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0. Introduction

The definition of the determinant of an endomorphism of a free module

depends on the following fact: If F is a free i\?-module of rank n, then the

homogeneous component ΛMF, of degree n, of the exterior algebra Λ F of F

is a free Z?-module of rank one. If a is an endomorphism of F, then a extends

to an endomorphism of Λ F which in I\nF is therefore multiplication by an

element of R. That factor is then defined to be the determinant of or. (A

discussion of this theory may be found in [4].)

This procedure cannot be applied in general to finitely generated projective

modules since, for such modules, it may happen that no homogeneous com-

ponent of the exterior algebra is free of rank one.

In this note we show how to define the determinant of an endomorphism

of a finitely generated projective module over any commutative ring. If E is

a finitely generated projective /^-module, then E is a direct summand of a

finitely generated free module: E 4- Ei = F. If α is an endomorphism of E,

extend a to an endomorphism ax of F by defining a\ to be the identity on Ei.

It is proved that detαri depends only on E and a, and not on the choice of Eι\

we then define άeta to be detαri. The usual elementary properties of the

determinant are valid in this more general setting and are immediate con-

sequences of the definition.

By forming the iOG-module E&RZX], we define the characteristic poly-

nomial φ(a, E, X) of an endomorphism a of is as det (X- a ® 1). The Cayley-

Hamilton theorem, to the effect that <f(cc, E, X) is in the kernel of the homo-

morphism RίX'] -* Homβ(is, E) defined by X-* cc, is readily verified.

The characteristic polynomial <f(0, E, X) of the zero endomorphism has a

number of interesting properties. If E is free of rank n, then certainly
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φ(0. E, X) = Xn, but this is not the case in general. Here one finds ψ(0, E, X) =
n

lϊleiX1 with the a mutually orthogonal idempotents whose sum is 1; and every

polynomial of this type can occur. The coefficients have the following inter-

pretation : e0 generates the annihilator of E, while e0 -f 4- e% generates the

annihilator of Λ t+1E. Also, for a given E all the polynomials φ(a, E, X) have

the same degree and the same leading coefficient independently of a.

If p is a prime ideal of R, the i?p-module E®Rpt being a finitely generated

projective module over a local ring, is free we call its rank the p-rank of E.
n

With the above notation ^(0, E, X) = *ΣeiX\ we have the following result:

given p, exactly one coefficient fails to lie in p, and if a $ p, then the p-rank

of E is i.

We follow the customary terminology in dealing with projective modules:

all rings have unit elements, ring homomorphisms carry the units into units

and all modules are unitary.

Section 1. The Determinant of an Endomorphism

Let R be a commutative ring and E a finitely generated projective i?-module.

Because E is both projective and finitely generated, E is a direct summand of

a finitely generated free R-module: Fχ = E + Eι. If or: E-> E is an endomor-

phism of E, we extend a to an endomorphism aι of Fi by αri = a 4-1, that is,

ax is the identity map of Eι. If should be noticed that if both E and JBΊ are

free i?-modules, then a and αi have the same determinant. Therefore it would

be reasonable to define in general the determinant of a as detαri. This is

possible once we verify that det cci does not depend on the particular representa-

tion of E as a direct summand of a free module. In order to show that this

is the case, we need the following lemma.

LEMMA 1.1. Let R be a commutative ring, A an R-module. If p is a prime

ideal of R, let f$: Ar+ AΘsRp be defined by fp(a) =a®l. If a^A is such

that f\n(a) =• 0 for all maximal ideals m of R, then a = 0.

Proof. It follows directly from the definition of the ring of quotients Rp

that an element a e A is in the kernel of fp if, and only if, there exists an

element c e R with c $ p and ca = 0. If a e A, let 9ϊ be the annihilator of a in

R. If fm(a) =0 for all maximal ideals m, then 91 Φm, for any maximal ideal.
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Consequently, 9ί = R and a - 0.

As an immediate consequence of the lemma we have the following pro-

position.

PROPOSITION 1.2.2) Let E be a finitely generated projectiυe R-module. For

* = 1, 2 let Fi = E + Ei be a finitely generated free Rrmodule. If a e HomB (E, E),

let cci e Homj? (F, , Fd be defined by oa = a 4-1. T/zew det #i = det α2.

Proof. Let m be a maximal ideal of R. The ring of quotients i?m is a

local ring (not necessarily noetherian) so that E®Rm> Ei®Rι\χ are all free

/?m-modules. (It follows from prop. 5.1, ch. VIII of [3] that a finitely generated

projective module over a local ring is free). Then, tensor with Rm the direct

sum Fi = E4-Eι to give Fi®Λm = E®Rva + Ei®Rχa. The endomorphisms a

and ai extend to endomorphisms cc®l and ai®l which have the same relation

as do a and αri. If /m : R -»• i?m is the canonical map, it is clear that det (ct\ ® 1)

=/m(detα:i), while at the same time det(tfi® 1) = det (α:<g>l). Now, the same

situation prevails in F2, so that /m(det ai) = det (a®l) -/m(det a2), and this

is so for all maximal ideals m of R. Applying the lemma with A- R shows

that det #i = det #2.

In view of this proposition, we define det ori as the determinant of a, and

denote it by det a. It is clear that for a free module the present definition

coincides with the usual one.

There are several properties of determinants which follow directly from

the definition.

PROPOSITION 1.3. Let E be a finitely generated projective R module. If

α j e Horn* (£, E), then det (aβ) = det a det β. Also, det 1 = 1. Finally, a is

an automorphism of E if, and only if> det a is a unit in R.

Proof. We use the same notation as above, F=E + Eι. It is clear that

Kaβ)i = <xiβi, from which the multiplicative property of det follows. Also li •= 1,

whence det 1 = 1. If or is an automorphism of Ef these relations show that

det a is a unit in R. On the other hand, suppose that det a is a unit in R.

Then ai is an automorphism of F. One verifies immediately that aϊ1 maps E

into itself, and is the inverse of a on E. Therefore a is an automorphism of E.

2> I am indebted to Maurice Auslander for suggesting the main idea of this proof.
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Suppose that / : R ~> S is a homomorphism. Then / gives S the structure

of an i?-module and E®RS is a finitely generated projective S-module, where

E is a finitely generated projective Rmodule. If a e Hom^ (E, E), then <x®l

is an endomorphism of E®S over S. In case E is R-free, it is obvious that

det (a <g> 1) =/(det αr). If follows immediately from the definition of determinant

that this relation holds also in the case where E is projective, not necessarily

free. Thus, we have:

PROPOSITION 1.4. Let E be a finitely generated projective R-moduίe and

a e Horrid {E, E). Let f: R -> S be a ring homomorphism. Then, α ® l e Homs

{E®S, E®S) and άet{a®l) ^f(άeta).

There is a final simple property of determinants analogous to the classical

situation. We shall omit the proof since it is a straightforward consequence

of the definition.

PROPOSITION 1.5. Let Ei and E2 be finitely generated projective R-modules,

and let αri eHomB(£i , Ei). Then, det (αri-f αr2) =detαπ detα2.

Section 2. The Characteristic Polynomial

Let R be as above, and let R\_X~\ be the ring of polynomials in one in-

determinate over R. If £ is a finitely generated projective R-module, then

E®RLX1 is a finitely generated projective i?[Z]-module. Let a e HomB (E, E).

Then <x®l is an endomorphism of E®RίXl, while multiplication by X is

another endomorphism. Thus, X— a® 1 e HomBιχ} (E®RCX3, E®RίXl) and

det (X- a® 1) e RίXl is called the characteristic polynomial of a. We shall

denote it by ψ(oct E, X). It follows immediately from proposition 1.5 that

Ψ(ccι + cc2, Ey + E2, X) = ψ(ccu Eu X) φ{a2, E2, X). Also if / : R~* S is a ring

homomorphism, then φ{cc®l, E®S, X) =fψ(ay E, X), where /' : RίXl -> SίXl

is the natural extension of /.

THEOREM 2.1. (CAYLEY-HAMILTON). φ(af E, X) is in the kernel of the

homomorphism RίXl -» Homi? (E, E) defined by X ~+ a.

Proof. We note first that the Cayley-Hamilton theorem is true in case E

is free. The usual proof of the theorem for vector spaces, as for example in

[2], is valid for free modules over any commutative ring.
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Now, let E be projective and a e HoπλR (E, E). Let ω be the image of

φ(ac, E, X) under the homomorphism X -> a. We wish to show that ω = 0. To

do so, we consider the submodule ω{E) of E. If m is any maximal ideal of R,

all objects under consideration localize properly, and ω(E)<S>Rm = 0 because

E®Rm is a free i?m-module. It follows from lemma 1.1 that ω(E) = 0, that

is, ω = 0.

The characteristic polynomial of the zero endomorphism is especially in-

teresting. Clearly φ(0, E, X) is the determinant, in RlXl, of the endomorphism

defined by multiplication by X in E®RZX1. Using the homomorphism RίXl

-* R defined by X-+ 1 shows that ^(0, £, 1) = 1. The multiplicative property

of the determinant gives ψ(0, E, XY) = ψ(0f Ef X) ψ{Qy E, Y) where X and Y
n

are independent indeterminates over R. Set ψ(0, E, X) = Σ^ίX*> ei^R. Ap-

plying the multiplicative property shows that 'ΣeiejX'Y' = *ΣekXkYk, so that

comparing the coefficients of the different monomials gives eiej-dijej. The

equation ^(0, E, 1) = 1 translates into Σ^ί = l Thus, we have proved:
n

PROPOSITION 2.2. i/* f (0, JS, X) = Σ ^ ^ 1 ?s f/ϊ̂  characteristic polynomial

of the' zero endomorphism of E, then the βo, eL, . . . , en are mutually orthogonal

idempotents with eΰ + βi + en = 1.

Of course, if E is a free jR-module of rank n, then ψ(0, E, X) = Z M . In

general the polynomial ψ(0, 2?, X) need not have that form.

PROPOSITION 2.3. Let eo, . . . , en be mutually orthogonal idempotents in R

ivhose sum is 1. Then, there exists a finitely generated projective R-module E

such that <f{Q, E, X) = "

n

Proof. The conditions imposed on the e' s imply the relation Σ ί̂ X1 =
t = 0

n

Π (1 - ej + ̂ /-X")7, as may be verified by direct computation. Since ^(0, isi-kEi, X)

= f(0, Ei, Z ) ^ ( 0 , JSI2, X), it follows that we need only prove the following:

if e G R is an idempotent, then there is a finitely generated projective /?-module

A such that ψ(0, ̂ 4, X) = 1 - β + eX Now, since ^ is idempotent, A = #e is a

direct summand of i?, so that it is finitely generated projective. Furthermore,

the definition of determinant shows directly that f(0, Re, X) -I- e-\-eX.

The Cayley-Hamilton theorem applied to ^(0, E> X) shows that φ(0, E, 0)

-e0 annihilates E. Also, it is clear that <f(Q, E} 0) = d e t θ , and the above con-
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struction shows that det 0 need not be 0 in general although it is the zero

endomorphism of E. Some properties of det 0 will be discussed later.

Section 3. The Local Rank of a Module

Let E be a finitely generated projective ivNmodule. If p is a prime ideal of

R, then E®Rp is a free ify-module of finite rank. We shall call the rank of

E®Rp the p-rank of E. It is sometimes of interest to know how the p-rank of

E depends on p.

n

THEOREM 3.1. Let φ(0, Ey X) = 'ΣβiX1 be the characteristic polynomial
<-=0

of the zero endomorphism of E. If P is a prime ideal of R, then exactly one of

the e's is not in p if ei $ p, then the p-rank of E is i. If ej ±? 0 there is a

prime ideal p such that the p-rank of E is j .

n

Proof. Since Σ Φ = 1> not all of the e's are in p suppose e% Φ p. For j =*F i

we have e% ej = 0, so that ej e p because p is a prime ideal. Since ei Φ p and

βiβj = 0 for j * i, it follows that fpiej) = 0 where /p : R-> Rv. Also, because

ef (l -ei)= 0, we have /pU. ) = 1. Therefore if /p : RtX] -+ RplXl is the exten-

sion of /p, we find that /£(0, E, X) = X1". But /p(0, £, X) = ̂ (0, .E'Θ/ep, X),

while f (0, £ 0 /?p. JY) = Z m if m is the p-rank of E. Thus, »i = f.

Now, suppose βj # 0. Since the intersection of all prime ideals of R is the

set of nilpotent elements of R, and since no non-zero idempotent is nilpotent,

we have βj Φ p for some prime ideal p. It follows from the above that the p-

rank of E is just j .

We have as an immediate consequence the following:

COROLLARY 3.2. If R has no non-trivial idempotents, then the p-rank of E

is the same for all p.

If we set f (0, E, X) = ̂ eiX
i with en # 0, theorem 3.1 shows that n is

t = 0

the maximum of all p-ranks of E. We shall call n the R-rank of E. Theorem

3.1 also shows that the p-ranks of E are completely determined by the knowl-

edge of the polynomial ψ{0t E, X).

THEOREM 3.3. If the R-rank of E is n, then for any endomorphism a of

E the polynomial ψ(af E> X) has degree n. Furthermore, the leading coefficient

of ψ(a, E, X) is independent of oc.
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tn

Proof. Set ψ(a, E, X) = *ΣaiX\ with am =*F 0. There exists a prime ideal
i ---- 0

p such that / p ( ^ ) # 0 , with fv:R->Rv as usual. Since 'ΣffiadX' is the

characteristic polynomial of a®l in E®R$, its degree m is equal to the p-rank

of E> which in turn is < n. Hence m <; n. Since there exists some prime ideal

p such that the p-rank of E is n, it follows that m > w, hence m^n.
n

Let ^(0, £, X) = Σ ^ / ^ If P is a prime ideal such that en$p, then the
i = 0

p-rank of E is n and therefore fp(an) = 1- Hence α n - l is annihilated by some

element of i? not in p. Denote by b the annihilator of an - 1 . We have there-

fore the implication: en Φ P =^ ί) C p. It follows immediately that en <Ξ rad b.

Since en is idempotent, this shows that β«eb, or enan-en-

Now suppose p is such that en e p. Then the p-rank of E1 is less than n,

so that /9(an) = 0. If c is the annihilator of #w, we find : ^ e p ^ c Φ ί ) . Now,

g«eί) is the same as 1 - enΦ P, and therefore we conclude that 1 - ^ Λ e rad c.

Again, because 1 - en is idempotent, we have 1 - en e c or (1 - β«)«« = 0. Thus,

Λn = ̂ fln. Since we have already established the equality enan~en, we con-

clude that an = en

Section 4. The Exterior Algebra

Before starting on the proper subject matter of this section, we need some

preliminary results.

LEMMA 4.1. Let e and e1 be idempotents in the commutative ring R. If

Re = Re\ then e = e'. If rad (Re) - rad (Re1), then e = e'.

Proof. If Re = Re1 then e = #£' and e1 = #£ with <2 and & suitable elements

of R. Combining the equations shows that e = abe, and e'-abe1. From the

idempotence of e and ef we get b2e = e' or be'-ef. Multiplying by a yields

tf&e' =• «^' = e, while β ^ ' = β' or e = e'.

From rad (ϋte) - rad (/?g;) and the idempotence of e and e1 we get /?6 = Re'

and therefore ^ = e'.

If £" is an i?-module we call the annihilator of E, and denote by a(E), the

set of all a e i ? such that αii^O. Clearly α(£) is an ideal in R. We say that

E is faithful if α(£) = 0.

LEMMA 4.2. 7/* E fs α finitely generated projective R-module, then a(E) is

a direct summand of R.
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Proof. The lemma is a consequence of the considerations in the appendix

of [1]. However for the sake of completeness we include a proof of the state-

ment. Let % be the ideal in R generated by all fix) as x ranges through E

and / ranges through YίomuiE, R). Then, we shall show that R = a(E) +%.

If flGoffl, then af(x) = /(αz) =0, so that a(E)%^0.

Let Xi, . . . , xn be a set of generators of E, and let F be a free ^-module

of rank n. By mapping the generators of F onto the xι we obtain an epimor-

phism of F on E since E is projective, it follows that E is a direct summand

of F. Let /i, . . . , / » be the restrictions to is of the coordinate maps of F.

Then, /,- e Horn* (E, R) and Σ/K:y)#ί = jy> for aUjyeE. In particular, we have

Xj = *Σfi(xj)xi or Σ (//(#/) - &/)#/ = 0. It follows from this that det (/,•(*>•) - 5,y)

G Q ( £ ) . Now, each /;(#/) e% and the value of det ifάxj) - δij) is ( -lΓ-ff,

where f is also in the ideal 2. Thus, l e α ( £ ) + £ so that α(£)-f £ = #. It

follows from this and the fact that a(E)% = 0 that R is the direct sum of a(E)

and %.

If £ is an i?-module we denote by Λ E the exterior algebra of E, and by

ί\ιE the homogeneous part of degree i of Λ E. (We refer the reacjer to C4]

for details concerning ΛE). In general we have ,\°E=R *anά Λ1 E = E.

Also, Λ f'(£i 4- E2) = Σ Λ y £i® Λ l W £ 2 (direct sum). If F is a free module, then

Λι F is also free. If follows from this that Λ * E is a finitely generated pro-

jective iv?-module whenever E is a finitely generated projective i?-module.

THEOREM 4.3. Let E be a finitely generated projective R-module of R-rank
n

n and let <f(0, E, X) = *ΣeiX\ Then a(/\i+1E) is generated by e* + ex+ - - +«,-.
i = 0

In particular ΛnE*0 and Λn+1E = 0. Finally, ΛnE is a faithful R-module

if, and only if, <f{0, E, X) = X7\ and in that case all I\{E are faithful for

Proof. Let p be a prime ideal of R and suppose that the p-rank of E is

m. Then, £®/fy is a free i?p-module of rank m. Since Λί+1(£(g>i?p) = Λi+1(E)

0RV, we find that Λf'+1(£)®/?p = 0 if, and only if, m<,i. On the other hand,

it follows from theorem 3.1 that m<i if, and only if, £0-l-ei+ * * ' + ^ i ί p .

Thus, Λi+1(E)(g)Rp = 0 is equivalent with e* + ex+ -f β, Φ p. But /\i+1(E)

®i? p -0 is equivalent with Q(Aί<+1(£))Φp, and therefore α( Λ ί + 1(£)) C p is

equivalent with eo+ * * + ^ ep. Now if α is any ideal of R, the intersection
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of all prime ideals containing α is rad α so that we have r a d ( α ( A j M E ) )

= rad(i?(£ 0+ * +e/)). But a(f\l+1E), being the annihilator of a finitely

generated projective R-module, is generated by an idempotent, while e0 + * *

-f a is also an idempotent. It follows from lemma 4.1 that Q(A ί + I (£)) is

generated by eo -f £i + * -f eu

Because Σ * i * 1 and Σ e / = 1, we have ΛnE*0 and Λw+ιJE'=O. Also,
i = 0 ι = 0

n-ί

ί\nE is faithful if, and only if, its annihilator is 0, i.e., if and only if Σ#/
i ••=• 0

71-1

= 0. But Σ β ί = 1 - βn,'so that Λ M £ is faithful is equivalent with en = 1.
i = 0

Since the various £/ are mutually orthogonal, the latter condition is equivalent

with ψ(0, E, X) = Xn. It then follows also that each n( Λ i + ι E) = 0 for i<n- 1.

Since £o = det 0 we have immediately the following.

COROLLARY 4.4. j? is faithful if, and only if, det 0 = 0.

A finitely generated projective i?-module E of i?-rank n is called orientable

if Λ M £ is a free /?-module of rank one. By theorem 4.3 we have for such a

module ψ(0, E, X) = .X*1. Obviously free modules are orientable.

PROPOSITION 4.5. If Eι and E2 are orientable, then Eχ\-E2 is also. If

F= JE
I

1 + £I2, with F and £Ί orientable, then E* is also orientable.

Proof. Suppose Ei and E2 are orientable with i?-ranks Wi and w2, respec-

tively. Then ΛΛi+''j& = 0, for i > l , so that A M l + * 2 (£i+ £ 2) = Λ W l £i® Λ" 2 £ 2 .

Since the i?-rank of J5Ί -f £2 is obviously n± + w2, it follows that E\ 4- ̂ 2 is orien-

table.

Suppose now that F= E1 + E2, with £Ί orientable of rank n and F orien-

table of rank m. Since ?(0, F, Z) = ^(0, Eu X)<f(0, E», X) and φ(0, F, X)

= Xm while φ(0, Eu X)^Xn, it follows that φ(0, E2t X)^Xm'n. Thus the

#-rank of E2 is n - m and therefore A m F = ^nEι® Nm"nE2. Since Λ W F and

t\nEχ are both free of rank one, it follows that ,\m~nE2 is also free of rank

one and we conclude that E2 is orientable.

The proposition just proved shows that the isomorphism classes of orien-

table modules constitute a subgroup of the projective class group of R.

If a is an endomorphism of a module E, then a extends to an endomor-

phism a of ι\E by defining a(xi/\ /\xn) = a(xi) A * /\a(xn). Clearly a

maps each I\nE into itself.
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THEOREM 4.6. Let E he an orientable module of R rank n and a an endo-

morphism of E. Then the restriction of a to ί\nE coincides with multiplication

by det or.

Proof. Suppose E+ Eλ- F with F a free module. Let wi be the R-mnk of

Eι, so that F has rank n + n\. Extend a to an endomorphism a\ of F by de-

fining oci to be the identity on Eγ\ then deter = det#].

Now ΛM + W lF= ί\nE® /\nιEi, with all three modules free of rank one. It

is clear that «i = α ® l on An+HιFf while ά± restricted to /\n+"ιF coincides

with multiplication by det αri = det a. The result follows immediately.
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