THE SPACE OF DIRICHLET-FINITE SOLUTIONS
OF THE EQUATION Ax=Pxz ON A
RIEMANN SURFACE

MITSURU NAKAI

Introduction and preliminaries

1. Let R be an open Riemann surface. By a density P on R we mean a
non-negative and continuously differentiable functions P(z) of local parameters
z=x+ iy such that the expression P(z)dxdy is invariant under the change of
local parameters z. In this paper we always assume that P30 unless the

contrary is explicitly mentioned. We consider an elliptic partial differential
equation
1 du=Pu, 4=3'/0%"+3/0y,

which is invariantly defined on R. For absolutely continuous functions f in
the sense of Tonelli defined on R, we denote Dirichlet integrals and energy
integrals of f taken over R by

Dalf1=[[_as/oal+ (as/0y[)dxdy

and
EslL/1={{ (as/oxl+las/oyl + Pifi)dxdy

respectively. By a solution of (1) on R we mean a twice continuously differ-
entiable function which satisfies the relation (1) on R.  We denote by PB (or
PD or PE) the totality of bounded (or Dirichlet-finite or energy-finite) solutions
of (1) on R. We also denote by PBD = PB(\ PD and PBE=PB(\ PE. If the
class X contains no non-constant function, then we denote the fact by R€ Ox,
where X stands for one of classes PB, PD, PE, PBD or PBE. Here we rematk
that a constant solution of (1) is necessarily zero, since we have assumed that
P 0 on R We also use the notation R< Os to denote the fact that R is a
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parabolic Riemann surface. Ozawa [5], [6] proved that

OG C OPB C OPE‘ - OPBE‘

and under the condition {{ _Pdxdy <, Ora=Ops = Opar.

Functions considered in this paper are always assumed to be real-valued.
For a class X of functions, we denote by X' the totality of non-negative func-
tions in X.

A subdomain of R is said to be analytic if its relative boundary consists
of a finite number of analytic closed Jordan curves.

2. As far as the author knows a little is published about the class PD or
Osp (cf. Royden [8]). The aim of the present paper is to show that the class
PD shares in many properties of the class HD, the totality of Dirichlet-finite
harmonic functions on R. First we show Ops C Opp (Theorem 1). With the

classification scheme of Ozawa we then get

Os C Opp C Opp C Oppp C Opp = Oppr;

and under the condition [{ Pdvdy < =, Orn=Orn = Opso= Opr = Opae. 1t is
an interesting open question to settle whether the above inclusions are proper or
not when ”Rdedy= o, Next we prove that the class PD forms a vector
lattice (Theorem 2). Hence in particular any Dirichlet-finite solution is repre-
sented as a difference of two non-negative Dirichlet-finite solutions. We believe
that this will make further investigations of the class PD much easier. We
then prove that the vector space structure of PD is completely determined by
the behaviour of P at the ideal boundary of R. In other words, if R, is an
analytic compact subdomain of R such that R— R, is connected and if we denote
by P D the class of all Dirichlet-finite solutions on R~ R, which vanish con-
tinuously on 9/, then the classes PD and £ D are isomorphic as vector spaces
(Theorem 3). Here P D forms a Hilbert space with reproducing kernel with
respect to Dirichlet-norm (Theorem 4). Finally we characterize the property
Opp by a maximum principle (Theorem 5). A similar consideration as our
Theorem 5 for the property Opr is found in the recent work of Ozawa T6l.

3. For convenience we state some fundamental facts for solutions of (1)

which we shall use later. In this section we admit the case P=0. A non-
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negative (or non-positive) solution on R does not take its maximum (or
minimum) in R unless it is a constant. A solution on R which takes both of
positive and negative values does not take its maximum and minimum in R.
If R is a bordered compact surface and # is a non-negative solution of (1) and
k is a harmonic function such that # and h are continuous on RUD9R and
k>u on oR, then =% on R We shall quote these facts as maximum
Drinciple.

For a compact subset K of R, there exists a positive constant %2 such that
it holds the inequality

Eu(p) < u(q) < ku(p)

for any non-negative solution # on R and for any two points p and ¢q in K.
We shall call this inequality as Harnack type inequality.

A monotone sequence of solutions on R which is bounded at a point of R
converges to a solution uniformly on any compact subset of R. A bounded
sequence of solutions on R contains a subsequence converging to a solution on
R uniformly on any compact subset of R. We shall quote these facts as Harnack
type theorem.

If a sequence of solutions on R converges to a function uniformly on each
compact subset of R, then the limiting function is a solution and the sequence
of differentials of these solutions converges to the differential of this limiting
solution.

A bounded solution on R except a compact subset of logarithmic capacity
zero can be continued to a solution defined on R.

Other important facts for the equation 4« = Pu is the solvability of Diri-
chlet problem on any analytic compact subdomain with continuous boundary
value and the existence of Green’s function of du= Pu with respect to an
arbitrary Riemann surface R unless P=0 on R.

For proofs of these facts, refer to Myrberg’s fundamental work [2] and

[31.

4. For an analytic compact subdomain D of R and a continuous function
f defined on a set S containing D, we denote by f, the continuous function on
S defined by fo=f on S— D and 4fp= Pfp on D.

A continuous function f defined on a subdomain U of R is said to be a
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subsolution (or supersolution) if for any point #, in U there exists an analytic
compact subdomain D, of R such that po€ D.C D, C U and fo=f (or fo<f)
on U for any analytic subdomain D of D, with ppc DCDC D,. A non-
positive (or non-negative) constant is a subsolution (or supersolution). The
functions cf+ g, where ¢ is a non-negative constant, and max (f, g) (or
min (f, g)) are subsolutions (or supersolutions) along with f and g. A solution
is a subsolution and at the same time supersolution. Although the notions
of subsolutions and supersolutions are of local character, we can derive the

following global properties.

LEmMma 1. Let f be a subsolution (or supersolution) defined on a subdomain
U of R such that supf=0 (or inf f<0). Then f does not take its maximum
[ 24 15

(or minimum) in U unless f is a constant.

Proof. We only treat the case when f is a subsolution, since the situation
for supersolution is quite parallel to that of subsolution. Contrary to the as-
sertion, assume that # takes its maximum in U. Then we can find a point po
in U which lies in the boundary of the set {#; #(p) = maxy %}, since f is not
constant in U. Now we can find an analytic compact domain D, such that
€ Dy C Dy C U and fp=f for any analytic subdomain D of D, with poe D
CDCD. At any point p in 3D,

To(D) =7(po) =1(p) = fo(P).

This shows that the solution f» in D takes its maximum in D. Hence by the
maximum principle f» is a constant and so f=f(p) on 8D. By arbitrariness
of D in D,, we conclude that /= f($,) in D,, which contradicts the definition
of pa. QE.D.

Lemma 2. A continuous function f defined on a subdomain U of R is a

subsolution (or supersolution) if and only if fpo=f(or fo<f) for any analytic
compact subdomain D such that D C U.

Proof. Consider the function ¢ =f—f, on D. This is a subsolution in D
and so from Lemma 1 sup p¢ =supop¢ =0. Thus ¢<0 on D or f,=>f. QE.D.
From this lemma we can conclude that a function which is a subsolution

and at the same time a supersolution is a solution.

LemMA 3. Suppose that f is a twice continuously differentiable function
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defined on a subdomain U of R. Then f is a subsolution (or supersolution) in
U if and only if 4f— Pf=0 (or 4f~ Pf<0) on U.

Proof. First we show the sufficiency of our condition. Let D be an arbi-
trary analytic compact subdomain such that D C U. Put ¢ =f—fp on D. We
denote by G the Green’s function with respect to D with the pole p, which is

an arbitrary point in D. By Green’s formula,
o) = @) [ (40~ PG axay.

As 49— P¢=0 (or 4¢ — P9 <0), so ¢(p)=0 (or ¢(p)<0). Thus ¢=>0 (or
¢<0) on D or /=7 (or fp<f). Hence f is a subsolution (or supersolution).
Next we show the necessity of our condition. Contrary to the assertion,
assume the existence of a point in D and hence a subdomain D of U such that
4f — Pf<0 (or 4f— Pf>0) in D. Then from the sufficiency of our condition
we conclude that f is a supersolution (or subsolution) in D. As f is a sub-
and supersolution in D, so f is a solution in D. Then 4f— Pf=0 in D. This
is a contradiction. Thus we have shown that 4f— Pf>0 (or 4f — Pf<0) in U.
QED.

5. Let U be an analytic compact subdomain of R. We denote by M(D)
the totality of continuous functions on U which are absolutely continuous in
the sense of Tonelli in U with finite Dirichlet integral taken over U. We also
denote by M?(U) the totality of functions f in M(TU) with = ¢ on 3U, where
¢ is a fixed element in M(U). Then we have

DiricHLET PRINCIPLE: #f u satisfies du=0 on U and u=¢ on 9U, then
D[4l < D.Lf] for all f in M?(U), where the equality holds only for f = u.

This simple fact plays an important and almost essential role in the study
of the class HD in the theory of harmonic functions. This Dirichlet principle

is a special case, i.e. P=0 on U, of the following

ENERGY PRINCIPLE: if u satisfies du=Pu on U and u=¢ on 29U, then
ELul < Eslf] for all f in M?(D), where the equality holds only for f = u.

The proof of this is an immediate consequence of the identity Ey[f]
= E;[ul+ Ey[f— u] which follows from Green’s formula. From the standpoint
that we are asking to what extent the theory of the class HD can be extended
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to the class PD, we desire to get the validity of Dirichlet principle for solu-
tions of du=Pu. Needless to say, this cannot be expected in general unless
P=0. Hence to get the validity of Dirichlet principle for solutions of 4« = Px,
we have to impose some restrictions on the class M?(U). For the aim, we
denote by S(U) the class of all non-negative functions in M(U) which are
subsolutions in U and by S*(U) the totality of functions in S(U) such that
f=¢ on oU, where ¢ is a fixed function in S(U). Then we have the following
almost trivial but very useful fact, which we shall quote as weak Dirichlet

principle.

LemMma 4 [WEAK DiricHLET PRINCIPLE]). If u satisfies du= Pu on U and
u=¢ on 3U, then DyLul < Ds[f] for all f in S*(U), where the equality holds
only for f=u.

Proof. As f— u is a subsolution in U with f— % = 0 on 92U, so by maximum
principle (Lemma 1) f—«#<0 in U. Since f is non-negative, 2’ — f?=0on U.

From this and the energy principle
Dolf1- Dolul= [ PG =7?) dzdy=o0.

Next suppose that Dy[f]1= Dy[#]. Then from above we get Ey[f]1= Ey[«].
By the energy principle, we finally get f = u. QED.

Existence of bounded solutions

6. Virtanen [9] proved that the existence of a non-constant Dirichlet-
finite harmonic function implies the existence of a non-constant bounded har-
monic function. First we prove such a Virtanen type theorem for the equation
4du = Pu.

TueoreM 1. The existence of a mnon-constant Dirichlet-finite solution of

du = Pu implies the existence of a non-constant bounded solution of du = Pu.

Proof. Let u be a non-constant PD-function on R. Contrary to the as-
sertion, assume that there exists no non-constant bounded solution of du = Pu
on R. Hence, in particular, # is not bounded. We take an exhaustion {Rn}:
of R consisting of analytic compact subdomains R, such that R—R; is con-
nected. Without loss of generality, we may assume # >0 on 9R;. Let us be"
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the continuous function defined on R,— R, such that «) is the solution in

R.—R;and u) =0 on R, and #, =u on 9R,. By the maximum principle
M= Ny 41> s >0

on R,— R,, where m=supos, v. Hence by the Harnack type theorem {u}}
converges to a solution #* on R— R; which is continuous on R— R; with

boundary value %* =u on 9R; and m=>%*>0 on R— R,. By energy principle
ER,,—E;[“:J = ERn—n—I?l ['u§+1].

By Fatou’s lemma Eg-z[#*] < « and a fortiori Dx-z[u*]1< <. We put #**
=% — u*, which is not identically zero, since #'* =0 implies the boundedness
of w. Then »** is a non-constant Dirichlet-finite solution in R— R; vanishing
on oR;.

Next we but f=|u**|. This is a Dirichlet-finite subsolution in R— R;
vanishing on 2R,. We denote by v. (resp. Z») the continuous function on
R, — R, which is a solution (resp. harmonic) in R,— R; with boundary value
f on 3(Rs— R)). By maximum principle

f<va< hn

and the sequences {v.} and {hn} are non-decreasing. By using Dirichlet prin-

ciple.
Dg,-%[hx]1< Dg,-z[f].

As 9R; consists of analytic curves and %, =0 on oR; and Dirichlet integral of
h» is bounded by DLf], so {h.) converges to a harmonic function k with finite
Dirichlet integral on R—R;. Thus f<v,<h and so by the Harnack type

theorem, {v,} converges to a solution » such that
f<v<h,

which shows v=0 on 9R, and v >0 in R—R,. As D[h]l< «, so h® admits a
harmonic majorant k* (cf. Parreau [7]). Hence ¢* admits a harmonic majorant

k*. Here we notice that ¢* is a subsolution. In fact,
40— Py’ = Pv* + 2| gradv|*=0.

Hence by Lemma 3, ¢° is a subsolution. We denote by »% the continuous func-

tion on R,— R, such that v} is the solution in R, — R; with boundary value v’
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on o(R»— R;). Then by the maximum principle
P<vi<vra<h®

on R,— R,. Hence by the Harnack type theorem {v%} converges to a solution
v* such that o* < v*

Let w, be the continuous function on R,— R; and the solution in R,— R
with boundary values w,=0 on oR; and w,=1 on 9R,. By the maximum
principle

1= wn=wn+1=0
on R,— R; and so by the Harnack type theorem {w,} converges to a solution
w(p; oR, R—R;) on R—R,. As we have assumed R € 0p5, so by a theorem
of Ozawa [5], w(p; 2R, R—R;) =0.
Fix an arbitrary point p in R—R;. For integers »n such that R,— R

contains p, we denote by G,(g, ) the Green’s function of the equation du — Pu

=0 with respect to R, — R; with pole p. We put

_ 1 2Gug, p)
dun(q) = 57 By ds,

on 3(R,— R;), where 9/ov denotes the inner normal derivative on a(R,— R;)

and ds denotes the line element of 2(R, — R;). By Green's formula

o) = vaum

v 3R,

and

v*(p) = San v d un

and
wn(p) = 5‘ Wndn.
ORy
By Schwarz’s inequality
/
(v(p)) = (j vdu,,)zgs dun'j‘ v’dun.
R ARy Ry

Using v* <v*, we get (v($))* <w.(p)v*(p). Hence by making n " o,

(w(P))’<w(p; oR, R— R)v*(p).
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Since p is arbitrary in R— R; and w(p; OR, R—R) =0, we get v=0. This
is a contradiction. Thus R< Opsp. QE.D.

7. REMARK TO THEOREM 1. Let Ry be an analytic compact subdomain of
R such that R— R, is connected. Assume that there exists a non-constant
Dirichlet-finite solution u of du-=Pu on R— Ry which vanishes continuously on

ORo. Then there exists a non-constant bounded solution of du= Pu.

The proof of this fact is contained in the proof of Theorem 1. We must
notice that this fact is not true in general in the case when P=0 on R, ie.
in the harmonic case. In fact, if R < Ogy— Og, then the harmonic measure of
the ideal boundary of R relative to the domain R— R, is a non-constant and
Dirichlet-finite harmonic function on R — R, which vanishes on 2R, but there
exists no non-constant bounded harmonic function on R. (Ogs denotes the class
of all Riemann surfaces on which no non-constant bounded harmonic function
exist. For the existence of R in Ouz— Oq, confer Toki [9].)

Lattice property of the class PD

8. It is known that the class HD forms a vector lattice (cf. [4]). Here
the lattice operations in HD are induced one from the usual function ordering
in the class of all harmonic functions. Corresponding to this fact, we prove
that the class PD forms a vector lattice with lattice operations induced by the
function ordering in the class of all solutions. More precisely, for two solutions
u and v we denote by # V v (or # A\ ») the solution w such that w >« and v
(or w<wu and ») and w< w' (or w=>w') for any solution w' such that w'>u
and v (or w’'<u and »). The function # V v does not exist in general. Clearly
the necessary and sufficient condition for the existence of # V » is that there

exists a solution which is less smaller than #« and v.

TaeorEM 2. The class PD forms a vector laltice with lattice operations
V and N. In particular any Dirichlet-finite solution of du= Pu can be 7re-

Dpresented as a difference of two mnon-negative Dirichlet-finite solutions of du
= Pu.

Proof. 1f PD does not contains no non-constant function, our assertion is
obvious. Hence we may assume R & Opp and so by Theorem 1 R& Opp. It is
known that Os C Opp (cf. Ozawa [5]1). Thus R Os.



120 MITSURU NAKAI

First we prove that #V 0 exists and belongs to PD for any « in PD. For
the aim we put f = max (%, 0), which is a subsolution on R. We take an ex-
haustion {Ry};’ of R consisting of analytic subdomains. Let v, be the solution

in R, with boundary value % on 2R, (n>1). By the maximum principle
L0 < Vs

on R, and by the weak Dirichlet principle
(1) Dr,[v:]< Dg,[f].

We denote by %, the harmonic function in R,— R, with boundary value 1 on

OR, and 0 on 9R,. Then by the maximum principle and Diriclet principle

0<hn<hs:1<1

and
Dg,-&[1hn]= Dryyi-2LBn+1]

and {h,} converges to a harmonic function %z on R— k—o and
Dr-z[h]=1limn Dg,-zr,Lhnl.

By R Og, h is non-constant and Dg-z[%]> 0. By Green’s formula

(2) LR (on— ) *dhn = 5 (0n = 1) dhn

9(Rn—Ry)

- SL _d(oa— 1) N *dhy.

n=Ro

By Schwarz’s inequality and by (1)

(3) SL _dloa= ) A *dh,,f < Dry-2[0n — f1Dzp-5.Chn]

Ry

<4 DUf]Dg,-zLhal.

As we have from (2) and (3)
infa, |02 = f1§, *dha <2(DLy1Ds,-5L D"
and by Green’s formula

y *dhn = DRn-I_?o[h”]’
ORy,

so we get
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infor, lo,—f1 < 2(DU]/DR,.—F2.,[hn])m < Z(D[f]/DB—Tf.[h])UZ-

We fix a point p, in R,. By the Harnack type inequality there exists a finite

and positive constant k such that
vn(Po) < kinfor, vn.
Hence by putting m = supes, | /|,
 va(p0) < km+2 k(DL]/Dg-z IR,

Thus by the Harnack type theorem the non-decreasin sequence {vn} of solutions

converges to a solution » on R and by Fatou's lemma

DLyl < limna D [9,1< DOf] < .

Hence v belongs to the class PD and v>for v>#and 0. To conclude v =% V0,
we have to show that ' > for any solution #' such that v'>u and 0. This
follows from the inequality ¢'= v, >/, which is a consequence of the maximum
principle.

For two arbitrary elements # and » in PD, (¥~ ) V 0 exists and belongs
to the class PD as we have seen above. Clearly the element w = (#—v) V0 +v
belongs to the class PD and w=# V v. The existence # A v in PD is immediate
if we notice the relation # A v = — ((—%) V (—v)).

Hence we have proved that the class PD forms a lattice with respect to
the operations V and A. These operations are easily seen to be compatible
with the vector space structure of PD. Thus the class PD forms a vector
lattice with lattice operations V and A.

The last part is nothing but the Jordan decomposition of the element % in
PD:u=uVN0—(—(uAN0)). Q.ED.

9. REMarRk 1 To THEOREM 2. Suppose that R is embedded into a Riemann
surface R' as ils subsurface and I consists of a finite number of analytic closed
Jordon curves which are contained in the boundary of R relative to R'. Moreover
suppose that the density P on R is the restriction of a density P' on R' to R.
Assume that two functions u and v in PD(R) are continuously extended to
RUT. Then uVN v and u N\ v are continuously extended to RUITI and u\ v

=max (%, v) and u A\ v =min (%, v) on I

Proof. As we have identities %V v = (#—~2) V 0+ v, max (%, v) =max («
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-2,0)+v, uAv=—((—u)V (—2)) and min (%, v) = —max — (», —v), so
we have only to prove the above assertion for #—v and 0 in PD(R) and for
the operation V. Hence we have to prove that » V 0 is continuously extended
on RUTI and # V 0 =max (%, 0) on I" if  is continuous on RUI.

Let {R}}: be a sequence of analytic compact subdomains R} of R' such
that R% C R#%+: and 2R} (relative to R') contains I" and 9R5 —I' is contained
in Rand R=U,R;. We put f=max (%, 0), which is continuous on R U I" and
a subsolution in R We denote by v% the solution of du= Pu in R} with

boundary value f on @Rj. By the maximum principle,
f<vh<via<uVoO

on R%. Hence by the definition of # V0, # V 0 =1lim,v5. Now we denote by
w the solution of 4« = Pu on R with boundary value f on I" and # V0 on
OR¥—T. Again by the maximum principle, f<v5%<w on R and by making
n o, f<uV0<w, which shows that u VO=w on Ry and so %V 0 is con-
tinuous on R U3 R and a fortiori on RU " and # V 0 = f = max (%, 0).

ReEMARK 2 To THEOREM 2. From the proof of Theorem 2, we can easily see

that the following inequality holds:

Dzgl2e vV 0], Dele A 01< Delul.

The class PD and the ideal boundary of R

10. It is well known that Oap-property of a Riemann surface is determined
by its ideal boundary. The corresponding facts are also valid for the equation
du = Pyu. In our case, more strong facts hold, i.e. the vector space structure
of the class PD is completely determined by the behaviour of P at the ideal
boundary of R. This means that vector spaces PD and P'D are isomorphic if
P and P’ are two densities on R which are not identically zero on R and P= P’
except a compact subset of R This fact is also formulated as follows. Let
R, be an analytic compact subdomain of R such that R — R, is connected. We
denote by P,D the class of all Dirichlet-finite solutions of 4#=Pu on R— R,

vanishing continuously at o R,. Then we have
TueoreM 3. The class PD is isomorphic to the class PiD as vector spaces.

Proof. We take an exhaustion {R.!; of R such that R. is an analytic
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compact subdomain of R. With each « in PD*, we associate a function #* as
follows. We denote by s the solution in R~ R, (n=1) with boundary values

us =2 on 0K, and %+ =0 on OR,. By the maximum principle,

Un < U< U
and

0 < %n < SUpsr, %.

By the Harnack type theorem, {#.} converges to a solution «™ in R— R, such
that #* =% on 9R, and 0 <#*<u and 0 <u*<supsr,# on R—R;. By the

energy principle,
Erpy-rltis +11< Eg,-rler] < oo,
Hence by Fatou’s lemma
and a fortiori
DR—R,,EM*] < o,

Clearly the mapping # — #* satisfies

(1) (u1+uz)*=uf+u2*
and
(2) (cw)* = cu®,

where ¢ is a non-negative constant. Now we put 7#=u — ", which is an ele-
ment in P,D*. Hence we get a mapping = of PD" into D" such that

(3) (o + ") =nut+ o
and
(4) m(cu) =cru,

where ¢ is a non-negative constant. These follow from (1) and (2).

We first show that = is onto, i.e. there exists a w in PD" such that rw = v
for any v in PD*. If v =0, then we have only to take w=0. So we may
suppose that v # (. We fix a point p, in R and a sequence {R-m}; of analytic
subdomains of R such that Ry D R-m D Ropm D Boymsny and Ny Rom={p}. We

denote by wm,» the solution in R, - R, with boundary values v on @R, and 0
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on 9R_,». By the maximum principle
0 < wm,n < Wm+1,n < SUPar, V.

Hence by the Harnack type theorem {wm,»}m-1 converges to a solution w, on
Rs—{po} such that

0 < wn < SUPsgs ¥
and

Wy =0V

on R.— R,. Hence w, can be continued to R, so as to be a solution on R,
and if we set wm,»=0 (resp. ¥ =0) in R_,x (resp. Ry), then wm,» (resp. v) is

a subsolution in R,. By the weak Dirichlet principle,
Dr-zlv1= Dg,-5_,,Ltwm, n]= Dp,-5_ sy [W0m+1,n].
Hence by Fatou’s lemma, we get
Dg,[w,]1< Dlv].
As v < ws, so by the maximum principle
V< Wn S Wnst.

Now we take an analytic compact subdomain V in R; — R, such that (R, — R,)
—V is a domain. We denote by %k, the harmonic function with boundary
values 1 on @V and 0 on oR.. Then by Green’s formula

(5) jw(w,. — ) *dh = 5 (s — ) *dhn

0\Ry~V)
= SSR,,_.-,d(w” - ) N *dhn.
By Schwarz’s inequality
(6) Hg,.-x»d(w” —v) A *dhn : < Dg,[wn — v1Dg,-v[hal.
Hence by (5) and (6)
infor (s = )| _*dhn <2(Dg, [0 D, -rLh )™,
As we have by Green’s formula

{ *dhn=Da,slha),
oV
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so we get
infar (ws—v) < Z(D[”]/Dxn—r'[h,,])“"’.

By the remark to Theorem 1, R does not belong to Ossz and so by Ozawa’s
lemma R does not belong to Os, since » £ 0. Hence {k.} converges increasingly
to a non-constant harmonic function # on R— V and the sequence {Dg,-7[hnl}
converges decreasingly to Dg-7[£], which is strictly positive. By the Harnack
type inequality there exists a constant %2 for a fixed point p in V such that

wa(p) <k infor wy for all #n. Hence by putting a = super v,
wn(p) < ka+2 k(D[v]/ Dp-5[1])"* < .

So, by the Harnack type theorem, the non-decreasing sequence {w.} converges

to a solution w on R such that w=>» and by Fatou’s lemma
D[ZU] S@n DRnEWn] < D[v] < oo,

Thus w belongs to the class PD*. To conclude mw=w, we have to show
*=w—wv. For the aim we put wn=wn—v>0. As ws— v =w, converges to
w—v=w uniformly on oR,, so we can find for an arbitrary given positive

number ¢ an N such that for any =N
0<wn —wh<ce

on 9R,, where w, is, by the definition of the operation *, the solution in
R» — R, with boundary values w on 2R, and 0 on @R,. As wy=0 on 9Rx, so
we get by the maximum principle

0<ws —w,<e

on R,— R,. Notice that lim,w; =w* and lim,wy =w—v. Hence by making
n/ « in the above inequality, 0 < w™* - (w —v) <e. This shows that w* =w —v.
Thus we have proved that #w=v, we PD", or that » is a mapping of PD"
onto P.D*.

Now we extend = to the mapping of PD onto P,D. By Theorem 2, any

function % in PD can be expressed as
u=u'—u,
where ' and #" are in PD*. We define nu by

nu=nuw —nu,
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which belongs to BD. This definition does not depend on the special choice
of the decomposition # = #' —#'". In fact, assume that u=a'—-24" is another
such decomposition. Then #' + @ = #'+ »”. Hence by (3), ro/ + ndl = ntt' + nu
or o' —nu''=xna'—wa'". It is easily seen from (3) and (4) that » is a linear
mapping of PD into P,D.

By Remark 1 to Theorem 2, any v in PoD can be expressed as v = v' —v',
where o' and ¢! are in P.D*. As = maps PD" onto P,D", so the extended =
maps PD onto P,D.

Finally we show that = is one-to-one. Assume that nz =0 for a » in PD.
We have to show that # =0. Let » =4 —u«" be a decomposition such that '

and #" are in PD". Then na' =nu'" or o' —u'™* =u" —u''™ or
w —u =u* — u*,

From this we have to conclude that #'— «”=0. Contrary to the assertion

assume that «' —«'" £0. Let {u*} and {#*} be defining sequences of »'* and

#"* respectively. Then wu)* — u,* vanishes on 3R, and vy —ovi* =vh— v} on

OR,. By the maximum principle,

[ 2 — un* | < supog, | — u'|.
As u* — ul* converges to w* — #'"*, so

| 2™ — 4" | < supor, | ' — ' |.

Thus we have

supg | %' — " | = max (supz-x, | %' — %" |, supx, |%' — u'"|)
= max (supz-gz, | @™ — ™|, supsg, |#' —u''|)

= Supeg, |#' — u'"|.
There exists a point p in @ R such that
supor, |0 — u'| = [&/(p) —u"(p) .
Replacing #' — %" by u'" —#/, if necessary, we may assume that
w(p) —u"(p) > 0.

Then there exists a compact neighborhood U of such that #' —#" > 0in U. As
' — " does not take its maximum in U unless it is a constant, so ' —u" =¢

in U, where ¢ is a positive constant. Now we put
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R.={qeR; w(q —u"(q) =c)

Then R: contains p and so it is not empty. By the similar argument as above,
R: is open in R. Clearly Rc is closed. Thus by the connectedness of R, R; = R,
or ' —u"=c>0. This is a contradiction, since any non-zero constant is not
a solution. Thus we have proved #' — " =0 or #=0. This shows that = is
one-to-one.

Hence 7 is a one-to-one linear mapping of PD onto PD and so the class

PD is isomorphic to P.D as vector spaces. QED.

11. Remarx to TuroreMm 3. In the proof of Theorem 3, we have con-
structed an isomorphism = of PD onto P,D. From the proof we can easily see
that

SUPR-%, | m2¢| = supzr | u/.

Hence = and ="' preserve boundedness. If we denote by FBD the totality of
bounded functions in PD, then we can state that the normed spaces PBD and
P,BD are isometrically isomorphic, where the norms in PBD and FBD are
sup. norms.

Thus the condition R€ Opg; is equivalent to the fact PoBD =: {0}.

Hilbert space P,D and its reproducing kernel

12. Only in this section we admit the case P=0. Let R, be analytic
compact subdomain of R such that R— R, is connected. We denote by PD
the totality of Dirichlet-finite solutions on R — R, vanishing continuously on o R;.
We define the inner product of elements # and v in FoD by the following

= ou 9v_ ., Ju 9v
(u; 'U) = SSB\EQ,( % D% + a‘; ay )dxdy.
Hence [lull = (u, #)** = (Dp-5{u])*. First we prove the following

LemMa 5. There exist a finite-valued function ¢(p) and a neighborhood

U(p) of p in R~ Ry such that for any function u in the class P,D
lu(@! < c(p)llull
holds for any q in U(p).

Proof. First assume that u belongs to ZD". We take a subarc 7 of 9R,
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with two end points a and b. Let I" be analytic arc in R with end points a

and b such that I' is contained in R— R, except its end points. Moreover we

assume that y + I" is the boundary o U of a simply connected subdomain U of

R— R, such that U contains p. We denote by k the harmonic function on U

with boundary value » on o U. By the maximum principle and Dirichlet principle
u<h

on U and

Du[rl < DoLul < Nl ull®

Let z=¢(q) be the direct conformal mapping of U onto I =(z; Imz>0)
such that @(b) =¢>0 and ¢(a) = —¢ and @(p) =yi(y >0). We put H(z)
=n(¢™(2)) on I". As H(x) =0 on —e<zx <¢ so H(z) can be harmonically
continued to IT=(z; |z| < =) —(x; x_>_é or x< —¢). We denote by H(z)
this extended function. We set W={z; |z— il <y} and 7= (¥ + )" — y,.
We denote by A*(z) the conjugate harmonic function of H(z) on IT such that
H*(0) =0 and put F(z) = H(z) +iH*(z). Then F(0) =0 and

jjn | F(2)*dxdy = Dol =2 Dn:TH] =2 DyLh] < 2|\ w2
As | F'(2)]* is subharmonic on 7, so for z, in W
P& W[ IP@Pdxdy.
1z~2y|<r
Thus we have for z; in W
121l ,
H(z) <|F(z)| < IS. Fi(te*™)e*®*dt < (2/nr”)*|| ull.

Hence if we set U(p) = ¢”*(W), then
u(q) < h(q) = H(¢(q)) < (2/= )| u]l.

For an arbitrary # in PD, we can apply Jordan decomposition = =u
VO+#AN0, since P,D is a vector lattice (cf. Theorem 2 and Remark 1 to
Theorem 2). By Remark 2 to Theorem 2, Dz-z[% V 0], Dz-5,[# A 01 < Dg-zlu]l.
Then from the above

lu(DI <[ (u VOV +1(—2 V0@l <c(Plull,

where ¢(p) =2(2/x7*)"2 QED.
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TueoreM 4. The class PoD forms a Hilbert space with respect to the inner
product (u, v) = (Ds-gLu+v]l— De-rlu—0v1)/2 and this Hilbert space posesses
the reproducing kernel k(p, q), i.e. the symmetric function on (R— RB) x (R— Ry)
such that k(p, q) belongs to the space P.D as the function of p and for any u
in PoD

u(qg) = (u(p), B(p, b)).

Proof. To show that P D is a Hilbert space, we have only to prove that
PyD is complete. Let {u,} be a Cauchy sequence in the inner product space
PD. By Lemma 5, u, converges to a function # on R — R, uniformly on each
compact subset of R— R,. Hence # is a solution on R— R, It is easy to see

that # vanishes continuously on 9R,. By Fatou’s lemma
” u— un” S_Ii@m “ Um — un“-

Hence # belongs to the class PD and limn |l — #a]] = 0.
To prove the second part we notice that by Lemma 5 the linear functional
u - u(p) is bounded. Thus by Riesz’s theorem there exists an element u; in
P,D such that
w(p) = (u, up).

As up(q) = (up, uy) = (ug, up) =u,(p), so by putting u,(p) =k(p, q) we get
the required kernel k(p, q¢) of PD. QED.

The property Or; and a maximum principle

13. A. Mori [1] proved that R belongs to Ogp if and only if one of the
following holds; supr-r, # = supsg, # and infx-z, # = infor, #, where R, is an an-
alytic compact subdomain of R such that R— R, is connected and % is an arbi-
trary function in HD(R — R,) such that « is continuous on R—R,. We shall
show that the corresponding fact also holds for Opp. In this case, the above

two inequalitsies can be replaced by supx-z,|#| = supss, |u|.

TuEOREM 5. The following three statements are mutually equivalent.

(a) R belongs to Opp;

(b) for any analytic compact subdomain R, such that R— R, is connected,
it holds that

SUPR-F, | %] = supax, | #]
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for any u in PD(R— Ry such that u is continuous on R— Ry;
(c) there exists an analytic compact subdomain R, such that R— R, is

connected and
SUPr-7, | #| = supag, | #|
for any u in PD(R —R,) such that u is continuous on R— Ry.

Proof. (a) implies (b). To prove this, take an arbitrary = in PD(R —R,)
which is continuous on R— R,. By the remark 1 to Theorem 2, # can be de-
composed as

U=~ U,
where #; and u, are in PD"(R—R,) which are continuous on R — R, and
u, = max (%, 0)
and
w, = —min (%, 0)

on o0R,. We take an exhaustion {R.}; of Rsuch that R, is an analytic compact
subdomain of R. Let ;. be the solution in R,— R, with boundary value

on oK, and 0 on 9R,. By the maximum principle,
0 < 0i,n < Vi, n+1 < SUPoR, Ui

and by the energy principle, Eg,-7[vi,n]= Er,.,-5l0i,n+1]. By the Harnack
type theorem and by Fatou’s lemma, {vin)n-1 converges to a solution #; in
R— R, such that

0 < v; < supoer, #:
and v;=u; on OR, and
Er-w[vil < limp Er,-5,[vi,n] < Eg,-,[0i,1]
and a fortiori
Dr-zlvi] < .
Hence by using supaz, | #] = max (supeg, %i; i=1, 2),

SUDPR-r, # < max (Supgr-m, #i; =1, 2)

=max (supor, %i; i=1, 2) = Supag, | %|.
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From this we get (b).

- The implication (b) - (c) is clear. Finally we show that (¢) implies (a).
Contrary to the assertion, assume that R does not belong to Orp. Then by
Theorem 3, P,D contains a function » which is not identically zero. By Remark
to Theorem 2, we may assume # > 0 in R - R, and =0 on 9R. Then

SUpPr-7, | %] > supsg, # =0,
which contradicts the assumption (c). Q.E.D.
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