CLASSIFICATION OF LOCALLY EUCLIDEAN SPACES

LEO SARIO

1. The classification of Riemann surfaces has largely reached its completion.
The purpose of the present paper is to lay the foundation for a new intriguing
field in the classification theory: Riemannian spaces with Euclidean metrics.
The paper is self-contained, both for the Riemann surface expert and the reader
whose main interest is with higher dimensions.

The significance of locally Euclidean spaces lies, first of all, in that their
function-theoretic nature differs for dimensions #»>2 and #n=2. The existence
or nonexistence of Green’s functions and positive or bounded harmonic functions
in R”, punctured R”, and in the punctured flat torus offer simple examples. A
striking phenomenon is that, despite such differences, the basic inclusion re-
lations remain valid. Moreover, capacities and null-classes can be defined for
components of point sets in R”.

These results are established by an extension of the linear operator method
([6], [71). The main points of the generalized method are given in Nos. 2, 3,
8, 17, 21, and 23-27. The significance of this extension is in the fact that the
absence of such devices as conformal mappings, conjugate harmonic functions,
the reflection principle, and doubling of bordered regions necessitates new tools.

Another promising aspect of higher dimensions is the introduction of new
function classes (Nos. 29-34). In No.35 we give a list of questions, an essen-
tial part of our paper. The important unsolved problem on the strictness of
the inclusion Oyg C Ogp, well-known for Riemann surfaces (No. 24), is typical
of these.

Several interesting topics are meaningful only in locally Euclidean spaces.
However, at the cost of somewhat heavier equipment, some of our reasoning

can be generalized to arbitrary Riemannian spaces.
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§1. Two lemmas on harmonic functions

2. We start with two simple properties of harmonic functions.

Let E be a compact set in a locally Euclidean space V.

LemMma. Consider the family of harmonic functions u in V with

sgn u|E=xconst. There exists a constant 0<q<1, independent of u, such that
(1) qinfr u<u|E< qsupr %

We shall actually prove slightly more: if ming #<0 and supr =0, then

there is a g= (0, 1) such that #|E<gq supr . The first inequality (1) then
follows on applying this result to — .

Proof. If supr #=0 or », there is nothing to prove. In other cases we
multiply by a constant so as to make supy #=1. The functions v =1-— « then
have the properties inf, =0 and maxrv=1. We are to find a constant ¢;:>0
such that ming v =¢q.

Cover E by a finite number of solid spheres Cw, m=1, ..., N, CaCV,
with radii #m such that slightly smaller solid spheres C;: concentric with Cm
and with radii 7/x = krm already cover E. We shall denote by |z| the length of

the vector z=(x;, ..., x,) €R". The area of the unit hypersphere |z| =1 is
2(Vrn )"

”n
(%)

and the Poisson formula for v(z), 2 € Cm, reads

n =

P (=2 vdox
(2) v(z) = == j(lzl "+ 7% —2|z|7mcos 6)™*’

where # is the angle between the radius to z and that to the integration point.
For 2z Cr, (2) gives the Harnack inequality

1__

1+k
ARt v(zm) S v(2) =- (1=

k)” =1 ’U(Zm)
where 2, is the center of C. For any two points z, 2’ € C), we have

v(z2)
(3) €=

<c¢7! with ¢= (%%:L)n-

We may suppose that E is connccted, for if this is not the case we first
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replace E by a larger connected compact set in V and cover it by spheres as
above. By assumption there is a 2,€E with v(2)=1. This point can be con-
nected with any point z€ E by a sequence of points z;€E, j=1,...,7:=<N,
2, =2, such that any pair zj-;, z; is in some C;.. We have found a constant

g =c">0 with the desired property v(z) =g¢; for all 2z€E and all ».

3. Given a locally Euclidean space V and a point z,€ V consider regions
f2cC Q' of V containing z,. Let #o be a uniquely determined harmonic function

on 2.
LemMmA. If the Dirichlet integral Do over 2 has the directed limit
(4) limo,r Dal#, — ua) =0,
then ua(z) — uo(20) converges uniformly in compact subsets to a harmonic limst
(5) v(2) = limg ,v(uglz) — ug(z)).

Proof. For any i=1, ...,n, the partial derivative u, of a harmonic func-
tion # is harmonic. Its value at the center z of a solid sphere C of radius ¢

and with volume V; is

we(2) = - | waa,
8

where dV is the volume element. On applying the Schwarz inequality and
summing from 7= 1 to 7= one obtains

1

2 1 2 417 L
|grad u §T,;jclgrad ul'dV = - Detw).

Given a compact set EC V cover it with solid spheres Cn,CV, m=1, ...,
N, of radii 7= such that the spheres C; concentric with the C, and of radii
Tm=7m— 0m already cover E. Again we may assume that E is connected and
we join 2z, to any 2z E by a sequence zj, j=1, ..., j: <N, with zj_y, z; in some
Cm. The line segment d; from z;-; to z; has length <2 7, where 7, = max 7m,

and we find for 6 = min ém and for harmonic # in G = U C» that

1 s
[u(z)) —ulzj—1) | €2 romax |grad | <2 7, Vs 2 Da(n) .
4
This implies

lu(2) — ulz) | <2 7N Vs~ 2y Dala) .
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An application to #(z) = ua(z) — ua.(2) with GC 2 gives the desired result.

§2. Normal operators and principal functions

4. Let 2 be a region of a locally Euclidean space V. Designate by C the
solid unit sphere |z| <1 and by P a coordinate hyperplane, x;=0, say. We
shall call 2 a bordered region of V if

(a) 22 is compact in V,

(b) every z€ 22 has a neighborhood N; and a diffeomorphism % of N, with
C such that A(N;N32) =CNP and h(N,NR) is one of the two half-balls of
C—-P

A bordered region 2C V shall be called a regular region if

(c) £ is compact in V,

(d) 2 and V- 2 have the same boundary in V,

(e) each component of V — @ is noncompact in V.

We note that the border of a bordered region has a well-defined continuously
turning normal and we can speak of the flux

o om S
across 9® of a sufficiently regular function # in 2. Here dS is the area element
of 22 and —;’—-{ is the normal derivative exterior (or interior, if so specified) to
2.

5. A function is, by definition, harmonic in a set EC V if it has a harmonic
extension to an open set containing E. Let / be harmonic on the border « =22
of a bordered region 2C V. Suppose there is a function z€ C' in £ with #|a
=f,uc Hin Q, u=Lf in 2, where H denotes the space of harmonic functions
and L is an operator which satisfies the following conditions:

(6) Lfla =,

(7) L(le1+02fz)=01Lf1+62Lf2;

8) min f < Lf < max £,
oLf _

) § 2L as=o.

An operator with properties (6)-(9) will be called a normal operator.

For a regular @ the operator solving the Dirichlet problem is trivially
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normal. In §5 we shall see that even in the general case of a bordered region
there are normal operators. Their effect is that, in an intuitive sense, there
is no source or sink of Lf on the “ideal boundary” B of the region, ie., § is
“removable” for Lf.

Special siginificance to normal operators is given by the fact that on a
noncompact bordered region there generally are several operators, each with

its own extremal property.

6. Let V be a locally Euclidean space, and V; the complement of a regular
subregion with border «;. On V; let there be given a continuous function g,
harmonic in Vi, and a normal operator L. We are interested in the problem
of constructing on V a harmonic function p, to be called the principal function,
that imitates the behavior of ¢ in V;. More precisely, we require that p|Vi=¢
+ L(p — o). This means that, in the sense of No. 5, p — ¢ must have no singularity
on the ideal boundary of V. We also set out to find explicit upper and lower
bounds for p — ¢ in terms of ¢.

Suppose V is given by removing a finite number of points z;, j=1, ...,
N, from a locally Euclidean space V*. Then Vi may consist of disjoint solid
n-spheres C, punctured at their centers z;, and of the complement V; = V* — 0*
of a regular region 2*c V* UC;c®Q*. In C;—2z the function ¢ can be a

2-n

singularity function, e.g., 7 or any of its partial derivatives of any order.
In V{, ¢ can be an arbitrarily behaving harmonic function. For L we may
take different normal operators in the various components of V;.  Thus our
problem is to construct, on an arbitrary locally Euclidean space V*, a harmonic
function with given singularities at a finite number of preassigned points, and
with a given behavior near the ideal boundary of V*.

The theory of principal functions derives its significance from the triple

generality in the choice of Vi, ¢, and L.

§ 3. The main existence theorem

7. To construct principal functions p in a locally Euclidean space V we

may assume that
(10) alai=0.

Indeed, if this condition is not met,-we replace ¢ by so=¢—Ls. Then p=agy+ Lp
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is the desired function in V..
It is in the nature of the problem that ¢ have vanishing flux:

g _
(11) al%ds_o.

The flux of » vanishes by Stokes’ formula, and (11) follows from (9).

The solution of the problem will be uniquely determined up to an additive
constant. Suppose indeed p', p"" were two solutions. Then by the maximum
principle,

maxy-y, (p' — p") = max,,(p' — p")
and by (8),
maxy,(p' — p'") = max.,(p' — p").
It follows that
maxy(p' — ") = max,, (p' —p"),
and one infers that p' — ' is constant on V.

We shall give an explicit expression for a solution p.

8. Let V, with border a, be a regular region of V such that a,C V; and
a1C V,. Our problem is to find p|ae. In fact, then p is obtained on V=V,U
V: from the identities

(12) pIVo=1L'p, I Vi=a+Lp,

where L' is the operator providing us with the solution of the Dirichlet problem
in Vo. We set

(13) K=LL
and obtain on a,
(14) p=o0+ Kp.

The nth iterate of XK will be denoted by K”.

Let g be the constant of Lemma 2 applied to the compact set a; in the
region V;, and set

_ 1
(15) Q=14

(16) m=ming s, M =maxX.o.

We are ready to state the main existence theorem:
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TuaeoreM. Given a locally Euclidean space V, let V,CV be a boundary
neighborhood with compact border «:, and VoC 'V a regular region with border
C Vi, anC V. On Vi let ¢ be a harmonic function satisfying conditions (10),
(11), and let L be a normal operator defined by (6)-(8). Then the function

(17) »=27K"s

on Vi gives by (12) the principal function p on V:
(18) p—oao=Lp.

The function satifies the inequalities

(19) mQ=plVo= MQ,
(20) mQ<=p—o= MQ.

9. Proof. We are to show that p = >\ K”"c|a, converges uniformly. Then
K can be applied term by term, for

|K3WK" s = 23K 0| = | K31 K" o S | 2m K" e laol,

which tends to 0 as m—~> «, We have Kp = >,y K"s=p — o as required by (14).
The proof will be based on Lemma 2.

Let & be continuous in Vo, NV, and harmonic in V,N V; with kla; =0, klae
= const. such that 511( oh/on)dS =1, the derivative here and later being interior

to VoN Vi on ai, exterior to it on ap. By Green’s formula we have for any

9% 4s=o,

uwe C'in V,NV;, harmonic in V,N V,, with n
(1]

Jxgmas=] w5y

This holds, in particular, for functions # = ¢, L'¢, Ly, K¢ with any harmonic ¢,
¢ on ao, ai.

We claim that

n Oh o
(21) ‘%K 0—87’—(15—-0

v

For #n =0 this is so by (10). Suppose this holds for #=4  Then the same

integral over a, vanishes, hence

¥'d _a_h _
SGOLKa 2% dS =0.
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Here ay can be replaced by ai, and then L' by LL'. Equality (21) follows for
i+1, and consequenfly forn=0,1,....
Since dh/on=0 on a; we conclude that sgn K"gslaj=const. Lemma 2

and relation (8) give for n =1,
am = Kolay < gM.
Each increment of »n brings another factor ¢ and we obtain
dm=Kslavs qg"M.
We have shown that 37 K"s|a, converges uniformly :
Qm=pla, < QM.
By the maximum principle the same bounds hold for p|V,, hence for pla: and

p —o¢la: and consequently for p — ¢in Vi. This completes the proof of Theorem
8.

Our next task is to show the existence of operators L. We shall first consider

regular regions, then noncompact bordered regions.

§4. Normal operators for regular regions

10. Let 2 be a regular region with disconnected border of a locally Eucli-
dean space V. Partition the components of the border into two disjoint sets a

and 3. Let fe H on a and consider the family U of functions # such that
(22) usC'in &, u|2€ H, ula=f.

There exists a function u, € U determined by the additional property du,/on =0
on § (for existence see Fichera [3], p. 196)™. We set #u = Lof.

Define the function %, = U by the conditions

(23) #:| B = c(const.), S %1':; ds=0.

The existence of the constant ¢ is seen as follows. For ue U with #|B = ¢ the
flux across a toward £ increases with ¢. In fact, for ¢’ <c¢" and the corres-
ponding functions #', »', the difference v =" — ' satisfies v|a =0, v|3=0,

»12>=0, 5v/2n=0 on a, hence j (ov/on)dS=0. A similar reasoning shows

*) The author is indebted to Professor G. Weill for pointing out this reference.
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that the flux of un,e U with u,|8 =min f is nonpositive and that of uns U
with #«|B8 = max f is nonnegative. Consequently there is a ¢ € (min f, max f)
that gives vanishing flux. We set ;= L,f.

11. We shall also introduce an operator (£)L; as follows. Take a partition

P of the components 7¢, k=1, ..., ko of B into disjoint sets Bj, j=1, ... jo.

LemMMa. There exists a function (P)us€ U with

(24) (P) us| Bj = cj(const.), jﬂa(é;)u, dsS = 0.
;

Proof. Choose disjoint regular regions D,, DrC @, k=1, ..., ko, with
disjoint borders a Ua’, rr U7k respectively. In D, take the function #. e C',
D€ H, usla =f, el a' = ca, j (ou./on)dS =0. Apply Theorem 8 to £ with
Vi=Do,UD;U + + - UDpgg and o=;,—ca in Dy, ¢=0 in each D;. For L take
in D, and each U D; the operator L;. The resulting principal function p is

TRCBj
f+c¢ on a and the desired function is (P)u;=p—c. Write

(25) (P)uy = (P)L:f.

12. The most important partitions are the identity partition where jo=1,
and the canonical partition, where jo==%o. In the former case, (P)L;=L,.
For the sake of simplicity we shall henceforth assume that a partition P has
been given in advance and we let L; and #; stand for (P)L, and (P)u,.

With this understanding we take a real constant A and introduce
(26) =1 =2 uo+ Auy = L, f.

Clearly L, satisfies the conditions (6)-(9) of a normal operator, for so do L,
and Ll.

13. Let U,C U be the class of functions » with the additional property

ou . .
(27) S, ondS=0.7=1 ... ja

For «, ve U, we set

ov

ou
(28) Alu) = Lugz das, A(u, v)= # om ds,

. ou _ _Q_v_
(29) B(w) —Lu-a?ds, B(w, v) = | u 5 as.
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The Dirichlet integral of » over £ will be denoted by D(u).

LemMmA. The function u, minimizes the functional B(u) +(221—1) Alu) in
U,. Explicitly,

30) B(u)+(22—1)A(u) = 2 A — (1= 2)? Alwo) + D%~ ua).

Thus the value of the minimum is A2A(#) — (1 — 2)* A1) and the deviation
from this minimum is D(% — u,).

Proof. In view of u—u|a =0 we have

D(u— uy) = B(#) + B(u,) = B(u, uy) — B(w,, %).

Here
B(w,) = 2(1 = 2) B(uo, u1)

=A(1-2) (Bluo, w1) — Blus, uo))

=A(1-2) (A(w) — A(m)).
Similarly,

B(u, w)) = A(B(u, u)) — B(uy, u))

= 2(A(wu) — Alu))

and

Bluy, u) =(1—2) (B(uo, u) — B(u, w))
=(1—2) (Alu) — Alw)).

Equation (30) follows.

§5. Normal operators for noncompact regions

14. Let Vi be a noncompact bordered region, with border «, of a locally
Euclidean space V. Take a regular region 2 C V; with border a U 8. We shall
consider partitions Bg; of Bo such that the border of any component of V- &2
belongs to exactly one Bo;. A partition {#dj+} of Ba, 7* =1, ..., 75, is said
to be a refinement of a partition {Bo;}, j=1, ..., ja, if Bdj« is contained in
only one Bgj.

Let Gg; be the union of those components of Vi— 2 whose border belongs
to Baj. Let QC 8, 2Q'=a U By, Ba< Q. A partition {Bg.;} of Bo is said to be
induced by the partition {Boj} of Ba if Baj= Ba- N Gg;. Partitions of the Ba for
all 2 are said to form a consistent system of partitions if for 2 C 2' the partition

of Bo. is a refinement of the partition induced by that of 8a. We shall only
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consider consistent systems of partitions. The most important systems are the
identity partition, where Bo constitutes one part Bo; only, and the canonical

partition, where Bo; is the border of exactly one component of V;— 2.

15. Given a consistent system of partitions, the function #q; and the operator
Lo, are formed in each regular 2 as in Nos. 10-12. Note that we cannot prove
the existence of the directed limit of ug, by Lemma 3. The reason is that
the points z, where we know that the limit exists are on the border a, not
interior to Vi. In the 2-dimensional case the difficulty can be overcome by
choosing « to be an analytic Jordan curve and by forming the double V; of V;.
But for #n>2 such reflection is not possible. For this reason we shall, in this
section, make use of normal families.

The functions ugq) are uniformly bounded between min f and max /. Every
nested sequence {2} with 2»—~ Vi as m— o has a subsequence, again denoted
by {&m}, for which the corresponding functions #m converge uniformly in
compact subsets of V;. By the maximum principle the convergence is uniform
in V1, and the limiting function #, is continuous on V;, harmonic on Vi.

Every limiting function «, belongs to the class U, of functions #< C'in V7,
u|Vie H, ula=f, and

ou _
(31) Sﬁujﬁds_ 0

for every Bg; in the given consistent system of partitions.

16. Let
ou ov
2 = , - A
(32) Bolu) Smu % ds, Balu, v) jmu 20 ds,
and define
(33) B(w) = limg VS 2% 4s
=V 8o an >

where symbolically B(«) is the integral over the ideal boundary of Vi.

By way of preparation of (30) for the noncompact V; we first prove:

Lemma. Amny limiting function w, = liMm,»um minimizes the functional
B(u) +(22—1)A(w) in Us.

Proof. Let #m = um and

Flu)=B(%) +(221-1) A(n),
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Fn(#) = Bm(u) + (22 -1) A(a),
where B refers to finC92,. Then
F(uy) = limmow Fp(%) = liMmow liMu,o Fm(un). For m<n, Fulun) < Falun)
and consequently
(34) F(u)) £ lim inf,w Falu,).

On the other hand, '
Fn(un) < Fn(u) = F(u)

for all u= U,. It follows that

(33) lim sUpnose Fulun) = infy, F(u) < F(u,).

We conclude from (34) and (35) that

(36) ming, F(%) = Flu,) = liMpoe Fa(#,).
17. We are ready to state:

TueoreM. On an arbitrary bordered region Vi, compact or not, of a locally
Euclidean space there is a umique function u, which in U, has the extremal

Droperty
B(u)+(22-1) A(%) = 2A(u) — (1= ) Au) + D(u— w).

Proof. For any limiting function #, = lim », and for v U, set u— u = h.

Then u, + ¢h € U, for any real ¢ and

Folu, + eh) = Fn(u}\) + Ean(h)
+ E[Bn(u)‘, h) +Bn(h, MA)
+(22-1) A, B)1.

Suppose D(h)< . As n- o the first three terms have limits and, as a con-
sequence, the bracketed expression [, 1:

F(u,+ ¢h) = F(u,) +ED(h) +el.

By the minimum property of u, we have dF/d:=0 for ¢=0, hence I=0. On

setting ¢ =1 we obtain the desired deviation formula
F(u) = F(w.) + D(u — w)).

The formula remains valid in a degenerate form for D(h) = co.
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Suppose #/, %" are two minimizing functions. Then
D' —w") =F(u') - F(u") =0
and the uniqueness follows.
COROLLARY. o minimizes D(u), uy minimizes A(u) + B(u) in U.
18. The uniqueness established, we can write
(37) ur= LS,

where L, is a normal operator satisfying conditions (6)-(9). Indeed, the ap-
proximating operators Lo, were seen to enjoy these properties and the same
is true of the limiting operators because of uniform convergence.

The principal functions p, corresponding to the L, possess important minimal

properties which we proceed to establish.

§ 6. Extremal properties of principal functions

"19. First let 2 be a regular region with border 3. Take two solid spheres
Ca, Ch centered at a, b and with disjoint closures Cs, Cs< 2. Consider the class
P of functions peC'in 2—a—b, p|2—-a—bs H and with the following pro-
perties :

—alr"

wnTn—Z) + h(2),
= Iz — blz—n _
(39) PICb— wn(n_:‘z—)" +k(2), k(b)—O,
b ja_
(40) S,R,st‘o'

Here w, is the area 2x™*/I'(n/2) of the unit hypersphere |z|=1; h, k are
harmonic in Ca, Cs, and {B;} is a given partition of 3. We let ho, h; signify
the h corresponding to po, .

LemMma. On a regular region 2 of a locally Euclidean space the function p,
has the property

(41) B(®)+ (22-1) h(a) = 22h(a) — (1 - )’hola) + D(p —p)).

Proof. For short we write » for |z—a] or |z— 5| and set

2=n

_
str) = =9y
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The flux of p across a,=0C, away from the center is —1, and that across
ap=0Cp away from the center is + 1.

We again start with
D(p —p\) = B(p) + B(py) — B(p, p») — B(p, D)

and use A,, Ap for A taken over agq, as. Here

B(p)) =A(1=2) (B(po, p1) — B(p1, o)
is the sum of
M1=DT[Aa(s+ ho, s+ 1) — Aa(s+ hy, s+ ho)]

and a similar expression containing As. In the bracketed quantity, Aa(s, &)
=0 for i=0, 1, Aalho, b)) — Aalhi, he) =0, and the only nonvanishing terms
are

Aa(ho, $) = Adlhy, ) = hi(a) — h(a).

Because of the normalization k(b) =0 the corresponding expression for As

vanishes and we obtain
B(PA) = A1~ i) (h1(a) - ho(a))
Analogous computations yield

B(ﬁ, Px) = }n(h](a) - h(a))»
B(py, ) =(1—2) (h(a) — ho(a)),
and (41) follows.

20. If V is a locally Euclidean space, let a consistent system of partitions
be given for the borders Bg of all regular subregions £C V that contain ¢ and
b. Let C 2 with BoC ' and denote by p,, k., B quantities corresponding to
2, and by p), hi, B' those corresponding to £'. For p=p|82, pr=5, (41)

gives

(42) B(p) — (@) = — k(@) + D(py— po) 5
for p=p112, pr=1p1,

(43) B(p)) + hi(a) = h(a) + D(pi — 1) ;
for p =p1, pr = o,

(44) B(p1) — hi(a) = — ho(a) + D(p1 — po).
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By virtue of B(p:) =0, B(p)) < B'(p{) =0, we have:

LemMMA. ho(a) decreases, hi(a) increases with increasing 2 and hi(a) <h(a)

Jor every L.

One concludes that the directed limits hi(a) = limo,i-hic(a), ¢ =0, 1, exist

and so do
limg,r Da(pai = poi) = 0.
Qcge’
From this and from the normalization po(b) — po.(b) =0 Lemma 3 gives the
harmonic directed limits
pi= limg.rpai
on V—a—b, the convergence being uniform in compact subsets. Write
(45) =1 =D py+ 1.

21. We consider the family P of functions p H on V —a— b with singu-
larities (38), (39) and the property

op
—==dS=0
S(q“j on

for all Bq; in the given partition.
To establish the extremal property (41) of p, in P for the noncompact V
we let 2'— V in (42), (43) and obtain

Ba(po) — hola) = — hao(a) + Da( po — pao),
BQ([);) + hi(a) = hoi(a) + Do( p: "pm)-

On letting 2 V we infer by Bo <0 that
limg.y- Dol pi — pai) =0
for i=0, 1.
By virtue of the triangle inequality this gives
limg.,- Da( py — par) =0.

From this and the definition D(p — p,) = limg.+-Do(p — p,) one concludes, again
by the triangle inequality, that

limg,r Do(p — par) = D(p — ).

The deviation formula for 2 and p= P on V reads
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Bo(p)+ (22—-1)h(a) = APhoi(a) — (1— Dihoo(a) + Do(p — pay).

We let 2> V and obtain what we set out to find:

THEOREM. [n the class P in a locally Euclidean space V the function p), mini-
wmizes the functional F(p) = B(p) + (22 =1 h(a). The value of the minimum is
2hi(a) — (1= 2P ho(a) and the deviation of F(p) from this minimum is D( p — p).

It is an open question what is the extremal property of p, if the singularities
s, —s of (38), (39) are replaced by partial derivatives of s.

For later reference we observe that
(46) B(po) = B(p)) =0.
This follows by choosing p = pi, pa=pi, =0, 1.
22. We have these immediate consequences:

CoRrOLLARY 1. The function p, gives to B(p) — h(a) the minimum — hoa),
and the function p, gives to B(p) + h(a) the minimum h(a), both in P.
COROLLARY 2. Among functions in P with B(p)=<0, we have

(47) hi(a) = hia) £ h(a).
DeriNiTION. The span of the region V is
(48) S=hoa) - hia.

Observe that the span depends on the class P, i.e, on @, b, and the system
of partitions.

CoroLLARY 3. The function % (po+ p1) gives the minimum

(49) min, B(p) = —~—f—-

In particular, B(») =0 for all p = P if and only if the span vanishes. We
shall return to the span in Nos. 23, 24.

The function p,—p; is not in P, and a separate discussion will be needed

to establish its extremal property.

§7. Extremal harmonic functions

23. Let 2 be a regular region of a locally Euclidean space. For any real
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o, A let
(50) Dur = ppo+ Aps,

where po, p; are in P, defined for the compact £ (No. 19). We introduce the
class @ of functions g C'in @—a—5, g H in 2 —a—b, and with the addi-

tional properties

(51) glCo=(p+s+e,
(52) qlCo=— (+ s+, fb) =0,
94 4o
(53) SM 20 4s=0,
j=1,...,jc where ¢, fe Hin Csy Co. If n+21=0, then g=C'in &, q|2< H.

We retain the meaning of ho, ki for py, p;= P and state:
TueoreMm. The function p.. in Q has the minimum property
(54) B(gY+ (A —pwe(a) = hi(a) — L2 ho(a) + D(qg—pun).

The proof is an analogue of that in No. 19 when we note that the singularity
at a of ¢ is (x4 1)s while that of py and p;, is s. The intermediate results are
now

B(p,u) = pilhi(a) — hoa)],

B(q, pu) = A[(p+2) 1y(a) — ela)],

B(pur, @) =pulela) = (u+2) hola)],
and (54) follows.

In the case of a noncompact locally Euclidean space V the only change in
defining the class @ is that the flux of g= @ is to vanish across every Bq; in
a given consistent system of partitions. Since the convergence proof of pou
is based on that of pqs, Poi, the reasoning in 20-21 applies mutatis mutandis.
We conclude that the deviation formula (54) holds for the limiting function
Dur in V.

The main motivation for considering g, 4 without the earlier restriction
#+21=1is that we can now have 2+1=0. The competing class @ then is
the class U of regular harmonic functions # on V with the normalization «(b)

=0 and with vanishing flux across each fg;.

TureoreM. The function po - p, has the following minimum property in U:

(55) D) —2ula) = — S+ D(u— po+py).
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On setting # =0 we obtain:

CoroLLARY. The span has the value
(56) S=D(po=p1),
and po=p: if and only. if the span vanishes.

24. ‘The class HD for a given locally Euclidean space V consists, by defini-
tion, of harmonic functions with a finite Dirichlet integral over V. A space V
is in Ogp if there are no nonconstant HD-functions in V.

THEOREM. V& Onp if and only if S0 for some a, b and the identily parti-

tion.

Proof. From (46) and the triangle inequality we conclude that p,— p; < HD.
Suppose there is a nonconstant #< HD in V. Then there is a nonconstant
ues HD in V with #(d) =0. Let a= V be a point for which #(a) 0. If po— 1

were constant, we would conclude from
D(u) ~2 u(a) = — D(po— p1) + D(2 ~ po+ py)
that #(a) =0. Thus S= D(p,— ;) =0.

Conversely, if S%0, then p, — p; is a nonconstant HD-function in V.

Let HB be the class of harmonic bounded functions in V.

LEmMA. The existence of non-onstant HD-functions in V implies that of

nonconstant HB-functions:
(57) Onzr C Oap.

In fact, po—p1= L(py— p1) is bounded in a boundary neighborhood, hence
in V. '

Other O-classes of interest are introduced in §9.

§ 8. Capacity functions

25. We shall introduce the capacity of the ideal boundary and of a boundary
component of a locally Euclidean space V.

Consider a regular region 2c V with border 8=y Up U + « - UBjo, where r
is a set of components of B and each 8;, j=1, ..., jo. is a component of 53— 7.

Let Cs be a solid n-sphere centered at a given point @, with C,< 2. Denote
by P the class of functions p=C' on 2—a, p=H in 2—a,



CLASSIFICATION OF LOCALLY EUCLIDEAN SPACES 105

_ _|2-n
(58) plEa = - ‘%Xng;{:zT +h(z),
(59) L %%ds= 1,
b o . _ .
(60) fw L is=0, j=1,...,j

Here he H and h(a) =0. Clearly (59) is a consequence of (60).
In P the capacity function p+ of r is defined by the properties

(61) PT|T=kT,
(62) el Bi=kj,

kr, k; being constants. The existence can easily be established by the main

existence theorem (No. 8).
THEOREM. The capacity function minimizes B(p) in P:
(63) mine B(p) = kr + D(p — pr).
Proof. On adding to the right side of
(64) D(p—pr) =B(p, p—5v)

the quantity

one obtains
D(p—p:) = B(p) — B(p:) + B(p+, p) — B(p, p+).

One transfers B(p+, p) — B(p, pr) to 5C, and shows in the same fashion as in
No. 19 that its value is k:(a) — h(a), hence 0. This proves the theorem.

26. In passing we note that for y =48, p; also has the following extremal

property.
THEOREM. The capacity function ps of the border B of a regular region gives
minp supgp = supep; = k;.
In fact, for any harmonic function =
(65) B(u, p;) =ula).

In particular, this is true for u=p —p;. Since B(p;) = &;, it follows from u(a)
=0 that B(p, p;) = k3, and the possibility of supop <k; is excluded.
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27. Let {2.)} be a nested sequence of regular regions of a locally Euclidean
space V with U®Q,= V. Consider a consistent system {B;} of partitions of the
{82.). A sequence {ra} = {Bnjim) defines a subboundary r of the ideal boundary
B of V if Bu+1,jin+y) is in the component of V ~ 2, bordered by #njn. Equivalence
in two exhaustions is defined in an obvious manner. For the identity partition
7 is the ideal boundary 3.  For the canonical partition each r is a boundary
component. In general y is a boundary component if each i, in the sequence
defining 7 is the border of exactly one component of V — 2,.

For a regular 2C V let B8a: be the part of B that corresponds to a given

7. Let por be the capacity function of ro on £ with porlre = ko-.
Lemma. For 2C 9,
(66) kor = ko
Indeed,
kor = Ba( par) < Ba(par) = Ba(par) = ko

We conclude that the directed limit exists:
(67) kr = lima, v Ror.

In the case kr< « we could derive from this the uniform convergence of
por to a unique limit _br on V —a, the capacity function 7, for which Theorems
23, 26 continue to hold in a class P defined in an obvious manner; If by = o,
limiting capacity functions still exist but uniqueness is lost; We shall not use

limiting functions in either case but introduce:

Derinitions. The capacity of the subboundary v of a locally Euclidean space
is
1

(68) cr=hi"
A boundary component v is weak if c¢r =0.
We distinguish two classes of locally Euclidean spaces:

Cp={Vlcﬂ=’~0>-

Cr = {V]each boundary component 7 is weak}.

The capacity of a compact set in a solid sphere |z[|<p of R” can also be
defined on replacing the singularity (58) by |2 ™ (wa(n—2))""+ h(2) in |z| =0,
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with A(z) >0 as |z] - «..

§9. (lassification of locally Euclidean spaces

We have arrived at four classes of locally Euclidean spaces: Ous, Oup, Cs,
Cr. We conclude our study by introducing other significant classes and by

listing problems they lead to.

28. A Green’s function go(z, a) for a regular region @ has, by definition,
the singularity |z—al*™” at g, and g|52 =0. By the maximum principle go<go
for 2c £, and the directed limit g = limg.;-go either exists or is o« in V. In
the former case it is called the Green’s function in V. A space V is said to
be parabolic, Ve 0y, if it has no Green’s function; otherwise it is hyperbolic.

We note in passing:

Every region VT R" is hyperbolic.

In fact, every go, 2C V, is dominated by the Green’s function |z— al*™” of
Rn

29. In strict analogy with the concept of the real part of an analytic

function in the 2-dimensional case we introduce:

DerniTiON. The class R for V consists of harmonic functions in V with
vanishing flux across every component roj of the boundary PBq of every regular

region 2 of V:

ou
] v, om 35 =0

If the span S is defined for the canonical partition, the preceding reasoning
for HD applies to RD and we obtain :

(69) Oz C Okp.

30. In a canonical exhaustion each Bo; has the property that V — Bq; consists
of two components. We shall refer to such hypersurfaces g, as dividing cycles.

DeriniTiON. The class K for V is composed of harmonic functions in V

with vanishing flux across every dividing cycle.

For VC R” the classes R and K coincide. For an #-dimensional ¥ imbedded

in a higher dimensional R”, they differ in general.
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31. In R®*"=C" we consider the class A of analytic functions of n complex

variables and the élass of real parts of such functions.
32. Let po be the capacity function of 92 = 8, in 2 with singularity
—s= —7""/(0n(n—2))
(cf. No. 19) at a given point a< 2.

DeriniTiON. The class HM, in a locally Euclidean space V consisis of those
uwe H on V for which the mean (g=1)

(70) M={ |ulr%eas
is bounded for all 2C V.

33. In analogy with log |w| of a meromorphic function w on a plane region
we introduce: L is the class of harmonic functions in a given locally Euclidean
space VC R" with singularities cjs at isolated points z;, =1, . . ., the coefficients
¢; being nonzero real numbers.

Given ¢V and veL on V, take a regular region £ containing ¢ and decom-
pose v| B into »* = max (v, 0) and »~ =max (— 9, 0). Let x4, xa be the solu-
tions in £ of the Dirichlet problem with boundary values »*, v~, respectively.

Let @, (u=1,..., ), b, (»=1,...,pg) be the positive and negative
singularifies of v in 2. Denote by go(z, 2z;) the Green’s function on 2 with

singularity s at z; and set

¥6(2) = 3] galz, @)),  ya(2) = 3 galz b)),
apEQ LLEQ
us = x5+ 4, us = xa + ya.
DerIniTIONS. The caracteristic C(2) of veL is

(71) C(92) = ud(a).

The class LC of functions of bounded characteristic in a locally Euclidean
space V consists of vEL with bounded C(Q) for all 2C V.

We can thus speak of harmonic functions of bounded characteristic without

reference to meromorphic functions.

34. Let P stand for positive. We have introduced classes IJ with 7= H,
K, A R Land J=P, B, D, M,, C. Some of the classes, such as LB, are
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obviously void, and we only consider nondegenerate classes.

Given a locally Euclidean space V let V; be the complement of a regular
region with border «;. With each nondegenerate class IJ we associate the class
I,J of functions #€IJ on Vi with #|a; =0. Such functions are useful in studying
removability properties of the boundary.

385. A general classification theory can be developed for locally Euclidean
spaces. As special cases one can consider regions in R", and »-dimensional
submanifolds in a higher dimensional space R™. The following problems arise :

(1) What are the inclusion relations between the various classes O,;, O,
Cs, Cy? Do the classes Oy, for a fixed I coincide (cf. [51)?

(2) Which inclusion relations are strict for V*c R", which for V"c R™,
and which for locally Euclidean spaces V? Do the classes O,; for a fixed /
generally coincide in the first case? Is Omu,= Ogmpr for q=1, but Oum,= Oun
for ¢>1 (cf. [2]). Can counterexamples be constructed by removing from the
unit ball equidistant radial segments of “meridian” planes and by suitably
identifying the “faces” of such segments?

(3) The modulus of a regular region £ of a locally Euclidean space V can
be defined analogously to that on Riemann surfaces. Can 2 be subdivided into
two regular regions each with a modulus arbitrarily close to 1? Are there
modular tests for a given V to belong to a given class?

(4) Can tests in terms of deep coverings or of Riemannian metrics be
formed (cf. [2])?

(5) What metric properties do the boundaries of V*C O,;, Cs, Cr possess
in R” or R™ (cf. [11)?

(6) In what classes are the complements R”"—C and R"—S of the u-
dimensional analogues of Cantor sets C and Schottky sets S (cf. [41)? What
can be said about their complements with respect to compact locally Euclidean
spaces (cf. problem (8))?

(7) Is the complement of a generalized Cantor set in some class O,; if and
only if the volume I17(1— (1/p4))” vanishes [4]?

(8) Compact locally Euclidean spaces can be formed by identifying opposite
faces of an n-cube. Can unramified Abelian covering spaces [4] be formed
and do they all belong to an O,?

(9) Remove a disk D from R” and take two copies Vi, V:, of the remaining
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space. Identify the upper (lower) face of D in V; with the lower (upper) face
of D in V; so as to form .a locally Euclidean covering space of R". More
generally, construct covering spaces of the “cube” of (8) by removing several
disks and using several duplicates of. the remaining space, in the same manner
as forming covering surfaces of R’, with the branch points replaced by circles,
the connecting line segments by encircled disks. Develop a classification of
such covering spaces based on the ramification properties, in analogy with the
classical type problem. ‘

(10) If the potential p of a unit mass distribution du on a compact set E
in R" is defined as

P(2) = SE( l2= €1 wn(z — 2)) du(C),

what is the relation between the equilibrium pbtential and our capacity function
[7, 212

(11) Is the component r of a compact set E in R” a point if and only if
cr=0 (cf. [8])? » .

(12) Can an “equivalence” of locally Euclidean spaces, (or at least of n-
manifolds V in R™ or in R*™=C") be defined in terms of isomorphisms of
suitable function spaces or by quasiconformélity? .

(13) In the affirmative case, is a component y of oV always a point or
always a continuum or are there “unstable” components [s1z »

(14) Cover R™ with a set of cubes with side 1 and arrange the cubes in a
sequence {@;} such that the R;j= uiQ;, j=1,2, ..., form a nested sequence
of regions exhausting R”. For ¢>0 remove from @; a Cantor set C; such that
Qi - C; has volume 2% ¢. Then the region V=R"— U C; has an arbitrarily
small volume ¢, yet is dense in R”. Does V have an equivalent V* in R” (at
least if # =2 m) such that one boundary component of V* is a continuum?
Can V* be a bounded region? A

(15) Under what self-mappings of R” is a class O,; preserved? In particular,
what can be said about quasi-conformally equivalent regions?

(16) Can the classification theory be extended to mappings of the complex
space C” into itself, with suitable modifications of properties P, B, D, M, C?

(17) To what extent can an analogue of the theory of meromorphic func-
tions of bounded characteristic be developed for LC? In particular, can func-
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tions in LC be decomposed into extremal LP-functions? Do the Poisson-Stieltjes
formula and the decompositions by Parreau and Rao generalize?

(18) Can a value distribution theory be developed for analytic functions
suitably associated with harmonic functions in locally Euclidean spaces?

(19) Can the following interpolation problem be solved in terms of linear
combinations of functions p,—p, with suitable singularities: given a locally
Euclidean space V, points z;, ..., 2zx<V, and real numbers », ..., rm, find
a harmonic function # in V with %(z;) =7, ¢=1,...,m, and such that the

Dirichlet integral is minimized?
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