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Introduction and preliminaries

1. Let R be an open Riemann surface. By a density P on R we mean a

non-negative and continuously differentiable functions P(z) of local parameters

z-^xΛ iy such that the expression P{z)dxdy is invariant under the change of

local parameters z. In this paper we always assume that PφO unless the

contrary is explicitly mentioned. We consider an elliptic partial differential

equation

(1) Δu = Pu, J

which is invariantly defined on R. For absolutely continuous functions / in

the sense of Tonelli defined on R, we denote Dirichlet integrals and energy

integrals of / taken over R by

and

£*[/]= fί (\df/dx\* + \df/dy?
J J R

respectively. By a solution of (1) on R we mean a twice continuously differ-

entiable function which satisfies the relation (l) on R. We denote by PB (or

PD or PE) the totality of bounded (or Dirichlet-finite or energy-finite) solutions

of (1) on R. We also denote by PBD ^PBΠPD and PBE ^PBf\ PE. If the

class X contains no non-constant function, then we denote the fact by R e Ox,

where X stands for one of classes PB, PD, PE, PBD or PBE, Here we remaik

that a constant solution of (1) is necessarily zero, since we have assumed that

P $ 0 on £ We also use the notation R^OG to denote the fact that R is a
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parabolic Riemann surface. Ozawa [5], [6] proved that

Oo C OPB C OPE = OPBE

and under the condition \\ Pdxdy < °°, OPB — OPE = OPBE.

Functions considered in this paper are always assumed to be real-valued.

For a class X of functions, we denote by £+ the totality of non-negative func-

tions in 3E.

A subdomain of R is said to be analytic if its relative boundary consists

of a finite number of analytic closed Jordan curves.

2. As far as the author knows a little is published about the class PD or

OpD (cf. Royden [8]). The aim of the present paper is to show that the class

PD shares in many properties of the class HD, the totality of Dirichίet-ήnite

harmonic functions on R. First we show OPB C OPD (Theorem 1). With the

classification scheme of Ozawa we then get

OQ C OPB C OPD C OPBD C OPE = OPBE

and under the condition JJ Pdxdy < oo, OFB = OPD = OPBΌ = OPK = OPBE. It is

an interesting open question to settle whether the above inclusions are proper or

not when 11 Pdxdy= °°. Next we prove that the class PD forms a vector

lattice (Theorem 2). Hence in particular any Dirichlet-finite solution is repre-

sented as a difference of two non-negative Dirichlet-finite solutions. We believe

that this will make further investigations of the class PD much easier. We

then prove that the vector space structure of PD is completely determined by

the behaviour of P at the ideal boundary of R. In other words, if RQ is an

analytic compact subdomain of R such that R-Ro is connected and if we denote

by PQD the class of all Dirichlet-finite solutions on R~~R0 which vanish con-

tinuously on BRo, then the classes PD and PQD are isomorphic as vector spaces

(Theorem 3). Here PoD forms a Hubert space with reproducing kernel with

respect to Dirichlet-norm (Theorem 4). Finally we characterize the property

OpD by a maximum principle (Theorem 5). A similar consideration as our

Theorem 5 for the property OPK is found in the recent work of Ozawa [6].

3. For convenience we state some fundamental facts for solutions of (1)

which we shall use later. In this section we admit the case P = 0 . A non-
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negative (or non-positive) solution on R does not take its maximum (or

minimum) in R unless it is a constant. A solution on R which takes both of

positive and negative values does not take its maximum and minimum in ft

If R is a bordered compact surface and u is a non-negative solution of (l) and

h is a harmonic function such that u and h are continuous on RKJdR and

h>u on BRt then h>u on R. We shaίί quote these facts as maximum

principle.

For a compact subset K of Rt there exists a positive constant k such that

it holds the inequality

k'1u(p)<u(g)<ku{p)

for any non-negative solution « o n i ? and for any two points p and q in K.

We shall call this inequality as Harnack type inequality,

A monotone sequence of solutions on R which is bounded at a point of R

converges to a solution uniformly on any compact subset of R. A bounded

sequence of solutions on R contains a subsequence converging to a solution on

R uniformly on any compact subset of R. We shall quote these facts as Harnack

type theorem.

If a sequence of solutions on R converges to a function uniformly on each

compact subset of /?, then the limiting function is a solution and the sequence

of differentials of these solutions converges to the differential of this limiting

solution.

A bounded solution on R except a compact subset of logarithmic capacity

zero can be continued to a solution defined on R.

Other important facts for the equation Δu~Pu is the solvability of Diri-

chlet problem on any analytic compact subdomain with continuous boundary

value and the existence of Green's function of Δu = Pu with respect to an

arbitrary Riemann surface R unless P=0 on R.

For proofs of these facts, refer to Myrberg's fundamental work [2] and

[31

4. For an analytic compact subdomain D of R and a continuous function

/ defined on a set S containing D, we denote by fD the continuous function on

S defined by / β = / o n S - D and ΔfΌ = PfΌ on D.

A continuous function / defined on a subdomain U of R is said to be a
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subsolution (or supersolution) if for any point po in U there exists an analytic

compact subdomain Do of R such that ί o G f t C B o C U and fv>f (or fD<f)

on U for any analytic subdomain D of Do with po^ D C D C Do. A non-

positive (or non-negative) constant is a subsolution (or supersolution). The

functions cf+g, where c is a non-negative constant, and max (/, g) (or

min (/, g)) are subsolutions (or supersolutions) along with / and g. A solution

is a subsolution and at the same time supersolution. Although the notions

of subsolutions and supersolutions are of local character, we can derive the

following global properties.

LEMMA 1. Let f be a subsolution {or supersolution) defined on a subdomain

U o) R such that sup/>0 (or inf/< 0). Then f does not take its maximum
u u

(or minimum) in U unless f is a constant.

Proof. We only treat the case when / is a subsolution, since the situation

for supersolution is quite parallel to that of subsolution. Contrary to the as-

sertion, assume that u takes its maximum in U. Then we can find a point po

in U which lies in the boundary of the set {p; u(p) = maxσu}, since / is not

constant in U. Now we can find an analytic compact domain Do such that

po& Do C Do C U and /©>/ for any analytic subdomain D of Do with po^D

CDCD. At any point p in 3D,

f(ρ) =Mρ).

This shows that the solution fn in D takes its maximum in D. Hence by the

maximum principle/;) is a constant and so/=/(£ 0 ) on 3D. By arbitrariness

of D in Do, we conclude that f=f(po) in Do, which contradicts the definition

of po. QE.D.

LEMMA 2. A continuous function f defined on a subdomain U of R is a

subsolution (or supersolution) if and only if fΌ>f(or fD<f) for any analytic

compact subdomain D such that DQU.

Proof. Consider the function φ=f-fD on D. This is a subsolution in D

and so from Lemma 1 supDψ = sup-dΏψ = 0. Thus ψ<0 on D O Γ / D > / . Q.E.D.

From this lemma we can conclude that a function which is a subsolution

and at the same time a supersolution is a solution.

LEMMA 3. Suppose that f is a twice continuously differentiable function
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defined on a subdomain U of R. Then f is a subsolution {or supersolution) in

U if and only if Δf- P/>0 {or Δf- Pf< 0) on U.

Proof. First we show the sufficiency of our condition. Let D be an arbi-

trary analytic compact subdomain such that DCU. Put ψ =f-fD on Zλ We

denote by G the Green's function with respect to D with the pole p, which is

an arbitrary point in Zλ By Green's formula,

φ(p) = (2τr)"1fί {Δψ- Pψ)Gdxdy.
J J D

As Δψ-Pψ>:0 (or Δφ-Pψ<0), so <F(p)>0 (or <p(p)<0). Thus ψ>0 (or

ψ<0) on D or fΌ>f {or fD<f). Hence / is a subsolution (or supersolution).

Next we show the necessity of our condition. Contrary to the assertion,

assume the existence of a point in D and hence a subdomain D of U such that

Δf-Pf<0 (or Δf-Pf>0) in Zλ Then from the sufficiency of our condition

we conclude that / is a supersolution (or subsolution) in Zλ As f is a sub-

and supersolution in D, so / is a solution in D. Then Δf-Pf-Q in Zλ This

is a contradiction. Thus we have shown that Δf- P/>0 (or Δf—Pf<0) in U.

Q.E.D.

5. Let U be an analytic compact subdomain of R. We denote by M(U)

the totality of continuous functions on U which are absolutely continuous in

the sense of Tonelli in U with finite Dirichlet integral taken over U. We also

denote by Mφ{U) the totality of functions / in M{Ό) with f~ψon 3ί/, where

ψ is a fixed element in M{U). Then we have

DIRICHLET PRINCIPLE: if U satisfies Δu = 0 on U and u~φ on BU, then

DuίuΊ < Dcίfl for all f in M9{U), where the equality holds only for f=u.

This simple fact plays an important and almost essential role in the study

of the class HD in the theory of harmonic functions. This Dirichlet principle

is a special case, i.e. P = 0 on U, of the following

ENERGY PRINCIPLE: ;/ u satisfies Δu-Pu on U and u-ψ on dU, then

Eυίul < Eσίfl for all f in M'?{U)y ivhere the equality holds only for f=u.

The proof of this is an immediate consequence of the identity Euίfl

= E(j[.u]-{- Euίf*•" u] which follows from Green's formula. From the standpoint

that we are asking to what extent the theory of the class HD can be extended
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to the class PD, we desire to get the validity of Dirichlet principle for solu-

tions of Δu = Pu. Needless to say, this cannot be expected in general unless

P Ξ O . Hence to get the validity of Dirichlet principle for solutions of Δu = Pu,

we have to impose some restrictions on the class Mφ(U). For the aim, we

denote by S{U) the class of all non-negative functions in M{U) which are

subsolutions in U and by S^iU) the totality of functions in S(U) such that

/ = φ on 3Z7, where ψ is a fixed function in S(ϋ). Then we have the following

almost trivial but very useful fact, which we shall quote as weak Dirichlet

principle.

LEMMA 4 [WEAK DIRICHLET PRINCIPLE]. // u satisfies Δu = Pu on U and

u = ψ on dU, then Λ / M < Duίfl for all f in Sφ{U), where the equality holds

only for f=u.

Proof. As /— u is a subsolution in {/with/— u = 0 on 9(7, so by maximum

principle (Lemma 1) f~u<0 in U. Since / is #non-negative, w 2 - / 2 > 0 on U.

From this and the energy principle

Duίfl ~ Dσίul > JJ^ P(u2 -f2) dxdy > 0.

Next suppose that Dσίfl = DuLul. Then from above we get Euίfl-Euίu].

By the energy principle, we finally get / = u. Q.E.D.

Existence of bounded solutions

6. Virtanen [9] proved that the existence of a non-constant Dirichlet-

finite harmonic function implies the existence of a non-constant bounded har-

monic function. First we prove such a Virtanen type theorem for the equation

Δu^Pu.

THEOREM 1. The existence of a non-constant Dirichlet-finite solution of

άu- Pu implies the existence of a non-constant bounded solution of Δu — Pu

Proof. Let u be a non-constant PD-function on R. Contrary to the as-

sertion, assume that there exists no non-constant bounded solution of Δu-Pu

on R. Hence, in particular, u is not bounded. We take an exhaustion {Rn}ΐ

of R consisting of analytic compact subdomains Rn such that R— Ri is con-

nected. Without loss of generality, we may assume u>0 on dRi. Let ut be*
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the continuous function defined on Rn — Ri such that u% is the solution in

Rn-Rι and u% - 0 on 3Rn and wί = « on 3 β . By the maximum principle

on Rn-Ru where w = supaJ?1w. Hence by the Harnack type theorem {u%}

converges to a solution u* on R-Ri which is continuous on R-Rt with

boundary value «* = «on9i? i and w > w * > 0 o n i ? - i ? i . By energy principle

By Fatou's lemma ϋ^-^Hw*] < <» and a fortiori Λί-sxIIί**II < °°. We put w**

= # - # * , which is not identically zero, since κ** = 0 implies the boundedness

of u. Then »** is a non-constant Dirichlet-finite solution in R-Ri vanishing

on BRL

Next we put / = | ί # * * | . This is a Dirichlet-finite subsolution in R~-Rt

vanishing on 3/?i. We denote by #„ (resp. ftw) the continuous function on

Rn" Rι which is a solution (resp. harmonic) in Rn-Ri with boundary value

/ on d(Rn - Ri). By maximum principle

f<Vn<hn

and the sequences {vn} and {hn} are non-decreasing. By using Dirichlet prin-

ciple.

As dRi consists of analytic curves and fc« = 0 on dRi and Dirichlet integral of

hn is bounded by DZfl, so {hn} converges to a harmonic function h with finite

Dirichlet integral on R-Rlm Thus f<vn<h and so by the Harnack type

theorem, {vn} converges to a solution v such that

f<v<h,

which shows v = 0 on a/?! and i; > 0 in /?- ^ . As DΓW < <», so ft2 admits a

harmonic majorant ft* (cf. Parreau [7]). Hence v2 admits a harmonic majorant

ft*. Here we notice that v" is a subsolution. In fact,

Jv2 - i V = Pz;2 + 21 grad e> I2 > 0.

Hence by Lemma 3, v2 is a subsolution. We denote by v% the continuous func-

tion on Rn - Ri such that v% is the solution in i?w — R\ with boundary value υ'
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on d(Rn-Ri). Then by the maximum principle

v2<vl<v*nvi<h*

on Rn- Ri. Hence by the Harnack type theorem {vVϊ converges to a solution

v* such that v2 < v*.

Let vθn be the continuous function on Rn — R\ and the solution in Rn ~ R\

with boundary values ιvn-0 on dRi and M;« = 1 on 3i?«. By the maximum

principle

on Rn — Ri and so by the Harnack type theorem {wn) converges to a solution

w{p'y BR, R — R^ on R— Ri. As we have assumed R^OPB, so by a theorem

of Ozawa [5], w(p dR, R- Ri) = 0.

Fix an arbitrary point p in R-Rx. For integers w such that Rn-R\

contains p, we denote by Gw(#, p) the Green's function of the equation Au- Pu

= 0 with respect to 7?« - ^i with pole p. We put

on d(Rn-Rt), where d/dv denotes the inner normal derivative on d(Rn-Ri)

and ds denotes the line element of d(Rn-Ri). By Green's formula

v(p) = \ vdμn

and

v*(p) = \ v*dμn

and

tVn(p) = 1 Wndμn.

By Schwarz's inequality

2 f f ' f

Using z;2<t;*, we get (v(p))2<n)n(p)υ*{p). Hence by making n/ <*>>

»; 9/?, R— Ri)v*(p).
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Since p is arbitrary in R-Rι and w(p; BR, R-RJΈ-O, we get υ Ξ 0. This

is a contradiction. Thus R$ OPB. Q.E.D.

7. REMARK TO THEOREM 1. Let Ro be an analytic compact subdomain of

R such that R— Ro is connected. Assume that there exists a non-constant

Dirichlet-finite solution u of Δu — Pu on R— Ro ivhich vanishes continuously on

dRo. Then there exists a non-constant bounded solution of Δu — Pu.

The proof of this fact is contained in the proof of Theorem 1. We must

notice that this fact is not true in general in the case when PΞ=0 on R, i.e.

in the harmonic case. In fact, if R e OHB -- OG, then the harmonic measure of

the ideal boundary of R relative to the domain R— Ro is a non-constant and

Dirichlet-finite harmonic function on R—RQ which vanishes on BR0 but there

exists no non-constant bounded harmonic function on R. (OHB denotes the class

of all Riemann surfaces on which no non-constant bounded harmonic function

exist. For the existence of R in OHB-OG, confer Toki [9].)

Lattice property of the class PD

8. It is known that the class HD forms a vector lattice (cf. [4]). Here

the lattice operations in HD are induced one from the usual function ordering

in the class of all harmonic functions. Corresponding to this fact, we prove

that the class PD forms a vector lattice with lattice operations induced by the

function ordering in the class of all solutions. More precisely, for two solutions

u and v we denote by u\l v (or u A v) the solution w such that ιv>_u and v

(or ιv<>u and v) and ιv<tvf (or w>ιv') for any solution w' such that ι&>u

and v (or w' <u and υ). The function u V v does not exist in general. Clearly

the necessary and sufficient condition for the existence of u V v is that there

exists a solution which is less smaller than u and v.

THEOREM 2. The class PD forms a vector lattice ivith lattice operations

V and A. In particular any Dirichlet-finite solution of Au-Pu can be re-

presented as a difference of two non-negative Dirichlet-finite solutions of Λu

^Pu.

Proof. If PD does not contains no non-constant function, our assertion is

obvious. Hence we may assume R^.OPD and so by Theorem 1 R^OPB. It is

known that OGCOPB (cf. Ozawa [5]). Thus R$ OG.
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First we prove that MVO exists and belongs to PD for any u in PD. For

the aim we p u t / - m a x (w, 0), which is a subsolution on R. We take an ex-

haustion {Rn)t of R consisting of analytic subdomains. Let υn be the solution

in Rn with boundary value u on dRn(n>l). By the maximum principle

on Rn and by the weak Dirichlet principle

(1) DRnίvnl<D

We denote by hn the harmonic function in Rn — RQ with boundary value 1 on

dRo and 0 on 3Rn> Then by the maximum principle and Diriclet principle

0<hn<hn+i<l

and

Djtn-R0Lhnl > Ditn+x-]i£.hn+l]

and {hn} converges to a harmonic function h on R-Ro and

DR-BOίhl = limΛ D^-iioCft*].

By /?<$ OG, fc is non-constant and DR-R^K] > 0. By Green's formula

(2) f (Vn-f)*dhn = \ (Vn-f)*dhn

By Schwarz's inequality and by (1)

(3) ^^diVn-f) A *dhn\* £DBΛ-JtJίVn-/ΊDB

<

As we have from (2) and (3)

inf9 J f 0 \υn-f\\ *dhn <_
J 9J?0

and by Green's formula

L *dhn =

so we get
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mίdEo\vn-f\ ^2(DUl/DBn-Blhniy
/2<2{DlflίDB-i<ίhl)υ\

We fix a point p0 in J?o. By the Harnack type inequality there exists a finite

and positive constant k such that

^ k inf9*0 vn.

Hence by putting ra = supai?0 I/I,

VniPo) <km + 2 k(DZf3/DB-zlhl)li2.

Thus by the Harnack type theorem the non-decreasin sequence {vn} of solutions

converges to a solution v on R and by Fatou's lemma

D M < Um» DRnίvnl <: DC/] < °°.

Hence t; belongs to the class PD and v>/ or t;> # and 0. To conclude v = uV0,

we have to show that vf>:v for any solution υf such that t;' > w and 0. This

follows from the inequality #'>#«>:/, which is a consequence of the maximum

principle.

For two arbitrary elements u and v in PD, (u — v) V 0 exists and belongs

to the class PD as we have seen above. Clearly the element w = (u— v) V 0 + ϋ

belongs to the class PD and w~uV v. The existence wΛt in PD is immediate

if we notice the relation «At/= — ((— H) V ( — t/)).

Hence we have proved that the class PD forms a lattice with respect to

the operations V and A. These operations are easily seen to be compatible

with the vector space structure of PD. Thus the class PD forms a vector

lattice with lattice operations V and Λ.

The last part is nothing but the Jordan decomposition of the element u in

/ ? D : « = « V 0 - ( - ( « Λ 0)). Q.E.D.

9. REMARK 1 TO THEOREM 2. Suppose that R is embedded into a Riemann

surface R! as its subsurface and Γ consists of a finite number of analytic closed

Jordon curves which are contained in the boundary of R relative to Rf. Moreover

suppose that the density P on R is the restriction of a density Pf on R' to R.

Assume that two functions u and v in PD(R) are continuously extended to

RUΓ. Then u V v and u A v are continuously extended to RUΓ and u V v

= max {ut v) and u A v = min («, v) on Γ.

Proof. As we have identities w V v={u-v) VO + t;, max («, v) = max (u
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- ί i , O ) + ί / , ί ί Λ ί i = - (( - u) V ( - ι / ) ) and min.(«, #) = - m a x - («, - υ)> so

we have only to prove the above assertion for u — v and 0 in PD(R) and for

the operation V. Hence we have to prove that u V 0 is continuously extended

on RU Γ and «V0 = max («, 0) on Γ if w is continuous on RKJ Γ.

Let {Rt)i be a sequence of analytic compact subdomains R% of R! such

that i?ί C Rn + ί and a j?* (relative to R') contains Γ and afiί - Γ is contained

in i? and R= \JnRn. We put / = max (u, 0), which is continuous on R U Γand

a subsolution in /?. We denote by υ% the solution of Ju-Pu in i?« with

boundary value/ on dRt. By the maximum principle,

on R%. Hence by the definition of u V 0, u V 0 = lim« z4. NOW we denote by

w the solution of du = Pu on Rΐ with boundary value / on Γ and ι# V 0 on

dR?-Γ. Again by the maximum principle, f<v%<,w on Λ* and by making

n / o o , / ^ M V O ^ M ; , which shows that u V 0 = ttιon Λ* and so u V 0 is con-

tinuous on Λ* U BRi and a fortiori on RU Γ and M V O = / = max (w, 0).

REMARK 2 TO THEOREM 2. From the proof of Theorem 2, W£ c<zw easily see

that the following inequality holds:

DRLU V 0], DRIU ί\0l<, Dnίul.

The class PD and the ideal boundary of R

10. It is well known that CWproperty of a Riemann surface is determined

by its ideal boundary. The corresponding facts are also valid for the equation

Δu-Pu. In our case, more strong facts hold, i.e. the vector space structure

of the class PD is completely determined by the behaviour of P at the ideal

boundary of R. This means that vector spaces PD and PD are isomorphic if

P and P' are two densities on R which are not identically zero on R and P~ P'

except a compact subset of R. This fact is also formulated as follows. Let

Ro be an analytic compact subdomain of R such that R — RQ is connected. We

denote by P0D the class of all Dirichlet-finite solutions of Ju = Pu on R-RQ

vanishing continuously at dRo. Then we have

THEOREM 3. The class PD is isomorphic to the class P0D as vector spaces.

Proof We take an exhaustion {Rn}™ of R such that Rn is an analytic
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compact subdomain of R. With each u in PD+, we associate a function #* as

follows. We denote by ut the solution in Rn- RQ ( W > 1 ) with boundary values

Un =u on ai?o and w£ = 0 on 3Z?«. By the maximum principle,

Un <.U*ι+1<U

and

0 < Un <, SUp9i?0 U.

By the Harnack type theorem, {un} converges to a solution w* in R-RQ such

that #* = won 3i?0 and 0<w*<w and 0 < w* < s u p ^ u on R~Ro. By the

energy principle,

Hence by Fatou's lemma

ER-UJLU*! < limn ERn--BluΏ < £Λl-sβC«i*3 < «>

and a fortiori

Ds-2tZu*l< ex).

Clearly the mapping u-* u* satisfies

(1) (*J + ffe)* = Wl* + W2*

and

(2)

where c is a non-negative constant. Now we put πu — u — u\ which is an ele-

ment in Po£>+. Hence we get a mapping π of PD¥ into Po£>+ such that

(3) π(wi-h ^2)

and

(4) π(cu) — cπu,

where c is a non-negative constant. These follow from (1) and (2).

We first show that π is onto, i.e. there exists a tv in PD* such that πtv = f

for any z; in P 0D f If ^ Ξ O , then we have only to take iv = 0. So we may

suppose that v * 0. We fix a point po in 7?0 and a sequence {R-m}? of analytic

subdomains of R such that i?0 3 R-m D /?-m D #-<m+n and Π ?R-m= {ίo}. We

denote by 2fm,» the solution in Rn - R-m with boundary values υ on dRn and 0
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on BR-m. By the maximum principle

0 <> Wm, n < Wm+1, n <, SUPdΛn V.

Hence by the Harnack type theorem {wm,n)m=i converges to a solution wn on

Rn-{po) such that

0 < Wn < SUPaBn V

and

on Rn-Ro. Hence wn can be continued to Rn so as to be a solution on Rn

and if we set wm,n = 0 (resp. # = 0) in /?_m (resp. /?0), then wm,n (resp. v) is

a subsolution in Rn. By the weak Dirichlet principle,

Hence by Fatou's lemma, we get

DRnίwnl<Dίvl

As v<wn> so by the maximum principle

V<Wn<Wn+l.

Now we take an analytic compact subdomain V in /?i-J?o such that (Rt-R0)

— V is a domain. We denote by Λn the harmonic function with boundary

values 1 on BV and 0 on dRn. Then by Green's formula

(5) f (w«-»)*rf*Λf

= (( d(Wn~v) /\*dhn.

By Schwarz's inequality

(6) f f d(wn - «;) Λ * ^ n

Hence by (5) and (6)

As we have by Green's formula
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so we get

inίw (wn -v)< 2(Dίvl/DBn-?Zhnl)112.

By the remark to Theorem 1, R does not belong to OPB and so by Ozawa's

lemma R does not belong to OG, since v £ 0. Hence {hn} converges increasingly

to a non-constant harmonic function h on R- V and the sequence {DRn-τίhnl}

converges decreasingly to DR-VΌI}, which is strictly positive. By the Harnack

type inequality there exists a constant k for a fixed point p in V such that

Wn(p)<k infdvtϋn for all n. Hence by putting α = sup3Ffl,

Wn(p) <Lha + 2kiDlvl/DR-vlh'])112 < ™.

So, by the Harnack type theorem, the non-decreasing sequence {wn) converges

to a solution w on R such that w>v and by Fatou's lemma

D ίwl <> lύ?Λ Dsnίwrtl < Dίvl < oo.

Thus w belongs to the class PD+. To conclude πw = v, we have to show

w* = w — v. For the aim we put w'n = wn - v > 0. As w n — v = M;» converges to

w-v = w uniformly on 9/?0, so we can find for an arbitrary given positive

number ε an iV such that for any n>N

on 3/?o, where Wn is, by the definition of the operation *, the solution in

Rn — Ro with boundary values M; on 3i?0 and 0 on 3i?M. As w'n = 0 on 3/?«, so

we get by the maximum principle

on Rn - i?o. Notice that limn Wn = w* and lim« w*n = w — v. Hence by making

n/ oo in the above inequality, 0<w* - (w - v) <ε. This shows that w* = w- v.

Thus we have proved that πw^v, iv&PD*, or that π is a mapping of PD+

onto P0D
+.

Now we extend π to the mapping of PD onto PQD. By Theorem 2, any

function u in PD can be expressed as

u-v! - u",

where uf and u" are in PD+. We define πu by

7rw = πu! — πu11,
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which belongs to PoD. This definition does not depend on the special choice

of the decomposition u~uf - u". In fact, assume that u~uf - ύ" is another

such decomposition. Then uf -f- u" = u' -f u". Hence by (3), πu' -f πu" = πϊl' + π w"

or πu1 -πu" = πϊίf — πϋ". It is easily seen from (3) and (4) that π is a linear

mapping of PD into /yλ

By Remark 1 to Theorem 2, any # in P0Z> can be expressed as v = #' - #",

where i;' and t;" are in P0D
+. As π maps PD+ onto PoD+, so the extended π

maps PD onto P0D.

Finally we show that π is one-to-one. Assume that πu — 0 for a M in PA

We have to show that u - 0. Let u = u' ~ u" be a decomposition such that w'

and «" are in PD+. Then 7ru' = TΓW" or uf - M'* = u" - w"* or

From this we have to conclude that «' - u" s 0. Contrary to the assertion

assume that w'-ι*"$0. Let {u'n*} and {̂ ί/*} be defining sequences of u1* and

«"* respectively. Then wή*-w«* vanishes on a/?« and v[? - vH* = v'n - vll on

8#o. By the maximum principle,

As u'Λ* - M Γ converges to «'* - »"*, so

pDu' - u" I

Thus we have

sup* I u' - u"! = max (supΛ-sβ Iu' ~u"\> supj?01«' - u"\)

= max (supn-i?01 w;* - n"* |, sup-^ \uf-u"\)

There exists a point /> in BRQ such that

supdΛo I u' - u"\ = I «'(/>) - w;/(i>) I.

Replacing u1 - u" by u" - w', if necessary, we may assume that

u'(p) - u"(p) > 0.

Then there exists a compact neighborhood U of such that w' - uff > 0 in Z7. As

wr - w" does not take its maximum in U unless it is a constant, so uf ~ un = c

in U, where c is a positive constant. Now we put



DIRICHLET-FINITE SOLUTIONS OF Au = Pu 127

Rc = {qeΞR; ιι'(q) - u»{q) = c}.

Then Re contains p and so it is not empty. By the similar argument as above,

Re is open in R. Clearly Rc is closed. Thus by the connectedness of R} Rc = #,

or uf - u" = c > 0. This is a contradiction, since any non-zero constant is not

a solution. Thus we have proved uf - u" Ξ 0 or w = 0. This shows that π is

one-to-one.

Hence π is a one-to-one linear mapping of PD onto Pc£> and so the class

PD is isomorphic to PQD as vector spaces. Q.E.D.

11. REMARK TO THEOREM 3. In the proof of Theorem 3, we have con-

structed an isomorphism π of PD onto PQD. From the proof we can easily see

that

Hence π and π~ι preserve boundedness. If we denote by PQBD the totality of

bounded functions in P0D, then we can state that the normed spaces PBD and

PQBD are isometrically isomorphic, where the norms in PBD and PQBD are

sup. norms.

Thus the condition R$ Op*n is equivalent to the fact P0BD A <0}.

Hubert space PQD and its reproducing kernel

12. Only in this section we admit the case P~0. Let i?0 be analytic

compact subdomain of R such that R - ϊ?0 is connected. We denote by P0Z)

the totality of Dίrίchlet-finίte solutions on R- Ro vanishing continuously on 3R0.

We define the inner product of elements u and v in P0D by the following

(» Λ ff (du dv . du dv \ , .
^^iί-ϊio \ oX ox dy dy I J

Hence \\u\\ = («, w) J / 2= (Z?s-50C«J)V5. First we prove the following

LEMMA 5. TVzere exist a finite-vahied function c(p) and a neighborhood

U{p) of p in R — RQ such that for any function u in the class PQD

\u{q)\<c(p)\\u\\

holds for any q in U(p).

Proof. First assume that u belongs to PQDT. We take a subarc γ of dRύ
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with two end points a and b. Let Γ be analytic arc in R with end points a

and b such that Γ is contained in R — RQ except its end points. Moreover we

assume that γ -r Γ is the boundary 3 U of a simply connected subdomain U of

R—Ro such that U contains p. We denote by h the harmonic function on U

with boundary value u on 3 U. By the maximum principle and Dirichlet principle

u<.h

on U and

Let z-ψ(q) be the direct conformal mapping of U onto Π+ = (z; I m z > 0 )

such that ψ(b) = ε > 0 and ψ(a) = - ε and ?>(/>) =jyOί O>0 > 0). We put H(z)

= h(ψ~1(z)) on 77+. As # ( # ) = 0 on — ε < x < ε, so //U) can be harmonically

continued to Π-{z; \z\ < ° ° ) ~ ( Λ Γ ; ΛΓ>ε or x< — ε). We denote by H{z)

this extended function. We set W={z', \z-yoi\ <yo) and r= (yl + e2)m~-y0.

We denote by H*(z) the conjugate harmonic function of H(z) on 77 such that

tf*(0) =0 and put F(z) =fl-(ε) + i ^ * ( z ) . Then F(0) =0 and

I F{z)\2dxdy = D n [ ^ ] = 2 DnϊHl = 2 Di/M < 2|| uII2.

As | F ( 2 ) | 2 is subharmonic on 77, so for zo in W

\F(z)\*dxdy.
\z-zo}<r

Thus we have for Zi in W

H{zχ) < \F(zχ)\ < | ^ l l F > ( t e a r e Z ί ) e a r s Z ί d i ^ (2/πr2)1/2\\u\\.

Hence if we set U(p) = f" x( ϊF), then

u(q)<h(q)=H(<p(q)) <: (2/τ:r2)1 / 2 | | tf||.

For an arbitrary u in P 0 A we can apply Jordan decomposition u = u

VO + wΛO, since P07) is a vector lattice (cf. Theorem 2 and Remark 1 to

Theorem 2). By Remark 2 to Theorem 2, JDB-SO[W V 0], DB-BJΪU A 0] < DU-SJIKI

Then from the above

! u(q)\ < \(u V 0)(q)\ + |( - « V 0)(^) | < c(p)\\u\\,

where c(p) = 2(2/τrr2)1/2. Q.E.D.



DIRICHLET-FINITE SOLUTIONS OF Δu = Pu 129

THEOREM 4. The class PQD forms a Hilbert space with respect to the inner

product («, v) = (DjR-sXw+fl]- DR- BJLU - vΊ)/2 and this Hilbert space posesses

the reproducing kernel k(p, <?), i.e. the symmetric function on (R-Ro) x (R-Ro)

such that kip, q) belongs to the space PQD as the function of p and for any u

in PoD

u(q) = (u(p), k(p, b)).

Proof To show that PQD is a Hilbert space, we have only to prove that

PQD is complete. Let {un} be a Cauchy sequence in the inner product space

PQD. By Lemma 5, un converges to a function u on R — RQ uniformly on each

compact subset of R—RQ. Hence u is a solution on R — RQ. It is easy to see

that u vanishes continuously on BRQ. By Fatou's lemma

Hence u belongs to the class PQD and lim« \\u- un\\ = 0.

To prove the second part we notice that by Lemma 5 the linear functional

u -> u(p) is bounded. Thus by Riesz's theorem there exists an element up in

PQD such that

u(p) - (w, Up).

As up{q) = (up, uQ) = (uq, up) = uQ{p), so by putting uQ(p) = k(py q) we get

the required kernel k(p> q) of PQD. Q.E.D.

The property OPJ) and a maximum principle

13. A. Mori [1] proved that R belongs to OHD if and only if one of the

following holds; sup.R-50w = s\ipdnou and inf*-^u = inf3i?0u, where Ro is an an-

alytic compact subdomain of R such that R — RQ is connected and u is an arbi-

trary function in HD(R-RQ) such that u is continuous on R-RQ. We shall

show that the corresponding fact also holds for OPD In this case, the above

two inequalitsίes can be replaced by supΛ-j ί o |w| = sup;3»olw|.

THEOREM 5. The folloiving three statements are mutually equivalent.

(a) R belongs to OPΏ;

(b) for any analytic covτpact subdomain RQ such that R-RQ is connected,

it holds that

- J 5 p \ u \ = I I
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for any u in PD(R-R0) such that u is continuous on R — Ro;

(c) there exists an analytic compact subdomain Ro such that R-~Tϊo is

comiected and

SUPi?-7?0 I U I

for any u in PD(R-IΪQ) such that u is continuous on R—R§.

Proof, (a) implies (b). To prove this, take an arbitrary urn PD(R~Ro)

which is continuous on R-RQ. By the remark 1 to Theorem 2, u can be de-

composed as

U = U\ — U2,

where ιi\ and u2 are in PD+(R — R0) which are continuous on R-Ro and

u\ - max (u, 0)

and

#2 = — min (u, 0)

on dRo. We take an exhaustion {i?w}0°° of i?such that Rn is an analytic compact

subdomain of R. Let vt, n be the solution in Rn - Ro with boundary value w

on dRo and 0 on dRn. By the maximum principle,

0 <, Vi, n<Vi,n + l<, SUP9J?O Ui

and by the energy principle, £B|l-50Ct;, ,«]>JEBΛfl-ϊfβCi;, i «+ 1 l By the Harnack

type theorem and by Fatou's lemma, {vi%n)™=\ converges to a solution v% in

R-Ro such that

0 < Vi < SUpdΛ0 Ui

and Vi = ui on d Ro and

fii-ΓίβCvί] < limnEiin-TijL.Vi,tιΊ <> ERχ-ϊι£_υi,-ί~]

and a fortiori

Hence by using sup»*e I u\ = max (suρ9 β o m i = 1, 2),

supR~j?0« < max (supj?-r?0 Ui \ i = 1, 2)

= max (sup 9 i ? 0 Ui i = 1, 2) = sup 9 i f o I w .
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From this we get (b).

The implication (b) -» (c) is clear. Finally we show that (c) implies (a).

Contrary to the assertion, assume that R does not belong to OPΌ. Then by

Theorem 3, PQD contains a function u which is not identically zero. By Remark

to Theorem 2, we may assume u > 0 in R -Ro and u = 0 on dR0. Then

SUpi?-£ 0 \u\> S U p 9 ί ? c U - 0 ,

which contradicts the assumption (c). Q.E.D.
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