A MAXIMAL RIEMANN SURFACE

MARTIN JURCHESCU

We let the notations be as in [3]. Then, in the category s of all bordered Riemann surfaces, the following inclusion diagram holds [3, Theorem 9]:

$$
M_{0} \subset O_{H B} \subset O_{H D} \subset O_{K B} \subset O_{R D} \subset M_{2} .
$$

Further, from a theorem of Kuramochi [4] (see also Constantinescu and Cornea [2]), it easily follows that the class $O_{A D}$ is not contained in M_{2}. On the other hand, it is well known that M_{2} (which equals $O_{S B}$ for ordinary planar surfaces) is not contained in $O_{A D}$ (see Ahlfors and Beurling [1]).

Now let $⿷_{0}$ be the subcategory of bordered Riemann surfaces without planar ideal boundary. Then $\dot{\xi}_{0} \cap M_{2}=M=$ the class of all maximal bordered Riemann surfaces. Hence the question whether M is or not contained in $O_{A D}$ naturally arises; it was first considered by Sario [5]. This note contains the negative answer to Sario's question.

Let $X=R \cup B$ and $X_{0}=R_{0} \cup B_{0}$ be two bordered Riemann surfaces. We recall that a continuous map $f: X \rightarrow X_{0}$ is said to be distinguished if $f(B) \subset B_{0}$, and proper if, for any compact $K_{0} \subset X_{0}, f^{-1}\left(K_{0}\right)$ is compact. Let M_{1} be the class of all bordered Riemann surfaces with absolutely disconnected ideal boundary.

Theorem 1. Suppose there exists a distinguished proper conformal map $f: X \rightarrow X_{0}$. Then $X \in M_{1}$ if and only if $X_{0} \in M_{1}$.

Proof. Let β and β_{0} be the nowhere disconnecting and 0 -dimensional ideal boundaries of X and X_{0}. Then the spaces $X^{*}=X \cup \beta$ and $X_{0}^{*}=X_{0} \cup \beta_{0}$ are compact and locally connected, and the sets β and β_{0} are nowhere disconnecting and 0 -dimensional. By Lemma 2 in [3], the proper map $f: X \rightarrow X_{0}$ can be extended to a continuous map $f^{*}: X^{*} \rightarrow X_{0}^{*}$ satisfying $f^{*}(\beta)=\beta_{0}$ and $f^{*-1}\left(\beta_{0}\right)$ $=\beta$.

Received June 26, 1961.

For any $x \in X$, let $o(x)$ denote the multiplicity of f at x. As f is conformal, proper and distinguished, there exists a natural number s such that

$$
\sum_{x \in f^{-1}\left(x_{0}\right)} o(x)=s,
$$

for any $x_{0} \in X_{0}[6, \mathrm{p} .126]$. Let E be the set of all points $x \in X$ for which $o(x)>1$. Then E is discrete in X, and $E_{0}=f(E)$ is discrete in X_{0}.

Choose, in a parametric neighborhood on X_{0}, a disc \bar{U}_{0} which does not meet E_{0}, and let $\bar{U}=f^{-1}\left(\bar{U}_{0}\right)$. Then $Y_{0}=X_{0}-\bar{U}_{0}$ is a normal neighborhood [3, Definition 8] in X_{0} of β_{0}, and $Y=X-\bar{U}$ is a normal neighborhood in X of β. Let $\left(Y_{0, n}\right)_{n \in N}$ be a relative exhaustion [3, Definition 7] of Y_{0} such that $\beta_{0, n}$ does not meet E_{0} for any $n \in N$, where $\beta_{0, n}=\partial Y_{0 . n}-\partial Y_{0}$ and where ∂ stands for the relative boundary. Then $\left(Y_{n}\right)_{n \in N}$ is a relative exhaustion of Y, where $Y_{n}=f^{-1}\left(Y_{0, n}\right)$. Let $\beta_{n}=f^{-1}\left(\beta_{0, n}\right)=\partial Y_{n}-\partial Y$. Let α_{0} be a subset of β_{0}, α $=f^{*-1}\left(\alpha_{0}\right), \mu_{a_{0}}$ the modulus of Y_{0} for ∂Y_{0} and α_{0} and μ_{a} the modulus of Y for ∂Y and $\alpha[3$, Definition 13]. It will be proved that

$$
\mu_{a}=\frac{1}{s} \mu_{a_{0}} .
$$

Let $\alpha_{0, n}$ be the minimal subcycle of $\beta_{0, n}$ which separates α_{0} from ∂Y. Then, since f^{*} is continuous, $\alpha_{n}=f^{-1}\left(\alpha_{0, n}\right)$ is the minimal subcycle of β_{n} which separates α from ∂Y. Let $u_{0, n}$ and $\mu_{0, n}$ be the extremal function and the modulus of $Y_{0, n}$ for ∂Y_{0} and $\alpha_{0, n}$, and let u_{n} and μ_{n} be the extremal function and the modulus of Y_{n} for ∂Y and α_{n}. By Lemma 8 in [3], we have

$$
u_{n}=\frac{1}{s} u_{0, n} \circ f .
$$

Hence $\mu_{n}=\frac{1}{s} \mu_{0, n}$ and so, as $n \rightarrow \infty$,

$$
\mu_{a}=\frac{1}{s} \mu_{a_{0}}
$$

as asserted. From this equality it follows that α_{0} is parabolic [3, Definition 14] if and only if α is parabolic. In particular, $\gamma_{0} \in \beta_{0}$ is parabolic if and only if $f^{*-1}\left(r_{0}\right)$ is parabolic. But it is easily seen that the set $f^{*-1}\left(r_{0}\right)$ is finite. Thus r_{0} is parabolic if and only if all $\gamma \in f^{*-1}\left(\gamma_{0}\right)$ are parabolic [3, Corollary 4]. The theorem now follows.

Remark. An immediate corollary of Theorem 1 is the following statement: If X_{0} is relatively planar and $X_{0} \in O_{S B}$ and if there exists a distinguished proper conformal map $f: X \rightarrow X_{0}$, then X is essentially maximal.

A direct proof of this statement, in the ordinary case, was given by Tamura [7].

Theorem 2. There exists a maximal ordinary Riemann surface $X \notin O_{A D}$.
Proof. According to Ahlfors and Beurling [1, Theorem 16], there exists a planar ordinary Riemann surface $X_{0} \in O_{S B}-O_{A D}$. As $M_{1}=O_{S B}$ for planar ordinary surfaces, this X_{0} belongs to $M_{1}-O_{A D}$.

Let E_{0} be a discrete subset of X_{0} having the property that the closure in X_{0}^{*} of E_{0} is $E_{0} \cup \beta_{0}$. Then there exists an ordinary Riemann surface X and a proper conformal map $f: X \rightarrow X_{0}$ such that $f^{-1}\left(x_{0}\right)$ contains a single point for any $x_{0} \in E_{0}$, and such that $o(x)=2$ if $x \in f^{-1}\left(E_{0}\right)$ and $o(x)=1$ if $x \in X-f^{-1}\left(E_{0}\right)$.

It is clear that X has no boundary components of planar type. As $X_{0} \in M_{1}$, $X \in M_{1}$ by Theorem 1, and consequently X is essentially maximal. As $X_{0} \notin O_{A n}$, it is easily seen that $X \notin O_{A D}$. Thus the proof is complete.

References

[1] Ahlfors, L. and A. Beurling: Conformal invariants and function-theoretic null sets, Acta Math. 83, 101-129 (1950).
[2] Constantinescu C. and A. Cornea: Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J. 13, 169-233 (1958).
[3] Jurchescu, M.: Bordered Riemann surfaces, Math. Ann. 143, 264-292 (1961).
[4] Kuramochi, Z.: On the behaviour of analytic functions on abstract Riemann surfaces, Osaka Math. J. 7, 109-127 (1955).
[5] Sario, L.: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A. I. 50, 1-79 (1948).
[6] Stoïlow, S: Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars (2nd ed) (1956).
[7] Tamura, J.: On a theorem of Tsuji, Japanese J. Math. 29, 138-140 (1959).

Rumanian Academy

