=(A). Then the above isomorphism must map vy 2 into Az where
% is a unit in 4(g, T, H) @ Hom(E,, E,). Therefore A*=2 v for some element
v in U(T). Hence the ramification index of T over R is two, and so 7 cannot
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be a tamely ramified extension of R.
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