A MAXIMAL RIEMANN SURFACE

MARTIN JURCHESCU

We let the notations be as in [3]. Then, in the category G of all bordered Riemann surfaces, the following inclusion diagram holds [3, Theorem 9]:

$$M_0 \subset O_{HB} \subset O_{HD} \subset O_{KD} \subset M_2.$$

Further, from a theorem of Kuramochi [4] (see also Constantinescu and Cornea [2]), it easily follows that the class O_{AD} is not contained in M_2 . On the other hand, it is well known that M_2 (which equals O_{SB} for ordinary planar surfaces) is not contained in O_{AD} (see Ahlfors and Beurling [1]).

Now let & be the subcategory of bordered Riemann surfaces without planar ideal boundary. Then & $\bigcirc M_2 = M =$ the class of all maximal bordered Riemann surfaces. Hence the question whether M is or not contained in O_{AD} naturally arises; it was first considered by Sario [5]. This note contains the negative answer to Sario's question.

Let $X = R \cup B$ and $X_0 = R_0 \cup B_0$ be two bordered Riemann surfaces. We recall that a continuous map $f: X \to X_0$ is said to be *distinguished* if $f(B) \subset B_0$, and *proper* if, for any compact $K_0 \subset X_0$, $f^{-1}(K_0)$ is compact. Let M_1 be the class of all bordered Riemann surfaces with absolutely disconnected ideal boundary.

THEOREM 1. Suppose there exists a distinguished proper conformal map $f: X \rightarrow X_0$. Then $X \in M_1$ if and only if $X_0 \in M_1$.

Proof. Let β and β_0 be the nowhere disconnecting and 0-dimensional ideal boundaries of X and X_0 . Then the spaces $X^* = X \cup \beta$ and $X_0^* = X_0 \cup \beta_0$ are compact and locally connected, and the sets β and β_0 are nowhere disconnecting and 0-dimensional. By Lemma 2 in [3], the proper map $f: X \to X_0$ can be extended to a continuous map $f^*: X^* \to X_0^*$ satisfying $f^*(\beta) = \beta_0$ and $f^{*-1}(\beta_0) = \beta_0$.

Received June 26, 1961.

MARTIN JURCHESCU

For any $x \in X$, let o(x) denote the multiplicity of f at x. As f is conformal, proper and distinguished, there exists a natural number s such that

$$\sum_{x\in f^{-1}(x_0)}o(x)=s,$$

for any $x_0 \in X_0$ [6, p. 126]. Let *E* be the set of all points $x \in X$ for which o(x) > 1. Then *E* is discrete in *X*, and $E_0 = f(E)$ is discrete in X_0 .

Choose, in a parametric neighborhood on X_0 , a disc \overline{U}_0 which does not meet E_0 , and let $\overline{U} = f^{-1}(\overline{U}_0)$. Then $Y_0 = X_0 - \overline{U}_0$ is a normal neighborhood [3, Definition 8] in X_0 of β_0 , and $Y = X - \overline{U}$ is a normal neighborhood in X of β . Let $(Y_{0,n})_{n \in \mathbb{N}}$ be a relative exhaustion [3, Definition 7] of Y_0 such that $\beta_{0,n}$ does not meet E_0 for any $n \in N$, where $\beta_{0,n} = \partial Y_{0,n} - \partial Y_0$ and where ∂ stands for the relative boundary. Then $(Y_n)_{n \in \mathbb{N}}$ is a relative exhaustion of Y, where $Y_n = f^{-1}(Y_{0,n})$. Let $\beta_n = f^{-1}(\beta_{0,n}) = \partial Y_n - \partial Y$. Let α_0 be a subset of β_0 , $\alpha = f^{*-1}(\alpha_0)$, μ_{α_0} the modulus of Y_0 for ∂Y_0 and α_0 and μ_{α} the modulus of Y for ∂Y and α [3, Definition 13]. It will be proved that

$$\mu_{a}=\frac{1}{s}\,\mu_{a_{0}}$$

Let $\alpha_{0,n}$ be the minimal subcycle of $\beta_{0,n}$ which separates α_0 from ∂Y . Then, since f^* is continuous, $\alpha_n = f^{-1}(\alpha_{0,n})$ is the minimal subcycle of β_n which separates α from ∂Y . Let $u_{0,n}$ and $\mu_{0,n}$ be the extremal function and the modulus of $Y_{0,n}$ for ∂Y_0 and $\alpha_{0,n}$, and let u_n and μ_n be the extremal function and the modulus of Y_n for ∂Y and α_n . By Lemma 8 in [3], we have

$$u_n=\frac{1}{s}u_{0,n}\circ f.$$

Hence $\mu_n = \frac{1}{s} \mu_{0,n}$ and so, as $n \to \infty$,

$$\mu_{\alpha}=\frac{1}{s}\,\mu_{\alpha_0},$$

as asserted. From this equality it follows that α_0 is parabolic [3, Definition 14] if and only if α is parabolic. In particular, $\gamma_0 \in \beta_0$ is parabolic if and only if $f^{*-1}(\gamma_0)$ is parabolic. But it is easily seen that the set $f^{*-1}(\gamma_0)$ is finite. Thus γ_0 is parabolic if and only if all $\gamma \in f^{*-1}(\gamma_0)$ are parabolic [3, Corollary 4]. The theorem now follows.

Remark. An immediate corollary of Theorem 1 is the following statement: If X_0 is relatively planar and $X_0 \in O_{SB}$ and if there exists a distinguished proper conformal map $f: X \to X_0$, then X is essentially maximal.

A direct proof of this statement, in the ordinary case, was given by Tamura [7].

THEOREM 2. There exists a maximal ordinary Riemann surface $X \notin O_{AD}$.

Proof. According to Ahlfors and Beurling [1, Theorem 16], there exists a planar ordinary Riemann surface $X_0 \in O_{SB} - O_{AD}$. As $M_1 = O_{SB}$ for planar ordinary surfaces, this X_0 belongs to $M_1 - O_{AD}$.

Let E_0 be a discrete subset of X_0 having the property that the closure in X_0^* of E_0 is $E_0 \cup \beta_0$. Then there exists an ordinary Riemann surface X and a proper conformal map $f: X \to X_0$ such that $f^{-1}(x_0)$ contains a single point for any $x_0 \in E_0$, and such that o(x) = 2 if $x \in f^{-1}(E_0)$ and o(x) = 1 if $x \in X - f^{-1}(E_0)$.

It is clear that X has no boundary components of planar type. As $X_0 \in M_1$, $X \in M_1$ by Theorem 1, and consequently X is essentially maximal. As $X_0 \notin O_{AD}$, it is easily seen that $X \notin O_{AD}$. Thus the proof is complete.

References

- Ahlfors, L. and A. Beurling: Conformal invariants and function-theoretic null sets, Acta Math. 83, 101-129 (1950).
- [2] Constantinescu C. and A. Cornea: Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J. 13, 169-233 (1958).
- [3] Jurchescu, M.: Bordered Riemann surfaces, Math. Ann. 143, 264-292 (1961).
- [4] Kuramochi, Z.: On the behaviour of analytic functions on abstract Riemann surfaces, Osaka Math. J. 7, 109-127 (1955).
- [5] Sario, L.: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fenn. Ser. A. I. 50, 1-79 (1948).
- [6] Stoïlow, S: Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars (2nd ed) (1956).
- [7] Tamura, J.: On a theorem of Tsuji, Japanese J. Math. 29, 138-140 (1959).

Rumanian Academy